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GEOMETRY, INFERENCE, AND DEMOCRACY

JORDAN S. ELLENBERG

Abstract. Decisions about how the population of the United States should
be divided into legislative districts have powerful and not fully understood
effects on the outcomes of elections. The problem of understanding what we
might mean by “fair districting” intertwines mathematical, political, and legal
reasoning; but only in recent years has the academic mathematical commu-
nity gotten directly involved in the process. I’ll report on recent progress in
this area, how newly developed mathematical tools have affected real political
decisions, and what remains to be done.

1. What does it mean to be represented?

All democratic states are founded on the principle that every citizen’s views are
to be represented in the conduct of the government. This principle, like most im-
portant principles, is easy to state, difficult to make precise, and almost impossible
to implement in a fully satisfying way.

For one thing, democratic states are big. Even a modestly sized city is large
enough that it would be impractical for every decision about zoning, school cur-
riculum, public transport, and taxes to be put to a public plebiscite, let alone to
arrive at a consensus. So modern governments typically operate under some form
of representative democracy, where a small group of legislators are elected by the
population to write laws and vote on their passage. But how to generate this group
of popular representatives? There are a lot of different ways. In Israel, voters vote
for their preferred political party, which is awarded a number of seats in the Knesset
roughly in proportion to its share of the popular vote, and then the party chooses
the occupants of those seats. For the Senate of the Phillippines, each voter casts a
vote for as many as twelve candidates, and the top twelve vote-getters overall join
the Senate. The most common means of choosing representatives, though, is the
one used by the United States Congress and by the legislatures of most of the states;
the population is divided up into legislative districts, and each district chooses a
representative by plurality vote. Under a district system, every voter has a specific
representative who, at least in theory, governs on their behalf.

In some systems, this partition of the electorate reflects natural (or at least
historically settled) political divisions. Each U.S. state has two U.S. Senators, be-
cause, at least formally, each state is a semi-autonomous political entity with its
own particular interests. (These are thus examples of multi-member districts, a
variant of single-member districting in which each district selects not just one but
several representatives in the legislature; multimember districts are also used for
a a few US state legislatures.) The partition is almost always along geographic
lines, though not always. In New Zealand, Māori people have their own electoral
districts, which are superimposed on the general districts; Māori voters have the
choice in each election whether to vote in the Māori or the general district con-
taining their residence. Or the partition might not have any geographic component
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at all. In Hong Kong, there’s a seat in the Legislative Council only teachers and
school administrators can vote for, one of 30 seats elected by so-called functional
constituencies. The Centuriate Assembly of the Roman Republican had constituen-
cies separated by wealth bracket. In the upper house of the Oireachtas in Ireland,
there is a three-seat constituency consisting of students and graduates of Trinity
College Dublin, and another for alumni of the National University of Ireland.

Electoral districts within U.S. states are a different story. They are patches of
land without much meaning. Nobody in the 2nd Congressional District of Wis-
consin, where I live, wears a WI-2 sweatshirt, or could recognize the district from
its silhouette. As for my state legislative district, I had to look it up to be sure
I had the number right. These districts, have to be determined somehow, despite
not having robust pre-existing political identities; that is, someone has to select
a partition of the population of the state chosen from the ensemble of all possible
partitions, a set of unmanageably large size. This process, historically, has not been
the subject of much public attention. That has now changed. That’s because we
now understand something we didn’t fully grasp before, which is at least in part
a mathematical statement; that the way the population is broken up into districts
has an enormous effect on the makeup of a legislature.

To some extent this is obvious. If I am in complete control of the districting of
Wisconsin, with the power to partition the population any way I wish, and there
is a cabal of like-minded people I want to be in control of the state, I could simply
make each one of those people their own district, and then create one more district
consisting of everybody else. My hand-picked candidates vote for themselves and
then rule the legislature with at most one potential voice of opposition.

That’s not fair! Certainly the people of Wisconsin, with the exception of the
cabal itself, would be right to feel they were unrepresented in the decision-making
of the state.

In real life, no one tries to implement a scheme like this. For one thing, state
governments are not allowed to create districts with radically different populations;
though until the 1964 Supreme Court decision in Reynolds v. Sims, state govern-
ments in the United States could, and did, do exactly this. In the United Kingdom,
so-called “rotten boroughs” with only a few dozen voters were common until the
19th century.

Nowadays, in the United States and many other representative democracies
(though not Canada!) districts are fixed by law to be approximately equal in size.
That prevents the kind of cabalization of the legislature I described above. But it
is not, it turns out, sufficient to keep the choice of partition from having a dramatic
influence on the outcome of the election. The manipulation of district boundaries
in order to achieve a desired outcome (most commonly a majority or supermajority
of seats for one’s own party, or protection of incumbent legislators) is often called
gerrymandering, after a 19th-century Massachusetts governor sometimes thought
of as a pioneer of the practice. In most states, the power to determine legislative
districts is held by the legislature itself, creating an obvious incentive and opportu-
nity for a disciplined partisan majority to preserve itself by gerrymandering against
the will of an unfriendly electorate.
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We are faced with the following ensemble of questions. We writeΠ = {Π1, . . . ,Πk}
for a partition of the state’s population into k subsets. We want to know:

• What properties should Π have in order to be considered “fair”?
• Given a proposed Π, are there quantitative measurements of unfairness
which are robust, reliable, and simple enough to be used by judges and
courts who have to decide whether Π is too unfair to use?

• In a U.S. context, what kind of constraints on Π do the US and state
constitutions allow us to impose, and what kind of constraints do those
constitutions require us to impose?

As you can see, these questions are not purely mathematical in nature. They have
a legal, a political, and a philosophical strands as well, and the strands can’t really
be unwound from each other. If mathematicians work on these problems alone,
ignoring the other strands, the results are not going to be very useful. (“Why don’t
we just draw a grid over the state and make each box a district....?”) But when
lawyers and politicians think about redistricting while neglecting the mathematical
strand, the result of their work will be no better; and that, by and large, is exactly
how these issues have been addressed through most of American history. In recent
years, I am happy to report, there has been a flowering of truly interdisciplinary
work, involving both serious mathematics and conscientious attention to political
and legal realities, and we have begun to move toward a way of thinking about
legislative districting which is sound from all the relevant points of view.

2. Measures of fairness

What do we mean when we say a districting is “fair” to the residents of a state?
A good way to get a sense of the difficulties here is to contemplate a toy example.
Imagine a state with a population of just 100 people, of whom 60 are members of
the Purple Party and 40 vote for the Orange Party. The population of this state
is partitioned into five legislative districts. Here are four ways the task could be
done:

Π1 :

Purple Orange
15 5
15 5
15 5
7 13
8 12

Π2 :

Purple Orange
9 11
9 11
9 11
17 3
16 4



4 JORDAN S. ELLENBERG

Π3 :

Purple Orange
14 6
14 6
13 7
11 9
8 12

Π4 :

Purple Orange
12 8
12 8
12 8
12 8
12 8

Each of these districtings obeys the constraint that districts be of equal size.
But the legislatures they produce are very different. In Π1, the Purple Party holds
three seats and the Orange Party two. In Π2, the Orange Party holds a legislative
majority, with three out of the five seats. In Π3, Purple holds a 4-1 majority of
seats. And in Π4, Purple holds all five seats and Orange is utterly shut out.

Which of these choices is the most fair? Which is the least?
With this toy case in mind, let’s talk about the main existing flavors of quanti-

tative measures of fairness.

2.1. Proportional representation. One of the most broadly popular and intu-
itively appealing measures of districting fairness is provided by the principle of
proportional representation.

Definition 2.1. A districting satisfies proportional representation when the pro-
portion of seats held by each party is equal to the proportion of votes won by that
party.

Of the districtings above, only Π1 satisfies proportional representation; the Pur-
ple Party got 60 percent of the vote, and it holds 60 percent of the seats. Achieving
proportional representation is often seen as a goal, or even the goal, of districting
reform. The New York Times, in a 2018 feature story on gerrymandering, wrote of
Pennsylvania’s Congressional districts: “Republicans got 54 percent of U.S. House
votes statewide, but won 13 of 18 seats,” suggesting that this deviation of seat pro-
portion from vote proportion is the problem districting reform is meant to solve.
Supreme Court Justice Neal Gorsuch, in the oral arguments on the redistricting
case Rucho v. Common Cause, also took this to be the standard at issue, pointedly
asking, “[A]ren’t we just back in the business of deciding what degree of tolerance
we’re willing to put up with from proportional representation?”

I hope it is clear at the very outset that this definition suffers from many practical
problems. For one thing, it is impossible to satisfy exactly; the proportion of votes
cast for a party need not be anywhere near a rational number whose denominator
is the number of districts! This is most notable in states consisting of a single
Congressional district; we accept, without hesitation, that whoever gets the most
votes should occupy 100% of the seats, even though the proportion of votes that
candidate received may be far from 1.

Would fairly drawn maps even be likely to yield proportional representation?
It’s unlikely. Look at the Wyoming State Senate, for instance. Wyoming is by
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some measures the most strongly Republican state in America. Two-thirds of its
voters picked Donald Trump in 2016, and the same proportion voted Republican in
the governor’s race in 2018. But the state senate isn’t two-thirds Republican; there
are 27 GOP Senators and only 3 Democrats. That shouldn’t necessarily be seen
as unfair! When a state’s population is two-thirds Republican, the likelihood is
that most geographic segments of the state are pretty Republican. In the extreme
case of this, where the state is utterly homogeneous politically, every district would
be represented by Republican Senator. This is the situation depicted in Π4. By
the central limit theorem, these are the kinds of districts we’d get if we selected
the districting entirely at random from the set of all possible partitions of the
state’s population into equal-cardinality pieces, with no attention paid to geography.
Real-life states, even Wyoming, are not exactly homogeneous; but they also often
don’t look like Π1, in which there’s not a single district that approximates the
overall political distribution of the state. When districts are drawn geographically,
an intermediate scenario like Π3 is more common; substantial variation from the
statewide average, but with some concentration around that average.

The final problem with asking districtings to approximate a proportional rep-
resentation system is that it’s not our system. We have chosen to accept, for
instance, that parties with small but geographically dispersed support don’t get
representation in the legislature. The proportion of Americans voting for Liber-
tarian candidates for the House of Representatives consistently hovers around 1%;
but there has never been a representative from that party, let alone the 3− 5 that
strict proportional representation would recommend. (In Canada, whose elections
are very similar to those in the U.S., the deviations are even starker; in the 2019
federal elections there, the New Democratic Party drew 16% of the vote against
only 8% for the Bloc Québécois, but the Bloc, whose voters are concentrated in a
single province, won substantially more seats in Parliament.)

This is not a matter of mathematical or purely philosophical fairness; it’s a
decision the United States made a long time ago, baked into the way our legal
system views elections. No matter how many party-line voters there are in practice,
our votes are formally for people, not parties.

2.2. Partisan symmetry. One visually effective way to think about measures of
fairness of a districting Π is the seats-votes curve. This is just what it says on the
box; the locus {(x, y)} ∈ [0, 1]× [0, 1] consisting of points where x is the proportion
of overall votes going to a party and y is the proportion of legislative seats that
party wins. There is a separate seats-votes curve for each party; in the present US-
centric discussion, we are going to stick to cases where only two parties compete
(sorry, Libertarians!) in which case the seats-votes curve for one party is the image
of the seats-votes curve for the other by the transformation (x, y) �→ (1− x, 1− y).

Proportional representation is the requirement that the curve is just the line
x = y
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0

0

1

1
or maybe, the number of seats typically being pretty small, a step function approx-
imating x = y;

I’ve hidden something important here! There are only finitely many elections
held under a given district map, and so this curve is something we have only finitely
many points on; what’s more, it’s certainly possible for two different elections to
yield the same vote share but different seat shares, depending on the distribution
of votes; what’s still more, elections held in different years may be held under the
same geographic district maps but don’t represent exactly the same districting,
some voters inevitably having moved out of the district, into the district, off this
mortal coil, etc. So the seats-votes curve is probably best thought of as a cloud
of points around an ideal curve, and we may use as a criterion of fairness that the
ideal curve has certain properties. That it be x = y on the nose is, we have argued,
too much to ask.

Partisan symmetry is a much more modest request:

Definition 2.2. A districting satisfies partisan symmetry if the seats-votes curve
is invariant under the symmetry (x, y) �→ (1− x, 1− y).

This criterion seems very natural: if the Purple Party gets 4 seats with 60% of
the vote, then the Orange Party should get 4 seats if it gets 60% of the vote. In
particular, under the partisan symmetry constraint, a party that gets exactly half
the votes gets exactly half the seats.

One challenge for this notion is that it asks us to test whether a curve satisfies
a symmetry criterion when we have access only to a set of points on the curve
(or, really, a set of points near the curve.) If we want to test whether the curve is
x = y, that’s no problem; we can use the difference between the measured x and
the measured y as our measure on unfairness. In order to test symmetry, we would
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have to probe the seats-votes curve further, inferring something about the results
of elections that might have happened, but didn’t. As a simple rule of thumb,
for instance, we might imagine that partisan swings are roughly uniform across
districts. So in Π1, if we moved the overall voteshare to 50−50, we would similarly
shift 2 votes from Purple to Orange in each of the five districts; then Purple still
wins three seats, by the narrower margin of 13 to 7, and Orange still wins two, now
in 14 − 6 and 15 − 5 blowouts. This means partisan symmetry has been violated,
since Purple still holds a majority of seats while getting only half the votes. More
generally, the approximate seat curve for Π1 would be given by the step function

y = 3σ(x+ 0.15) + σ(x− 0.25) + σ(x− 0.2)

where σ(x) is 1 for x > 0.5 and 0 for x ≤ 0.5. The reader can check that this
seats-votes curve is not symmetric; indeed, its image under (x, y) �→ (1− x, 1− y)
is the seats-votes curve for Π2. The only one of the four districtings we showed
which satisfies partisan symmetry in this sense is Π4.

Another criticism: partisan symmetry may reflect factors other than self-interested
malfeasance. The districting Π2 awards a majority of seats to the Orange Party,
even as they get thumped by the Purples in the popular vote. But what if the Pur-
ples of the state are packed into a couple of dark-Purple metro areas, set against the
background of a countryside that leans orange? Isn’t it possible you’d see results
a lot like this, without any self-dealing? Is “organic partisan asymmetry” like this
actually unfair? If we ask the state to vote on a ballot referendum, people who feel
strongly about the issue don’t get more votes than people who barely care. Some
would apply the same reasoning to geographic regions: each patch of land gets one
vote in the legislature, even though some patches may be strong supporters of one
party and others more ambivalent.

2.3. Efficiency gap. In the last decade, law professor Nicholas Stephanopoulos
and political scientist Eric McGhee introduced and popularized a new metric for
unfairness, called the efficiency gap. [22] To see what motivates their definition,
look back at our four example districtings. What makes Π2 such a good choice
for Orange? It’s that Orange voters are deployed with exquisite strategic precision,
to exactly the districts where they’re needed to ensure a narrow victory. Purple
voters, by contrast, are in exactly the wrong places; almost half of them reside
in the three districts where Purple loses narrowly, and thus contribute nothing to
Purple’s representation in the statehouse. One might say their votes were wasted.
This leads us to a definition.

Definition 2.3. Suppose the candidates in a two-party election receive A and
B votes, respectively, with A ≥ B. Then the number of wasted votes for the
losing candidate is B, and the number of wasted votes for the winning candidate is
A− (1/2)(A+B).1

This captures the notion that a vote is wasted just insofar as it fails to contribute
to a candidate’s victory. A districting drawn to favor one party does so by causing
the other party to waste votes. That motivates the definition of efficiency gap.

1We are not going to worry in this space about the difference between half the votes and half
the votes plus one.
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Definition 2.4. Suppose the total number of wasted votes for the two parties in
an election is w1 and w2 respectively, and the total number of votes cast in the
election is N . Then the efficiency gap is (1/N)(w1 − w2).

For example, in Π1, the Purple party wastes 5 votes in each of the three seats
they win, and 7 and 8 votes respectively in the two seats they lose, for a total of 30.
The Orange party, by contrast, also wastes 5 votes in the first three districts, but
only 3 and 2 in the two districts where they win, totaling to 20. So the efficiency
gap here is 10/100 = 0.1, favoring the Orange party. In Π2, the efficiency gap is
much larger, 0.3 favoring Orange. In Π3, the efficiency gap is 0.1 in favor of Purple,
and in Π4 the efficiency gap is 0.3 in Purple’s direction. This measure rates Π1

and Π3 as the fairest districtings; so do most people who look at those four tables,
which is a point in efficiency gap’s favor.

Another bonus of efficiency gap is that, unlike partisan symmetry, it doesn’t
require any imputation of election results under conditions other than the real
ones; it computes its measure directly from the election results that have already
happened. Efficiency gap has this in common with proportional representation,
and indeed the two measures are very similar in spirit; both specify exactly what
they want the seats-votes curves to be.

Proposition 2.5. A two-party election (with all districts of equal size) in which
one party receives proportion x of the votes and proportion y of the seats has
efficiency gap 2(x− 1/2)− (y − 1/2). In particular, the efficiency cap is zero when
y = 2x− 1/2.

The latter statement means efficiency gap can be thought of as demanding ad-
herence to the seats-votes curve y = 2x− 1/2, instead of the curve y = x required
by proportional representation. In other words, those two criteria are not only
different, they are incompatible!

Proof. For each district πi, let xi be the proportion of votes won by the first party.
Let yi be 1/2 if the first party wins and −1/2 if the second party wins. So the
average of yi over all districts is y − 1/2, and the average of xi over all districts is
x. The proportion of votes in πi which are wasted votes for the first party is then
xi − (1/2)(yi + 1/2), and the proportion of votes which are wasted votes for the
second party is (1− xi)− (1/2)(−yi + 1/2), so the difference – the quantity whose
average over all districts is the efficiency gap – is 2xi − yi − 1. Thus the efficiency
gap is 2x− 1− (y − 1/2), as claimed. �

The efficiency gap was a huge step forward for attempts to bring mathemati-
cal reasoning to bear on the legal problem of districting. Prior to the efficiency
gap, courts had typically declined to intervene in partisan gerrymandering cases,
following the Supreme Court ruling in Vieth v. Jubelirer that there was no suffi-
ciently clear standard for distinguishing a gerrymandered map from a fair one. The
efficiency gap filled that, well, gap. It is easy to compute, it doesn’t rely on any
hypotheticals, it’s clearly distinct from proportional representation, and it conforms
well with our native intuition about what makes a districting unfair. It formed the
centerpiece of Whitford v. Gill, the case against the state legislative districts drawn
in Wisconsin after the 2010 census. The new maps created a sharp rise in efficiency
gap which persisted in several consecutive elections following redistricting. That
evidence (together with ample documentation that the map was drawn with the
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specific intent to help the Republican party) convinced a three-judge federal panel
to throw out those districts.

But the efficiency gap isn’t the end of the story. For one thing, it is surely too
strict. Like the proportional representation standard, it asks for adherence to a
specific seats-votes curve. Do we really think one curve suits all states at all times?
The curve 2(x− 1/2) = (y− 1/2) also has the problem that it’s literally impossible
for the outcome to match that curve if one party gets more than 75% of the vote
(though admittedly this scenario is extremely rare, even in states like Wyoming
where one party is much more popular than the other.) All these difficulties are,
of course, superable. Legal arguments based on the efficiency gap don’t propose
a strict standard where a map with efficiency gap exceeding some threshhold are
automatically declared unconstitutional; rather, a high value of the efficiency gap
is to be used as a “red flag” providing evidence, but not dispositive evidence, that
a map has been gerrymandered.

Another vulnerability of the efficiency gap standard arises directly from one of
its strengths. The efficiency gap depends on real outcomes, not hypotheticals. But
that makes the efficiency gap discontinuous. At its heart is the function yi in
Proposition 2.5, which can jump from −1/2 to 1/2 with a tiny change in vote-
share. A districting that fails an efficiency gap test might easily pass if a few
close races switched their outcome. That feels wrong. (Though of course there are
workarounds; one might, for instance, report the distribution of efficiency gap on a
small ball around the actual outcome rather than relying on a single point)

The efficiency gap measure has another problem in the U.S. context. American
courts have generally not been sympathetic to the idea that political parties with
substantial support have a constitutionally guaranteed right to legislative represen-
tation. Claims made by individual voters that they’ve suffered harm to their ability
to vote, or their first amendment right to express their politics, have been more
successful. So a suit filed against a district map has to argue that individual voters
have had their rights removed, or at least meaningfully shaved down. Which voters
are these? It can’t just be someone whose vote was “wasted,” in the efficiency gap
sense; after all, in every single district, half the votes cast are wasted, whether ger-
rymandering takes place or not! The design of the efficiency gap measure is purely
global; it doesn’t tell you, because it wasn’t designed to tell you, which districts are
the ones that were maliciously modified to help one party. A detailed critique of
the efficiency gap from a mathematical perspective can be found in [1]; for further
description and several more refined measurements in the spirit of the efficiency
gap, see [23].

2.4. Ensemble sampling. I have discussed a lot of simple answers to a complex
question, each of which has real merits, each of which is in some ways lacking. Now
we turn to the part where deeper mathematics comes into play; I want to discuss
the method of ensemble sampling, which in my view is the current state of the art
for measuring gerrymandering.

Let’s return to our basic question. What does a district map that isn’t gerry-
mandered look like? Does it look more like Π1,Π2,Π3, or Π4? We have seen that
attempts to assign a numerical unfairness score to a map based on a single election
outcome all have problems, and not all agree about the relative fairness of the four
districtings in our toy example.
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And why should they agree? After all, fairness is not purely a matter of the
numbers on the spreadsheet; some actual knowledge of the political landscape to
be partitioned is required. If partisanship in a state is homogeneously distributed,
the same in the east as in the west, in the north and in the south, then any
geographically based map is going to look like Π4, with all seats having roughly
the same partisan distribution as the whole state. In that case, one party will
hold all or almost all the seats, even if their statewide share of the vote is only
a modest minority. In a state like that, a seat distribution closer to proportional
representation, or to efficiency gap 0 would be strong evidence for gerrymandering,
not for its absence. Likewise, in a state where one party’s support was concentrated
in a geographic region, a districting like Π4 would be ironclad proof someone had
their thumb pressed firmly on the scale.

The philosophy behind ensemble sampling is a simple one: the opposite of ger-
rymandering isn’t proportional representation or adherence to any other strict nu-
merical standard; the opposite of gerrymandering is not gerrymandering. If we
want to know whether a map is fair, the right question is

Does this district map tend to produce outcomes similar to a map
that would have been drawn by an authority who wasn’t aiming to
privilege one party’s interests over another?

