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Introduction to the Current Events Bulletin 

Will the Riemann Hypothesis be proved this week?  What is the Geometric Langlands 
Conjecture about?  How could you best exploit a stream of data flowing by too fast to 
capture? I think we mathematicians are provoked to ask such questions by our sense that 
underneath the vastness of mathematics is a fundamental unity allowing us to look into many 
different corners -- though we couldn't possibly work in all of them.  I love the idea of having 
an expert explain such things to me in a brief, accessible way.  And I, like most of us, love 
common-room gossip. 

The Current Events Bulletin Session at the Joint Mathematics Meetings, begun in 2003, is an 
event where the speakers do not report on their own work, but survey some of the most 
interesting current developments in mathematics, pure and applied.  The wonderful tradition 
of the Bourbaki Seminar is an inspiration, but we aim for more accessible treatments and a 
wider range of subjects.  I've been the organizer of these sessions since they started, but a 
varying, broadly constituted advisory committee helps select the topics and speakers.  
Excellence in exposition is a prime consideration. 

A written exposition greatly increases the number of people who can enjoy the product of the 
sessions, so speakers are asked to do the hard work of producing such articles.  These are 
made into a booklet distributed at the meeting.  Speakers are then invited to submit papers 
based on them to the Bulletin of the AMS, and this has led to many fine publications. 

I hope you'll enjoy the papers produced from these sessions, but there's nothing like being at 
the talks -- don't miss them! 

David Eisenbud, Organizer 
Mathematical Sciences Research Institute 

de@msri.org 

For PDF files of talks given in prior years, see 
http://www.ams.org/ams/current-events-bulletin.html. 

The list of speakers/titles from prior years may be found at the end of this booklet. 

http://www.ams.org/ams/current-events-bulletin.html
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MISSING DIGITS, AND GOOD APPROXIMATIONS

ANDREW GRANVILLE

Abstract. James Maynard has taken the analytic number theory world by

storm in the last decade, proving several important yet fun theorems, resolving

questions that had seemed far out of reach. He is perhaps best known for
his work on small and large gaps between primes (which were discussed, hot

off the press, in my 2014 CEB lecture). In this talk we discuss two other

breakthroughs:
– Mersenne numbers take the form 2n − 1 and so appear as 111 . . . 111 in

base 2, having no digit ‘0’. It is a famous conjecture that there are infinitely

many such primes. More generally it was, until Maynard’s work, an open
question as to whether there are infinitely many primes that miss any given

digit, in any given base. We will discuss Maynard’s beautiful ideas that went
into mostly resolving this question.

— In 1926, Khinchin gave remarkable conditions for when real numbers

can usually be “well approximated” by infinitely many rationals. However
Khinchin’s theorem regarded 1/2, 2/4, 3/6 as distinct rationals and was un-

able to cope, say, with a restriction to fractions with prime denominators.

In 1941 Duffin and Schaefer proposed an appropriate but significantly more
general analogy involving approximation by reduced fractions (which is much

more useful). We will discuss its recent resolution by Maynard together with

Dimitris Koukoulopoulos.

This year’s Current Events Bulletin highlights the work of the 2022 Fields medal-
lists. In James Maynard’s case there are a surprising number of quite different
breakthroughs that could be discussed.1 In my 2014 CEB lecture I described the
work of Yitang Zhang [32] on bounded gaps between primes and noted that a first-
year postdoc, James Maynard, had taken a different, much simpler but related
approach, to also get bounded gaps [24] (and a similar proof had been found, in-
dependently, by Terry Tao, and given on his blog). Versions of both Zhang’s proof
and the Maynard-Tao proof appear in my article [12], where it is also announced
that Maynard had within months made another spectacular breakthrough, this
time on the largest known gaps between consecutive primes [25] (and a rather dif-
ferent proof [8] had been found by Ford, Green, Konyagin and Tao, the two proofs
combining to give an even better result [9]). It has been like this ever since with
Maynard, many breakthrough results, some more suitable for a broad audience,
some of primary importance for the technical improvements. Rather than attempt

Received by the editors 31/10/2022.
2020 Mathematics Subject Classification. Primary .
Thanks to Dimitris Koukoulopoulos, Sun-Kai Leung and Cihan Sabuncu for their comments

on a draft of this article, and to James Maynard for sharing his graphics. The author is partially
supported by NSERC of Canada, both by a Discovery Grant and by a CRC..

1In my forthcoming textbook about the distribution of primes, starting from the basics, about
one-sixth of the book is dedicated to various Maynard theorems. This, in one of the oldest and
most venerable subjects of mathematics.
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2 ANDREW GRANVILLE

to summarize these all, I have selected two quite different topics, in both of which
Maynard proved spectacular breakthroughs on questions that had long been stuck.

1. Primes missing digits

Does a given arithmetically natural set A of integers contain infinitely many
primes? We believe so unless there is an obvious reason why not (like say, if A was
the set of even integers, or the set of values of a reducible polynomial). Well known
examples include,

• A is the set of all integers;
• A is the set of all integers in a given arithmetic progression (like a (mod q)

with (a, q) = 1);
• A = {p− 2 : p is prime}, which is a way to ask for twin primes;
• A = {n2 + 1 : n ∈ Z}.

The first two questions are resolved and we even know an asymptotic estimate for
how many such primes there are up to a given x, while the second two questions
are (wide) open.

1.1. Guessing at the number of primes in A. The prime number theorem
asserts that there are ∼ x

log x primes ≤ x (so roughly 1 in log x of the integers around

x are prime).2 As a first guess we might think that the primes are equidistributed
amongst the arithmetic progressions mod q and so the answer to the second question
is ∼ 1

q ·
x

log x ; however (a, q) divides any element of a (mod q) and so if (a, q) > 1

then this arithmetic progression contains only finitely many primes. Therefore we
should restrict our attention to a with (a, q) = 1. There are φ(q) such progressions,
and so we should adjust our guess so that if (a, q) = 1 then there are ∼ 1

φ(q) ·
x

log x

primes ≤ x that are ≡ a (mod q). This is the prime number theorem for arithmetic
progressions.3

Let’s put this heuristic in a broader context, for convenience letting A(x) denote
the set of integers in A up to x, and πA(x) the number of primes in A(x). We
could have guessed at our answer by first estimating the size of A(x), (in this case
x/q), and then as a first guess supposing that roughly 1 in log x of these integers

are prime (so πA(x) would be roughly ∼ |A(x)|
log x ). However this fails to take into

account “local densities”. That is, for each small prime p, we need to adjust by the
density of integers in A that are coprime to p, divided by the density of all integers
that are coprime to p. One sees that 1 − 1

p of all integers are coprime to p, and

also in our A if p 6 |q. If p divides q and (a, q) = 1 then all of the integers in A are

2To prove such a result it helps to include a weight log p at each prime p and prove instead

that
∑
p prime,p≤x log p ∼ x, since x is a more natural function to work with than x

log x
. The

prime number theorem can be deduced by the technique of “partial summation” which allows one
to add or remove smooth weights from an estimate like this.

3First claimed by de la Vallée Poussin in 1899 based on ideas from his proof of the prime number
theorem, and Dirichlet’s proof of the infinitude of primes in arithmetic progressions. Thanks to
Siegel and Walfisz this can be given, when x is large enough compared to q, as follows: Fix reals

A,B > 0. If q ≤ (log x)A then the number of primes ≡ a (mod q) up to x,

π(x; q, a) =
π(x)

φ(q)

(
1 +O

(
1

(log x)B

))
whenever (a, q) = 1.
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coprime to p. Combining these “probabilities” gives us the guess

πA(x) ≈ |A(x)|
log x

·
∏
p 6|q

1− 1/p

1− 1/p
·
∏
p|q

1

1− 1/p
=

q

φ(q)
· |A(x)|

log x
=

1

φ(q)
· x

log x
,

so we recover the correct prediction. This outlines a general strategy for guessing
at πA(x).

1.2. Sparse sets of primes. The first three questions above involve sets A that
are quite dense amongst the integers. These well-worn methods usually have limited
traction with sets A that are sparse like

• A = {n ∈ (x, x+ x.99]};
• A = {n ≡ a (mod q) : n ≤ x := q100} for given integer q and (a, q) = 1;
• A = {n ≤ x : αn (mod 1) ∈ [0, x−.01]} for a given real, irrational α.