That neatly solves some of the problems with the measures described above,
but at the expense of introducing a new problem, which is now not really legal or
philosophical but inferential: how can we assess what would have happened if the
maps had been drawn without prejudice? The idea of studying gerrymandering
through this lens was first popularized in an influential 2013 paper by the polit-
ical scientists Jowei Chen and Jonathan Rodden [5]. They were troubled by the
issues above, especially the phenomenon mentioned at the end of section 2.2: when
Democrats are predominant in cities and present in moderate numbers throughout
the state, while Republicans are concentrated in more rural districts and almost
entirely absent from more densely populated areas, partisan symmetry can fail even
when districts are drawn indifferently to partisan advantage. How do we distinguish
an asymmetric districting like Π2 that arises from gerrymandering from one that
reflects the disinclination of Oranges to live in Purpleopolis?2

Chen and Rodden write:

To what extent is observed pro-Republican electoral bias a function
of human geography rather than intentional gerrymandering? To
what extent might pro-Republican bias persist in the absence of
partisan and racial gerrymandering?

The main contribution of this paper is to answer these questions
by generating a large number of hypothetical alternative districting
plans that are blind as to party and race, relying only on criteria of
geographic contiguity and compactness. We achieve this through a
series of automated districting simulations. The simulation results
provide a useful benchmark against which to contrast observed dis-
tricting plans.

2Proponents of proportional representation should pipe up here and ask, why do we need to
make this distinction? Isn’t partisan bias unfair whether or not it’s enacted on purpose? Maybe
so – but the legal and political barriers to moving away from one-geographic-district-one-seat are
a lot higher than anything else described here.
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Where do the “hypothetical alternative districting plans” come from? That’s
where ensemble sampling comes in. First of all, let’s rephrase the basic fairness
question along the lines of the Chen-Rodden approach:

Does this district map tend to produce outcomes similar to a map
randomly selected from the set of all possible maps?

This suits our intuition; one might imagine, as a first approximation, that a
map-drawer indifferent to who wins would consider any partition of the population
into equally-sized geographic chunks to be as good as any other. Or one might
very reasonably not assume that. Each state has its own constitutional and other
legal constraints on what districts can look like – for example, in most states they
need to be connected – and overlaid on these is the federal Voting Rights Act,
which guarantees that among the Congressional districts there are, where possible,
majority-minority “districts of opportunity.”

It gets more complicated still. Mathematicians often think of the law as con-
sisting of a series of hard and fast rules, like axioms, from which outcomes can be
drawn. Law isn’t really like that. Law probably couldn’t be like that. In the case of
districting, one quickly finds that much of the relevant law is not so much a set of
constraints as a collection of preferences. In Wisconsin, for instance, legislative dis-
tricts are not supposed to cross county lines, except that decades of precedent have
established that they can cross county lines when other legal requirements make it
necessary, but it’s better not to do it too much. We also have requirement that
state legislative districts be “as compact as practicable.” What does that mean? It
is certainly not a strict numerical bound on the pair (perimeter, area) in R

2. We
can capture all this by refining our question one more time:

Does this district map tend to produce outcomes similar to a map
randomly selected from the set of all legally permissible maps, on
which we place a probability distribution that reflects this state’s
legal preferences between districts?

The standard is then that unfair maps are ones which are extreme outliers in
that distribution – that is, those that look like this:
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This diagram, from a 2017 paper of Herschlag, Ravier, and Mattingly [15], de-
picts the results of a simulation of the 2012 Wisconsin State Assembly election,
under 19,184 alternative districting plans sampled from their ensemble. The out-
comes form a reasonably normalish distribution centered on a modal outcome of
55 Republican seats out of 99. In our world, under the maps drawn by the Repub-
lican majority in the state legislature.after the 2010 census, the Republicans won
60 seats. We note in passing that Herschlag-Ravier-Mattingly’s finding matches
that of Chen and Rodden concerning “unintentional gerrymandering”; Wisconsin
is a state where two large urbanized areas (Madison and Milwaukee) strongly fa-
vor Democrats and only one (Waukesha County) strongly favors Republicans, and
indeed, in the 2012 election where the popular vote for Assembly candidates was
very close to evenly split between Democrats and Republicans, a typical map drawn
without prejudice gives Republicans a modest majority of seats, though much less
than the majority supplied by the gerrymandered map in actual use.

As you’ve probably noticed, there’s a major methodological issue we’ve been
keeping silent about. How do we sample from the set of all permissible maps?
This is no small question, and it’s the hardest mathematical part of the problem.
Wisconsin has 6, 672 voting wards. The number of ways to partition those wards
into 99 Assembly districts is big – really big, massively uncomputably big. It is
996672, if you ignore all constraints on what makes an assembly map permissible.

Now just because a set is big doesn’t mean you can’t uniformly sample from it.
It’s easy to choose an integer uniformly at random from the interval [0, 10100]. Or
to choose a spanning tree from a graph on 1000 vertices; you can do this efficiently
via Wilson’s algorithm. Closer to the problem at hand, the set of all partitions of
Wisconsin’s wards very easy to sample uniformly – just hand each ward an integer
uniformly and independently chosen from {1, . . . , 99}.

But that’s not the sample we want. First of all, we need the districts to be
of approximately equal size. But more than that, we need the districts to be
contiguous, not built out of wards scattered all over the state from Turtle Lake
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to Oconomowoc. We can think of the wards as forming a weighted planar graph,
where each vertices is a ward and two wards are connected if they border each
other. Then a collection of wards forms a contiguous district just when the set of
vertices corresponding to that collection induces a connected subgraph. If Γ is a
graph, we define a connected k-partition to be a partition of the vertices into subsets
V1, . . . , Vk such that the induced subgraph on each Vi is connected.

Now we’re faced with a question in the theory of algorithms: given a weighted
planar graph on N nodes, how do you randomly sample from the set of connected
k-partitions whose constituents have roughly equal total weight? This is not so
easy. Even when k = 2, this problem is NP-hard [20].

But lots of NP-hard problems have tractable approximations. If we want to
sample from an unknown distribution on the vertices of a very large graph, one can
often do very well in practice by means of a random walk on the graph. (In pure
math, a well-known example of this technique is the product replacement algorithm
for choosing a uniform random element of a large finite group; see [14].) The idea
of using this kind of Markov chain in the context of redistricting originated with
Mattingly-Vaughn [17] and Fifield et al [13]. It has become the dominant method
of ensemble sampling among mathematicians working in this area.

The graph we’re sampling from is not the graph Γ of wards described above,
but a vastly huger one: we consider a graph P whose vertices are all connected k-
partitions of Γ – or, better, all connected k-partitions corresponding to districtings
compliant with state and federal law. I’ve told you the vertices; what are the
edges? Here’s where things get really interesting. There are different choices,
and the corresponding random walks may certainly have different properties. The
simplest and in some ways most natural case is that of the “flip graph,” in which
two vertices are adjacent in P just when the corresponding partitions differ with
respect to only one vertex of Γ. That is a gigantic graph whose structure we know
next to nothing about. But given a vertex Π of this graph, we can generate a list
of its neighbors; each vertex adjacent to Π is obtained by a “flip”: take a ward in
district i which lies on the boundary with district j, and reassign it to district j, as
long as this violates no legal constraint. It’s easy to list and sample from all possible
flips; so we can efficiently carry out a random walk on P , and thereby generate a
large population of legally acceptable districtings. If you want to bias your walk
towards districtings whose districts have more compact shapes, or shatter fewer
counties, or whatever, you can weight your choice of moves in the random walk to
promote those virtues. In other words: the distribution we want to sample from
isn’t the uniform distribution, because we prefer some maps to others, so we set up
our walk to get the stationary distribution we desire. This is the walk we see used in
the work of Herschlag-Ravier-Mattingly [15] on the Wisconsin Assembly districts.
We can then identify the problematic maps as those whose electoral outcomes are
extreme outliers in the sample distribution.

Another graph structure you can put on P is the recombination graph [9]. Sup-
pose Π is a districting. Then a neighbor of Π is obtained as follows. Choose two
adjacent districts. Merge them into one. Then split the new double-sized district
into two connected pieces of roughly equal size. That’s a ReCom move, and two
districtings are adjacent if a ReCom move sends one to the other.

But didn’t I just say the problem of sampling uniformly from the set of 2-
partitions is hard? And isn’t that just what choosing a ReCom move requires
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A step in the ReCom process (Figure 4 in [9]).

us to do? Well, not quite. In the ReCom process, the splitting of the double-sized
district D is not uniform over the set of all 2-partitions. Instead, we proceed as
follows. Choose a spanning tree T uniformly from the set of all spanning trees of
D; this we can do uniformly in polynomial time, by Wilson’s algorithm referenced
above.3 Now choose an edge at random, subject to the constraint that deleting the
edge splits the vertices of T into two roughly equal parts T1, T2; then the vertices
of T1 and T2 constitute a partition of the vertices of D into two subsets. Now the
restriction of P to the vertices of Ti for each i contains a tree, and so is connected;
we have constructed the desired 2-partition of D.4.

(I can’t resist pointing out in passing that the set of spanning trees of a planar
graph has an extremely interesting structure. By Kirchhoff’s matrix-tree theorem,
the number of spanning trees is the same as the order of the finite abelian group
alternately called the sandpile group, the Pic0 of the graph, or the tropical Jacobian.
When the graph is planar, a beautiful categorification of this numerical identity
holds: the set of spanning trees is canonically a torsor for the sandpile group. (See
[4],[2].) Is there any chance that the tropical viewpoint on graphs is useful for
computation?)

The non-uniformity of the choice of the 2-partition might at first seem artificial,
but in fact it’s more feature than bug! A uniformly chosen 2-partition typically
has a long, snaky boundary, a sort of space-fillling curve. The partitions coming
from the spanning tree method, by contrast, are strongly biased towards having
short boundaries; in graph-theoretic terms, there tend to be few edges of D joining
vertices of T1 to vertices of T2. For the flip walk, we need to builld a preference
for compact districts into the weights of the random walk if we want to get decent-
looking districts; ReCom, by contrast, tends to form compact districts without
any extra infrastructure. What’s more, the ReCom walk appears to converge to a
stationary distribution more efficiently than does the flip walk, although it is more
difficult to describe in explicit terms what the stationary distribution is. Gaining
a better understanding of the stationary distributions attached to various random
walks on k-partitions is one of the richest open problems in the subject, and is of
interest not only in practical terms but as a question in pure stochastic processes.

Yet another appealing feature of the ReCom walk is that software to do it is
open-source and publicly available [18]; I encourage you to mess with it yourself!

3The Kruskal-Karger algorithm is just as good in practice, and is sometimes used in ReCom
implementations.

4There are variants of ReCom which choose the 2-partition in a different way, but for simplicity
we’ll stick to spanning tree recombination in these notes
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Ensemble sampling has proven to provide a more effective, convincing, and in-
tuitive quantitative measure of gerrymandering than those before it. It was the
centerpiece of the gerrymandering cases presented to the Supreme Court in 2019;
a bipartisan twin set, one (Rucho v. Common Cause) addressing a district map
gerrymandered by Republicans in North Carolina, the other (Lamone v. Benisek)
a map gerrymandered by Democrats in Maryland. I don’t know if this is the most
mathematical case the Supreme Court has ever addressed, but I believe it is the
first time the Court received a ”Mathematicians’ Brief,” an amicus brief signed by
eleven mathematical scientists, including me, explaining the quantitative aspects
of the case.

In Rucho and Lamone, I hurry to point out, the Supreme Court ruled that
partisan gerrymandering was not justiciable; that is, it was not a matter where
the federal courts had the right to intervene. To anyone who had been following
the mathematical study of redistricting, the court’s decision was puzzling. Justice
Roberts, writing for the majority, says:

Partisan gerrymandering claims invariably sound in5 a desire for
proportional representation. As Justice O’Connor put it, such
claims are based on a conviction that the greater the departure
from proportionality, the more suspect an apportionment plan be-
comes.

I am not weighing in on the legal merits of the decision when I say that this
claim is wildly off the mark. As we have seen, proportional representation is not
the aim of any modern measure of electoral fairness, or any claim brought before
the court in the 2019 districting cases (It may indeed have been an issue 33 years
ago, when Justice O’Connor wrote the words Roberts quotes in her concurrence
in Davis v. Bandemer) Indeed, one measure arising in contemporary cases, the
efficency gap, is incompatible with proportional representation, while the ensemble
sampling methods (correctly, in my view) are orthogonal to proportional repre-
sentation. In some case a map that yields proportional-representation outcomes
would be licensed by those methods; in other cases, like U.S. congressional districts
Massachusetts, a map yielding proportional representation would be flagged as an
extreme outlier [11].

To be clear, the Supreme Court did not take seriously any claims that gerry-
mandering had not taken place, and indeed the majority decision endorsed the view
that the practice of gerrymandering is “incompatible with democratic principles.”
The Court’s decision rests on the fact that some things are incompatible with demo-
cratic principles but not incompatible with the Constitution. When this is held to
be the case, the federal judiciary walks on by with eyes modestly averted. But the
Court did portray partisan gerrymandering as a problem somebody – just not they
themselves – ought to remedy.

And indeed, the arguments derived from ensemble sampling have found more
purchase elsewhere. In 2018, the Pennsylvania Supreme Court threw out the state’s
U.S. Congressional district map, relying heavily on expert testimony from Jowei
Chen and from Wesley Pegden, a mathematician at Carnegie Mellon (more on
Pegden’s work just down the page!) identifying the map as an extreme partisan

5As best I can tell from my lawyer friends, “sound in” here means something in between
“derives from” and ”amounts to” – and people say we talk in impenetrable jargon!
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outlier from a random walk ensemble. Pegden was subsequently appointed by Gov-
ernor Tom Wolf to serve on the Pennsylvania Redistricting Reform Commission,
along with the more traditional group of elected officials and community leaders
you might expect to find on a political panel like this. Wolf also enlisted Moon
Duchin to help evaluate replacement districting plans. In North Carolina, a state
court similarly found that state legislative districts drawn by the majority in the
state legislature violated both the Free Elections Clause and the Equal Protection
Clause of the North Carolina Constitution. Their decision, like the one in Penn-
sylvania, is deeply rooted in the analysis of ensemble samples, citing testimony of
Jonathan Mattingly as well as Pegden and Chen. (To get a sense of what kind of
testimony mathematicians provide, you could look at Mattingly’s expert report in
that case [16].) One key point from a legal perspective is that ensemble methods
can make local assessments, not just global ones as the efficiency gap does, identi-
fying individual districts as outliers, which helps courts in several ways. It makes it
easier identify harm to individual voters; it can provide courts with a remedy that
throws out only part of the map instead of the whole thing; and, most importantly,
it presents judges with a clearer picture of how gerrymandering is accomplishing its
goals.

I don’t want to leave the impression that ensemble sampling is an infallible
gerrymandering detector. Many challenges, some purely mathematical, others in-
tertwining math and law, remain.

A central open question concerns speed of mixing. A random walk on a connected
graph converges to the stationary distribution. But how quickly it converges is a
delicate matter, involving, among other things, the spectral gap of the adjacency
matrix of the graph. For the graph P of k-partitions, we have no control over
mixing time, and so no guarantee that the ensembles obtained by random walk are
drawn from the stationary distribution. Indeed, if we impose on P the condition
that the k components of the partition have roughly the same size, as far as I know
there is no proof that P is even connected! Even if P is connected, it might for
instance have a “long neck,” like so:

If our random walk starts on the right-hand side of the graph, crossing the neck
is a very low-probability event; so even if we run the random walk for a long time,
we may be approximating a distribution which is far from the stationary one, but
rather approximates a distribution supported on the right-hand side of the neck.

From a political and legal perspective, it’s not clear this matters. Suppose a
district map Π tends to give the Purple Party 60 out of 100 seats, and suppose
this figure is an outlier in a sample of maps near Π in P , 99.9% of which give the
Purple Party at most 55 seats. One cannot strictly rule out the existence of an
“undiscovered country” of districtings in which 60 Purple seats are the norm. But



GEOMETRY, INFERENCE, AND DEMOCRACY 17

the ensemble sample still feels like very strong evidence that this map Π, so unusual
among its neighbors, was not picked out indifferently to its Purple-friendliness. This
insight was formalized and made into a theorem by Chikina, Frieze, and Pegden
([6], see also [7]) who obtain a provable threshold for statistical significance without
any need for a bound on mixing time. We’ll state their result in the language of
random walks on graphs, though it actually holds for any reversible Markov chain.6

They prove: for any small ε > 0, and any real-valued score function ω on the
vertices of a graph G, the probability that a vertex v0 of P chosen uniformly (the
null hypothesis) has a higher score than 1 − ε of the first k vertices in a random

walk starting from v0 is at most
√
2ε.

Nonetheless, the question of what kind of mixing time one expects for random
walks of various flavors on sets of k-partitions of planar graphs is a really interesting
one. In practice, as we have mentioned, the ReCon walk seems to converge sub-
stantiallly more efficiently than does the flip walk. Why? And are there still more
effiicient graph structures on P out there to be exploited? The study of mixing
on these graphs has the flavor of statistical physics and the theory of self-avoiding
random walks; see the recent paper of Najt, DeFord, and Solomon [20] for this
connection, together with questions about the way different discretizations of the
same planar landscape can yield surprisingly large differences in the behavior of the
corresponding random walks.

Another challenge of ensemble sampling is that different elections are different.
One certainly doesn’t want to say that an individual voter is, once and for all,
a Democrat or a Republican whose voting behavior is independent of time and
the individual candidate before them. If we did say this, empirical data would
contradict us. In practice, what this means is that a given map may be an extreme
outlier in some elections and not in others. Take, for instance, the map of Wisconsin
state assembly districts. In 2012, a year when the statewide vote for Assembly seats
in Wisconsin was very close to 50-50, the result of 60 seats for Republicans was very
different from the ensemble-modal value of 55 seats. But two years later, in 2014,
the electorate leaned much more towards Republicans; and in this election, the 63
seats won by Republicans sit comfortably in the middle of the range of outcomes
produced by the ensemble.

So is the Wisconsin district map an extreme outlying gerrymander, or is it not?
The work of Herschlag, Ravier, and Mattingly [15] provides critical insight here.
A district map, remember, is made without knowledge of exactly who is going
to vote, or how. The dark art of gerrymandering has to be robust to this basic
uncertainty. And there are tradeoffs: maximizing the extent to which the map helps
your party under one set of circumstances may make the map less effective under
other conditions, or even hurt your party if things go really sideways. Herschlag-
Ravier-Mattingly find that the Wisconsin map is designed as a sort of “firewall.” In
electoral environments where the statewide vote leans Republican, the gerrymander
doesn’t do much work. But when the electorate is split evenly or even leaning
slightly Democratic, it provides a powerful force towards maintaining a Republican
majority in the assembly. The gerrymander works exactly when, at least according
to the desires of its makers, it needs to work, locking in a Republican seat majority

6The flip walk, in its most commonly used form, is reversible, but the ReCom walk; see [3] for
a reversible modification of ReCom.
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over the whole range of statewide electoral conditions one might reasonably expect
to encounter in an evenly split state like Wisconsin.

3. What’s next?

The study of random walks applied to districting has developed very rapidly in
the last five years, and provides opporunities for an extraordinarily direct interac-
tion between advanced mathematics and public policy. But the story is far from
over, and there’s a lot of work still to do for mathematicians interested in these
problems.

Part of the work is outreach. Moon Duchin and Jonathan Mattingly have both
launched centers – respectively, the Metric Geometry and Gerrymandering Group
at Tufts, and the Quantifying Gerrymandering group at Duke – which serve as
clearinghouses for new research on districting and launchpads for both early-career
and senior mathematical scientists interesting in getting involved.

There is also much more mathematics to do, besides the rich vein of questions
indicated above about mixing times for Markov process on the k-partitions of planar
graphs. One key question, which has been raised a lot but so far has not been
extensively addressed, is: what to do about situations where there are more than
two parties? Suppose I don’t care for either Purple nor Orange, preferring the
Ecru Party to either one. But perhaps, if Ecru is not an option, I like Orange
better than Purple. In a first-past-the-post system like that in the U.S., my voting
behavior may depend on the district I’m drawn into. If Ecru has no chance and
Orange and Purple are close, I may vote Orange to stop Purple. But if Purple is
safely ahead in my district, I’m more likely to vote my Ecru conscience. Everything
about voting behavior is much harder to analyze when more than two parties have
substantial support; the problem of districting is no exception. In a U.S. context,
where parties other than Democrats and Republicans are very rarely competitive
for legislative seats, one might this question can be ignored. But the U.S. is not the
only country with geographic districts. What’s more, many American jurisdictions,
including the entire state of Maine, have abandoned first-past-the-post in favor of
ranked-choice voting. To the extent RCV becomes mainstream, there will likely be
more votes for candidates other than Democrats and Republicans; it seems prudent
to have the mathematical machinery for analyzing districtings ready in advance.

What is the future for this interaction between mathematics and politics? The
Supreme Court has, for now, put an end to the idea that political parties nationwide
will be forbidden from extreme gerrymandering. In some states, like Pennsylvania
and North Carolina, courts will throw out existing gerrymandered maps; in others,
like Ohio and Michigan, legislation or ballot initiatives will delegate the process
of redistricting to non-partisan panels. In both cases, though, there are still fun-
damental design questions: if the process of drawing the map isn’t to be “party
operatives in a smoke-filled room tweak and twist the districting until it delivers
every possible advantage to their party,” what is the right process?

One question that comes to many mathematicians’ minds at this point is: if
we can generate an ensemble of thousands and thousands of potential district
maps, which are compliant with the Voting Rights Act and other legal constraints,
which perform well on traditional districting criteria like compactness and county-
splitting, and which are completely indifferent to which party does better, why
don’t we . . . just pick one of those maps at random and call it a day?
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The reasons are political. For one thing, algorithmic maps will inevitably miss
criteria specific to the case at hand that are legitimately important to constituents.
As DeFord, Duchin, and Solomon write in their report on districting alternatives in
Virginia [19], “We emphasize that these ensemble methods should not be used to
select a plan for enactment because they are made without local and community-
based considerations. Instead, ensemble methods give an effective means of veri-
fying whether a newly proposed plan is an extreme outlier in the universe of valid
plans.” Even when used as a benchmark, a process like ensemble sampling is viewed
with some suspicion by political actors. They can’t see what’s under the hood. To
actually hand over map-drawing power to the algorithm is something neither elected
officials nor their constituents are likely to swallow. To a lesser extent, proposals to
delegate the power to an independent nonpartisan commission – say, retired judges
or a panel of state residents – meet the same resistance (from legislators, if not
from their constituents, who have recently voted for such plans by referendum in
Colorado, Michigan, Missouri, and Utah.) Elected officials, as a rule, don’t like
relinquishing powers the existing framework affords them.

But how can there possibly be a fair protocol for district-drawing if the district-
drawing is to be done by the legislature itself? In [21] Pegden, Procaccia, and Yu
propose a really interesting idea, deriving from an entirely different area of math:
the theory of fair-division games. That theory descends from a single algorithm:
”I cut you choose.” Two players, who perhaps don’t trust or even like each other,
want to divide a cake, and each wants to make sure the other doesn’t get more
than their share. (See the relevance?) Algorithm: one player cuts the cake in two
pieces, and the other picks which piece they get. The cutter has an incentve to
make the division as close to 50-50 as possible, and the chooser, if the cutter does
their job properly, is indifferent to the choice they make. Crucially, the algorithm
doesn’t enforce fairness; but it leaves both parties to the decision feeling like they
had a fair chance to affect the outcome.

The Pegden-Procaccia-Yu protocol is called “I cut you freeze.” It’s a game where
Purple and Orange take turns. They start with the district map Π = Π1, . . .Πk

as it currently exists. At each stage, some subset of the districts is frozen – its
boundaries are fixed and it can no longer be modified. Each turn has two parts:
you freeze one of the not-yet-frozen districts, and then you redistrict the unfrozen
part of the map however you like, then you pass the new map over to the other
player. The game ends when all the districts are frozen, each party having locked
in the final form of half the districts. (This might be better called ”I freeze and
cut, then you freeze and cut,” but I think the authors’ choice to contract this for
euphony was a wise one.) Note, crucially, that the district a player gets to freeze
is one chosen from a map created by the other party; if the steps were reversed, so
that each party redistricted the unfrozen part of the map first and then froze a
district of their own making, it would be substantially easier for parties to create
mischievous districts.

There are lots of possible game protocols one could use for redistricting, and the
Pegden-Procaccia-Yu paper has inspired several competing proposals. Understand-
ing which of these provides the most effective buffer against extreme gerrymandering
while remaining palatable to elected officials and compliant with legal requirements
is a rich and fundamentally interdisciplinary question which we’ve just started to
penetrate.
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So far, the role of mathematicians in districting has been a form of damage
control – we come in to assess the outcome of decisions that have already been
made, under a regime of rules already been set in place. The work of Pegden,
Procaccia, and Yu is an example of a deeper interaction that’s just starting to
take shape, namely: which regimes of rules would lead to better outcomes? This is
especially important at this time of flux, when the issue of districting is at its highest
political salience in years and many states are launching brand-new commissions.
Decisions about the design of the districting process and the rules governing it are
going to have consequences for decades to come, and it seems like a really good
idea for mathematicians to be in the room when those decisions are being made.7

Considering different rules and figuring out what would follow from them is kind of
our thing.

Ensemble sampling is well-suited for the task because it enables us to efficiently
explore the space of what’s possible under various collections of rules. People may
once have thought that requiring districts to have equal population ensures fair
representation; we now know that’s not true. The picture associated with “ger-
rymandering” for most people is a bizarrely shaped branching snake of a district,
drawn to its odd contours to achieve an electoral result; that happens, but it turns
out requiring districts to be roughly round 8 is also not sufficient to prevent strong
partisan gerrymandering. Ensemble methods have also shown that rules which
are facially neutral to party, like maximization of the number of competitive dis-
tricts, can introduce partisan bias [8]. What’s more, the ensemble method speaks
to much more than the number of seats each party wins – that’s just one statis-
tic attached to the maps in the ensemble. Which rules promote, or suppress, the
power of minority voters? Which tend to lead to more competitive districts? What
are the tradeoffs between properties of district maps we think of as virtues? The
mathematics of redistriciting isn’t just a gerrymandering detector; it is, at least po-
tentially, a full-fledged tool for the exploration of the mysterious space of protocols
for representative democracy.

Whether the future of districting in the United States is independent com-
missions put in place by popular ballot initiatives, intricate games of bipartisan
cake-cutting, or the status quo of entrenched parties grimly maximizing their own
interest, is a political question. But it’s a political question shot through with
mathematical content, and thanks to the work discussed here, the mathematical
community has gotten engaged with this content to an extent rarely seen in Amer-
ican politics. I hope this engagement continues, and I hope some of the audience
here will become part of it!
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A p-ADIC APPROACH TO RATIONAL POINTS ON CURVES

BJORN POONEN

Abstract. In 1922, Mordell conjectured the striking statement that for a polynomial
equation f(x, y) = 0, if the topology of the set of complex number solutions is complicated
enough, then the set of rational number solutions is finite. This was proved by Faltings
in 1983, and again by a different method by Vojta in 1991, but neither proof provided a
way to provably find all the rational solutions, so the search for other proofs has continued.
Recently, Lawrence and Venkatesh found a third proof, relying on variation in families of
p-adic Galois representations; this is the subject of the present exposition.

1. The Mordell conjecture

1.1. Rational points on curves. The equation x2 + y2 = z2 has infinitely many solutions
in integers satisfying gcd(x, y, z) = 1. Equivalently, the circle x2 + y2 = 1 has infinitely
many rational points ((3/5, 4/5), (5/13, 12/13), etc.) This can be understood geometrically:
each line through (−1, 0) with rational slope intersects the circle at one other point, which
must have rational coordinates since finding its coordinates amounts to solving a quadratic
equation over Q for which one rational root is already known. The same argument shows
that any nonsingular conic section defined by a polynomial with rational coefficients having
one rational point has infinitely many.

In contrast, Fermat proved that the equation x4 + y4 = z4 has no positive integer solutions.
Equivalently, the set of rational points on the plane curve x4 + y4 = 1 is {(±1, 0), (0,±1)}. It
turns out that the curve x4 + y4 = 17 again has only finitely many rational points: (±2,±1)
and (±1,±2). More generally, for any fixed d ≥ 4 and nonzero a ∈ Q, the curve xd + yd = a

has only finitely many rational points. These are special cases of the Mordell conjecture,
which states that a “complicated enough” curve has only finitely many rational points, if any
at all.

In the previous paragraph, the condition d ≥ 4 is what made the curve “complicated
enough”. To state the Mordell conjecture fully, however, we need to consider also curves
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defined by several polynomials in higher-dimensional space and to introduce the notion of
genus to measure their geometric complexity.

1.2. Projective space. Let k be a field and let n ∈ Z≥0. The set of k-points on n-dimensional
affine space is An(k) := kn.

Define an equivalence relation ∼ on kn+1 − {~0} by (a0, . . . , an) ∼ (λa0, . . . , λan) for all
λ ∈ k×. Let (a0 : . . . : an) denote the equivalence class of (a0, . . . , an). The set of all such
equivalence classes is the set

Pn(k) :=
kn+1 − {~0}

k×
,

of k-points on n-dimensional projective space.
The points (a0 : . . . : an) ∈ Pn(k) with a0 6= 0 have a unique representative of the form

(1, a1, . . . , an), so they form a copy of An(k). For each i, the same holds for the points with
ai 6= 0. Moreover, Pn(k) is the union of these n+ 1 overlapping copies of An(k).

One advantage of projective space over affine space is that Pn(R) is compact for the topology
coming from the Euclidean topology on each Rn; similarly, Pn(C) is compact. Related to this
is that intersection theory works better in projective space: for example, two distinct lines in
P2(k) always meet in exactly one point.

1.3. Projective varieties. A finite list of polynomials f1, . . . , fm ∈ k[x1, . . . , xn] defines an
affine variety1 X ⊂ An whose set of k-points is

X(k) := {~a ∈ An(k) : f1(~a) = · · · = fm(~a) = 0}.

But for a point (a0 : . . . : an) ∈ Pn(k), a polynomial condition f(~a) = 0 makes sense (is
unchanged by scaling ~a) only if f is homogeneous, a sum of monomials of the same total
degree, such as x50x21 − x40x31 + 9x71 of degree 7. A finite list of homogeneous polynomials
f1, . . . , fm ∈ k[x0, . . . , xn] defines a projective variety X ⊂ Pn whose set of k-points is

X(k) := {(a0 : · · · : an) ∈ Pn(k) : f1(~a) = · · · = fm(~a) = 0}.

The decomposition of Pn as a union of n+ 1 copies of An restricts to express X as a union of
n+ 1 affine varieties called affine patches. For each i, dehomogenizing f1, . . . , fm by setting
xi equal to 1 gives polynomials cutting out the ith affine patch in An.

1.4. Smooth varieties. If a variety Y ⊂ An is defined by f1, . . . , fn−r such that for every
field extension L ⊃ k and point ~a ∈ Y (L), the matrix

((
∂fi
∂xj

)
(~a)
)
∈ Mn−r,n(L) has rank

n−r, then call Y obviously smooth of dimension r; the rank condition should be familiar as the
Jacobian criterion in the implicit function theorem. More generally, any affine or projective
variety X is called smooth of dimension r if it can be covered by subvarieties isomorphic to
obviously smooth varieties Y as above (in a sense we will not make precise).

1Some people require a variety to satisfy additional conditions, such as not being a union of two strictly
smaller such varieties.
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If X is smooth of dimension r over R, then X(R) is a smooth R-manifold of dimension r.
The same holds if R is replaced by C in all three places.

1.5. Genus of a curve. From now on, we consider a smooth projective curve X over Q,
that is, a projective variety over Q that is smooth of dimension 1. We assume, moreover, that
X is geometrically connected, meaning that the variety defined by the same polynomials over
an algebraically closed extension field (such as C) is nonempty and not the disjoint union of
two strictly smaller varieties. Then X(C) is a compact connected 1-dimensional C-manifold,
that is, a compact Riemann surface. Forgetting the complex structure, we find that X(C) is
a compact connected oriented 2-dimensional real manifold; by the classification of such, X(C)
is homeomorphic to a g-holed torus for some g ∈ Z≥0. The integer g is called the genus of X.
It measures the geometric complexity of X.

Remark 1.1. It turns out that g also equals the dimension of the space of holomorphic 1-forms
on X(C). One can also define g algebraically, either by using Kähler differentials in place of
holomorphic forms, or by computing the dimension of a sheaf cohomology group H1(X,OX).

Example 1.2 (The Riemann sphere). If X = P1, then the space X(C) = P1(C) = C ∪ {∞} is
homeomorphic to a sphere via (the inverse of) stereographic projection. Thus g = 0.

Example 1.3 (Plane curves). If X ⊂ P2 is a smooth projective curve defined by a degree d
homogeneous polynomial, then it turns out that g = (d− 1)(d− 2)/2.

Example 1.4 (Conic sections). A nondegenerate conic section is a smooth curve of degree 2

in P2. By Example 1.3, it is of genus 0.

Example 1.5 (Elliptic curves). An elliptic curve is a smooth degree 3 curve y2z − x3 −Axz2 −
Bz3 = 0 in P2 for some numbers A,B ∈ Q (dehomogenizing by setting z = 1 gives the more
familiar equation y2 = x3 + Ax+B for one affine patch). By Example 1.3, an elliptic curve
is of genus 1.

Example 1.6 (Hyperelliptic curves). Let f(x) ∈ Q[x] be a nonconstant polynomial with no
repeated factors. Then y2 = f(x) defines a smooth curve in A2. It is isomorphic to an affine
patch of some smooth projective geometrically connected curve X. If f has degree 2g + 1 or
2g + 2, then the genus of X is g.

Remark 1.7. The problem of determining the rational points on a general curve can be
reduced to the problem for a smooth projective geometrically connected curve. That is why
it suffices to consider only the latter.

1.6. The conjecture.

Mordell conjecture ([Mor22], first proved in [Fal83]). Let X be a smooth projective geo-
metrically connected curve of genus g over Q. If g > 1, then X(Q) is finite.
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Remark 1.8. One can say qualitatively what happens for curves of genus 0 and 1 as well:

Genus g X(Q) Some examples
0 infinite, if nonempty lines and conics2

1 can be finite or infinite elliptic curves, . . .
> 1 finite plane curves of degree ≥ 4, . . .

Several proofs of the Mordell conjecture are known, none of them easy:

• Faltings [Fal83] proved the conjecture in 1983 using methods from Arakelov theory,
a kind of arithmetic intersection theory that combines number-theoretic data with
complex-analytic data.
• Vojta [Voj91] gave a completely different proof based on diophantine approximation,
a theory whose original goal was to quantify how closely irrational algebraic numbers
such as 3

√
2 could be approximated by rational numbers with denominator of at most

a certain size. For a more elementary variant of Vojta’s proof due to Bombieri, see
[Bom90] or [HS00].
• Lawrence and Venkatesh [LV18] recently gave yet another proof. Their proof shares
some ingredients with Faltings’s but replaces the most difficult steps by arguments
involving p-adic Hodge theory. The rest of this article is devoted to explaining some
of the ideas underlying their proof.

Remark 1.9. All of these proofs generalize to the case of curves defined over number fields
instead of just Q. (A number field is a finite field extension over Q, such as Q(

√
5).)

Remark 1.10. Although the proof of Lawrence and Venkatesh is the first complete proof
of the Mordell conjecture using p-adic methods, older p-adic approaches have given partial
results. Chabauty [Cha41] gave a proof for X satisfying an additional hypothesis, namely
rank J(Q) < g for a certain projective group variety J associated to X, the Jacobian. More
recently, Kim [Kim05,Kim09] proposed a sophisticated extension of Chabauty’s ideas, using
the nilpotent fundamental group of X as a substitute for J . He proved that his approach
combined with well-known conjectures would imply the Mordell conjecture. Kim’s approach
has already led to the explicit determination of X(Q) for some X outside the reach of previous
methods [BDM+19], and it may be that Kim’s approach succeeds for every X of genus > 1.

Remark 1.11. All the proofs so far are ineffective: they do not prove that there is an algorithm
that takes as input the list of polynomials defining a curve X of genus > 1 and outputs the
list of all rational points on X. At best they give a computable upper bound on #X(Q) in
terms of X. See [Poo02] for more about the algorithmic problem.
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2. Galois representations

The Lawrence–Venkatesh proof makes essential use of p-adic Galois representations. There-
fore, in this section we define Qp, define the absolute Galois group of a field, and give examples
and properties of Qp-representations of the absolute Galois group of Q.

2.1. The field of p-adic numbers. Let p be a prime number. The ring of p-adic integers is
the inverse limit Zp := lim←−Z/pnZ. Thus an element of Zp is a sequence (a1, a2, . . .) where
the elements an ∈ Z/pnZ are compatible in the sense that the natural homomorphism
Z/pn+1Z � Z/pnZ maps an+1 to an for each n. For example,

(3 mod 5, 13 mod 52, 38 mod 53, . . .) ∈ Z5.

As a ring, Zp is a domain of characteristic 0. Its fraction field, denoted Qp, is called the field
of p-adic numbers.

For each n ≥ 1, the homomorphism πn : Zp → Z/pnZ sending (a1, a2, . . .) to an is surjective
with kernel pnZp. The kernel of π1 : Zp → Z/pZ = Fp is the unique maximal ideal pZp of Zp.
The collection of subsets π−1

n (a) for all n ∈ Z≥1 and a ∈ Z/pnZ is a basis of a topology on
Zp. Equip Qp with the unique topology making it a topological group having Zp as an open
subgroup.

Remark 2.1. Here we explain an alternative construction of Zp and Qp and their topologies,
producing the same results. The p-adic absolute value on Q is characterized by

∣∣pn a
b

∣∣
p
:= p−n

whenever a, b, n ∈ Z and p - a, b. Define Qp as the completion of Q with respect to | |p, just
as R is the completion of Q with respect to the standard absolute value. Then | |p extends to
an absolute value on Qp. Define Zp as the closed unit disk {x ∈ Qp : |x|p ≤ 1}. Finally, | |p
induces a metric on Qp, which defines a topology on Zp and Qp.

Working with Zp or Qp amounts to working with infinitely many congruences at once, but
passing to the limit has advantages. One is that one can work over a domain or field of
characteristic 0. Another is that some ideas from analysis over R have analogues for Qp.

Whereas number fields such as Q are examples of what are called global fields, Qp is an
example of a local field. For a more detailed introduction to p-adic numbers, see [Kob84].

2.2. The absolute Galois group of Q. A complex number is algebraic over Q if it is a
zero of some nonzero polynomial in Q[x]. The set of all algebraic numbers is a subfield Q of
C, called an algebraic closure of Q.

Now let K be a subfield of Q. Call K ⊃ Q a finite extension if dimQK is finite. Call K ⊃ Q
a Galois extension if it is generated by the set of all zeros of some collection of polynomials in
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Q[x].3 For example, Q( 3
√
2) is not a Galois extension of Q, but Q( 3

√
2, e2πi/3 3

√
2, e4πi/3 3

√
2) is.

The field Q is the union of its finite Galois subextensions K.
For a Galois extension K ⊃ Q, the Galois group Gal(K/Q) is the set of automorphisms

of K that fix Q pointwise4. The absolute Galois group of Q is GQ := Gal(Q/Q). Each
automorphism of Q restricts to give an automorphism of each finite Galois subextension K,
and any compatible collection of such automorphisms defines an automorphism of Q, so

GQ ' lim←−
finite Galois K ⊃ Q

Gal(K/Q).

Just as the inverse limit Zp had a topology, the inverse limit GQ has a topology.

Remark 2.2. More generally, for any field F , one can construct a field F and topological
group GF .

2.3. Global p-adic Galois representations. Let V be a finite-dimensionalQp-vector space.
If dimV = r, then AutV ' GLr(Qp), which has a topology coming from the topology of Qp.
Call a Qp-linear action of GQ on V continuous if the homomorphism ρ : GQ → AutV defined
by the action is continuous. By a Qp-representation of GQ we mean a finite-dimensional
Qp-vector space V equipped with a continuous action of GQ. In the next few sections, we
give examples of such representations arising in number theory and arithmetic geometry.

2.4. The cyclotomic character. Let m be a positive integer. Define

µm := {z ∈ Q : zm = 1},

which under multiplication is a cyclic group of order m. Thus µm is a free Z/mZ-module of
rank 1. The group GQ acts on the group µm.

Now fix a prime p, and let m range through the powers of p. Form the inverse limit

T := lim←−µpn

with respect to the homomorphisms µpn+1 � µpn sending ζ to ζp. Then T is a free rank 1

module under the ring Zp := lim←−Z/pnZ, and GQ acts on T .
Next let

V := T ⊗Zp Qp.

Then V is a 1-dimensional Qp-vector space, and GQ acts on V . It follows from the definitions
that the action is continuous, so V is a 1-dimensional Qp-representation of GQ, called the
cyclotomic character.

3For a definition that works over an arbitrary ground field k instead of Q, one should require each
polynomial to have distinct zeros in k.

4Fixing Q pointwise is automatic; this condition becomes relevant only over other ground fields.
6



2.5. Galois representations associated to elliptic curves. Let E be an elliptic curve
over Q. It turns out that E is a group variety; in particular, there is a map of varieties
E × E → E making E(Q) an abelian group. If P ∈ E(Q), we may use this group law to
define 3P := P + P + P and so on. For each m ≥ 1, it turns out that the m-torsion subgroup

E[m] := {P ∈ E(Q) : mP = 0}

is a free Z/mZ-module of rank 2. Therefore the inverse limit

TpE := lim←−E[p
n]

(with respect to the homomorphisms E[pn+1]→ E[pn] sending P to pP ) is a free Zp-module
of rank 2, called a Tate module. Next,

VpE := TpE ⊗Zp Qp

is a 2-dimensional Qp-vector space. The continuous action of GQ on E(Q) induces continuous
actions on E[pn], TpE, and VpE. Thus VpE is a 2-dimensional Qp-representation of GQ.

2.6. Galois representations associated to higher-genus curves. Let X be a smooth
projective geometrically connected curve of genus g over Q. If g 6= 1, there is no group law
X × X → X, but the Jacobian J of X does have a group law. The construction of VpE
generalizes to produce a 2g-dimensional Qp-representation VpJ of GQ.

2.7. Galois representations from étale cohomology. If X is a smooth projective variety
over Q, and i ∈ Z≥0 then the étale cohomology group Hi(XQ,Qp) (which we will not attempt
to define here) is a Qp-representation of GQ.

Example 2.3. If E is an elliptic curve, then it turns out that H1(EQ,Qp) is the dual of the
representation VpE. If X and J are as in Section 2.6, then H1(XQ,Qp) is the dual of VpJ .

2.8. Semisimple representations. Let V be a Qp-representation of GQ. Call V irreducible
if V 6= 0 and there is no GQ-invariant subspace W with 0 ( W ( V . Call V semisimple if it
is a direct sum of irreducible representations. Maschke’s theorem [Ser77, §1.4, Theorem 2]
states that any C-representation of a finite group is semisimple, but this is not true for
Fp-representations of a finite group of order divisible by p, and Qp-representations of GQ are
more like the latter in this regard: they need not be semisimple.

Example 2.4. Let χ : GQ → Q×
p be the cyclotomic character. There is a homomorphism

logp : Q×
p → Qp from the multiplicative group to the additive group; see [Kob84, IV.2]. Let

V := Qp ⊕Qp, viewed as a space of column vectors. Let each g ∈ GQ act as

(
1 logp χ(g)

0 1

)
on V . The only invariant subspace of V is Qp ⊕ 0, so V is not semisimple.
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2.9. The absolute Galois group of Qp. Let Qp denote an algebraic closure of Qp. The
homomorphism Z ↪→ Zp extends uniquely to Q ↪→ Qp and non-uniquely to Q ↪→ Qp; fix
one such embedding. Define GQp

:= Gal(Qp/Qp). It turns out that Qp is generated by its
subfields Q and Qp, so the homomorphism GQp → GQ sending each σ to σ|Q is injective.
Identify GQp with its image, which is called a decomposition group of GQ.

The absolute value | |p on Qp extends in a unique way to Qp. Let Zp := {x ∈ Qp : |x|p ≤ 1};
it is a subring. The unique maximal ideal of Zp is m := {x ∈ Qp : |x|p < 1}, and the quotient
Zp/m is an algebraic closure Fp of Fp. Each element of GQp preserves | |p and hence induces
an automorphism of Zp/m. Thus we obtain a homomorphism GQp → GFp . It is surjective,
and its kernel Ip ⊂ GQp ⊂ GQ is called an inertia group. To summarize, we have a diagram

1

//

Ip

//

GQp

//
� _

��

GFp

//

1

GQ.

The Frobenius automorphism Frobp ∈ GFp is the automorphism x 7→ xp of Fp; it generates a
dense subgroup of GFp since it restricts to a generator of each finite quotient Gal(Fpn/Fp).
Write Frobp also for any element of GQp mapping to Frobp ∈ GFp , or for the corresponding
element of GQ.

2.10. Local Galois representations. Let p and q be primes. (Soon we will take q = p.) A
Qp-representation of GQq is a finite-dimensional Qp-vector space V equipped with a continuous
action of GQq . Call V unramified if Iq acts trivially on V ; in that case the GQq -action can be
described by one matrix, namely the automorphism Frobq |V ∈ GL(V ) given by the action of
any Frobq ∈ GQq . Given w ∈ Z, call such a V pure of weight w if the characteristic polynomial
of Frobq |V is a polynomial in Z[x] whose complex zeros have absolute value qw/2.

2.11. Properties of representations coming from geometry. Now return to a global
representation V , a Qp-representation of GQ. For each prime q, restricting the GQ-action
to the subgroup GQq yields a local representation Vq. For a finite set S of primes, call V
unramified outside S if Vq is unramified for every q /∈ S. For w ∈ Z, call such a V pure of
weight w if Vq is pure of weight w for every q /∈ S. These properties were introduced because
they hold for representations “coming from geometry”:

Theorem 2.5. Each representation Hi(XQ,Qp) as in Section 2.7 is unramified outside a
finite set S and is pure of weight i (cf. [Del74, Théorème 1.6]).

Remark 2.6. One can say more about S. The variety X can be defined by polynomials
with coefficients in Z. Reducing all the coefficients of the polynomials modulo ` produces
polynomials defining a variety over F`. For most `, this variety is again smooth; more
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precisely, this holds for all primes ` outside a finite set S0. Then in Theorem 2.5 one may
take S = S0 ∪ {p}.