In each of these examples, |A| ∼ x.99, a rather sparse set, yet each was shown to
have more-or-less the expected number of primes over 50 years ago (Theorems of
Hoheisel, Linnik and Vinogradov, respectively), albeit all known proofs are rather
difficult. However if we change “.99” to an exponent < 1

2 then these questions are

far beyond our current state of knowledge.4

A family of sparse arithmetic sequences are given by the sets of values of poly-
nomials (perhaps in several variables). Examples for which infinitely many primes
have been found include
A = {c2 + d4 : c, d ≥ 1} which has |A(x)| � x3/4 (see [10]); and
A = {a3 + 2b3 : a, b ≥ 1} which has |A(x)| � x2/3 (see [17]).

This last set is an example of the set of values of a norm-form as a3+2b3 is the norm
an element, a+21/3b of the ring of integers of Q(21/3). For a number field K/Q, with
ring of integers Z[ω1, . . . , ωd] we have NormK/Q(x1ω1+. . .+xdωd) ∈ Z[x1, . . . , xd] is
a degree d polynomial in the d variables x1, . . . , xd. The prime ideal theorem implies
that it takes on infinitely many prime values with the xi all integers, provided that
this polynomial has no fixed prime factor, though these sequences are not so sparse.
For example, the norm form a+21/3b+22/3c yields the expected number of primes;
and the last displayed example states that this is true even when c = 0 (in which
case one has a sparse set). There are infinitely many primes which equal the norm,
m2 + n2, of m + in for some integers m,n, but if we fix n = 1 we get the open
question of primes of the form m2 +1. In 2002 Heath-Brown and Moroz [18] proved
that one can take any cubic norm form with one of the variables equal to 0 (as long
the new form is irreducible). Moreover in 2018, Maynard [27] proved such a result
for norms of

r∑
i=1

xiω
i ∈ Z(ω) where [Q(ω) : Q] ≤ 4

3
r.

1.3. Primes with missing digits. Other than short intervals, short arithmetic
progressions, and polynomial values perhaps the best known question is to find
primes without some explicitly named digit or digits in their decimal expansion.
For example, as on the cover of this booklet, we might ask for primes which only

4The sparsest sets known in these questions to contain primes are (x, x + x.525], x = q5 and

αn (mod 1) ∈ [0, x−
1
3
+ε] due to [1, 31, 23] respectively.



4 ANDREW GRANVILLE

have the digits 1,3 and 4 in their decimal expansions.5 Our guess is that there
are infinitely many such primes; to guess how many up to x, we can follow the
above recipe: A(10k) = 3k (as there are three possibilities for each digit in the

decimal expansion) and so |A(x)| � xα where α = log 3
log 10 . These numbers are equi-

distributed mod p, except perhaps if p divides 10. Since the last digit is 1, 3 or 4, the
probability that 2 divides an element of A is 1

3 , and that 5 divides an element of A
is 0, and so we get extra factors 1−1/3

1−1/2 = 4
3 and 1−0

1−1/5 = 5
4 respectively. Combining

this information we guess that πA(x) ∼ 4
3 ·

5
4 ·
|A(x)|
log x = 5

3 ·
|A(x)|
log x .

The above heuristic is a little misleading. For example if the integers of A only
have the digits 4 and 5 in their decimal expansions then 5 is the only prime in
A (since every element of A is divisible by 2 or 5). Therefore, in general, if A is
the set of integers n which have only digits from D in their base q expansion let
Dq = {d ∈ D : (d, q) = 1} and then we predict that

πA(x) ∼ |Dq|/|D|
φ(q)/q

· |A(x)|
log x

Maynard obtained the first such theorems [26, 28] for certain general families of
sparse sets A. His most spectacular result [26] yields the above with q = 10 and
|D| = 9; that is, Maynard proved that there are roughly the expected number of
primes that are missing one given digit in decimal. His methods give a lot more (as
we will describe). His methods can’t quite handle sets as sparse as D = {1, 3, 4}
with q = 10 from our cover art, that is for another day. We will sketch the easier
argument from [28] which gives many results of this type though only for much
larger bases than 10.

1.4. Who cares? Is this a silly question? It is certainly diverting to wonder
whether there are infinitely primes with given missing digits, but how does that
impact any other serious questions in mathematics? This is a case of “the proof
of the pudding is in the eating”, that is its real value can be judged only from the
beautiful mathematics that unfolds. The story is two-fold. The relevant Fourier
coefficients have an extraordinary structure that allows Maynard to import ideas
from Markov processes, which allows us to prove such theorems in bases > 100. To
get the base down to 10, Maynard develops his ideas with a virtuosity of all sorts
of deep techniques that spin an extraordinary (though technical) tale.

1.5. Fourier analysis. If |n| < N then, summing the geometric series we have

1

N

N∑
j=0

e

(
jn

N

)
=

{
1 if n = 0;

0 otherwise,

where e(t) := e2iπt for any real t. To identify whether prime p equals some a ∈ A
(in our case, A is the set of integers missing some given digit in base-q) we can take

5Riemann’s explicit formula for the primes in terms of the zeros of the Riemann zeta-function,

can be expressed in a form that reminds one of harmonics from Fourier analysis. Thus the Riemann
Hypothesis has been paraphrased as “Do the primes have music in them?”. The first part of our

cover drawing represents this variation on that theme.



MISSING DIGITS, AND GOOD APPROXIMATIONS 5

the above identity for n = p− a and sum over all a ∈ A(N), to obtain

(1.1) πA(N) =
∑
p≤N

∑
a∈A(N)

1

N

N−1∑
j=0

e

(
j(p− a)

N

)
=

1

N

N−1∑
j=0

SP

(
j

N

)
SA

(
−j
N

)
where P denotes the set of primes, and for a given set of integers T , we define the
exponential sum (or the Fourier transform of T (N)) by

ST (θ) :=
∑

n∈T (N)

e(nθ) for any real θ.

To establish a good estimate for πA(N) using (1.1) one needs to identify those j for
which the summand on the right-hand side is large; for example, ST (0) = |T | and

so the j = 0 term in (1.1) yields 1
N |A(N)| · π(N) ∼ |A(N)|

logN which is the expected

order of magnitude of our main term. Other terms where j
N is close to a rational

with small denominator often also contribute to the main term, whereas we hope
that the combined contribution of all of the other terms is significantly smaller. At
first sight this seems unlikely since we only have the trivial bound |ST (θ)| ≤ |T |,
but the trick is to use the Cauchy-Schwarz inequality followed by Parseval’s identity
so that

1

N

N−1∑
j=0

|ST ( jN )| ≤
(

1

N

N−1∑
j=0

|ST ( jN )|2
)1/2

= |T |1/2.

This implies for example that a typical term in the sum on the right-hand side of
(1.1) has size

√
|A(N)| ·

√
π(N) which is significantly bigger than the main term

but not as egregiously as when we used the trivial bound.
We have just described the thinking behind the circle method used when one

sums or integrates over the values of an exponential sum as the variable rotates
around the unit circle (that is, e( jN ) for 0 ≤ j ≤ N − 1, or e(θ) for 0 ≤ θ < 1).
When trying to estimate the sum on the right-hand side of (1.1), we are most

interested in those θ = j
N for which SP(θ)SA(−θ) is “large”. Experience shows

that with arithmetic problems, the exponential sums can typically only be large
when θ is close to a rational with small denominators, and so we cut the circle up
into these major arcs, usually those θ near to a rational with small denominator,
and minor arcs, the remaining θ, bounding the contribution from the minor arcs,
and being as precise as possible with the major arcs to obtain the main terms.

Fourier analysis/the circle method is most successful when one has the product
of at least three exponential sums to play with. For example the ternary Goldbach
problem was more-or-less resolved by Vinogradov 85 years ago, whereas the binary
Goldbach problem remains open.6 For the ternary Goldbach problem, the number
of representations of odd N as the sum of three primes is given by∫ 1

0

e(−Nθ)SP(N)(θ)
3dθ,

6It is known that almost all integers n can be written as the sum of two primes in the expected
number of ways, since by counting over all integers, one is, in effect, adding another exponential

sum.
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and the arc of width � 1
N around 0 yields a main term of size � N2

(logN)3 . We have

the trivial bound |SP(N)(θ)| ≤ π(N) and we will define here the minor arcs to be

m := {θ ∈ [0, 1] : |SP(N)(θ)| ≤ π(N)/(logN)2}.