2.12. Faltings’s finiteness theorem for global Galois representations. Faltings clev-
erly combined a few classical facts from number theory (Hermite’s finiteness theorem and the
Chebotarev density theorem) to prove the following finiteness statement.

Theorem 2.7 (cf. [Fal83, proof of Satz 5]). Fix a nonnegative integer d, a prime p, a finite
set S of primes, and an integer w. Then the set of isomorphism classes of semisimple
d-dimensional Qp-representations of GQ that are unramified outside S and pure of weight w
is finite.

3. A family of curves

In this section, we construct an algebraic family of curves that plays a key role in the
Lawrence–Venkatesh proof.

3.1. Fundamental group of a punctured Riemann surface. Let X be a compact
Riemann surface of genus g. Because X is homeomorphic to a 4g-gon with edges glued
appropriately, the fundamental group of X (with respect to any base point) has a presentation

π1(X) '
〈
a1, b1, . . . , ag, bg

∣∣∣ [a1, b1] · · · [ag, bg]〉,
where [a, b] := aba−1b−1; that is, π1(X) is the quotient of a free group on 2g generators by
the smallest normal subgroup containing the indicated product of g commutators. More
generally, if B is a finite subset of X, then

π1(X −B) '
〈
a1, b1, . . . , ag, bg, c1, . . . , cr

∣∣∣ [a1, b1] · · · [ag, bg]c1 · · · cr〉.
3.2. Analytic construction of a family of ramified covers. Now fix X and a finite
group G. Let x ∈ X. A surjective homomorphism π1(X − {x})

α
� G defines a finite covering

space of X − {x}, and it can be completed to a finite ramified covering Yx,α → X, with some
branches possibly coming together above x ∈ X.

This covering depends on α, but there are only finitely many α since π1(X−{x}) is finitely
generated. To obtain a space not depending on a choice of any one α, define the finite disjoint
union Yx :=

∐
α Yx,α, which is a disconnected ramified covering of X.5 As x varies, the Yx

vary continuously in a family. The total space of this family is a 2-dimensional compact
complex manifold Y with a proper submersion π : Y → X such that π−1(x) = Yx for each
x ∈ X.

5Lawrence and Venkatesh use a variant in which G has trivial center and the disjoint union is over conjugacy
classes of surjective homomorphisms α, which makes sense since the isomorphism type of Yx,α depends only
on the conjugacy class.
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3.3. An algebraic family of curves. The constructions above can be made algebraic, in
the following sense. Suppose that X is a smooth projective connected curve over C. Then by
the Riemann existence theorem, Yx,α → X arises from an algebraic morphism of algebraic
curves. Moreover, there is a 2-dimensional variety Y with a morphism π : Y → X whose
fibers are the disconnected curves Yx =

∐
α Yx,α.

Even better, the construction is canonical enough that if X is defined over Q, then
π : Y → X can be defined over Q. This is called a Kodaira–Parshin family; see [LV18, §7] for
details.

Remark 3.1. The curve X is playing two roles: it is the base of the family Y → X, but also
each fiber Yx is a ramified covering of X.

4. The Lawrence–Venkatesh proof of the Mordell conjecture

We now summarize the Lawrence–Venkatesh approach to the Mordell conjecture; of course,
in doing so we gloss over many difficult arguments.

4.1. From rational points to representations. Let X be a smooth projective geometri-
cally connected curve of genus > 1 over Q. The goal is to prove that X(Q) is finite.

All the claims below will be true for a suitable choice of finite group G. (Lawrence and
Venkatesh take G to be the semidirect product Fq o F×

q for a suitable large prime q.) Let
π : Y → X be the Kodaira–Parshin family of curves over X defined using G. To each
x ∈ X(Q) one may associate the global Galois representation

Vx := H1
et((Yx)Q,Qp).

Thus one obtains a map of sets6

X(Q)
V−→ {Qp-representations of GQ}(1)

x 7−→ Vx.

Now

• The representations Vx are all of the same dimension.
• They are semisimple.7

• They are unramified outside a set S that is independent of x, because one can choose
a set S0 as in Remark 2.6 that works for the whole family Y → X.
• They are pure of weight 1.

6The set of representations should really be a set of isomorphism classes of representations (we abuse
notation).

7The semisimplicity is actually a difficult theorem, proved by Faltings in his paper on the Mordell conjecture.
Lawrence and Venkatesh would be “cheating” if they used this, so instead they give an independent argument
using Hodge–Tate weights to prove that Vx is semisimple for all but finitely many x ∈ X(Q); that is sufficient
for their proof of the Mordell conjecture.
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That is, the representations Vx satisfy all the conditions of Faltings’s finiteness theorem
(Theorem 2.7), so

the map V in (1) has finite image!

To finish the proof that X(Q) itself is finite, one needs to show that every fiber of V is
finite, i.e., that the Vx vary enough that there are only finitely many x ∈ X(Q) mapping to
any given isomorphism class of representations.

4.2. Variation in a p-adic family of local Galois representations. The plan is to show
that the global representations Vx vary enough by showing that even their restrictions to GQp

vary enough.
To each x ∈ X(Qp) one may associate the local Galois representation

Vx := H1
et((Yx)Qp

,Qp).

This provides the map Vp in the following commutative diagram of sets:

X(Q)
� _

��

V

//

{Qp-representations of GQ}

restriction
��

X(Qp)
Vp

//

{Qp-representations of GQp}.

To prove that V has finite fibers, it suffices to prove that Vp has finite fibers. That is, loosely
speaking, one must show that the local representation Vx varies enough as x ranges over
X(Qp). The rest of the proof proceeds as follows:

• Use p-adic Hodge theory to relate the variation of the étale cohomology groups Vx
for x ∈ X(Qp) to the variation of the Hodge filtration in the corresponding de Rham
cohomology groups.
• The variation of the Hodge filtration is described by the Gauss–Manin connection,
which in down-to-earth terms means that it is described by the solutions to a system
of differential equations whose coefficients are algebraic functions on X over Q.
• The same differential equations describe the variation of the Hodge filtration for the
family YC → XC of complex projective curves.
• A lower bound on that variation is given by the monodromy of the Kodaira–Parshin
family over C.
• Use an extensive calculation in topology (involving mapping class groups, Dehn twists,
and the like) to prove that indeed the monodromy group is large enough.

This completes the proof of the Mordell conjecture.

Remark 4.1. Lawrence and Venkatesh show that their approach has applications beyond
rational points on curves. In particular, using recent work of Bakker and Tsimerman [BT19],
they prove that certain affine varieties F of higher dimension (moduli spaces of smooth

11



hypersurfaces in projective space) have few integral points, where “few” means that they are
contained in a subvariety of F of lower dimension.
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RECENT PROGRESS ON MOVING BOUNDARY PROBLEMS

SUNČICA ČANIĆ

Abstract. We give a brief survey of the recent progress in the area of mathe-

matical well-posedness for moving boundary problems describing fluid-structure

interaction between incompressible, viscous fluids and elastic, viscoelastic, and
rigid solids.

1. Introduction

In this paper we survey some recent developments and open problems in the
mathematical study of moving boundary problems. In particular, the focus is on
problems arising from the interaction between incompressible, viscous fluids and
elastic, viscoelastic, or rigid solids (also referred to as “structures”). See Fig. 1.
Fluid-structure interaction (FSI) problems are ubiquitous in nature, technology
and engineering. Examples include the human heart and heart valves interacting
with blood flow, biodegradable micro-beads swimming in water to clean up water
pollution, a micro camera in the human intestine used for an early colon cancer
detection, and design of next generation vascular stents to prop open the clogged
arteries, and prevent heart attacks. Numerical simulation and analysis of fluid-
structure interaction problems can provide insight into the “invisible” properties of
flows and structures, and can be used to advance design of novel technologies and
improve the understanding of many biological phenomena.

Interestingly enough, even though the mathematical theory of the motion of
bodies in a liquid is one of the oldest and most classical problems in fluid mechan-
ics, mathematicians have only recently become interested in a systematic study of
the basic problems related to fluid-structure interaction. One reason for this may
be that problems of this type are notoriously difficult to study. In addition to the
nonlinearity in the fluid equations (the Navier-Stokes equations) and possibly in
the elastic or viscoelastic structure equations, the coupling between the fluid and
structure motion may give rise to strong geometric nonlinearities. The study of ex-
istence of solutions to the coupled problems must account for the nonlinearities due
to the strong energy exchange between the fluid and (elastic) structure motion, and
novel compactness arguments have to be designed to deal with such nonlinearities.
Due to the fluid domain motion, compactness results holding for a family of opera-
tors defined on time-dependent function spaces corresponding to moving domains
not known a priori are needed. The compactness arguments must also account
for the fact that the coupled problem involves two sets of equations of different
type (parabolic vs. hyperbolic) accounting for the different physics in the problem.

Date: November 2019.

2000 Mathematics Subject Classification. Primary 76D05, 76D03; Secondary 74F10, 76D27.
Key words and phrases. Moving boundary problems, fluid-structure interaction.
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Figure 1. Two elastic leaflets “swimming” in fluid. The intensity
of blue color is related to the magnitude of fluid velocity. From the
work published in [13].

Making use of the smoothing effects by the fluid viscosity, and capturing its role in
keeping the high frequency oscillations of the (hyperbolic) structure under control,
is crucial for the existence proofs.

In existence proofs, and in numerical schemes, an additional difficulty is imposed
by the incompressibility of the fluid. The main difficulty in existence proofs is
related to the construction of divergence-free extensions of fluid velocity to a larger
domain containing all the moving domains, and obtaining quantitative estimates of
the extensions in terms of the changing geometry. Incompressibility is intimately
related to the pressure, and pressure is a major component of the load, i.e., contact
force, exerted by the fluid onto the solid. Designing constructive existence proofs
and numerical schemes that approximate the load “correctly” is a key ingredient for
the stability of constructive solution schemes. In particular, the fluid surrounding
the structure affects the structure motion as an extra mass that the structure must
displace when moving within a fluid. This has long been known in engineering as
the “added mass effect”, and its negative impact on the stability of partitioned FSI
schemes is a well-known problem for FSI problems for which the fluid and structure
have comparable densities, i.e., for which the structure is “light” with respect to
the fluid. The added mass is a leading order effect in biofluidic FSI problems, since
biological tissues (structures) have density which is approximately the same as that
of the surrounding fluid. A failure to account for this effect leads to instabilities
in partitioned numerical schemes and to the lack of uniform energy estimates in
constructive existence proofs.

The question of global-in-time existence of solutions to moving boundary prob-
lems is affected by the so called “no collision” paradox. In addition to the problems
related to global existence of solutions inherited from the Navier-Stokes equations,
global weak solution existence results for moving boundary problems are typically
obtained until contact between solids happens. We survey below the results in this
area and mention here that several open questions remain, which would shed light
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on whether contact of elastic bodies immersed in a viscous incompressible fluid can
happen in finite time, and the type of boundary conditions for which the finite-time
contact may or may not occur (Navier slip versus no-slip condition).

Nonlinearities in the coupled FSI problem also affect the study of uniqueness of
solutions. It is not surprising that uniqueness of weak solutions to the coupled FSI
problems is still largely an outstanding open problem, since even in the case of clas-
sical 3D Navier-Stokes equations, the uniqueness of the Leray-Hopf weak solutions
has not been resolved. However, recent advances in this area are significant, and
we summarize those results below.

Thus, the main challenges in the mathematical study of fluid-structure interac-
tion problems can be attributed to the following features of the problem:

(1) Geometric nonlinearity when fluid and structure are nonlinearly coupled;
(2) The problem is of mixed type and defined on moving domains;
(3) Incompressibility and the Added Mass Effect;
(4) Finite-time contact?
(5) Uniqueness.

To explain the main challenges in more detail, we present a benchmark problem
for FSI involving elastic structures, and a benchmark problem for FSI involving
rigid solids, and provide a literature review of the recent results.

2. FSI involving elastic structures

Although the development of numerical methods for this class of problems started
almost 40 years ago (see e.g., [42, 122, 107, 108, 46, 68, 69, 41, 81, 111, 9, 8, 84,
47, 80, 68, 69, 70, 71, 72] and the references therein), the development of existence
theory for FSI problems started less than 20 years ago. We state a benchmark
problem in this field, and summarize some recent results and open problems.

2.1. Description of the Main Problem. To describe the interaction between
a fluid and an elastic (or viscoelastic) structure across a moving interface mathe-
matically, two types of coupling conditions have to be prescribed. This contrasts
classical fluid dynamics problems defined on fixed domains where only one set of
boundary conditions, e.g., the no-slip condition, is sufficient to define the problem.
The two sets of coupling conditions describe: (1) how the kinematic quantities,
such as velocity, are coupled (the kinematic coupling condition), and (2) the elasto-
dynamics of the fluid-structure interface (the dynamic coupling condition). While
the precise form of the kinematic and dynamic coupling conditions depends on the
particular application at hand, the most common coupling is done via the no-slip
kinematic condition, stating that the fluid and structure velocities are continuous
at the moving boundary, and the dynamic coupling condition stating that the fluid-
structure interface, namely the moving boundary, is driven by the jump in traction,
i.e., normal stress, across the interface. For problems in which one expects small
interface displacements and small displacement gradients, the coupling conditions
may be evaluated at a fixed interface, without changing the fluid domain, namely,
the fluid and structure may be linearly coupled [45, 10, 11, 87]. For problems where
this may not be a good approximation of reality, the coupling conditions must
be evaluated across the moving interface, giving rise to an additional nonlinearity
in the problem, which is due to the change of geometry of the moving boundary,
namely, the fluid and structure are nonlinearly coupled . In the latter case the fluid
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domain is a function of time, and additionally, it is not known a priori since it de-
pends on the unknowns in the problem, namely, the location of the fluid-structure
interface.

The geometric nonlinearity associated with the fact that the fluid equations are
defined on a family of time-dependent domains not known a priori, presents one of
the major difficulties in studying this class of problems mathematically.

FSI Benchmark Problem with the no-slip Coupling. The simplest exam-
ple of a moving boundary problem with nonlinear coupling involving a deformable
(elastic) structure, is a benchmark problem deriving from modeling blood flow in a
segment of an artery. The fluid domain is a cylinder, with an elastic (viscoelastic)
lateral boundary. For simplicity, we present the problem in 2D, although 3D ver-
sions of the problem have been studied in e.g., [97]. In this benchmark problem, will
be assuming that the lateral boundary is thin, with small thickness h << 1, and
with the reference configuration Γ corresponding to a straight cylinder of length L
and radius R:

Γ = {(z,R) ∈ R2|z ∈ (0, L)}.
In most literature involving FSI with thin structures, except for the recent results in
[23, 100], the lateral boundary is assumed to displace only in the vertical (normal,
transverse) direction, rendering longitudinal displacement negligible. By using η
to denote the vertical component of displacement, the fluid domain Ωη(t) can be
described by:

Ωη(t) = {(z, r) ∈ R2|z ∈ (0, L), r ∈ (0, R+ η(t, z)},
where R is the radius of the reference cylinder. The reference fluid domain will be
denoted by Ω = (0, L)× (0, R).

Figure 2. Left: A sketch of the fluid domain and the moving
lateral boundary. Right: Pressure wave propagation in elastic
tube.

The fluid flow is modeled by the Navier-Stokes equations for an incompressible,
viscous fluid, defined on a moving domain Ωη(t):

(2.1)
ρf
(
∂tu + (u · ∇)u

)
= ∇ · σ

∇ · u = 0

}
in Ωη(t), t ∈ (0, T ),

where σ is the Cauchy stress tensor, ρf is the fluid density, and u = u(x, t) =
(uz, ur) is the fluid velocity. For Newtonian fluids

σ = −pI + 2µD(u),
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where µ is the dynamic viscosity coefficient, and D(u) = 1
2 (∇u + ∇τu) is the

symmetrized gradient of u.
In this benchmark problem the flow is driven by the inlet and outlet dynamic

pressure data, and the flow is normal to the inlet and outlet boundary Γin =
{0} × (0, R) and Γout = {L} × (0, R):

(2.2)
p+

ρf
2
|u|2 = Pin/out(t),

ur = 0,

}
on Γin/out,

where Pin/out ∈ L2
loc(0,∞) are given. At the bottom boundary Γb = (0, L) × {0}

the symmetry boundary conditions are prescribed:

(2.3) ur = ∂ruz = 0, on Γb.

Different inlet/outlet boundary conditions have been used in numerical simula-
tions, including Dirichlet data given in terms of the prescribed fluid velocity, and
Neumann data given in terms of the prescribed normal stress. The dynamics pres-
sure data (2.2) is a boundary condition “consistent” with the energy of the coupled
problem.

Under the fluid loading, and possibly some external loading, the elastic cylinder
deforms. See Fig 2. We denote by:

(2.4) Γη(t) = {(t, z, R+ η(t, z))|z ∈ (0, L)}
the location of the deformed cylinder lateral boundary at time t. The elastic prop-
erties of the cylinder’s lateral wall can be described by an operator Le, so that the
elastodynamics problem, in Lagrangian formulation, can be written as:

ρsh∂ttη + Leη = f, on Γ, t ∈ (0, T ),(2.5)

where ρs is the structure density, h is the thin structure thickness, and f is the
vertical component of the outside loading (force density) experienced by the elastic
structure. The loading f in the coupled problem will come from the jump in the
normal stress across the structure, i.e., from the fluid load experienced by the
structure (assuming that outside loading is zero). The operator Le is associated
with the elastic energy of the structure, such as the membrane or shell energy, see
[96], and is typically continuous, positive-definite, and coercive on some Hilbert
space χ.

The coupling. The fluid flow influences the motion of the structure through
traction forces, i.e., by the normal stress exerted onto the structure at Γη(t), while
the structure influences the fluid through its inertial and elastic forces due to the
structure motion and stretching/recoil. Additionally, the fluid and structure “feel”
each other through the continuity of the fluid and structure velocities at the inter-
face. Thus, the kinematic and dynamic coupling conditions, respectively, are:

(∂tη(t, z), 0) = u(t, z, R+ η(t, z)),(2.6)

ρsh∂
2
t η + Leη = −J (σn)|(t,z,R+η(t,z)) · er,(2.7)

where J =

√
1 +

(
∂η
∂t

)2

, is the Jacobian of the transformation from Eulerian coor-

dinates to Lagrangian coordinates, and er is the unit vector in the vertical direction.
Here, we have assumed that the outside forcing onto the structure is zero. Gener-
alizations to include outside forcing due to the presence of another elastic structure
or other types of forcing can be found in [98].
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The geometric nonlinearity due to the fluid domain motion, described by the
composite function u(t, z, R+η(t, z)), is generally handled by introducing a family of
mappings, parameterized by time, called the Arbitrary Lagrangian-Eulerian (ALE)
mappings, discussed below in Sec. 2.2. In terms of ALE mappings, the trace of the
fluid velocity on Γη(t) is described by a composite function between the velocity
and the ALE mapping.

Equations (2.1)–(2.7) define a nonlinear moving-boundary problem for the un-
known functions u and η. The problem is supplemented with initial conditions:

(2.8) u(0, .) = u0, η(0, .) = η0, ∂tη(0, .) = v0,

often times satisfying some extra compatibility conditions, such as:

(2.9)
u0(z,R+ η0(z)) = v0(z)er, z ∈ (Γ),
η0(0) = η0(L) = v0(0) = v0(L) = 0,

R+ η0(z) > 0, z ∈ [0, L].

Thus, the benchmark nonlinear moving-boundary problem, which exempli-
fies the main difficulties associated with studying moving boundary problems with
nonlinear coupling, can be summarized as follows: Find u = (uz(t, z, r), ur(t, z, r)), p,
and η(t, z) such that:

ρf
(
∂tu + (u · ∇)u

)
= ∇ · σ(u, p)

∇ · u = 0

}
in Ωη(t), t ∈ (0, T ),

u|Γη(t) = ∂tηer,
ρsh∂

2
t η + Leη = −Jησn|Γη(t) · er,

}
on (0, T )× Γ,

ur = 0,
∂ruz = 0,

}
on (0, T )× Γb,

p+
ρf
2 |u|

2 = Pin/out(t),
ur = 0,

}
on (0, T )× Γin/out,

η(t, 0) = ∂zη(t, 0) = η(t, L) = ∂zη(t, L) = 0 on (0, T )

u(0, .) = u0,
η(0, .) = η0,

∂tη(0, .) = v0.

 at t = 0.

The energy. This benchmark problem satisfies the following formal energy
inequality:

(2.10)
d

dt
E(t) +D(t) ≤ C(Pin(t), Pout(t)),

where E(t) denotes the sum of the kinetic energy of the fluid and of the structure,
and the elastic energy of the membrane shell:

(2.11) E(t) =
ρf
2
‖u‖2L2(Ωη(t)) +

ρsh

2
‖∂tη‖2L2(Γ) + 〈Leη, η〉 ,

where 〈Leη, η〉 corresponds to the elastic energy of the structure, which for the
cylindrical Koiter shell allowing only radial displacement reads:

〈Leη, η〉 :=
1

2

(
C0‖η‖2L2(Γ) + C1‖∂zη‖2L2(Γ) + C2‖∂2

zη‖2L2(Γ)

)
.
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The term D(t) captures dissipation due to fluid viscosity:

(2.12) D(t) = µ‖D(u)‖2L2(Ωη(t))),

and C(Pin(t), Pout(t))) is a constant which depends only on the inlet and outlet
pressure data, which are both functions of time.

FSI Benchmark Problem with the Navier-slip Coupling. While the
assumption on the continuity of normal velocity components is reasonable for im-
permeable boundaries:

(2.13) (∂tη − u) · n = 0 (non− penetration condition),

the continuity of the tangential velocity component in the no-slip condition is jus-
tified only when molecular viscosity is considered [93]. Navier contested the no-slip
condition for Newtonian fluids [103] when he claimed that the tangential, slip veloc-
ity should be proportional to the shear stress. For moving boundary problems this
means that the jump in the tangential components of the fluid and solid velocities
at the moving boundary is proportional to the shear stress:

(2.14) (∂tη − u) · τ = ασn · τ (Navier slip),

where n and τ to denote the unit normal and tangent to the fluid domain bound-
ary, respectively, σ is the fluid Cauchy stress tensor, and α is the proportionality
constant known as the slip length; 1/α has the units of friction.

Figure 3. Hydrophilic vs. hydrophobic surfaces: no-slip vs. slip con-
dition. Left: Classical Ketchup flow. Middle: Ketchup flowing in a
bottle treated with a no-stick coating. Right: Numerical simulation (by
Čanić and Wang) of flow with slip boundary condition. The snap-shots
were taken at the same time after the bottled had been tilted downwards.
The colors in the third panel denote magnitude of fluid velocity.
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The benchmark problem defined on the domain shown in Fig. 2, incorporating
the Navier-slip condition as the kinematic coupling condition, can be summarized
as follows: Find (u, p,η) such that the following holds
The fluid equations:

ρF (∂tu + u · ∇u) = ∇ · σ(u, p),
∇ · u = 0,

}
in Ωη(t), t ∈ (0, T );

The elastic structure (Navier-slip coupling on (0, L)× (0, T )):

ρSh∂ttη(t, z) + Leη(t, z) = −J(t, z)σ
(
ϕ(t, z)

)
n(t, z),

∂tη(t, z) · n(t, z) = u(ϕ(t, z)) · n(t, z),

(∂tη(t, z)− u(ϕ(t, z)) · τ (t, z) = ασ
(
ϕ(t, z)

)
n(t, z) · τ (t, z),

with

η(t, 0) = ∂zη(t, 0) = η(t, L) = ∂zη(t, L) = 0, t ∈ (0, T );

Boundary data at the inlet/outlet boundary Γin/out × (0, T ):

p+ ρF
2 |u|

2 = Pi, u · τ = 0.

Boundary data at the bottom, symmetry boundary Γb × (0, T ):

u · n = 0, ∂nuτ = 0.

with uτ denoting the tangental component of velocity u.

Initial conditions:

(2.15) u(0, .) = u0, η(0, .) = η0, ∂tη(0, .) = v0.

The following energy estimate holds:

(2.16)

1

2

d

dt

(
ρF ‖u‖2L2(Ωη(t)) + ρSh‖∂tη‖2L2(Γ) + c‖η‖2χ(Γ)

)
+µ‖D(u)‖2L2(Ωη(t)) +

1

α
‖uτ − ∂tητ‖2L2(Γη(t)) ≤ C,

where C depends on the initial and boundary data, and constant c in front of the
χ-norm of η is associated with the coercivity of the structure operator Le. The
reference configuration of the lateral boundary Γ = (0, L)× {R}.

The no-slip condition is reasonable for a great variety of problems for which
the slip length α is indeed very close to zero. However, in many cases of practi-
cal significance no-slip is not adequate. Examples include flows over hydrophobic
surfaces or surfaces treated with a no-stick coating, see Fig. 3, flows over “rough”
surfaces such as those of, e.g., grooved vascular tissue scaffolds, and problems in-
volving contact of smooth solids immersed in a viscous, incompressible fluid. More
precisely, for flows over “rough” (rigid and fixed) surfaces, it has been shown that
the Navier slip boundary condition is the appropriate “effective boundary condi-
tion” [93, 94]. Instead of using the no-slip condition at the small groove scale, the
effective Navier slip boundary condition is applied at the corresponding “groove-
free” smooth boundary [93, 94]. Regarding contact of smooth bodies immersed in a
viscous, incompressible fluid, recent studies have shown that contact is not possible
if the no-slip boundary condition is considered [75, 76, 114]. A resolution to this
no-collision paradox is to employ a different boundary condition, such as the Navier
slip boundary condition, which allows contact between smooth rigid bodies [106].
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Problems of this type arise, e.g., in modeling elastic heart valve closure where dif-
ferent kinds of ad hoc “gap” conditions with the no-slip boundary condition have
been used to get around this difficulty.

2.2. The Arbitrary Lagrangian-Eulerian (ALE) Mappings. To deal with
the problems associated with the motion of the fluid domain, different approaches
have been taken. One approach is to consider the entire moving boundary problem
written in Lagrangian coordinates, as was done in [85, 30, 29]. This is possible to do
when the fluid domain is contained in a ”closed container” and no fluid escapes the
fluid domain, which is not the case with the benchmark problem, considered above.
Another approach is to map the problems from the moving domain onto a fixed
reference domain, using a family of mappings, known as the Arbitrary Lagrangian-
Eulerian (ALE) mappings.

The Arbitrary Lagrangian-Eulerian mapping is a family of (diffeomorphic) map-
pings, parameterized by t, such that

(2.17) A η(t) : Ω→ Ωη(t).

ALE mappings have been extensively used in numerical simulations of moving
boundary problems, see e.g. [41, 42, 122]. Recently, they have proven to be useful
in mathematical analysis as well [96, 23, 97]. In numerics, one of the reasons for
the introduction of ALE mappings is the calculation of the the discretized time
derivative ∂tu since a finite difference approximation of the time derivative, e.g.,
(un+1 − un)/∆t contains the functions un+1 and un which are defined on two dif-
ferent domains, one corresponding to the time tn+1 = (n+ 1)∆t, and the other to
tn = n∆t. A way to calculate the time derivative of the fluid velocity is then to
map the fluid velocities at times tn+1 and tn onto a fixed domain Ω via the ALE
mappings corresponding to tn+1 and tn, evaluate the time derivative there, and
then map everything back to the physical domain Ωn := Ωη

n

(tn) to solve the fluid
equations on the “current” domain Ωn. This introduces an extra advection term
in the Navier-Stokes equations, describing the contribution of the motion of fluid
domain to the fluid advection, so that the Navier-Stokes equations in ALE form
become:

(2.18)
ρf
(
∂tu + ((u−wηn) · ∇)u

)
= ∇ · σ,

∇ · u = 0,

}
in (tn, tn+1)× Ωn,

where wηn = ∂tA ηn(tn) describes the fluid domain velocity. In numerical solvers,
the ALE mapping is often defined by the harmonic extension of the boundary data
onto the fluid domain, i.e., as a solution to the following elliptic problem:

∆A η(t) = 0 on Ω,
A η(t) = η(t) on Γ,
A η(t) = 0 on ∂Ω \ Γ,

calculated at every time step t = tn. Other elastic (elliptic) operators have also
been used.

In addition to numerical solvers, the ALE approach has recently been used to
study the existence of solutions to this class of problems by either mapping the
entire fluid problem onto the fixed domain Ω via an ALE mapping, and analyzing
the problem there, as in [96, 97, 98], or by mimicking the approach described above,
used in numerical simulations, and working on the “current” domain Ωn, as in [23].
In the former case, an additional set of nonlinearities is introduced because the
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gradient operator ∇ in physical space is mapped into an operator ∇η, defined on
the fixed, reference domain. The mapped fluid velocity is no longer divergence-free
in terms of the operator ∇, which presents some difficulties when trying to use
known results that hold for divergence-free functions.

Using ALE mappings in analysis requires assumptions on its regularity, which,
of course, depends on the regularity of the fluid-structure interface η, not known
a priori. In most works that use ALE mappings, an assumption on the regularity
of the ALE mapping is made a priori, which is then justified a posteriori, after a
proof showing existence of a solution with sufficient regularity of η is obtained.

For the benchmark problem with no-slip coupling presented above, one can in-
troduce a family of ALE mappings, parameterized by η, given explicitly by:

(2.19) A η(t) : Ω→ Ωη(t), A η(t)(z̃, r̃) :=

(
z̃

(R+ η(t, z̃))r̃

)
, (z̃, r̃) ∈ Ω,

where (z̃, r̃) denote the coordinates in the reference domain Ω = (0, L) × (0, R).
Mapping A η(t) is a bijection, and its Jacobian is given by

(2.20) JA η = |det∇A η(t)| = |R+ η(t, z̃)|.
Composite functions with the ALE mapping will be denoted by

(2.21) uη(t, .) = u(t, .) ◦A η(t) and pη(t, .) = p(t, .) ◦A η(t).

The derivatives of composite functions satisfy:

∂tu = ∂tu
η − (wη · ∇η)uη, ∇u = ∇ηuη,

where the ALE domain velocity, wη, and the transformed gradient, ∇η, are given
by:

(2.22) wη = ∂tηr̃er, ∇η =

 ∂z̃ − r̃
∂zη

R+ η
∂r̃

1

R+ η
∂r̃

 .

Note that

(2.23) ∇ηv = ∇v(∇Aη)−1.

The following notation will also be useful:

ση = −pηI + 2µDη(uη), Dη(uη) =
1

2
(∇ηuη + (∇η)τuη).

The resulting problem, defined entirely on the fixed, reference domain, in ALE
framework now reads: find u(t, z̃, r̃), p(t, z̃, r̃) and η(t, z̃) such that

(2.24)
ρf
(
∂tu

η + ((uη −wη) · ∇η)uη
)

= ∇η · ση,
∇η · uη = 0,

}
in (0, T )× Ω,

uη = ∂tηer,
ρsh∂

2
t η + Leη = −Jσηn · er,

}
on (0, T )× Γ,

uηr = 0,
∂ru

η
z = 0

}
on (0, T )× Γb,

p+
ρf
2 |u

η|2 = Pin/out(t),
uηr = 0,

}
on (0, T )× Γin/out,
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uη(0, .) = uη0 , η(0, .) = η0, ∂tη(0, .) = v0.

Recent Results and Open Problems. The development of existence theory
for this kind of moving boundary, fluid-structure interaction problems started in
the late 1990’s/early 2000’s. The first existence results were obtained for the cases
in which the structure is completely immersed in the fluid, and the structure was
considered to be either a rigid body, or described by a finite number of modal
functions. See e.g., [15, 31, 36, 37, 39, 48, 57, 114], and the references therein.
The analysis of the coupling between the 2D or 3D Navier-Stokes equations and
2D or 3D linear elasticity started in the early 2000’s with the works in which the
coupling between the fluid and structure was assumed across a fixed fluid-structure
interface (linear coupling) as in [45, 10, 11, 87], and then extended to problems with
nonlinear coupling in the works [14, 90, 64, 25, 65, 96, 97, 89, 34, 35, 85, 30, 29].
More precisely, concerning nonlinear FSI models, the first FSI existence result,
locally in time, was obtained in [14], where a strong solution for an interaction
between an incompressible, viscous fluid in 2D and a 1D viscoelastic string was
obtained, assuming periodic boundary conditions. This result was extended by
Lequeurre in [90], where the existence of a unique, local in time, strong solution for
any data, and the existence of a global strong solution for small data, was proved in
the case when the structure is modeled as a clamped viscoelastic beam. D. Coutand
and S. Shkoller proved existence, locally in time, of a unique, regular solution for
an interaction between a viscous, incompressible fluid in 3D and a 3D structure,
immersed in the fluid, where the structure was modeled by the equations of linear
[34], or quasi-linear [35] elasticity. In the case when the structure (solid) is modeled
by a linear wave equation, I. Kukavica et al. proved the existence, locally in time,
of a strong solution, assuming lower regularity for the initial data [85, 82]. A similar
result for compressible flows can be found in [86]. In [110] Raymod et al. considered
a FSI problem between a linear elastic solid immersed in an incompressible viscous
fluid, and proved the existence and uniqueness of a strong solution. Most of the
above mentioned existence results for strong solutions are local in time. In [83]
a global existence result for small data was obtained by Ignatova et al. for a
moving boundary FSI problem involving a damped linear wave equation with some
additional damping terms in the coupling conditions, showing exponential decay
in time of the solution. In the case when the structure is modeled as a 2D elastic
shell interacting with a viscous, incompressible fluid in 3D, the existence, locally
in time, of a unique regular solution was proved by Shkoller et al. in [30, 29]. We
mention that the works of Shkoller et al., and Kukavica at al. were obtained in
the context of Lagrangian coordinates, which were used for both the structure and
fluid subproblems.

In the context of weak solutions, the first existence results came out in 2005
when Chambolle et al. showed the existence of a weak solution for a FSI prob-
lem between a 3D incompressible, viscous fluid and a 2D viscoelastic plate in [25].
Grandmont improved this result in [65] to hold for a 2D elastic plate. A construc-
tive existence proof for the interaction between an incompressible, viscous fluid and
a linearly elastic Koiter shell with transverse displacement was designed in [96]. The
first constructive existence proof for moving boundary problems was presented by
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Ladyzhenskaya in 1970 where the interaction between an incompressible, viscous
fluid and a given moving boundary was constructed using a time-discretization ap-
proach, known as Rothe’s method, assuming high regularity of the given interface
[88]. Muha and Čanić designed a Rothe’s-type method in the context of moving
boundaries that are not known a priori in 2013 [96]. To deal with a moving bound-
ary not known a priori they introduced the time discretization via Lie operator
splitting, which has been used in numerical schemes, described in [62]. The FSI
problem studied in [96] is split into a fluid and a structure subproblem, with the
coupling designed so that the resulting scheme is stable. This was achieved by
using the results about the “added mass effect”, published in [24], which showed
the importance of implicit treatment of the fluid and structure inertia in loosely
coupled partitioned schemes. The splitting of the coupled problem in [96] was then
done in such a way that the fluid and structure inertia terms are kept implicitly
together, which provided uniform energy estimate, not otherwise attainable using
the “classical” Dirichlet-Neumann” partitioned schemes [109, 112]. A compactness
argument, discussed below in Section 2.3 was used to show that subsequence of
approximate solutions converge to a weak solution to the coupled problem. After
2013 similar approaches were used to prove existence of a weak solution for a non-
linear FSI problem involving a nonlinear Koiter shell [99], a multi-layered structure
[98], and a Koiter shell with the Navier slip condition [100].

To complete the discussion of well-posedness, we mention here a result on con-
tinuous dependence of weak solutions on initial data, obtained in [73] for a fluid
structure interaction problem with a free boundary type coupling condition.

In all these works existence of a weak solution was proved for as long as the
elastic boundary does not touch ”the bottom” (rigid) portion of the fluid domain
boundary. Recently, Grandmont and Hillairet showed that contact between a rigid
bottom of a fluid container, and a viscoelastic beam, is not possible in finite time
[66]. The finite-time contact involving thin and thick elastic structures interacting
with an incompressible, viscous fluid is still open.

We conclude this section with a few general remarks related to the geometric non-
linearity in FSI problems for which the coupling across the current location of the
moving interface is needed to describe the physical problem. The strong exchange of
energy between the fluid and structure motion in the nonlinearly coupled problems
gives rise to the various difficulties in the study of mathematical well-posedness. In
particular, the functional spaces based on the finite energy considerations may not
provide sufficient regularity of the moving interface to even define the trace of the
fluid velocity at the fluid-structure interface, and additionally, may lead to various
fluid domain degeneracies, as shown in Fig. 4. These problems are particularly ev-
ident when elastic structures are thin (modeled by the reduced membrane or shell
equations) and the structure model accounts for both transverse and tangential
components of displacement, and the structure is interacting in 3D with the flow of
an incompressible viscous fluid. In those cases, the weak solution techniques based
on finite energy spaces are often times insufficient to guarantee even the Lipschitz
regularity of the fluid-structure interface, see [23]. This is one of the reason why
most literature on the existence of (weak) solutions to moving boundary problems
involving thin elastic structures assumes only the transverse component of displace-
ment to be different from zero [14, 90, 64, 25, 65, 96, 97, 89]. Recently, a 3D FSI
problem allowing transverse and tangential displacements of a mesh-supported shell
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Figure 4. Two ways the fluid domain can degenerate. Top: loss
of injectivity of the ALE mapping A η(t). Bottom: loss of injectiv-
ity of the ALE mapping A η(t) and loss of strict positivity of the
Jacobian A η(t).

was studied in [23] where an existence of a weak solution in 3D was obtained un-
der an extra assumption on the uniform Lipschitz property for the fluid-structure
interface. FSI problems with elastic structures that are slightly more regular than
the Koiter shell, such as, e.g., tripolar materials studied in [16, 113], do not suffer
from this difficulty.

The issues related to non-zero transverse displacement cannot be avoided in
FSI problems with the Navier-slip coupling. This is the reason why the existence
result in 2D for a FSI problem involving a Koiter shell interacting with the flow
of an incompressible, viscous fluid via the Navier-slip condition [100], holds only
until the fluid domain remains regular, in the sense that degeneracies of the type
shown in Fig. 4 do not occur. In problems with slip, compactness may be a an
additional problem since the regularizing effects by fluid viscosity are transferred to
the structure only via the non-penetration condition holding in the normal direction
to the boundary. Never the less, the friction effects in the tangential direction can
be used to compensate for the lack of regularization provided by the fluid viscosity.
More details about compactness for problems on moving domains are presented
next.

2.3. Compactness. Compactness results similar to Aubin-Lions-Simon lemma [7,
116] that hold for moving boundary problems are difficult to obtain because, among
other things, the function spaces depend on time via the fluid domain motion, and
the fluid domains are not known a priori . A compactness result in generalized
Bochner spaces L2(0, T ;H(t)), where H(t) is a family of Hilbert spaces which de-
pend on time, is needed to deal with the fluid flow nonlinearities and with the
geometric nonlinearities associated with the fluid domain motion. Such a compact-
ness result should include, among other things, conditions on the dynamic change
of the fluid domain geometry, that would guarantee compactness.

To the best of our knowledge, there is no general compactness theory similar to
Aubin-Lions-Simon lemma [7, 116] for spaces L2(0, T ;H(t)), where H(t) depends
on time. There are several compactness results for particular, specific problems for
which the spatial domain depends on time, but they were proved using assumptions
that hold for that particular problem at hand. The first result of this type was ob-
tained by Fujita and Sauer in [53], where they studied the Navier-Stokes equations
in a given, non-cylindrical domain, namely, in a domain which depends on time,
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and whose motion is given a priori. Similarly, in [33], the authors used a compact-
ness result to study a fluid-rigid body interaction problem, where an assumption
on high regularity of the domain motion had to be used to obtain an existence re-
sult (see also [50, 114]). In the case of fluid-elastic structure interaction problems,
the assumption on high regularity of the interface is typically not satisfied, thus
different approaches need to be employed.

In the context of fluid-elastic structure interaction problems, we mention [39, 65]
where the authors considered a fluid-elastic structure interaction problem between
the flow of a viscous, incompressible fluid and an elastic/viscoelastic plate, in which
a compactness argument based on Simon’s theorem was used to show L2-strong con-
vergence of approximate solutions. We also mention [79] where this approach was
used in the case of a non-Newtonian fluid. A similar problem, but in a more general
geometrical setting, was studied in [89], where compactness of a set of approximate
weak solutions, based on a particular linearization and regularization of the prob-
lem, was proved by using a modification of the ideas from the proof of Aubin-Lions
lemma. Both approaches used the fluid viscosity and kinematic coupling condition
to control high frequency oscillations of the structure velocity. Recently, a version
of Aubin-Lions lemma for a moving domain problem was proved in the context of
compressible fluids, see [18], where an existence of a solution to an FSI problem
between a compressible fluid and a linearly elastic shell was obtained. The lack of
the fluid incompressibility constraint simplifies the compactness argument for the
velocity field.

Compactness results in more general frameworks were studied in [104, 105], where
the authors developed a functional framework based on the flow method and the
Piola transform for problems in smoothly moving domains, where the flow causing
domain motion was given a priori. In those works a version of the Aubin-Lions
lemma was obtained within this framework. A different version of Aubin-Lions
lemma, in a more general form, was also considered in [95]. The approach in [95]
was based on negative Sobolev space-type estimates, defined on non-cylindrical,
i.e., time-dependent domains. The latter approach did not require high degree of
smoothness of the domain motion.

We also mention the results obtained in [12, 28, 95], where generalizations of the
Aubin-Lions-Simon lemma in various types of nonlinear settings were obtained, and
the work in [43] where a version of Aubin-Lions-Simon result was obtained in the
context of finite element spaces. We also mention the works by Elliott at al. where
compactness arguments were developed and used to study parabolic problems on
moving surfaces [4, 5, 2, 6, 3].

Most of the works mentioned above were obtained for continuous time, i.e., the
time variable was not discretized, and most of them were tailored for a particular
application in mind. Working with discretized time brings some additional diffi-
culties in terms of the uniform bounds for the time-shifts (translations in time).
In the time-discretized case, namely, for the approaches based on Rothe’s semi-
discretization method, the uniform bounds on the time-shifts need to be somewhat
stronger to guarantee compactness, see Proposition 2 in [44]. In particular, the
work in [44] addresses a version of Aubin-Lions-Simon result for piecewise constant
functions in time, obtained using Rothe’s method, but for a problem defined on a
fixed Banach space.
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The work presented in [101] concerns a generalization of the Aubin-Lions-Simon
result involving Hilbert spaces that are solution dependent, and not necessarily
known a priori. This is a significant step forward, since the result can be applied
to a large class of moving boundary problems, including numerical solvers. To
account for the time dependence of the function spaces associated with the motion
of the fluid domains, the authors identified a new set of conditions, which quantify
the dependence of the Hilbert spaces on time so that an extension of Aubin-Lions-
Simon result can be applied to a sequence of approximate solutions constructed
using Rothe’s method.

More precisely, the compactness result in [101] is designed for problems which
can be described in general as evolution problems:

(2.25)
du

dt
= Atu, t ∈ (0, T ),

u(0) = u0,

where At : V (t)→W (t) is a family of (nonlinear) spatial differential operators that

depend on time as a parameter. For example,
du

dt
= Atu may correspond to the

Navier-Stokes equations for an incompressible, viscous fluid defined on a moving
domain Ω(t). In this case, At is a spatial differential operator that associates to
each u the function ∇ · σ − u · ∇u, where σ is the fluid Cauchy stress tensor, and
u is divergence free, satisfying certain boundary conditions on Ω(t).

A way to “solve” this class of problems is to semi-discretize the problem in time
by sub-dividing the time interval (0, T ) into N sub-intervals of width ∆t = T/N ,
and introduce the piecewise constant approximate functions

(2.26) u∆t = un∆t for t ∈ ((n− 1)∆t, n∆t], n = 1, . . . , N,

which satisfy, e.g., a backward Euler approximation of the problem on (tn, tn+1):

un+1
∆t − un∆t

∆t
= At

n+1

un+1
∆t or

un+1
∆t − un∆t

∆t
= At

n

un+1
∆t ,

where the choice of At
n+1

or At
n

depends on the problem at hand. For example, if

the motion of the domain Ω(t) is specified a priori, At
n+1

is typically used, where

At
n+1

describes an approximation of the spatial differential operator defined on the
”current” domain Ω(tn+1). If the motion of the domain Ω(t) is not know a priori,
but it depends on the solution of the underlying problem, then At

n

is typically used,
where At

n

describes an approximation of the spatial differential operator defined
on the ”previous” domain Ω(tn).

Functions u∆t are defined for all t ∈ (0, T ) and they are piecewise constant on
the interval ((n−1)∆t, n∆t], where the constant is defined by its value at n∆t. This
approach to solving the evolution problem (2.25) is sometimes called the Rothe’s
method.

Rothe’s method provides a constructive proof which uses semi-discretization of
the continuous problem with respect to time to design approximate solutions {u∆t}
where ∆t = T/N , for every N ∈ N. It was first used by Ladyzhenskaya in [88], for a
moving-boundary problem in which the motion of a smooth moving boundary was
known a priori . The aim is to prove the existence of a sub-sequence of {u∆t} which
converges to a weak solution of (2.25) as ∆t→ 0, or equivalently, as N →∞. Since
the problem is nonlinear, weak convergence is not sufficient to show that the limit
is a weak solution of the underlying problem. This is why compactness arguments
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need to be employed to conclude that there exists a sub-sequence {u∆t}, which
is precompact in a certain generalized Bochner space L2(0, T ;H(t)). This will
allow passage to the limit in nonlinear terms and show that the limit, as ∆t → 0,
of approximate weak solutions satisfies the weak formulation of the continuous
problem.