(Since the typical size of |SP(N)(θ)| is
√
π(N) < N1/2 we expect that all but a tiny

set of the θ belong to these minor arcs.) Then∣∣∣∣ ∫
θ∈m

e(−Nθ)SP(N)(θ)
3dθ

∣∣∣∣ ≤ ∫
θ∈m
|SP(N)(θ)|3dθ

≤ π(N)

(logN)2
·
∫
θ∈[0,1)

|SP(N)(θ)|2dθ

=
π(N)2

(logN)2
∼ N2

(logN)4

which is significantly smaller than the main term. Thus if we can identify which
θ belong to m, then we can focus on evaluating SP(N)(θ) on the major arcs M :=
[0, 1) \m. There are strong bounds known for SP(N)(θ), as we will see later so this
can all be done in practice.

1.6. The missing digit problem. To initiate the analogous plan to determine
πA(N) we would need to define the minor arcs to be those θ = j

N for which

|SA(θ)| ≤ |A(N)|√
N logN

. If, say, |D| = 9 (primes with one missing digit) then |A(N)| ∼

N1−2δ where 2δ := log 10/9
log 10 ≈ 0.04576. Therefore the bound desired here is

N
1
2−2δ+o(1), which is significantly smaller than the bound N

1
2−δ+o(1) obtained from

Parseval (i.e. a power of N smaller, rather than a power of logN). This is what
makes the product of only two exponential sums in (1.1) seem impossible. However
restricted digit problems in base q are more tractable because the structure of A
leads to an unusual distribution of its exponential sums. While it is true that SP(θ)
is only large when θ is near to a rational with small denominator (as proved by
Vinogradov), SA(θ) behaves differently. It is only large when there are many 0’s
and q− 1’s in the decimal expansion of θ. Now if SP(θ)SA(−θ) is large then SP(θ)
and SA(−θ) must both individually be large, and so θ is both near to a rational
with small denominator and has many 0’s and q − 1’s in its decimal expansion,
something which is very rare. In fact this implies that θ is close to a rational whose
denominator is a small power of q. Indeed for N = qk the major arcs which give
the expected main term are those j

qk
= r

q for some integer r, so their contribution

to the above sum is

q−k
q−1∑
r=0

SP

(
r

q

)
SA

(
−r
q

)
= q−k

∑
a∈A,a≤qk

∑
p prime,≤qk

q−1∑
r=0

e

(
r

q
(p− a)

)
= q1−k

∑
a∈A,a≤qk

∑
p prime,≤qk
p≡a (mod q)

1.

Now if a prime p has last digit d then (d, q) = 1, and if d ≡ p ≡ a (mod q) then
d ∈ D so that d ∈ Dq. There are |D|k−1 integers a ∈ A, a ≤ qk with a ≡ d
(mod q), and so this sum becomes, using the prime number theorem for arithmetic
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progressions,

q1−k
∑
d∈Dq

|D|k−1
∑

p prime,≤qk
p≡d (mod q)

1 ∼ q1−k · |Dq|
|D|
· |A(qk)| · 1

φ(q)

qk

log qk

=
|Dq|/|D|
φ(q)/q

· |A(N)|
logN

,(1.2)

which is precisely the prediction we had for πA(N) above.
These major arcs were not difficult to identify and evaluate. The result will

follow if we can show that

(1.3)
1

N

∑
0≤j≤N
j 6=N

q i,i∈Z

∣∣∣∣SP( j

N

)∣∣∣∣ · ∣∣∣∣SA(−jN
)∣∣∣∣� |A(N)|

(logN)A

for some A > 1. The challenge is to then suitably bound the summand on all of
the remaining arcs, the remaining major arcs as well as the minor arcs.

1.7. Arcs. The usual way to dissect the circle is to pick a parameter 1 < M < N
and recall that, by Dirichlet’s Theorem (see the discussion in Part II), for every
α ∈ [0, 1] there exists a reduced fraction r/s with s ≤M for which∣∣∣∣α− r

s

∣∣∣∣ ≤ 1

sM

(and the right-hand side is ≤ 1/s2). Therefore we may cover [0, 1] (and so cover
the circle, by mapping t→ e(t)) with the intervals (arcs),⋃

s≤M

⋃
0≤r≤s
(r,s)=1

[
r

s
− 1

sM
,
r

s
+

1

sM

]
.

The arcs with s small are usually the major arcs, those s large are the minor arcs,
though in this case it is a little more complicated: The major arcs will be given by⋃

s≤(logN)A

⋃
0≤r≤s
(r,s)=1

[
r

s
− (logN)A

N
,
r

s
+

(logN)A

N

]
.

1.8. Other major arcs, when all prime factors of s divide q. Throughout
this subsection we assume that p|s =⇒ p|q so that s divides N = qk for all
sufficiently large k, and so r/s may be written as j/N for some integer j. We also
assume that s ≤ (logN)A. The prime number theorem for arithmetic progressions
gives

SP

(
r

s

)
=
∑
p≤N

e

(
pr

s

)
=

∑
a:(a,s)=1

e

(
ar

s

)
π(N ; s, a)

=
π(N)

φ(s)

∑
a:(a,s)=1

e

(
ar

s

)
+O

(
π(N)

(logN)B

)
= π(N)

(
µ(s)

φ(s)
+O

(
1

(logN)B

))(1.4)
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Therefore, by partial summation, if 1 ≤ |i| ≤ (logN)A, or if i = µ(s) = 0,

SP

(
r

s
+

i

qk

)
= π(N)

µ(s)

φ(s)

∫ N

0

e

(
it

N

)
dt+O

(
iπ(N)

(logN)B

)
� π(N)

(logN)B−A
.

Therefore, since |SA(−jN )| ≤ |A(N)| trivially, taking B = 5A − 1 with A ≥ 2 we
obtain

1

N

∑
s≤(logN)A

p|s =⇒ p|q

∑
0≤r<s
(r,s)=1

∑
j:

µ(s)2≤|j− rsN |≤(logN)A

∣∣∣∣SP( j

N

)
SA

(
−j
N

)∣∣∣∣� |A(N)|
(logN)A

which is much smaller than the main term in (1.2).
The only remaining such terms are at r/s where s is squarefree and all its prime

factors divide q, which imply that s divides q, and these terms were already included
in the sum in the previous subsection that led to (1.2).

The calculations in this subsection accounted for the major arcs,⋃
s≤(logN)A

p|s =⇒ p|q

⋃
0≤r≤s
(r,s)=1

[
r

s
− (logN)A

N
,
r

s
+

(logN)A

N

]
.

1.9. The extraordinary structure of these exponential sums. If A is the set
of integers missing the digit b in base q, and N = qk, we can write

A(N) =

{
n =

k−1∑
i=0

aiq
i : Each ai ∈ D := {0, 1, . . . , q − 1} \ {b}

}
.

Since e(nθ) =
∏k−1
i=0 e(aiq

iθ), therefore

SA(θ) =
∑

Each ai∈D

k−1∏
i=0

e(aiq
iθ) =

k−1∏
i=0

( ∑
ai∈D

e(aiq
iθ)

)

=

k−1∏
i=0

(
e(qi+1θ)− 1

e(qiθ)− 1
− e(bqiθ)

)
.(1.5)

Write θ =
∑
j≥1 tj−1/q

j in base q (i.e. the ti ∈ {0, 1, . . . , q − 1}) so that

qiθ mod 1 =
ti
q

+
ti+1

q2
+ · · · = ti + (qi+1θ mod 1)

q
.

Thus qiθ mod 1 ∈ [ tiq ,
ti+1
q ) and so e(qiθ) ≈ e(ti/q).

1.10. Base q, where q is large. We begin with the bounds∣∣∣∣e(qi+1θ)− 1

e(qiθ)− 1
− e(bqiθ)

∣∣∣∣ ≤ min

{
q − 1, 1 +

1

2‖qiθ‖

}
≤ min

{
q − 1, 1 +

q

2 min{ti, q − 1− ti}

}
,

and so, by (1.5),

(1.6) |SA(θ)| ≤
k−1∏
i=0

min

{
q − 1, 1 +

q

2 min{ti, q − 1− ti}

}
.
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Another bound (which is easier to work with) begins by noting that

|e(aφ) + e((a+ 1)φ)|2 = 2 + 2 cos(2πφ) < 4 exp(−2‖φ‖2),

so that |e(aφ)+e((a+1)φ)| ≤ 2 exp(−‖φ‖2). If q > 3 then there are two consecutive
integers in D and so∑

a∈D
e(aφ) ≤ q − 3 + 2 exp(−‖φ‖2) ≤ (q − 1) exp

(
− ‖φ‖

2

q

)
,

and therefore, by (1.5),

(1.7) |SA(θ)| ≤ |A(N)| exp

(
− 1

q

k−1∑
i=0

‖qiθ‖2
)

We use this to deal with the remaining possible major arcs.
These arguments are far from sharp and both (1.6) and (1.7) can be sharpened.