Employing this strategy to prove the existence of weak solutions to this class
of problems is highly nontrivial, and is at the center of the current research in
this area [96, 99, 98, 100]. The main source of difficulties is associated with the
fact that for every N ∈ N and n ∈ {1, . . . , N}, the approximate weak solutions
un∆t, which are functions of the spatial variables, belong to different solution spaces

V n∆t, which are associated with the operators At
n

: V n∆t → Wn
∆t, and are defined

on different domains Ω(tn∆t), thus V n∆t = V (Ω(tn∆t)). We would like to find the
conditions under which {u∆t} is precompact in some L2(0, T ;H(Ω∆t(t))), where
the definition of L2(0, T ;H(Ω∆t(t))) needs to be made precise. Namely, we want
to find the conditions under which there exists a sub-sequence, also denoted by
{u∆t}, which converges in L2(0, T ;H(Ω∆t(t))) to a function in L2(0, T ;H(Ω(t))),
as ∆t→ 0.

There are two ways how to make the notion of convergence in L2(0, T ;H(Ω∆t(t)))
precise. One way is to introduce a family of mappings, which map the domains
Ω(tn∆t) onto a fixed domain Ω, and work in the space L2(0, T ;H(Ω)). The other
approach is to extend the functions un∆t onto a larger, fixed domain ΩM , and work
in the space L2(0, T ;H(ΩM )). In both cases, certain conditions describing the regu-
larity in time of the domain motion need to be satisfied, in order for a compactness
argument to hold. In [101] those conditions are identified, and a generalization
of the Aubin-Lions-Simon compactness result was obtained, which can be used in
both approaches, mentioned above.

The compactness result from [101] was applied to study existence of solutions to
FSI with Koiter shell [96, 99], to FSI involving multi-layered structures [98], and
to FSI with Koiter shell and Navier-slip coupling [100]. Since the result is based
on the backward Euler time discretization approaches to the coupled FSI problem,
the compactness result from [101] is a promising tool for proving convergence of
numerical schemes that use the backward Euler scheme to discretize the problem
in time [19, 20, 21, 22].

3. FSI with rigid bodies

Benchmark problem. We consider an FSI problem between an incompressible,
viscous fluid and a motion of a solid in a fluid container. See Fig. 5.

Figure 5. A sketch of a falling rigid ball in a fluid container.



RECENT PROGRESS ON MOVING BOUNDARY PROBLEMS 17

We denote by Ω the region corresponding to the fluid container, and we denote
by S0 ⊂ Ω a solid (rigid structure) in the container, and by q0 its center of mass.
The motion of a rigid body is fully described by the translation of its center of mass,
and by the (rigid) rotation about the center of mass, described by the functions

q : [0, T ]→ R3 and Q : [0, T ]→ SO(3),

where SO(3) is the group of rotations in 3D, and q describes the translation of the
center of mass. The trajectory of all the points in the rigid body is described by:

x = B(t,y) = q(t) +Q(t) (y − q(0)), y ∈ S0, t ∈ [0, T ].

At time t, the solid occupies the set

S(t) = {x ∈ Ω0| x = B(t,y),y ∈ S0 = B(t, S0),

defining the fluid domain at time t, ΩF (t) = Ω \ S(t). As in the case of elastic
structures, the fluid domain is not known a priori since it depends on the structural
unknowns in the problem, namely the location of the rigid solid at time t.

As before, the fluid flow is described by the Navier-Stokes equations for an
incompressible, viscous Newtonian fluid (2.1), while the equations of motion of
the rigid body are given by a system of six ordinary differential equations (Euler
equations) describing the conservation of linear and angular momentum:

(3.1)
m
d2q

dt2
= f ,

d(Jω)

dt
= g,

where m is the mass of the rigid body, ω corresponds to angular velocity, J is the
inertial tensor, and f and g are the total force and torque acting on the rigid body,
respectively. The inertial tensor is defined by:

J =

∫
S(t)

ρS
(
|x− q(t)|2I − (x− q(t))⊗ (x− q(t))

)
dx,

where ρS is the structure density.
The coupling. The fluid and structure are coupled through two sets of coupling

conditions: the kinematic and dynamics coupling conditions. For the kinematic
coupling condition we take the no-slip, which says that the trace of the fluid velocity
u at the rigid body boundary is equal to the velocity uS of the rigid body itself:

u(t,x) = uS(t,x), x ∈ ∂S(t), t ∈ (0, T ),

where uS is given by:

uS =
dx

dt
=

d

dt
(q(t) +Q(t) (y − q(0))) = q′(t) + ω(t)× (y − q(0)).

The dynamic coupling condition describes the balance of forces and torque. It says
that the motion of the rigid structure in the fluid is driven by the contact force
exerted by the fluid onto the structure. More precisely, the force and torque f and
g in (3.1) are replaced by:

f = −
∫
∂S(t)

σnds(x), g = −
∫
∂S(t)

(x− q(t))× σnds(x).

Thus, the benchmark nonlinear moving-boundary problem, describing
fluid-structure interaction between an incompressible, viscous fluid and a rigid solid
immersed in the fluid, can be summarized as follows: Find (u, p, q,ω) such that
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ρf
(
∂tu + (u · ∇)u

)
= ∇ · σ(u, p)

∇ · u = 0

}
in ΩF (t), t ∈ (0, T ),

u = q′(t) + ω(t)× (x− q(0)) on (0, T )× ∂S(t),

m
d2q

dt2
= −

∫
∂S(t)

σnds(x)

d(Jω)

dt
= −

∫
∂S(t)

(x− q(t))× σnds(x)

 in (0, T ),

u = 0 on ∂Ω

u(0, .) = u0, in Ω, q(0, .) = q0, q
′(0, .) = a0, ω(0, .) = ω0.

Weak solutions. A weak solution is a function (u,B) which satisfies the fol-
lowing two conditions:

1. The function B(t, ·) : R3 → R3, which defines the time-dependent set S(t) =
B(t, S) and the corresponding Eulerian velocity uS , is an orientation preserving
isometry;

2. The function u ∈ L2(0, T ;V (t)) ∩ L∞(0, T ;L2(Ω) satisfies:∫ T

0

∫
Ω\∂S(t)

{u · ∂tψ + (u⊗ u) : D(u) : D(ψ)} dx dt−
∫

Ω

u(T )ψ(T )dx

= −
∫

Ω

u0ψ(0)dx,

for all test functions ψ ∈ H2(0, T ;V (t)), where

V (t) = {v ∈ H1
0 (Ω) | div v = 0,D(v) = 0 in S(t)}.

Recent Results and Open Problems. Fluid-structure interaction between an
incompressible, viscous fluid and an rigid, immersed structure has been extensively
studied within the last twenty years. In particular, existence of a unique, local-in-
time (or small data) strong solution is now known in both two and three space
dimensions, and for both the slip [1, 120] and the no-slip coupling [36, 63, 91, 118].

In terms of weak solutions of Leray-Hopf type, existence up to collision was
obtained by Gérard-Varet and Hillairet in [60] for the slip coupling, and more
recently by Chemetov and Nečasová in [26], where they showed global-in-time exis-
tence including collision, assuming the Navier slip condition prescribed at the solid
boundary, and no-slip at the container boundary. Global existence with the no-slip
coupling was established in the works [32, 37, 38, 74, 114].

The question of uniqueness of weak solution is still largely open. Even for the
classical case of the 3D Navier-Stokes equations the uniqueness of the Leray-Hopf
weak solution is an outstanding open problem (see e.g. [56]). However, there are
classical results of weak-strong uniqueness type (see e.g. [56, 115, 119]) which
state that the strong solution (defined in an appropriate way) is unique in a larger
class of weak solutions. For the Navier-Stokes equations the weak solutions that
satisfy Serrin’s conditions are regular [115]. In the most recent paper by Muha,
Nečasová and Radošević [102], these classical weak-strong uniqueness type results
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are extended to the case of a fluid-rigid body system under the condition that the
rigid body does not touch the boundary of the container. Namely, in the case of
contact it has been shown that weak solutions are not unique, see [49, 117], because
there are multiple ways of extending the solution after the contact.

While these results discuss uniqueness of strong solutions, the results on unique-
ness of weak solutions are sparse. The principal difficulty lies in the fact that
different solutions are defined on different domains, so comparison between solu-
tions is difficult. Usually, to handle this difficulty, the problem is mapped onto a
fixed domain using a mapping that depends on the regularity of solutions, so strong
solutions are easier to deal with. In 2015, however, uniqueness of weak solution for
a fluid-rigid body system in the 2D case was obtained by Glass and Sueur in [61]
for the no-slip case, and by Bravin in 2019 for the slip case [17], while uniqueness
results of weak-strong type were recently published in [27, 40, 54]. In [40] the au-
thors studied a rigid body with a cavity filled with fluid, while in [27] a rather high
regularity for strong solutions was required for the uniqueness result to hold (the
time derivative and second spatial derivatives of the fluid velocity were required
to be in L2). In [54] the authors studied a rigid body with a cavity filled with a
compressible fluid, and showed a weak-strong uniqueness property using a relative
entropy inequality. The most resent result by Muha, Nečasová and Radošević [102]
generalizes these results, since they prove, for both slip and the no-slip case, a gen-
eralization of the well-known weak-strong uniqueness result for the Navier-Stokes
equations to the fluid-rigid body system. More precisely, they prove that weak
solutions which additionally satisfy the Prodi-Serrin Lr − Ls condition are unique
in the class of Leray-Hopf weak solutions.

Finite-time contact. As already addressed in the works related to global-in-
time existence of weak solutions mentioned above, global existence of solutions to
FSI problems involving incompressible, viscous fluids is affected by the possibil-
ity of contact: either the contact between rigid bodies immersed in the fluid, a
contact between elastic structures immersed in the fluid, or the contact between
an elastic structure with the fluid container (rigid) boundary. While in the case
of compressible fluids, contact of rigid bodies is possible in finite time [48], the
incompressible, viscous case is different since contact in finite time between rigid
bodies is not possible for the scenarios studied in [92, 32, 67, 74, 77, 58, 60, 59].
In a pioneering work in 2009 Nestupa and Penel showed that contact in finite time
between rigid bodies immersed in a viscous, incompressible fluid is possible if the
Navier-slip boundary condition is used, which became a precursor for a number
of existence results involving a slip condition and FSI with rigid solids, described
above.

Finite time contact involving elastic structures remains to be an outstanding
open problem, although a recent result by Grandmont and Hillairet in 2016 [66],
indicates that finite time contact with the no-slip condition and deformable struc-
ture is impossible. More precisely, Grandmont and Hillairet studied the interaction
between a 1D viscoelastic beam and a 2D viscous, incompressible fluid, assuming
the no-slip coupling, and showed (1) that contact in finite time is not possible,
and (2) that strong solutions exist globally in time. Their result is the first no-
contact result involving deformable solids, and the first global existence result for
FSI problems with an incompressible, viscous fluid and deformable structures.
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Math., 133:33–43, 2014.

29. C. H. A. Cheng, D. Coutand, and S. Shkoller. Navier-Stokes equations interacting with a

nonlinear elastic biofluid shell. SIAM J. Math. Anal., 39(3):742–800, 2007.
30. C. H. A. Cheng and S. Shkoller. The interaction of the 3D Navier-Stokes equations with a

moving nonlinear Koiter elastic shell. SIAM J. Math. Anal., 42(3):1094–1155, 2010.

31. C. Conca, J. San Mart́ın H., and M. Tucsnak. Motion of a rigid body in a viscous fluid. C. R.
Acad. Sci. Paris Sér. I Math., 328(6):473–478, 1999.

32. C. Conca, J. A. San Martn, and M. Tucsnak. Existence of solutions for the equations modelling
the motion of a rigid body in a viscous fluid. Comm. Partial Differential Equations, 25(5-

6):1019-1042, 2000.

33. Carlos Conca and H Jorge San Martin. Existence of solutions for the equations modelling the
motion of rigid body in a viscous fluid. Communications in Partial Differential Equations,

25(5-6):99–110, 2000.

34. D. Coutand and S. Shkoller. Motion of an elastic solid inside an incompressible viscous fluid.
Arch. Ration. Mech. Anal., 176(1):25–102, 2005.

35. D. Coutand and S. Shkoller. The interaction between quasilinear elastodynamics and the

Navier-Stokes equations. Arch. Ration. Mech. Anal., 179(3):303–352, 2006.
36. P. Cumsille and T. Takahashi. Well-posedness for the system modelling the motion of a

rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Math. J.,

58(133)(4):961–992, 2008.
37. B. Desjardins and M. J. Esteban. Existence of weak solutions for the motion of rigid bodies

in a viscous fluid. Arch. Ration. Mech. Anal., 146(1):59–71, 1999.
38. B. Desjardins and M. J. Esteban. On weak solutions for fluid-rigid structure interaction:

compressible and incompressible models. Comm. Partial Differential Equations, 25(7-8):1399-

1413, 2000.
39. B. Desjardins, M. J. Esteban, C. Grandmont, and P. Le Tallec. Weak solutions for a fluid-

elastic structure interaction model. Rev. Mat. Complut., 14(2):523–538, 2001.

40. K. Disser, G. P. Galdi, G. Mazzone, and P. Zunino. Inertial motions of a rigid body with a
cavity filled with a viscous liquid. Archive for Rational Mechanics and Analysis, 221(1):487-

526, 2016.

41. J. Donea, Arbitrary Lagrangian-Eulerian finite element methods, in: Computational methods
for transient analysis, North-Holland, Amsterdam,1983.

42. J.Donea, A. Huerta, J. P. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian-Eulerian

Method. Encyclopedia of Computational Mathematics, Willey, 2004.
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for fluid-structure interaction in blood flow. J. Comput. Phys., 228(18):6916–6937, 2009.



RECENT PROGRESS ON MOVING BOUNDARY PROBLEMS 23

73. G. Guidoboni, M. Guidorzi, and M. Padula. Continuous dependence on initial data in fluid-

structure motions. J. Math. Fluid Mech., 14(1):1–32, 2012.

74. M. D. Gunzburger, H.-C. Lee, and G. A. Seregin. Global existence of weak solutions for viscous
incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech.,

2(3):219-266, 2000.

75. M. Hillairet. Lack of collision between solid bodies in a 2D incompressible viscous flow. Com-
munications in Partial Differential Equations, 32(7-9):1345–1371, 2007.

76. M. Hillairet and T. Takahashi. Collisions in three-dimensional fluid structure interaction

problems. SIAM Journal on Mathematical Analysis, 40(6):2451–2477, 2009.
77. K.-H. Hoffmann and V. Starovoitov. On a motion of a solid body in a viscous fluid. Two-

dimensional case. Adv. Math. Sci. Appl., 9(2):633-648, 1999.

78. A. Hundertmark-Zauskova, M. Lukacova-Medvidova, G. Rusnakova. Fluid-structure interac-
tion for shear-dependent non-Newtonian fluids. Topics in mathematical modeling and analy-

sis. Necas Center for Mathematical Modeling. Lecture notes, Volume 7, pp. 109-158, 2012.
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96. B. Muha and S. Čanić. Existence of a weak solution to a nonlinear fluid-structure interaction

problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable

walls. Arch. Ration. Mech. Anal., 207(3):919–968, 2013.
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98. B. Muha and S. Čanić Existence of a solution to a fluid-multi-layered-structure interaction

problem. J. Differential Equations, 256(2):658–706, 2014.
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CONVEX INTEGRATION AND FLUID TURBULENCE

VLAD VICOL

ABSTRACT. These are advanced notes for the lecture given by the author as part of the
Current Events Bulletin held at the 2020 Joint Mathematics Meeting of the AMS. The
lecture is based on the review paper Convex integration and phenomenologies in turbulence
by T. Buckmaster and the author [10], where the interested reader can find further details.

Our goal is to review some of the recent developments in the field of mathematical fluid
dynamics which utilize techniques that go under the umbrella name convex integration. In
the hydrodynamical context, these ideas go back to the works [20, 22] of C. De Lellis and
L. Székelyhidi Jr. A consequence of these works is the existence of rough solutions to the
fluid equations which seem to defy the laws of physics. Maybe even more interesting is
that these counterintuitive solutions have a number of properties that resemble predictions
made by phenomenological theories of fluid turbulence: energy cascades, Reynolds stress,
anomalous dissipation of energy, etc. The goal of this lecture is to highlight some of these
similarities while maintaining an emphasis on rigorous mathematical statements.

1. INTRODUCTION

We experience turbulent fluids on a day to day basis. The plume rising from a lit candle
starts off as smooth and well organized (laminar) and quickly becomes wildly irregular,
or chaotic. The air flow around a car in motion is typically laminar around the front of
the car, and becomes chaotic (turbulent) in the wake of the car. In order to appreciate the
complexity of turbulent flows one needs to look no further than to the fascinating flow
visualizations in van Dyke’s Album of fluid motion [85].

Turbulent flows have received a tremendous amount of attention over the past cen-
tury [19], not just in the physics literature, but also in the mathematics and engineering one.
This topic is too vast to review here and we refer the reader to the books [1, 62, 38, 37]. The
phenomenological theories of Reynolds, Prandtl, von Karman, Taylor, Richardson, Heisen-
berg, Kolmogorov, Onsager, Batchelor, and Kraichnan have been incredibly successful in
making predictions about the statistics of turbulent flows (see Section 2). Nonetheless, to
date we do not have a mathematically rigorous and unconditional bridge between these
phenomenological theories and properties of the solutions to the underlying partial differ-
ential equations which are meant to describe the fluid: the Euler and the Navier-Stokes
equations. This is why hydrodynamic turbulence is many times referred to as one of the
greatest challenges at the intersection of mathematics and physics.

It is widely accepted that the fundamental set of equations governing the motion of
incompressible viscous fluid flows are the Navier-Stokes equations, written down in the
first half of the 19th century [66, 80]. In their homogenous incompressible form these
equations predict the evolution of the velocity field v and scalar pressure p of the fluid by

∂tv + (v · ∇)v +∇p− ν∆v = 0 ,(1.1a)
div v = 0 .(1.1b)

2010 Mathematics Subject Classification. Primary 35Q35.
1
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Here ν > 0 is the kinematic viscosity of the fluid. One may rewrite the nonlinear term in
divergence form as div (v ⊗ v) = (v · ∇)v, which is important for defining distributional
solutions to the system. Formally passing to the inviscid limit ν → 0 we arrive at the Euler
equations, which are the classical model for the motion of an incompressible homogenous
inviscid fluid. Derived in the mid 18th century [31], these equations predict the state of the
unknown velocity field v and pressure field p according to

∂tv + (v · ∇)v +∇p = 0 ,(1.2a)
div v = 0 .(1.2b)

The Euler and Navier-Stokes equations are to be supplemented with an incompressible
initial datum v0, and with boundary conditions. For simplicity, we only consider here the
equations posed on the three-dimensional periodic box T3 = [−π, π]3, with a zero mean
initial condition v0.1 In order to ensure a nontrivial long-time behavior, it is customary to
add a zero mean forcing term fν to the right side of the Navier-Stokes equations (1.1a).

The fundamental ansatz of the Kolmogorov/Onsager theories of hydrodynamic turbu-
lence, sometimes called the zeroth law of turbuelence, is that in the vanishing viscosity
limit solutions of the Navier-Stokes equations do not remain smooth uniformly with re-
spect to ν. This prediction has been verified experimentally to a tremendous degree of
accuracy [38, 78, 43]. Thus, in the vanishing viscosity limit ν → 0 it is reasonable to
expect that Navier-Stokes solutions converge to non-smooth (distributional), possibly non-
unique, solutions of the Euler equations. In an attempt to translate predictions made by
turbulence theories into mathematically rigorous questions, it is thus natural to work within
the framework of distributional solutions of (1.1) and (1.2) (cf. Definition 3.1 below).

In this context, one of the most celebrated connections between phenomenologies in
turbulence and the rigorous mathematical analysis of the Euler equations (1.2) is the On-
sager conjecture [68], which postulates that weak solutions of the 3D Euler equations with
regularity above 1/3 conserve the kinetic energy (the rigidity part), while for any regularity
level below 1/3 there exists weak solutions which dissipate the kinetic energy (the flexi-
bility part). We defer a precise statement to Conjecture 3.2 below. While the rigid part
of the conjecture was understood since the mid 1990’s due to works of Eyink [33] and
Constatin-E-Titi [15], significant progress towards the resolution of the flexible part of this
conjecture did not occur until the 2010’s and the groundbreaking works [20, 22] of De
Lellis and Székelyhidi Jr. These works have developed the mathematical framework and
have laid out some of the key ideas which have eventually led to the solution of the flexible
part of the Onsager conjecture by Isett [42] (in the context of solutions with compact sup-
port in time); and in a subsequent work by Buckmaster-De Lellis-Székelyhidi-V. [9] (for
dissipative weak solutions).

The goal of this lecture is to discuss the results in the program of De Lellis, Székelyhidi
Jr., and collaborators, and to present some of the analogies between the mathematical ma-
chinery which they have developed and counterintuitive constructions in differential ge-
ometry on one hand, and phenomenological theories of turbulence on the other hand.

Acknowledgments. The author was partially supported by the NSF grant CAREER DMS
1911413. We emphasize that parts of these lecture notes closely follow the review paper
Convex integration and phenomenologies in turbulence by T. Buckmaster and V.V. [10].

1Note that solutions preserve their mean, and thus we have
´
T3 v(x, t)dx =

´
T3 v0(x)dx = 0 for all t > 0.
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2. ASPECTS OF THE ONSAGER AND KOLMOGOROV THEORIES

While the mathematical results which we will discuss in Sections 3 and 4 do not prove
that the Kolmogorov [48, 49, 47] and Onsager [68] theories are indeed manifestations of
the statistical behavior of solutions to the Navier-Stokes equations in the infinite Reynolds
number limit, it is important to know what these turbulence theories postulate. This will
both inform what the meaningful mathematical questions about (1.1) and (1.2) are, and
it will allow us to build mathematical objects that mimic the behavior of a real turbulent
fluid. Indeed, the theory developed by De Lellis, Székelyhidi Jr., and collaborators has a
number of similarities with fluid turbulence: the constructed weak solutions have energy
cascades, they arise as a limit of a system with a Reynolds stress, and last but not least,
they display an anomalous dissipation of energy. The physics-averse reader is encouraged
to skip to the next section.

To fix the notation, let us denote by vν a solution of the Cauchy problem for the forced
version of the Navier-Stokes equations (1.1) with viscosity2 ν, and initial datum v0 ∈ L2

that is incompressible, has zero mean, and is sufficiently smooth. The forcing term fν is
taken to have zero mean, is stationary, and injects energy into the system at low frequencies.

Given a suitable observable F of the solution vν , e.g. F (vν) = ‖vν‖2L2 , theoretical
physicists typically use 〈F (vν)〉 to denote an ensemble average with respect to a putative
probability measure µν on L2 which is time independent3: at statistical equilibrium the
probability measure µν encodes the macroscopic statistics of the flow. On the other hand,
in laboratory experiments a measurement of the turbulent flow is usually a long time av-
erage at fixed viscosity, in order to reach a stationary regime. In analogy with classical
statistical mechanics, turbulence theories deal with the possible discrepancy between en-
semble averages and statistical averages by making an impromptu ergodic hypothesis. The
implication of the ergodic hypothesis is that averages against an ergodic invariant measure
are the same as long time averages, giving a meaning to 〈·〉. We note that 〈·〉 sometimes in-
cludes a spatial average over T3, justified under the assumption of statistical homogeneity.

2.1. Anomalous dissipation of energy. The fundamental ansatz of Kolmogorov’s 1941
theory of fully developed turbulence [48, 49, 47], sometimes called the zeroth law of tur-
bulence, postulates the anomalous dissipation of energy: the non-vanishing of the rate of
dissipation of kinetic energy of turbulent fluctuations per unit mass, in the limit of zero
viscosity (cf. (2.8) below). The zeroth law of turbulence is verified experimentally to a
tremendous degree [78, 69, 43], but to date we do not have a single example where it is
rigorously proven to hold, directly from (1.1).

To formulate this ansatz, we start with the balance of kinetic energy in the Navier-Stokes
equation. By taking an inner product of vν with the forced (1.1) system, if the functions
vν are sufficiently smooth we obtain the pointwise energy balance

∂t
|vν |2

2
+∇ ·

(
vν
(
|vν |2

2
+ pν

)
− ν∇|v

ν |2

2

)
= fν · vν − ν|∇vν |2.(2.1)

2We abuse notation and denote also by ν the inverse of the Reynolds number Re−1 = ν/(UL), where
L = 2π is the characteristic length scale of the domain, and U is an average velocity. The infinite Reynolds
number limit Re →∞ is used interchangeably with the vanishing viscosity limit ν → 0 (for U and L fixed).

3Following the pioneering work of Foias [35, 36], in a deterministic setting one may consider stationary sta-
tistical solutions to the Navier-Stokes equation. These are probability measures on L2 which satisfy a stationary
Liouville-type equation, when integrated against cylindrical test functions. Their existence may be rigorously es-
tablished using the concept of a generalized Banach limit from long time averages, but their uniqueness remains
famously open. This notion of solution has been explored quite a bit in the past decades [86, 37].
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Integrating over the periodic domain we obtain the kinetic energy balance

d

dt

 
T3

|vν |2

2
dx =

 
T3

fν · vνdx− ν
 
T3

|∇vν |2dx ,(2.2)

where the first term on the right side denotes the total work of the force and the second term
denotes the energy dissipation rate per unit mass. Equation (2.2) is the only known coercive
a-priori estimate for the 3D Navier-Stokes equations, and it gives an a-priori bound for
the solution vν in the so-called energy space L∞t L

2
x ∩ L2

tH
1
x . Leray [52] used the energy

balance for a suitable approximating sequence, combined with a compactness argument, to
prove the existence of a global in time weak solution to (1.1) which lies in L∞t L

2
x∩L2

tH
1
x ,

and obeys (2.2) weakly in time with an inequality instead of the equality.
A posteriori one may ask the question of whether the local energy balance (2.1) may

be actually justified when vν is a weak solution of equation (1.1) in the energy space (by
interpolation vν also lies in L

10/3
x,t ⊂ L3

x,t). To date this question remains open [54, 72, 51].
Instead, as in the work of Duchon-Robert [27], one may prove that for a weak solution vν

in the energy class the following equality holds in the sense of distributions

∂t
|vν |2

2
+∇ ·

(
vν
(
|vν |2

2
+ pν

)
− ν∇|v

ν |2

2

)
= fν · vν − ν|∇vν |2 −D(vν)(2.3)

where the (x, t)-distribution D(vν) is defined by a weak form of the Kármán-Howarth-
Monin relation [44, 61]

D(vν)(x, t) = lim
`→0

1

4

ˆ
T3

∇ϕ`(z) · δvν(x, t; z)|δvν(x, t; z)|2dz .(2.4)

In (2.4) we have denoted the velocity increment in the direction z by

δvν(x, t; z) = vν(x+ z, t)− vν(x, t)(2.5)

and the approximation of the identity ϕ` is given by ϕ`(z) = 1
`3ϕ

(
z
`

)
, where ϕ ≥ 0 is an

even bump function with mass equal to 1. The limit in (2.4) is a limit of L1
x,t objects in

the sense of distributions, and it is shown in [27] that D(vν) is independent of the choice
of ϕ. When compared to (2.1), identity (2.3) additionally takes into account the possible
dissipation of kinetic energy, due to possible singularities of the flow vν , encoded in the
defect measure D(vν).4 Similarly to (2.2), once we average the local energy balance (2.3)
over T3, the divergence term on the left side vanishes, and we are left with

d

dt

 
T3

|vν |2

2
dx =

 
T3

fν · vνdx− ν
 
T3

|∇vν |2dx−
 
T3

D(vν)dx ,(2.6)

which yields a balance relation between energy input and energy dissipation.
In view of (2.6), we define the mean energy dissipation rate per unit mass by

εν = ν
〈
|∇vν |2

〉
+ 〈D(vν)〉 ,(2.7)

where as discussed before, 〈·〉 denotes a suitable ensemble/long-time and a space average.
The zeroth law of turbulence, or the anomalous dissipation of energy, postulates that in the
inviscid limit ν → 0 the mean energy dissipation rate per unit mass does not vanish, and
moreover that there exists an ε ∈ (0,∞) such that

ε = lim inf
ν→0

εν > 0.(2.8)

4Note that if vν is sufficiently smooth to ensure that lim|z|→0 |z|−1
´ T
0

´
T3 |δvν(x, t; z)|3dxdt = 0, then

one may directly show that D(vν) ≡ 0. This was proven in [13].
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2.2. Aspects of the Kolmogorov (’41) theory. Based on the anomalous dissipation of
energy and certain scaling arguments, Kolmogorov [48, 49, 47] proposed a theory for
homogenous isotropic turbulence, whose key predictions we summarize below. We refer
the reader to [38, 62, 34, 75, 10] for further details.

Besides the zeroth law of turbulence (2.8), the assumptions of Kolmogorov’s theory
are homogeneity, isotropy, and self-similarity. Let ẑ ∈ S2 be a unit direction vector and
let ` > 0 be a length scale in the inertial range, meaning that `D � ` � `I , where
`I is the integral scale of the system, and `D = ν

3/4ε−
1/4 is the Kolmogorov dissipative

length scale.5 Homogeneity is the assumption that the statistics of turbulent flows is shift
invariant: at large Reynolds numbers the velocity increment δvν(x, t; `ẑ) (recall (2.5)) has
the same probability distribution for every x ∈ T3. Isotropy is the assumption that the
statistics of turbulent flows is locally rotationally invariant: the probability distribution for
δvν(x, t; `ẑ) is the same for all ẑ ∈ S2. The Kolmogorov theory postulates the existence
of an exponent h > 0, such that δvν(x, t;λ`ẑ) and λhδvν(x, t; `ẑ) have the same law, for
λ > 0 such that both ` and λ` lie in the inertial range. Based on these assumptions, the
theory makes predictions about structure functions and the energy spectrum.

For p ≥ 1 one may define the pth order longitudinal structure function

S‖p(`) = 〈(δvν(x, t; `ẑ) · ẑ)p〉 .

Note that for p which is odd, S‖p(`) need not a-priori have a sign. Instead, one may define
the pth order absolute structure function

Sp(`) = 〈|δvν(x, t; `ẑ)|p〉

which is intimately related to the definition of a Besov space.6 Sp(`) scales in the same
way as S‖p(`), and they both have physical units of Up. Notice that since ε` has units of
U3, it follows that (ε`)

p/3 has the same physical units as Sp(`). Consequently, the only
value of the self-similarity exponent which is consistent with physical units as ` → 0 is
h = 1/3, and thus the Kolmogorov theory predicts the asymptotic behavior

Sp(`) ∼ (ε`)
p/3(2.9)

for ` in the inertial range, in the infinite Reynolds number limit. Denoting by ζp the limiting
structure function exponent

ζp = lim
`→0

lim
ν→0

log (Sp(`))

log (ε`)
,(2.10)

the relation (2.9) indicates that in Kolmogorov’s theory we have

ζp =
p

3
, for all p ≥ 1 .(2.11)

Except for p = 3, when the Kolmogorov prediction ζ3 = 1 is indeed supported by all
the experimental evidence, for p 6= 3 experiments do indeed deviate from the Kolmogorov
prediction [58, 38].

For the third order longitudinal structure function S‖3 , Kolmogorov derived what is con-
sidered an exact result in turbulence, the famous 4/5-law, which states that

S
‖
3 (`) ∼ −4

5
ε`(2.12)

5The only object which has the physical unit of length and may be written as νaεb.
6v ∈ Bsp,∞ means that v ∈ Lp and that sup|z|>0 |z|−s ‖δv(x; z)‖Lpx <∞, for s ≥ 0 and p <∞.
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holds in the infinite Reynolds number limit, for ` � `I . Identity (2.12) is remarkable
because a-priori, there is no good reason for the cubic power of the longitudinal incre-
ments to have a sign, on average. Moreover, in addition to claiming that ζ3 = 1, (2.12)
predicts the universal pre-factor of −4/5. Compelling experimental support of the 4/5-law
is provided for instance by the measurements in [79]. From a mathematical perspective
the 4/5-law is particularly intriguing because under certain uniform in ν regularity and
integrality assumptions on the sequence of solutions vν the 4/5-law can be shown to hold;
these conditions however have yet to be proven rigorously (only numerical evidence is
available [79]). We refer the reader to the results and excellent discussions in [67, 32].

For p = 2, from (2.9)–(2.11) the Kolmogorov prediction yields ζ2 = 2/3. One may
translate this scaling of the second order structure function into the famous −5/3 energy
density spectrum, defined in terms of Fourier projection operators as follows. For κ > 0
the mean kinetic energy per unit mass carried by wavenumber ≤ κ in absolute value is
given by 1

2

〈
|P≤κvν |2

〉
. The energy spectrum is then defined as

E(κ) =
1

2

d

dκ

〈
|P≤κvν |2

〉
(2.13)

so that the total kinetic energy may be written as 1
2

〈
|vν |2

〉
=

´∞
0
E(κ)dκ. The Kol-

mogorov prediction ζ2 = 2/3 then translates into

E(κ) ∼ ε2/3κ−5/3,(2.14)

for κ−1 in the inertial range, and in the infinite Reynolds number limit. See [38] for
experimental support for (2.14). This power law requires however that velocity fluctuations
are uniformly distributed over the three dimensional domain, which is not always justified.

2.3. Aspects of the Onsager (’49) theory. In his famous paper on statistical hydrody-
namics, Onsager [68] considered the possibility that energy dissipation is not caused by
the viscosity, but instead, because the solutions of the Euler equation may not be smooth.

Similarly to (2.2), the kinetic energy balance for smooth solutions v of the Euler equa-
tions (1.2) is

d

dt

 
T3

|v|2

2
dx =

 
T3

f · vdx ,(2.15)

which becomes a conservation law when f ≡ 0. Onsager is referring to the fact that if the
solution v of (1.2) is not sufficiently smooth, i.e. it is a weak solution, then the energy bal-
ance/conservation (2.15) cannot be justified. Onsager’s remarkable analysis went further
and made a precise statement about the regularity of v which is necessary in order to justify
(2.15); in mathematical terms this is known as the Onsager Conjecture (see Conjecture 3.2
below). We refer to the review articles [34, 75] for a detailed account of the Onsager theory
of ideal turbulence, and present here only some of the ideas (in terms of Fourier projection
operators, as in Onsager’s work [68]).

We regularize a weak solution v of the Euler equations (1.2), by a smooth cutoff in
the Fourier variables at frequencies ≤ κ, and consider the kinetic energy of P≤κv. Then,
similarly to (2.15) we obtain that

d

dt

 
T3

|P≤κv|2

2
dx =

 
T3

P≤κf · P≤κvdx−Πκ(2.16)
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where as in [13] we denote by Πκ the mean energy flux through the sphere of radius κ in
frequency space, i.e.

Πκ = −
 
T3

P≤κ(v ⊗ v) : ∇P≤κvdx

=

 
T3

(
(P≤κv ⊗ P≤κv)− P≤κ(v ⊗ v)

)
: ∇P≤κvdx .(2.17)

From (2.16) we deduce upon passing κ → ∞ that the energy balance (2.15) holds if and
only if the total energy flux vanishes:

Π = lim
κ→∞

Πκ .(2.18)

Onsager’s prediction is that in order for Π to be nontrivial, i.e. for the weak solution v to
be non-conservative, it should not obey |δv(x; z)| . |z|θ with θ > 1/3.

We emphasize that in 3D turbulent flows the energy transfer from one scale/frequency
to another is observed to be mainly local, i.e. the principal contributions to Πκ come from
P≈κ′v, with κ′ ≈ κ. A rigorous estimate on the locality of the energy transfer arises
in [13], where it is proven that

|Π2j | .
∞∑
i=1

2−2/3|j−i|2i‖P≈2iv‖3L3 .(2.19)

Estimate (2.19) gives the best known condition on v which ensures Π = 0: v ∈ L3
tB

1/3
3,c0,x

(cf. [13]). This condition is sharp in the case of the 1D Burgers equation [75].
It is not an accident that the 1/3-derivative singularities required by Onsager for a dissi-

pative anomaly Π 6= 0, matches Kolmogorov’s assumed 1/3 local self-similarity exponent
required for ε > 0. As already observed by Onsager [68], if v is a weak solution of the
Euler equations which is a strong limit of a sequence {vν} of Navier-Stokes solutions for
which the anomalous dissipation of energy (2.8) holds, then:

ε = 〈Π〉.(2.20)

On the experimental side, the evidence for (2.20) is quite convincing [43]. A physics-style
argument could run as follows. Let fν = f be statistically stationary, with PκIf = f for
some frequency κI . Let Πν

κ be the energy flux through the frequency ball of radius κ for a
solution vν of the Navier-Stokes equation, i.e. replace v in (2.17) with vν . Then similarly
to (2.16), since the ensemble/long-time average 〈·〉 is stationary, we obtain that

〈Πν
κ〉+ ν

〈
|∇P≤κvν |2

〉
= 〈f · P≤κvν〉(2.21)

for κ ≥ κI . On the other hand, assuming that the Euler solution is statistically stationary,
(2.16) yields

〈Πκ〉 = 〈f · P≤κv〉(2.22)

To conclude, we recall that from the definition (2.4) we have 〈D(vν)〉 = limκ→∞ 〈Πν
κ〉

(cf. [27]), and with εν as given by (2.7), we pass κ→∞ in (2.21) and (2.22), to arrive at

ε− 〈Π〉 = lim
ν→0

(εν − 〈Π〉) = lim
ν→0
〈f · (vν − v)〉 = 0(2.23)

since we assumed vν → v. The energy flux thus provides a connection between the
Kolmogorov and Onsager theories [38].
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3. THE EULER EQUATIONS AND THE CONJECTURE OF ONSAGER

The local in time well-posedness of the 3D Euler equations in spaces of smooth func-
tions (e.g. C1,α with 0 < α < 1 or Hs with s > 5/2) is classical; see [57] and references
therein. By the Beale-Kato-Majda criterion [2], global well-posedness holds if and only
if the L∞ norm of the vorticity is L1 integrable in time. The global well-posedness of
the 3D Euler equation is famously unresolved for C∞ smooth initial datum; nonetheless,
very recently Elgindi [28] has displayed solutions with C1,α initial datum for 0 < α� 1,
which blow up in finite time (see also [12, 29]).

On the other hand, as mentioned in Section 2, in the inviscid limit, turbulent solutions
exhibiting a dissipation anomaly are necessarily not smooth, thereby motivating the study
of weak solutions to the Euler equations (1.2). For the purpose of this lecture, a weak
solution for (1.2) is defined as:

Definition 3.1 (Weak solution). A vector field v ∈ L∞t L2
x is called a weak solution of the

Euler equations if for any t the vector field v(·, t) is weakly divergence free, has zero mean,
and satisfies the Euler equation distributionally:ˆ

R

ˆ
T3

v · (∂tϕ+ (v · ∇)ϕ)dxdt = 0 ,

for any divergence free test function ϕ. The pressure can be recovered by the formula
−∆p = div div (v ⊗ v) with p of zero mean.

In the regularity class, L∞t L
2
x, the kinetic energy

E(t) =

 
T3

|v(x, t)|2

2
dx(3.1)

is a well-defined bounded function of time, but it need not be the constant function. Com-
pare this with (2.15) when f = 0. Note that the definition of a weak solution could be
relaxed to v ∈ L2

t,x; moreover, it is standard to modify the above definition in order to take
into account an initial value v0 ∈ L2.

As discussed in Section 2, motivated by hydrodynamic turbulence, Onsager [68] con-
jectured the following dichotomy:

Conjecture 3.2 (Onsager’s conjecture).
(a) Any weak solution v belonging to the Hölder space Cθx,t for θ > 1/3 conserves kinetic

energy.
(b) For any θ < 1/3 there exist weak solutions v ∈ Cθx,t which dissipate kinetic energy.

3.1. The conservative part. Part (a) of this conjecture was partially established by Eyink
in [33], and later proven in full by Constantin, E and Titi in [15]; see also Duchon-
Robert [27], Cheskidov-Constantin-Friedlander-Shvydkoy [13], and the more recent work
of Shvydkoy [77], for refinements.

As shown by [15], the proof follows from a simple commutator argument. For a weak
solution v of the Euler equations, let v` be the spatial mollification of v a length scale `.
Then, v` satisfiesˆ

T3

|v`(x, t)|2

2
dx−

ˆ
T3

|v`(x, 0)|2

2
dx =

ˆ t

0

ˆ
T3

(vi vj)` ∂iv
j
` dxds

where we have denoted v = (vi)3i=1, v` = (vi`)
3
i=1, ∂i = ∂xi , and we have used the

summation convention on repeated indices. Since v` is a smooth incompressible function,
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i.e. ∇ · v` = 0, uniformly in time we have that
ˆ
T3

vi` v
j
` ∂iv

j
` dx = 0 .

Subtracting the above two statements we obtain that
ˆ
T3

|v`(x, t)|2

2
dx−

ˆ
T3

|v`(x, 0)|2

2
dx =

ˆ t

0

ˆ
T3

(
(vi vj)` − vi` v

j
`

)
∂iv

j
` dxds .(3.2)

Applying the Constantin-E-Titi [15] commutator estimate:

Proposition 3.3. Let f, g ∈ C∞(T3 × [0, 1]). For any θ ∈ (0, 1] we have∥∥∥(f g)` − f` g`
∥∥∥
C0

. `2θ‖f‖Cθ‖g‖Cθ ,

where the implicit constant is universal.

and the bound ‖∇v`‖L∞ . `1−θ ‖v‖Cθ , we deduce from (3.2) that∣∣∣∣∣
ˆ
T3

|v`(x, t)|2

2
dx−

ˆ
T3

|v`(x, 0)|2

2
dx

∣∣∣∣∣ . `3θ−1 ‖v‖3Cθ .

Thus, if θ > 1/3, the right hand side converges to zero as `→ 0.
We note that in terms of space integrability, the above estimate is not sharp: the term on

the right side of (3.2) is trilinear, and thus should only require that v ∈ L3
tB

θ
3,∞,x, where

Bθ3,∞ denotes the suitable Besov space; this is in fact the statement proven in [15].
A further refinement of this proof was obtained by Cheskidov-Constantin-Friedlander-

Shvydkoy [13]. As discussed in Section 2, energy conservation holds if and only if the
total energy flux Πκ defined in (2.17) vanishes as κ → ∞, when integrated in time. We
note that here κ plays a similar role to `−1 in the previous proof. Using a Bony paraproduct
decomposition, the authors of [13] prove the detailed bound (2.19) which then immediately
shows that if v ∈ L3

tB
1/3
3,c0,x

, then energy conservation holds. This is the strongest known
result pertaining to Part (a), the rigid side, of the Onsager conjecture.

3.2. The flexible part: first paradoxical examples. In the seminal work [71], Scheffer
demonstrated the existence of non-trivial weak solutions of the 2D Euler system (1.2),
which lie in L2

x,t and have compact support in time and space! Strictly speaking the weak
solutions of Scheffer are not dissipative, as dissipative solutions are required to have non-
increasing energy; nonetheless, [71] is considered to be the first result concerning the flex-
ible part, Part (b), of the Onsager conjecture. A different construction of a nontrivial weak
solution to the 2D Euler equations, which are periodic in space and have compact support
in time, was given by Shnirelman in [74]. The existence of dissipative weak solutions to
the Euler equations was first proven by Shnirelman in [73], where he constructions weak
solutions which lie in L∞t L

2
x.

These results, which were initially referred to as the Scheffer-Shnirelman paradox, rep-
resent not just a proof of non-uniqueness for weak solutions to the Euler equations, but
a drastic failure of determinism within this class of solutions. The proofs in [71, 74, 73]
are rather involved, to say the least, they seem quite ad-hoc, and there is no clear path by
which one may improve the spatial regularity of the obtained weak solutions, above L2

x.
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3.3. The L∞x,t results: convex integration. The first example of a bounded (in space and
time), dissipative weak solution of the Euler equations (in any dimension n ≥ 2) was
obtained in a groundbreaking work by De Lellis-Székelyhidi Jr. [20]. Their main result is:

Theorem 3.4 (Theorem 4.1 in [20]). For any open bounded space-time domain Ω ⊂ Rn×
R, there exists a weak solution of the Euler equations (1.2) (v, p) ∈ L∞(Rn × R), in the
sense of Definition 3.1, such that |v(x, t)| = 1 for a.e. (x, t) ∈ Ω, and v(x, t) = p(x, t) =
0 for a.e. (x, t) ∈ Ωc. Moreover, there exists a sequence of functions (vq, pq, fq) ∈ C∞0 (Ω)
such that:

• ∂tvq + div (vq ⊗ vq) +∇pq = fq , and ∇ · vq = 0
• fq → 0 in H−1 as q →∞
• ‖vq‖L∞ + ‖pq‖L∞ is uniformly bounded in q
• (vq, pq)→ (v, p) in Lr for any r <∞.

The first part of the theorem establishes the existence of a weak solution which is
compactly supported in space and time, while the second part is a manifestation of the
proof: the limiting weak solution (v, p) is obtained from a smooth approximating sequence
(vq, pq), which solves a relaxed Euler system, whose right side fq vanishes in a weak sense
as q → ∞. This paper also introduced the ideas of a subsolution, and a Reynolds stress
for the Euler system (1.2). Maybe more important than the result itself, which was later
improved by the same authors, is the fact that [20] relates the construction of paradoxi-
cal weak solutions of the Euler equations with a classical technique in geometry, convex
integration, and the notion of h-principles for soft partial differential equations.

The method of convex integration can be traced back to the work of Nash, who used
it to construct exotic counter-examples to the C1 isometric embedding problem [65]. The
method was later refined by Gromov [39] and it evolved into a general method for solv-
ing soft/flexible geometric partial differential equations [30]. In the influential paper [64],
Müller and Šverák adapted convex integration to the theory of differential inclusions, see
also [45], leading to renewed interest in the method as a result of its greatly expanded appli-
cability. Inspired by the works [64, 45], and building on the plane-wave analysis introduced
by Tartar [83, 84] and Di Perna [26], De Lellis and Székelyhidi Jr., in [20], applied convex
integration in the context of bounded weak solutions to the Euler equations.

We refer the interested reader to the review papers [21, 82, 24] for a detailed discus-
sion connecting convex integration in the context of differential inclusions, and also h-
principles, to the type of constructions that were initiated by [20].