1.11. Major arcs, where s has a prime factor that does not divide q.
Suppose that prime p|s but p 6 |q. Then p divides the denominator of the reduced
fraction for qi · rs so that ‖qi · rs‖ ≥

1
p . Moreover if |θ− r

s | ≤
1

2pN1/2 and i ≤ k
2 then

‖qiθ‖ ≥ ‖qi · rs‖ − q
i|θ − r

s | ≥
1
p −

qk/2

2pN1/2 = 1
2p .

Now if ‖qiθ‖ < 1
2q then ‖qi+1θ‖ = q‖qiθ‖. Therefore, for every integer i there exists

an integer j, i ≤ j ≤ i+ b log p
log q c for which ‖qjθ‖ ≥ 1

2q , which implies that

k/2∑
i=0

‖qiθ‖2 ≥ 1

4q2
#{j ∈ [0, k2 ) : ‖qjθ‖ ≥ 1

2q} ≥
1

4q2

log qk/2

log pq
≥ k

8mq2

for s ≤ qm and m ∈ Z, since then b log p
log q c ≤ m− 1. Here we let m = b

√
k/9q3c and

assume that k ≥ 100q6.
Thus |SA(θ)| ≤ |A(N)| exp(− k

8mq3 ) by (1.7), and |SP(θ)| ≤ π(N) trivially, so

that as 2q2m ≤ N1/2 then

1

N

∑
s≤qm
∃p|s,p6|q

∑
0≤r<s
(r,s)=1

∑
j:|j− rsN |≤qm

∣∣∣∣SP( j

N

)
SA

(
−j
N

)∣∣∣∣� |A(N)|
logN

q3m exp(− k
8mq3 )

� |A(N)|
logN

e−
√
k,

which is much smaller than the main term in (1.2).
This subsection accounts for the major arcs,⋃

s≤qm
∃p|s such that p6|q

⋃
0≤r≤s
(r,s)=1

[
r

s
− qm

N
,
r

s
+
qm

N

]
.

and qm = c
√
k

q for some cq > 1, which is larger (logN)A for k sufficiently large.
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1.12. The minor arcs. The remaining challenge comes from the minor arcs. Now

q−1∑
t=0

min

{
q−1, 1+

q

2 min{t, q − 1− t}

}
= 2(q−1)+(q−2)+

∑
1≤t≤ q−1

2

q

t
≤ 3q+q log q,

and since the set of values {θ + j
qk

mod 1 : 0 ≤ j ≤ qk − 1} run once through all

of the (t0, . . . , tk−1) possibilities we obtain

(1.8)

qk−1∑
j=0

∣∣∣∣SA(θ +
j

qk

)∣∣∣∣ =
∑

0≤t0,...,tk−1≤q−1

∣∣∣∣SA(θ +

k∑
i=1

ti−1

qi

)∣∣∣∣ ≤ (3q + q log q)k.

Therefore

(1.9)

∫ 1

0

|SA(α)|dα =

∫ q−k

0

qk−1∑
j=0

∣∣∣∣SA(θ +
j

qk

)∣∣∣∣dθ ≤ (3 + log q)k.

Notice that d
dθ e(nθ) = 2iπ · ne(nθ) = 2iπ ·

∑k−1
j=0 ajq

je(ajq
j)
∏
i 6=j e(aiq

i). We can

modify the above argument from bounds for a sum of |SA(·)|-values to a sum of
|S′A(·)|-values, by bounding the contribution of the jth term in the product by qj

times ∣∣∣∣ q−1∑
a=0

a e(aqjθ)− b e(bqjθ)
∣∣∣∣ ≤ (q − 1) min

{
q − 1, 1 +

1

2‖qiθ‖

}
.

Therefore, as (q − 1)
∑k−1
j=0 q

j < qk we obtain

(1.10)

∫ 1

0

|S′A(α)|dα ≤ qk(3 + log q)k.

One can bound a differentiable function f(·) at a point by its values in a neigh-
bourhood by the classical inequality

|f(θ)| ≤ 1

2∆

∫ θ+∆

θ−∆

|f(φ)|dφ+
1

2

∫ θ+∆

θ−∆

|f ′(φ)|dφ

We can sum this over a set of points (on the unit circle), θ1, . . . , θm where |θi−θj | ≤
2∆ if i 6= j so the integrals above do not overlap, to obtain

m∑
i=1

|f(θi)| ≤
1

2∆

∫ 1

0

|f(φ)|dφ+
1

2

∫ 1

0

|f ′(φ)|dφ.

Our choice of points is a bit complicated: The θi will be selected within ∆ = 1
4D2

of the fractions r
s with (r, s) = 1 and 0 ≤ r < s ≤ D with (r, s) = 1 displaced by a

fixed quantity ξ. The fractions are distinct so any two differ by | rs −
r′

s′ | ≥
1
ss′ >

1
D2 ,

and therefore the points differ by ≥ 1
D2 − 2∆ = 2∆ and so∑

s≤D

∑
0≤r<s
(r,s)=1

max
|η|≤∆

∣∣∣∣f(rs + ξ + η

)∣∣∣∣ ≤ 2D2

∫ 1

0

|f(φ)|dφ+
1

2

∫ 1

0

|f ′(φ)|dφ.

We now apply this with f = SA and use (1.9) and (1.10) to obtain

(1.11)
∑
s≤D

∑
0≤r<s
(r,s)=1

max
|η|≤ 1

4D2

∣∣∣∣SA(rs + ξ + η

)∣∣∣∣ ≤ (2D2 + 1
2q
k)(3 + log q)k.
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1.13. Hybrid estimate. We need notation that reflects that our sum is up to qk,
since we will now vary k. So let

Âk(θ) := SA(θ) =
∑

n∈A(qk)

e(nθ)

Our formula (1.5), implies that if ` ≤ k then

Âk(θ) = Âk−`(θ)Â`(q
k−`θ).

For m ≤ k − ` replace k by k − ` and k − ` by m so that

Âk−`(θ) = Âm(θ)Âk−`−m(qmθ).

and therefore

Âk(θ) = Âm(θ)Âk−`−m(qmθ)Â`(q
k−`θ).

Since |Âk−`−m(qmθ)| ≤ (q − 1)k−`−m this yields

|Âk(θ)| = (q − 1)k−`−m|Âm(θ)| · |Â`(qk−`θ)|.
and so ∣∣∣∣Âk( j

qk

)∣∣∣∣ ≤ (q − 1)k−`−m
∣∣∣∣Âm( j

qk

)∣∣∣∣ · ∣∣∣∣Â`( j

q`

)∣∣∣∣
≤ (q − 1)k−`−m

∣∣∣∣Â`( j

q`

)∣∣∣∣ · max
i:|i−qk· rs |≤B

∣∣∣∣Âm( i

qk

)∣∣∣∣.
Now assume that B ≤ q`/2 and B ≤ qk/4D2 so that∑

s≤D

∑
0≤r<s
(r,s)=1

∑
j:|j−qk· rs |≤B

∣∣∣∣SA( j

qk

)∣∣∣∣
≤ (q − 1)k−`−m

∑
0≤r<s≤D

(r,s)=1

max
i:|i−qk· rs |≤B

∣∣∣∣Âm( i

qk

)∣∣∣∣ · ∑
j:|j−qk· rs |≤B

∣∣∣∣Â`( j

q`

)∣∣∣∣.
We extend the final sum to a sum over all j (mod q`) so that it is ≤ (3q+ q log q)`

by (1.8). For the next sum

max
i:|i−qk· rs |≤B

∣∣∣∣Âm( i

qk

)∣∣∣∣ ≤ max
i:|η|≤ B

qk

∣∣∣∣Âm(rs + η

)∣∣∣∣ ≤ max
i:|η|≤ 1

4D2

∣∣∣∣Âm(rs + η

)∣∣∣∣
and so the internal sum is ≤ (2D2 + 1

2q
m)(3 + log q)m by (1.11). Therefore∑

s≤D

∑
0≤r<s
(r,s)=1

∑
j:|j−qk· rs |≤B

∣∣∣∣SA( j

qk

)∣∣∣∣ ≤ |A(qk)|(2D2/qm + 1
2 )L`+mq

where Lq := q(3+log q)
q−1 . Select ` to be the smallest integer for which q` ≥ 2B and

m to be the largest integer with qm ≤ min{D2, qk−`}, so that q` = BqO(1) and
qm = D2qO(1), and therefore 2D2/qm + 1

2 � qO(1).

If Lq < qτ then L`+mq < (BD2)τqO(1) so that∑
s≤D

∑
0≤r<s
(r,s)=1

∑
j:|j−qk· rs |≤B

∣∣∣∣SA( j

qk

)∣∣∣∣� |A(N)|qO(1)(BD2)τ .
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1.14. Putting it all together. A well known estimate on exponential sums over
primes gives that if s � D and |j −N · rs | � B with D <

√
N then

(1.12)

∣∣∣∣SP( j

N

)∣∣∣∣� (
N4/5 +

N

(BD)1/2
+ (BDN)1/2

)
(logN)−3/4

Our arcs have |j − qk · rs | ≤ N/sM and so we may assume that B ≤ N/DM . Since

we are on the minor arcs we may assume that BD > (logN)20A. We will select

k > q so that q ≤ logN with M =
√
N and D ≤M so that BD ≤

√
N . Combining

the last two estimates we obtain

1

N

∑
s∼D

∑
0≤r<s
(r,s)=1

∑
j:|j−qk· rs |∼B

∣∣∣∣SP( j

N

)
SA

(
− j

N

)∣∣∣∣
� |A(N)|

logN
· (BD2)τ

(
1

N1/5
+

1

(BD)1/2

)
(logN)O(1)

as BD ≤
√
N . If τ < 1

5 then the first term is < 1/N
1
5−τ as BD2 � N . Moreover

(BD2)τ/(BD)1/2 < 1/(BD)1/10 � (logN)−2A. Therefore the contribution of the
minor arcs is much smaller than the main term in (1.2).

1.15. Explicit bounds on q. Now Lq := q(3+log q)
q−1 < q1/5 for q ≥ 1520573.

To improve this, note that if φ = t+δ
q ∈ [0, 1

2 ] with 0 ≤ δ < 1 then∣∣∣∣e(qφ)− 1

e(φ)− 1
− e(bφ)

∣∣∣∣ ≤ 1 + max
0≤δ≤ 1

2

sin(πδ)

sin(π t+δq )
≤ 1 +

1

sin(π tq )
,

and so our proofs work for q ≥ 62893 since then

q−1∑
t=0

min

{
q − 1, 1 +

1

sin(π |t|q )

}
≤ q1/5(q − 1).

(This sum is ∼ 2
π q log q.) It seems like we will need more ideas to reduce the base

from 62893 all the way down to 10. In particular we need to do more than simply
obtain bounds on the ith component of (1.5) as a function of ti.

1.16. Better bounds on (1.5) via a special Markov process. We approxi-
mated the terms in (1.5) using only the first term of the base-q expansion of qiθ
mod 1. However if we obtain a more precise approximation using, say, the first
two terms, ti and ti+1, of the base-q expansion of qiθ mod 1, then the bounds
on the ith and (i + 1)st terms are no longer independent (it was that indepen-
dence which allowed us to take a sum of the product equal to the product of var-
ious smaller sums). In particular we obtain a more accurate approximation using
e(qiθ) ≈ e(ti/q + ti+1/q

2) by using two terms of the expansion, etc. Substituting
this first approximation into (1.5) yields that

|SA(θ)| ≈
k−1∏
i=0

F (ti, ti+1) where F (t, u) :=

∣∣∣∣ e(uq )− 1

e( tq + u
q2 )− 1

− e(b( tq + u
q2 ))

∣∣∣∣ if t 6= 0,

and F (0, u) = q−1. Now the consecutive terms depend on each other so we cannot
separate them as before. Instead we can form the q-by-q matrix M with entries
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Ma,b := F (a, b) for 0 ≤ a, b ≤ q − 1. Then for t0, tk ∈ {0, . . . , q − 1}

Mk
t0,tk

=
∑

t1,...,tk−1∈{0,...,q−1}

k−1∏
i=0

F (ti, ti+1) ≈
∑

t1,...,tk−1∈{0,...,q−1}
θ=

∑k
i=0 ti/q

i+1

|SA(θ)|.

Summing this over all t0, tk ∈ {0, . . . , q − 1} gives the complete sum over the
θ = j/qk; that is,

qk−1∑
j=0

|SA( j
qk

)| ≈ (1, 1, . . . , 1)Mk(1, 1, . . . , 1)T ≤ cM |λM |k

where λM is the largest eigenvalue of M and cM > 0 is some computable constant.7

Our proof of the bounds for the minor arcs can be modified and the result follows
provided

λM < q1/5.

But this is far from the end of the story, since we can be more precise by replacing
the transition from the first two terms of the expansion of qiθ, {ti, ti+1} to the next
two {ti+1, ti+2} in our “Markov process”, to using the transition from the first `
terms to the next `. Although this yields a q`-by-q` transition matrix, in which
each row and column is supported at only q entries. And the larger ` is the more
precise our bounds. For q = 10, Maynard found that λM < 2.24190 < 1027/77; this
is not quite down to exponent 1

5 but it is far smaller than the “trivial” 1
2 .

Another surprising feature of this set up are the rth moments for r > 0: If we
replace |SA( j

qk
)| by |SA( j

qk
)|r in the above argument then we simply replace M by

Mr and so
qk−1∑
j=0

|SA( j
qk

)|r ≤ cM,r|λM |kr.

By combining such estimates for r = 1 and r = 235
154 Maynard proved that the

summands for the “generic” j make a negligible contribution and we can restrict
attention to a set E ⊂ m exceptional integers j with |E| � X .36.

1.17. Extra ideas in Base 10. When q is small the above calculations are not
strong enough to complete the proof. Instead Maynard needed to more thoroughly
investigate many aspects of this discussion. To extend the range of bases q, Maynard
forwent the asymptotic when q = 10 but rather obtained upper and lower bounds
that are the expected amount times a positive constant. The upper bound is
easy sieve theory, but the lower bound is much more subtle. First off, Maynard
deploys delicate sieve methods to (in effect) replace needing to understand how often
primes are written with the digits from D in base q, to understanding when integers
divisible by a product of large primes in certain given intervals are represented.
This allowed him to, in effect, improve the upper bounds for exponential sums over

7We need to change the “≈” in |SA(θ)| ≈
∏k−1
i=0 F (ti, ti+1) above to a precise inequality, like

|SA(θ)| ≤
k−1∏
i=0

F (ti, ti+1), where F (t, u) := max
0≤η≤1/q2

∣∣∣∣ e(u+η
q

)− 1

e( t
q

+ u+η
q2

)− 1
− e(b( t

q
+ u+η

q2
))

∣∣∣∣



14 ANDREW GRANVILLE

primes (as in (1.12)), since now he is working with a more malleable set of the

integers, and so he requires bounds like λM < q
27
77 rather than λM < q

1
5 (as above).

For the j ∈ E (the very exceptional minor arcs) to have an important effect
on our sum, the fractions j/qk will have to simultaneously have several surprising
Diophantine features, which Maynard proves are mostly incompatible (when q =
10). The following diagram exhibits the tools used in the whole proof, but especially
when dealing with these exceptional arcs.

Circle
Method

Counting in A.P.s

Geometry of numbers

Lines in sparse sets

Diophantine approx-

imation in lattices

Sieve minorant

Markov ap-

proximation

Bilinear

sums

Major arcs

Generic

Minor arcs

Primes
missing
digits

Exceptional

Minor arcs

Figure 1. Outline of steps to prove primes with missing digits

1.18. Further reductions of the base. For the theorems that we have proved
here we will try to reduce the base from 62893 to as small as possible, by better
using and understanding the transition matrices M (following Karwatowski [20]).