The work [20], has since been extended and adapted by various authors to various prob-
lems arising in mathematical physics [25, 16, 76, 87, 14]. Here we single out the work [25]
of De Lellis-Székelyhidi Jr., who consider the question of whether imposing additional
admissibility criteria on the weak solutions of the Euler equations could rule out the con-
struction of examples such as those in Theorem 3.4. Physically motivated admissibility
criteria, based on energetic arguments such as those discussed in Section 2 are (ordered by
least restrictive to most restrictive):

(a) weak energy inequality: E(t) ≤ E(0) for all t > 0, where the kinetic energy E is
as defined in (3.1);

(b) strong energy inequality: E(t) ≤ E(s) for all t > s > 0;
(c) local energy inequality: the distribution D(v) defined weak form of the Kármán-

Howarth-Monin relation (2.4) (with v replacing vν), is non-negative; note that this
definition requires v ∈ L3

loc.
The main result of [25] may be summarized as follows:
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Theorem 3.5 (Theorem 1 in [25]). For any dimension n ≥ 2, there exists bounded, com-
pactly supported divergence-free initial data v0 ∈ L∞x ∩L2

x, for which there exist infinitely
many weak solutions v ∈ L∞x,t ∩ C0

t L
2
x of the Euler equations, such that the admissibility

conditions (a), (b), and (c) hold.

This result shows that “wild” weak solutions of the Euler equations (as constructed by
Theorem 3.4 and Theorem 3.5) cannot be ruled by the local energy inequality. Indeed, the
Euler equations are not scalar conservation laws!

3.4. The C0+
x,t result: a Nash scheme. The L∞x,t constructions described in the previous

subsection are based on writing the Euler equations as a differential inclusion, and then
applying a machinery from Lipschitz differential inclusions, which either uses a Baire-
category argument, or equivalently, and explicit convex integration approach. These meth-
ods face a serious difficulty in constructing continuous weak solutions of (1.2), since it
seems impossible to extract a uniform continuity estimate for approximating sequences
(vq, pq). The breakthrough was made by De Lellis and Székelyhidi Jr. in their seminal
papers [22, 23], where they developed a new convex integration scheme, motivated and
resembling in part the earlier schemes of Nash and Kuiper [65, 50]. In [22], De Lellis and
Székelyhidi Jr. prove the existence of continuous weak solutions v to the Euler equations
satisfying a prescribed kinetic energy profile, which in particular may be decreasing:

Theorem 3.6 (Theorem 1.1, [22]). Assume e : [0, 1]→ (0,∞) is a smooth function. Then
there is a continuous vector field v : T3 × [0, 1] → R3 and a continuous scalar field
p : T3 × [0, 1] → R which solve the incompressible Euler equations (1.2) in the sense
of distributions, and such that

e(t) =

ˆ
T3

|v(x, t)|2dx(3.3)

for all t ∈ [0, 1].

The works [22, 23] are the first to make significant progress towards resolving Part (b)
of Onsager’s conjecture by providing the first construction of dissipative Hölder continuous
weak solutions to the Euler equations.

The proof of Theorem 3.6 departs from the soft arguments based on functional analysis,
which were used to construct bounded weak solutions, and implements a hard analysis
scheme, in which the constructions of the building blocks are not plane waves anymore,
instead they are adapted to the geometry of steady states of the Euler equations (Beltrami
flows), and the estimates involve precise singular integral bounds and Schauder estimates.

Overview of the proof of Theorem 3.6. The proof proceeds via induction on q ∈ N0. For
each q ≥ 0 one constructs smooth functions (vq, pq, R̊q), which solve the Euler-Reynolds
system

∂tvq + div (vq ⊗ vq) +∇pq = div R̊q(3.4a)
div vq = 0 .(3.4b)

The pressure pq is given by pq = (−∆)−1div div (vq ⊗ vq − R̊q). The Reynolds stress R̊q
is symmetric and has zero trace. The goal is to construct the sequence (vq, pq, R̊q) such
that R̊q converges uniformly to 0 as q → ∞, and that at the same time the sequence vq
converges uniformly to a weak solution to the Euler equations satisfying (3.3).

The Euler-Reynolds (3.4) system arises naturally in turbulence theories. As mentioned
in [38], the concept of eddy viscosity and microscopic to macroscopic stresses may be
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traced back to the work of Reynolds [70]. Given a solution v to (1.2), let v̄ be the velocity
obtained through the application of a filter (or averaging operator) that commutes with
derivatives, whose role is to ignore the unresolved small scales. Then, upon defining

R = v ⊗ v − v ⊗ v = (v − v)⊗ (v − v),

which is thus a the 3 × 3 symmetric positive definite matrix, we have that the pair (v,R)
is a solution to (3.4), for a suitably defined pressure.

For comparison, the iterates (vq, pq, R̊q) constructed via a convex integration scheme
are approximately spatial averages of the final solution v at length scales λ−1q , which are
decreasing with q. In view of the analogy to theories in fluid turbulence, one refers to
the symmetric tensor R̊q as the Reynolds stress. Without loss of generality, we will also
assume R̊q to be traceless, since its trace is absorbed in to the pressure term pq .

At each inductive step, the goal is to design a perturbation

wq+1 = vq+1 − vq
such that the new velocity vq+1 solves the Euler-Reynolds system at level q + 1

∂tvq+1 + div (vq+1 ⊗ vq+1) +∇pq+1 = div R̊q+1

div vq+1 = 0 ,

with a smaller Reynolds stress R̊q+1. Using the equation for vq we obtain the following
decomposition of the Reynolds stress at level q + 1:

div R̊q+1 −∇(pq+1 − pq)(3.5)

= div (wq+1 ⊗ wq+1 + R̊q)︸ ︷︷ ︸
oscillation error

+ ∂twq+1 + vq · ∇wq+1︸ ︷︷ ︸
transport error

+wq+1 · ∇vq︸ ︷︷ ︸
Nash error

.

Note that not all the terms on the right side of (3.5) are written in divergence form, nec-
essary in order to compute R̊q+1 on the left side of this definition. This is achieved by
utilizing a negative one order linear Fourier multiplier operator R which formally acts as
div−1 and outputs symmetric traceless matrices.

For an increasing sequence of frequency parameters {λq}q≥0,7 the approximate solu-
tions at level (vq, R̊q) are essentially localized at Fourier frequencies . λq . On the other
hand, the perturbation wq+1 = vq+1 − vq is constructed as a sum of highly oscillatory
building blocks (denoted by Wξ in (3.6) below) which live at the higher frequency λq+1.
The building blocks used in the papers [22, 23], are the so-called Beltrami waves. These
are families of complex eigenfunctions of the curl operator at the same eigenvalue, λq+1.
These building blocks are used in an analogous fashion to the Nash twists and Kuiper cor-
rugations employed in the C1 embedding problem [65, 50]. The perturbation wq+1 is
designed in order to obtain a cancellation between the low frequencies of the quadratic
term wq+1 ⊗ wq+1 and the old Reynolds stress error R̊q , thereby reducing the size of the
oscillation error. Roughly speaking, the principal part of the perturbation, which we label
w

(p)
q+1, will be of the form

(3.6) w
(p)
q+1 ∼

∑
ξ

aξ(R̊q)Wξ ,

7At first reading it is convenient to think of λq = λq0, where λ0 is a fixed sufficiently large parameter of the
problem. In the proof however, we need to take the sequence λq to grow super-exponentially, λq = λb

q

0 for
some b > 1, in order to fight a derivative loss issue which arises in the problem. A similar issue arises in more
classical constructions, which go under the umbrella name Nash-Moser iteration.
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where theWξ represent the building blocks oscillating at a prescribed high frequency λq+1,
and the coefficient functions aξ are chosen such that

(3.7)
∑
ξ

a2ξ(R̊q)

 
T3

Wξ⊗̊Wξ = −R̊q .

Here ⊗̊ denotes the trace-free part of the tensor product. This principal part of the per-
turbation needs to be modified from the form presented in (3.6) in order to minimize the
transport error in (3.5), i.e., to ensure it is the divergence of a small Reynolds stress. This is
achieved by flowing the building blocks Wξ along the ODE flow generated by vq (we will
return to this issue in Section 3.5). Additionally, in order to ensure that wq+1 is divergence
free, one introduces a corrector w(c)

q+1 which ensures that wq+1 = w
(p)
q+1 + w

(c)
q+1 is diver-

gence free. The size of this incompressibility corrector w(c)
q+1 is much smaller than the size

of w(p)
q+1, roughly by a factor of λqλ−1q+1, because the building blocks Wξ are divergence-

free by definition, and the aξ oscillate at the old frequency, λq .
In order to ensure that the inductive scheme converges to a Hölder continuous velocity

v with Hölder exponent > 0, the perturbation’s amplitude is required to satisfy the bound

(3.8) ‖wq+1‖C0 ≤ λ−βq+1

for some β > 0. Here, we again note that it is convenient to use a super-exponentially
growing sequence of frequencies λq which obeys λq+1 ≈ λbq , for some b > 1. In view of
(3.7), this necessitates that the Reynolds stress R̊q obeys the estimate

(3.9)
∥∥∥R̊q∥∥∥

C0
≤ λ−2βq+1 .

Consistent with the definition vq = v0 +
∑
q′<q wq′ and with the bound (3.8) the scheme

of [22] also propagates the estimate

‖∇vq‖C0 ≤Mλ1−βq(3.10)

for a fixed constant M > 0. At this stage it is easy to see that if the bounds (3.8)–(3.10)
are propagated throughout the scheme, then as q → ∞ we have that (vq, R̊q) → (v, 0)
uniformly, where v is a Hölder continuous weak solution of the Euler equations. Indeed,
for any θ ∈ (0, β), the following series of increments is summable∑

q≥0

‖wq+1‖Cθ .
∑
q≥0

‖wq+1‖1−θC0 ‖∇wq+1‖θC0

.M
∑
q≥0

λ
−β(1−θ)
q+1 λ

θ(1−β)
q+1 .M

∑
q≥0

λθ−βq+1 . 1

where the implicit constant is universal. Thus, we may define a limiting function v =
limq→∞ vq which lies in C0([0, 1];Cθ). Moreover, v is a weak solution of the Euler equa-
tion (1.2), since by (3.9) we have that limq→∞ R̊q = 0 in C0([0, 1];C0).

The main work is now to prove that for a velocity perturbation wq+1 of the form (3.6),
and with amplitude functions that satisfy (3.7), the bounds stated in (3.8)–(3.10) are indeed
attainable inductively for all q ≥ 1. We note if the building blocks are normalized to
‖Wξ‖C0 ≈ 1, then it follows from (3.6)–(3.7) and (3.9) that the principal part of the
velocity increment already satisfies the bound (3.8). Since the incompressibility corrector
is even smaller, we are quite confident about (3.8). The difficult part is to prove (3.9); in
view of (3.5) this amounts to bounding the oscillation error, the transport error, and the
Nash error. This is the hard analysis part of the construction.
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As a demonstration of the typical scalings present in convex integration schemes for the
Euler equations, let us consider the Nash error. Heuristically, since vq = v0 +

∑
q′<q wq′

and wq+1 is of frequency λq+1 � λq′ for every q′ ≤ q, we have that wq+1 · ∇vq lives at
frequency λq+1, and thus

‖R (wq+1 · ∇vq)‖C0 . λ−1q+1 ‖wq+1‖C0 ‖∇vq‖C0

where we recall that R is a −1 order linear pseudo-differential operator which inverts the
divergence operator. Applying (3.8) and (3.10), for β ∈ (0, 1) we obtain

‖R (wq+1 · ∇vq)‖C0 . λ−1−βq+1 λ1−βq = λ−2βq+2λ
1−β−b(1+β)+2βb2

q

by using that λq+1 ≈ λbq . Thus, in order to ensure that R̊q+1 satisfies the bound (3.9) with
q replaced by q + 1, we require that for β ∈ (0, 1) and b > 1 we have

1− β − b(1 + β) + 2βb2 = (1− b)(1− β − 2βb) < 0 .

Thus, from this simple heuristic, we see that if b > 1 is taken to be arbitrarily close to 1,
then the Hölder regularity exponent β may be taken to be arbitrarily close to the Onsager-
critical Hölder regularity exponent, i.e. β < 1/3.

The construction described above provides a clear enemy towards reaching the desired
Onsager 1/3 threshold: the transport and oscillation errors in (3.5). Designing awq+1 which
minimizes these two errors simultaneously turns out to be a very difficult problem. This
realization stimulated a series of advancements, through the works of Isett, Buckmaster,
De Lellis, Székelyhidi, and Daneri [40, 7, 5, 8, 18], in which the authors incorporated
more an more of the specifics of the 3D Euler equation into the convex integration scheme
(by designing better Wξ and aξ), in order to obtain higher and higher Hölder regularity
exponents. We mention a couple of these developments next.

3.5. Climbing the Onsager ladder. The first breakthrough after [22, 23] was to produce a
dissipative weak solution of the Euler system with a Hölder regularity exponent θ with θ <
1/5; this was achieved independently by Isett [40] and by Buckmaster [4], De Lellis, and
Székelyhidi, resulting in the joint work [7]. The main improvement comes from obtaining
a better bound for the transport error in (3.5). In the proof of Theorem 3.6 one did not
keep track of precise estimates for the material derivative of the Reynolds stress (∂t + v` ·
∇)R̊q . Here v` is a mollification of vq at a length scale ` which lies in between λ−1q+1 and
λ−1q .8 The realization of the 1/5 schemes is that material derivatives are better behaved than
either regular spatial or temporal derivatives: due to classical ODE arguments, a material
derivatives should cost a factor proportional to the Lipschitz norm of vq , i.e. λ1−βq in
view of (3.10). Compare this with a spatial derivative, whose cost is λq � λ1−βq . Taking
advantage of this observation, one can improve the estimate on the material derivative of
R̊q , and thus improve the bounds for the transport error. Optimizing this new transport
bound with the oscillation error yields the improved 1/5− Hölder exponent.

The next major result was due to Buckmaster [5] who noted that one can construct in-
finitely many weak solutions of (1.2) whose x-Hölder regularity exponent, i.e. with respect
to the space variable, can be taken to be any θ with θ < 1/3, but only almost everywhere in

8An inherent issue associated with convex integration schemes is that in order to control nth order derivatives
of the perturbation wq+1, one needs control derivatives on vq of an order strictly greater than n. This loss of
derivative problem is also intrinsic to Nash-Moser arguments [65, 63]. In order to avoid this loss of derivative,
one replaces vq by a mollified velocity field v` and the stress R̊q by a mollified stress R̊`, where the mollification
parameter ` ∈ (λ−1

q+1, λ
−1
q ) is to be chosen suitably. This argument was already required in the C0+

x,t schemes
described in the previous subsection.
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time. This new scheme concentrates the transport and oscillation errors on a zero-measure
set of times. By taking advantage of this idea and by using a delicate bookkeeping scheme,
Buckmaster, De Lellis, and Székelyhidi [8] constructed non-conservative solutions were
constructed in the space L1

tC
1/3−
x .

3.6. Resolution of the flexible side of the Onsager conjecture. The flexible side of the
Onsager conjecture was finally resolved by Isett in [42], who proved the existence of non-
conservative weak solutions of 3D Euler in the regularity class Cθx,t, for any θ < 1/3:

Theorem 3.7 (Theorem 1, [42]). For any θ ∈ (0, 1/3) there exists a nonzero weak solution
v ∈ Cθ(T3 × R), such that v vanishes identically outside of a finite interval.

The proof of Isett builds upon the ideas in the above mentioned works, and utilizes two
new key ingredients. The first, is the usage of Mikado flows which were introduced earlier
by Daneri and Székelyhidi [18]. These are a rich family of pressure-less stationary solu-
tions of the 3D Euler equation (straight pipe flows), which have a better (when compared
to Beltrami flows) self-interaction behavior in the oscillation error, when they are advected
by a mean flow. The second key ingredient is due to Isett: prior to adding the convex in-
tegration perturbation wq+1, it is very useful to replace the approximate solution (vq, R̊q)

with another pair (vq, R̊q), which has the property that vq is close to vq , but more impor-

tantly, that R̊q(t) vanishes on every other interval of size ≈ ‖∇vq‖−1C0 within [0, T ]. This
in turn results in a major improvement of the size of the oscillation error, since different
Mikado flows have disjoint supports, and thus do not interact on the time scale dictated by
the Lipschitz norm of the mean flow v`.

The weak solutions constructed by Isett [42] are not strictly dissipative. This issue was
resolved in the paper by Buckmaster-De Lellis-Székelyhidi-V. [9], who prove the precise
statement of Part b of the Onsager conjecture:

Theorem 3.8 (Theorem 1.1, [9]). Let e : [0, T ]→ R be a strictly positive smooth function.
For any β ∈ (0, 1/3) there exists a weak solution v ∈ Cβ(T3×[0, T ]) of the Euler equations
(1.2), whose kinetic energy at time t ∈ [0, T ] equals e(t).

Finally, we note that in [41], Isett showed that one can further optimize the schemes
of [42, 9] in order to construct non-conservative weak solutions to the Euler equations
that lie in the intersection of all Hölder spaces Cβ for β < 1/3. It is an open problem to
determine whether non-conservative weak solutions to the Euler equations exist that have
Hölder exponent exactly 1/3.9

4. CONCLUDING COMMENTS

The exponent 1/3 in Onsager’s conjecture can be viewed in terms of a larger class of
threshold exponents at which a dichotomy in the behavior of solutions arises. In a recent
expository paper [46], Klainerman considered various threshold exponents in the context
of non-linear PDE. For example, the regularity exponent at which the uniqueness of weak
solutions to the Euler equations is expected to fail is 1. Indeed, we know that uniqueness
holds in C1,α with α > 0, and we expect that uniqueness fails below C1. On the other
hand, the Onsager exponent 1/3 determines the regularity threshold at which the Hamilton-
ian of the system (the kinetic energy) fails to be conserved. These exponents are not the
same. At the moment of writing of this article, it is not known how to construct nonunique

9Note that in view of [13], it would be desirable to at least determine whether there exist non-conservative
weak solutions which lie in the space L3

tB
1/3
3,∞,x.
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weak solutions of the 3D Euler equations with Cθx,t regularity, for some θ ∈ (1/3, 1). It
appears that such a result would require fundamental new ideas, beyond the ideas provided
by the convex integration schemed described earlier.

In view of the discussion in Section 2, and keeping in mind Kolmogorov’s 4/5-law
(2.12), it seems that the natural context in which to address energy conservation is not
that of L∞ based spaces (e.g. Hölder spaces), but rather, L3-based spaces. In fact, the
statistics of the pth order structure functions in turbulent flows motivate an analysis in any
Lp with p ≥ 1. This following question naturally arises: for p < 3, what are the maximal
deviations from the Kolmogorov prediction (2.11) for the structure function exponent ζp,
which is sustainable by weak solutions of the 3D Euler equations? For instance, keeping
in mind the K41 kinetic energy spectrum (2.14), one may consider Onsager’s conjecture in
the context of L2-based Sobolev spaces, and ask to construct dissipative weak solutions of
(1.2) with Sobolev regularity above 1/3. Note that the kinetic energy is conserved for any
weak solution v ∈ H5/6 (cf. [81, 13]). It is an open problem to determine whether or not
this result is sharp. Such a result would have important implications for validating various
physical theories of intermittency in fully developed hydrodynamic turbulence.

In closing, we mention that Buckmaster and the author have recently developed in [11]
an intermittent convex integration scheme, which is able to show the existence of infin-
itely many distributional solutions v ∈ C0

t L
2
x ∩ C0

tW
1,1
x of the 3D Navier-Stokes equa-

tions (1.1), with a prescribed kinetic energy profile. The principal result of [11] is:

Theorem 4.1 (Theorem 1.2, [11]). There exists β > 0, such that for any nonnegative
smooth function e(t) : [0, T ] → [0,∞), and any ν ∈ (0, 1], there exists a weak solution
of the Navier-Stokes equations (1.1) v ∈ C0([0, T ];Hβ(T3)) ∩ C0([0, T ];W 1,1+β(T3)),
such that

´
T3 |v(x, t)|2dx = e(t) holds for all t ∈ [0, T ].

We emphasize that the weak solutions constructed in Theorem 4.1 are not Leray weak
solutions [52], whose uniqueness remains famously one of the most challenging questions
in fluid mechanics.

The ideas of [11] and of the subsequent improvement in Buckmaster-Colombo-V. [6],
combined with additional new ideas, has been successfully applied in related contexts in
PDEs. Using intermittent Mikado flows, Modena and Székeyhidi Jr. have establishied the
existence of non-renormalized solutions to the transport and continuity equations with
Sobolev vector fields [59, 60]. In [17], Dai demonstrated that these methods can be
adapted to prove non-uniqueness of Leray-Hopf weak solutions for the 3D Hall-MHD
system. T. Luo and Titi [55] prove that these methods are applicable also to the frac-
tional Navier-Stokes equations with dissipation (−∆)α, and α < 5/4 (the Lions criticality
threshold [53]); X. Luo [56] demonstrated the existence of non-trivial stationary solutions
to the 4D Navier-Stokes equations, and Beekie-Buckmaster-V. [3] have constructed weak
solutions to the ideal 3D MHD equations which do not conserve magnetic helicity.

The emergence of intermittent convex integration schemes is yet another testament to
the power and the flexibility of the machinery that De Lellis and Székelyhidi have de-
veloped. It is fair to say that the limitations of convex integrations schemes in fluid dy-
namics are not yet known. A number of physically motivated, very interesting mathe-
matical challenges remain to be explored; we refer the interested reader to the review
papers [21, 82, 24, 10] for further details.
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[14] Elisabetta Chiodaroli, Camillo De Lellis, and Ondřej Kreml, Global ill-posedness of the isentropic system

of gas dynamics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1157–1190. MR 3352460
[15] P. Constantin, W. E, and E.S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s

equation, Comm. Math. Phys. 165 (1994), no. 1, 207–209. MR 1298949 (96e:76025)
[16] D. Cordoba, D. Faraco, and F. Gancedo, Lack of uniqueness for weak solutions of the incompressible porous

media equation, Arch. Ration. Mech. Anal. 200 (2011), no. 3, 725–746. MR 2796131
[17] M. Dai, Non-uniqueness of Leray-Hopf weak solutions of the 3d Hall-MHD system, arXiv:1812.11311

(2018).
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[59] S. Modena and L. Székelyhidi, Jr., Non-uniqueness for the transport equation with Sobolev vector fields,
arXiv:1712.03867 (2017).

[60] , Non-renormalized solutions to the continuity equation, arXiv:1806.09145 (2018).



CONVEX INTEGRATION AND FLUID TURBULENCE 19

[61] A.S. Monin, The theory of locally isotropic turbulence, Soviet Physics Doklady, vol. 4, 1959, p. 271.
[62] A.S. Monin and A.M. Yaglom, Statistical fluid mechanics, volume ii: mechanics of turbulence, vol. 2,

Courier Corporation, 2013.
[63] J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential

equations, Comm. Pure Appl. Math. 13 (1960), 457–468. MR 0170091 (30 #332)
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