Let F (s) := | 1
|D|
∑
n∈D e(ns)| ≤ 1 and note that if D = {0, . . . , q−1}\{a0} then

(1.13) F (s) ≤ F1(s) :=
1

q − 1

(
1 +

sinπ‖qs‖
sinπ‖s‖

)
.

Now if |n| ≤ q with |η| ≤ 1/q then |e(nη)− 1| � qη ≤ 1 and so

e(n(θ + η)) = e(nθ) + (e(nη)− 1)e(nθ) = e(nθ) +O(qη).

Therefore F (θ + η) = F (θ) +O(qη).
The general transition matrix M is indexed by J digits in base q and Mi,j can

only be non-zero if

i = (t1, . . . , tJ), j = (t2, . . . , tJ+1) for some base-q digits t1, . . . , tJ+1.

If θ =
∑J+1
i=1 ti/q

i, the entry is G(t1, . . . , tJ+1)r where

G(t1, . . . , tJ+1) := max
0≤η≤1/qJ+1

F (θ + η) = F (θ) +O(q−J).
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Now we can take the rth power so that

G(t1, . . . , tJ+1)r = (F (θ) +O(q−J))r = F (θ)r +

r∑
j=1

(
r

j

)
F (θ)r−jO(q−J)j

= F (θ)r +O

( r∑
j=1

(
r

j

)
· 1 · q−J

)
= F (θ)r +O(2rq−J).

Now we take the sth root, using that (x+ y)1/s ≤ x1/s + y1/s so that

G(t1, . . . , tJ+1)r/s ≤ F (θ)r/s +Or,s(q
−J/s).

The largest (real) eigenvalue λr/s,J of the above matrix is bounded by the largest
of the column sums; that is,

λr/s,J ≤ max
t2,...,tJ+1∈{0,...,q−1}

q−1∑
t1=0

G(t1, . . . , tJ+1)r/s

≤ max
t2,...,tJ+1∈{0,...,,q−1}

φ=
∑J+1
i=2 ti/q

i

q−1∑
t1=0

F

(
t1
q

+ φ

)r/s
+Or,s(q

1−J/s)

≤ max
0≤φ<1/q

q−1∑
n=1

(
1

q − 1

(
1 +

sinπ‖qφ‖
sinπ‖nq + φ‖

))r/s
+ 1 +Or,s(q

1−J/s)(1.14)

by (1.13), using the bound |F | ≤ 1 on the n = 0 term. In this range these sine-
values are positive, sinπ‖qφ‖ ≤ 1, and sinπ‖nq + φ‖ is decreasing with for n ≤ q−1

2

and as φ increases, and so by symmetry the above sum is

≤ 2

b q2 c∑
n=1

(
1

q − 1

(
1 +

1

sinπ‖nq ‖

))r/s
These sums can be estimated numerically to deduce that if J is sufficiently large
then λ1,J < q

27
77 for q ≥ 102 and λ 235

154 ,J
< q

59
433 for q ≥ 174. If we go back to (1.14)

then these inequalities hold for q ≥ 72 and q ≥ 89, respectively. One can follow a
little more of Maynard’s plan [26] than we have done here, and use this to deduce
the “primes missing one digit in base-q” result for all bases q ≥ 89. Karwatowski
[20] develops these ideas further and deduces the “primes missing one digit in base-
q” result for all bases q ≥ 10 (whereas Maynard focussed on q = 10), and he seems
to now have extended this to base 9. Now each new smaller base q will almost
certainly be susbtantially harder than the last and require significant new ideas.

1.19. Further results. The proof that we gave here can be extended (as in [28])
to prove that there are infinitely many such primes if D contains ≥ q − q1/5−o(1)

elements, or ifD contains≥ q1−1/5+o(1) consecutive integers. The “ 1
5” was improved

to “ 1
4” in [28], and even “ 23

80” if one just wants a lower bound of the correct order
of magnitude.
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2. Approximating most real numbers

Given any real number θ let mθ be the integer nearest to θ so that (θ) := θ−mθ ∈
(− 1

2 ,
1
2 ]. Dirichlet observed that if α ∈ [0, 1) then 0, (α), (2α), · · · , (Nα) all belong

to an interval of length 1 so two of them (iα) and (jα) must differ by < 1
N (by the

pigeonhole principle).8 Now if n = |j − i| then n ≤ N and

±nα = (j − i)α = mjα + (jα)−miα − (iα) = M + ∆

where |∆| = |(jα) − (iα)| < 1
N and M = mjα − miα ∈ Z so that mnα = ±M .

Writing m = mnα we find that |nα−m| < 1
N so that∣∣∣∣α− m

n

∣∣∣∣ < 1

nN
≤ 1

n2
.

This is a close approximation to α by rationals, and one wonder whether one can
do much better? In general, no, since the continued fraction of the golden ratio

φ := 1+
√

5
2 implies that the best approximations to φ are given by Fn+1/Fn, n ≥ 1

where Fn is the nth Fibonacci number. One can show that∣∣∣∣φ− Fn+1

Fn

∣∣∣∣ ∼ 1√
5
· 1

F 2
n

,

and so all approximations to φ by rationals p/q miss by ≥ {1 + o(1)} 1√
5
· 1
q2 .

This led researchers at the end of the 19th century to realize that if the partial
quotients in the continued fraction for irrational α are bounded, say by B (note that
φ = [1, 1, 1, . . . ]) then there exists a constant c = cB > 0 such that |α − m

n | ≥
cB
n2 .

However there are very few such α under any reasonable measure. If the partial
quotients aren’t bounded then how good can approximations be? And how well
can one approximate famous irrationals like π? (still a very open question).9

An easy argument shows that the set of α ∈ [0, 1) with infinitely many rational
approximations m

n for which |α − m
n | ≤

1
n3 has measure 0. Indeed if there are

infinitely many such rational approximations then there is one with n > x (an
integer). Now for each n the measure of α ∈ [0, 1) with |α − m

n | ≤
1
n3 is 1

n3 for

m = 0 or n, 2
n3 for 1 ≤ m ≤ n − 1 and 0 otherwise, a total of 2

n2 , and summing

that over all n > x gives
∑
n>x

2
n2 <

∫∞
x

2
t2 dt = 2

x . Letting x→∞ we see that the

measure is 0. Obviously the analogous result holds for |α− m
n | ≤

1
(n logn)2 , and any

other such bounds that lead to convergence of the infinite sum.
More generally we should study, for a given function ψ : Z≥1 → R≥0, the set

L(ψ) which contains those α ∈ [0, 1) for which there are infinitely many rationals

8And by embedding the interval onto the circle by the map t→ e(t) := e2iπt we see that they

must differ by < 1
N+1

.
9If α has continued fraction [a0, a1, . . . ] and q2|α− b

q
| < 1

2
then b/q = bj/qj a convergent of the

continued fraction, and then one can show that 1
2
≤ qjqj+1|α−

bj
qj
| < 1. Now qj+1 = ajqj + qj−1

and qj−1 < qj so that ajqj ≤ qj+1 < (aj + 1)qj , and therefore the best approximations have

q2j |α−
bj
qj
| � 1/aj ; that is, we get better approximations the large the aj in the continued fractions

(especially in comparison to the qj). Thus this problem seems resolved except that we do not

understand well the continued fractions of most real numbers α, so we have simply transferred the
difficulty of the problem into a different domain. See appendix 11B of [13] for more on continued
fractions.
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m/n for which ∣∣∣∣α− m

n

∣∣∣∣ ≤ ψ(n)

n2
.

We have seen that L(1) = [0, 1) whereas if c < 1/
√

5 then φ − 1 6∈ L(c) so L(c) 6=
[0, 1). Moreover if

∑
n ψ(n)/n is convergent then µ(L(ψ)) = 0 where µ(·) is the

Lebesgue measure. In each case that we worked out, µ(L(ψ)) = 0 or 1, and Cassels
[3] showed that this is always true (using the Birkhoff Ergodic Theorem)! So we
need only decide between these two cases.

The first great theorem in metric Diophantine approximation was due to Khinchin
who showed that if ψ(n) is a decreasing function then

µ(L(ψ)) =

{
0

1
if and only if

∑
n≥1

ψ(n)

n
is

{
convergent

divergent
.

Thus measure 1 of reals α have approximations m
n with |α − m

n | ≤
1

n2 logn , and

measure 0 with |α− m
n | ≤

1
n2(logn)1+ε

The hypothesis “ψ(n) is decreasing” is too restrictive since, for example, one
can’t determine anything from this about rational approximations where the de-

nominator is prime. So can we do without it? Our proof above that if
∑
n≥1

ψ(n)
n is

convergent then µ(L(ψ)) = 0, works for general ψ. Indeed we follow the usual proof

of the first Borel-Cantelli lemma: Let En be the event that α ∈ [mn −
ψ(n)
n2 , mn +

ψ(n)
n2 ] ∩ [0, 1] for some m ∈ {0, 1, . . . , n}, where we have selected α randomly from

[0, 1], and we established that
∑
n P(En) =

∑
n
ψ(n)
n < ∞. Then, almost surely,

only finitely many of the Ej occur, and so µ(L(ψ)) = 0.
The second Borel-Cantelli lemma states that if the En are independent and∑
n P(En) diverges then almost surely infinitely many of the Ej occur. Our En are

far from independent (indeed compare En with E2n) but this nonetheless suggests
that perhaps with the right notion of independence it is feasible that Khinchin’s
theorem holds without the decreasing condition.

2.1. Duffin and Schaefer’s example. However Duffin and Schaefer constructed

a (complicated) example of ψ for which
∑
n≥1

ψ(n)
n diverges but µ(L(ψ)) = 0;. Their

example uses many representations like 1
3 = 2

6 , that is, non-reduced fractions:
We begin with ψ0 where ψ0(q) = 0 unless q = q` :=

∏
p≤` p is the product of the

primes up to some prime `, in which case ψ0(q`) = q`
` log ` . Therefore∑

q

ψ0(q)

q
=
∑
`

1

` log `

which converges by the prime number theorem, and so µ(L(ψ0)) = 0 as we just
proved in the last subsection.

Now we construct a new ψ for which if q is squarefree integer with largest prime
factor ` (so that q divides q`), then ψ(q) = q2/(q`` log `), and ψ(q) = 0 otherwise.

Now if |x− a
q | ≤

ψ(q)
q2 then for A = a(q`/q) we have∣∣∣∣x− A

q`

∣∣∣∣ =

∣∣∣∣x− a

q

∣∣∣∣ ≤ ψ(q)

q2
=
ψ(q`)

q2
`

=
ψ0(q`)

q2
`
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so that L(ψ) = L(ψ0) which has measure 0. On the other hand

∑
q

ψ(q)

q
=
∑
`

1

` log `

∑
`|q|q`

q

q`
=
∑
`

1

` log `

∏
p<`

(
1 +

1

p

)
�
∑
`

1

`

by Mertens’ Theorem, which diverges.

2.2. A revised conjecture. Duffin and Schaefer’s example uses many represen-
tations like 1

3 = 2
6 , which suggests that we should restrict attention to reduced frac-

tions m
n with (m,n) = 1. We let E∗n be the event that α ∈ [mn −

ψ(n)
n2 , mn +ψ(n)

n2 ]∩[0, 1]
for some m ∈ {0, 1, . . . , n} with (m,n) = 1.

Therefore Duffin and Schaefer defined L∗(ψ) to be those α ∈ [0, 1) with infinitely
many reduced fractions m/n for which∣∣∣∣α− m

n

∣∣∣∣ ≤ ψ(n)

n2
,

and conjectured

µ(L∗(ψ)) =

{
0

1
if and only if

∑
n≥1

φ(n)

n
· ψ(n)

n
is

{
convergent

divergent
.

Here φ(n) = #{mn ∈ [0, 1) : (m,n) = 1}. Now if
∑
n P(E∗n) =

∑
n
φ(n)
n · ψ(n)

n <∞,
then almost surely, only finitely many of the E∗j occur, and so µ(L∗(ψ)) = 0. We

therefore can assume that
∑
n≥1

φ(n)
n · ψ(n)

n is divergent.

Gallagher [11] (in a slight variant of Cassell’s result [3]) showed that µ(L∗(ψ))
always equals either 0 or 1. Therefore we only need to show that µ(L∗(ψ)) > 0 to
deduce that µ(L∗(ψ)) = 1.

Duffin and Schaefer themselves proved the conjecture in the case that there are
arbitrarily large Q for which∑

q≤Q

φ(q)

q
· ψ(q)

q
�
∑
q≤Q

ψ(q)

q
;

which more-or-less implies that the main weight of ψ(q) should not be focussed on
integers q with many small prime factors (which are extremely rare), since that is
what forces

φ(q)

q
=
∏
p|q

(
1− 1

p

)
to be small.

Thus for example, the conjecture follows if we only allow prime q (that is, if ψ(q) = 0
whenever q is composite), or even only allow integers q which have no prime factors
< log q.

In 2021, Koukoulopoulos and Maynard [22] showed that this Duffin-Schaefer
conjecture is true, the end of a long saga. The proof is a blend of number theory,
probability theory, combinatorics, ergodic theory, and graph theory combined with
considerable ingenuity.
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2.3. Probability. Assuming that
∑
n≥1

φ(n)
n · ψ(n)

n is divergent, we want to show
that almost surely, infinitely many of the E∗j occur, where E∗q is the event that α
belongs to

[0, 1) ∩
⋃

(a,q)=1

[
a

q
− ψ(q)

q2
,
a

q
+
ψ(q)

q2

]
.

The E∗q are not “independent”, but were they independent enough, say if

µ(E∗q ∩ E∗r ) = (1 + oq,r→∞(1))µ(E∗q )µ(E∗r ),

then we could prove our result; however one can easily find counterexamples to this,
for example when r = 2q. However since we only need to show that µ(L∗(ψ)) > 0,
we will only need to establish a very weak quasi-independence, on average, like

(2.1)
∑

Q≤q 6=r<R

µ(E∗q ∩ E∗r ) ≤ 106

( ∑
Q≤q<R

µ(E∗q )

)2

for arbitrarily large Q and certain R: Since
∑
q≥Q µ(E∗q ) = 2

∑
q≥Q

φ(q)
q · ψ(q)

q

diverges, we may select R ≥ Q for which 1 ≤
∑
Q≤q<R µ(E∗q ) ≤ 2. Now let

N =
∑
Q≤q<R 1E∗q so that E[N ] =

∑
Q≤q<R µ(E∗q ) and so

1 ≤
( ∑
Q≤q<R

µ(E∗q )

)2

= E[N ]2 = E[1N>0 ·N ]2 ≤ µ
( ⋃
Q≤q<R

E∗q

)
· E[N2]

= µ

( ⋃
Q≤q<R

E∗q

) ∑
Q≤q,r<R

µ(E∗q ∩ E∗r )

by the Cauchy-Schwarz inequality. Therefore

µ

( ⋃
q≥Q

E∗q

)
≥ µ

( ⋃
Q≤q<R

E∗q

)
≥ 10−6

by (2.1). But this is true for arbitrarily large Q and so µ(L∗(ψ)) ≥ 10−6, which
implies that µ(L∗(ψ)) = 1.

Following Pollington and Vaughan [29] we study µ(E∗q ∩E∗r ), assuming (q, r) = 1

for convenience: If α ∈ [aq−
ψ(q)
q2 , aq +ψ(q)

q2 ]∩[ br−
ψ(r)
r2 , br+ψ(r)

r2 ] with (a, q) = (b, r) = 1

then |aq −
b
r | ≤

ψ(q)
q2 + ψ(r)

r2 ≤ 2∆ where ∆ := max{ψ(q)
q2 , ψ(r)

r2 } and the overlap

will have size ≤ 2δ where δ := min{ψ(q)
q2 , ψ(r)

r2 }. Now the a
q −

b
r are in 1-to-1

correspondence with the n
qr as n runs through the reduced residue classes mod qr.

Therefore, by the small sieve,

µ(E∗q ∩ E∗r ) ≤ 2δ#{n : |n| ≤ 2∆qr and (n, qr) = 1} � δ∆qr
∏
p|qr
p≤∆qr

(
1− 1

p

)

≤ φ(q)ψ(q)

q2
· φ(r)ψ(r)

r2
· exp

( ∑
p|qr
p>∆qr

1

p

)
� µ(E∗q )µ(E∗r ) exp

( ∑
p|qr
p>∆qr

1

p

)
.

(If (q, r) > 1 then we need only alter this by taking p|qr/(q, r)2 instead of p|qr in
the sum over p on the far right of the previous displayed equation.)

Using this one can easily deduce the Duffin-Schaefer conjecture provided ψ(·)
does not behave too wildly. For example Erdős and Vaaler [7, 30] proved the
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Duffin-Schaefer conjecture provided the ψ(n) are bounded. Key to this is to note
that there are � e−yx integers n ≤ x for which∑

p|n
p>y

1

p
≥ 1.

Therefore we obtain good enough bounds on µ(E∗q ∩E∗r ) in the previous displayed
equation unless (q, r) is large, and unless q and r are each divisible by a lot of
different small prime factors. This reduces the problem to one in the anatomy of
integers (a concept that is brought to life in the graphic novel [14]).

2.4. The anatomy of integers. By partitioning [Q,R] into dyadic intervals and
studying the contribution of the integers in such intervals to the total we find
ourselves drawn towards the following

Model Problem Fix η ∈ (0, 1]. Suppose that S is a set of � ηQ/B integers in
[Q, 2Q] for which there are at least η|S|2 pairs q, r ∈ S such that (q, r) ≥ B. Must
there be an integer g ≥ B which divides �η Q/B elements of S?

The model problem is false but a technical variant, which takes account of the
φ(q)/q-weights, is true.10 Using this one can reduce the problem to the Erdős-Vaaler
argument, by anatomy of integers arguments, and prove the theorem.

To attack the (variant of the) Model Problem, Koukoulopoulos and Maynard
view it as a question in graph theory:

2.5. Graph Theory. Consider the graph G, with vertex set S and edges between
vertices representing pairs of integers with gcd> B.

11

12

20

55

10

25

35

7

11

5

5

5

7

5

2

4

10

5
5

5

5

5

Figure 2. Vertices = The integers in our set.
. Edges = Pairs of integers with a large GCD.

10Let Q =
∏
p≤2y p and S := {Q/p : y < p ≤ 2y}. If q = Q/p, r = Q/` ∈ S then (q, r) =

Q/p` ≥ B := Q/4y2, but any integer ≥ B divides no more than two elements of S. (This is
adapted from an idea of Sam Chow.)
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Beginning with such a graph for which the edge density is η, we wish to prove that
there is a “dense subgraph” H whose vertices are each divisible by a fixed integer
≥ B. To locate this structured subgraph H, Koukoulopoulos and Maynard use
an iterative “compression” argument, inspired by the papers of Erdös-Ko-Rado [6]
and Dyson [5]: with each iteration, they pass to a smaller graph but with more
information about which primes divide the vertices. This is all complicated by
the weights φ(q)/q. The details are complicated (see a vague sketch in the next
subsection); and the reader is referred to [21], where the original proof of [22] is
better understood from more recent explorations of Green and Walker [15], who
gave an elegant proof of the following important variant:

If R ⊂ [X, 2X] and S ⊂ [Y, 2Y ] are sets of integers for which (r, s) ≥ B for at
least δ|R||S| pairs (r, s) ∈ R× S then |R||S| �ε δ

−2−εXY/B2.
Although this has a slightly different focus from the model problem, it focuses

on the key question of how large such sets can get and takes account of the example
of footnote 8 (unlike the model problem).

2.6. Iteration and graph weights. The key to any such iteration argument is
to develop a measure of how close one is getting to the goal, which can require
substantial ingenuity. In their paper Koukoulopoulos and Maynard [22] begin with
two copies of S and construct a bipartite graph V0×W0 with edges in-between q ∈
V0 = S and r ∈W0 = S if (q, r) ≥ B. The idea is to select distinct primes p1, p2, . . .
and then Vj = {v ∈ Vj−1 : pj divides v} or Vj = {v ∈ Vj−1 : pj does not divide v},
and similarly Wj , so that pj divides all (vj , wj), vj ∈ Vj , wj ∈ Wj or none. If we
terminate at step J then there are integers aJ , bJ , constructed out of the pj , such
that aJ divides every element of VJ and bJ divides every element of WJ . The goal is
to proceed so that (vJ , wJ) ≥ B for some J , for all vJ ∈ VJ , wJ ∈WJ such that all
of the prime divisors of any (vJ , wJ) appears amongst the pj . Hence, if say all the
integers in S are squarefree, then (aJ , bJ) = (vJ , wJ) ≥ B. So how do we measure
progress in this algorithm?

One key measure is δj , the proportion of pairs vj ∈ Vj , wj ∈Wj with (vj , wj) ≥
B, another the size of the sets Vj and Wj . Finally we want to measure how much of
the ajbj are given by prime divisors not dividing (aj , bj), so we use ajbj/(aj , bj)

2.
Koukoulopoulos and Maynard [22] found, after some trial and error, that the mea-
sure

δ10
j · |Vj | · |Wj | ·

ajbj
(aj , bj)2

fits their needs, allowing them eventually to restrict their attention to v, w ∈ S for
which aj divides v, bJ divides w and∑

p|vw/(v,w)2

p>y

1

p
≈ 1.

Koukoulopoulos and Maynard then finish the proof by applying a relative version
of the Erdös-Vaaler argument to the pairs (v/aJ , w/bJ).

2.7. Hausdorff dimension. If
∑
n≥1 φ(n)·(ψ(n)/n2) is convergent then µ(L∗(ψ)) =

0 so we would like to get some idea of the true size of L∗(ψ). Using a result of
Beresnevich and Velani [2], one can deduce that the Hausdorff dimension of L∗(ψ)
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is given by the infimum of the real β > 0 for which∑
n≥1

φ(n) ·
(

min

{
ψ(n)

n2
,

1

2

})β
is convergent.
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AN ESSENCE OF INDEPENDENCE: RECENT WORKS OF JUNE HUH ON
COMBINATORICS AND HODGE THEORY

CHRISTOPHER EUR

ABSTRACT. Matroids are combinatorial abstractions of independence, a ubiqui-
tous notion that pervades many branches of mathematics. June Huh and his col-
laborators recently made spectacular breakthroughs by developing a Hodge the-
ory of matroids that resolved several long-standing conjectures in matroid theory.
We survey the main results in this development and ideas behind them.

1. INTRODUCTION

The notion of “independence” resides everywhere, for example in graphs, vec-
tor configurations, field extensions, hyperplane arrangements, matchings, and dis-
crete optimizations. Matroid theory captures the combinatorial essence of “inde-
pendence” shared in these structures. For example, let us consider the following
graph G with edges labelled {1, . . . , 5} and the set of vectors {v1, . . . , v5}.

3

4

5

1

2

v1 v2 v3 v4 v51 1 0 0 0

0 1 1 1 0

0 0 0 1 1



FIGURE 1.

We observe a common combinatorial structure: A subset of edges in G is acyclic
if and only if the corresponding subset of vectors is linearly independent. This
combinatorial structure is encoded as a matroid, introduced by Whitney [Whi32].

Definition 1.1. A matroid M = (E, I) consists of a finite set E = {1, . . . , n}, called
its ground set, and a nonempty collection I of subsets of E, called the indepen-
dent sets of M, such that

if I ∈ I and J ⊆ I , then J ∈ I, and
if I, J ∈ I and |I| < |J |, then there exists an element j ∈ J \ I such that
I ∪ {j} ∈ I.

The definition implies that every maximal independent set of M has the same car-
dinality r, which we call the rank of M.

2020 Mathematics Subject Classification. 05B35, 05E14, 14F43, 14C17.
1
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Graphs and vector spaces give prototypical examples of matroids:

• When E is identified with the set of edges of a finite graph G, setting

I = {I ⊆ E : the subset I of edges in G is acyclic}

defines a matroid M = (E, I). Matroids arising in this way are called
graphical matroids.

• When E is identified with a finite set of vectors spanning a vector space V ,
setting

I = {I ⊆ E : the subset I of vectors in V is linearly independent}

defines a matroid M = (E, I). Matroids arising in this way are called
realizable matroids.

We see that the graph G and the set of vectors in Figure 1 define the same matroid.

1.1. Combinatorial sequences from a matroid. Several long-standing conjectures
in matroid theory, recently resolved by June Huh and his collaborators, concern
the behavior of sequences of invariants of a matroid. For a sequence (a0, a1, . . . , am)

of nonnegative real numbers, we say that it

• is unimodal if there exists 0 ≤ k ≤ m such that

a0 ≤ a1 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ am,

• is log-concave if a2
i ≥ ai−1ai+1 for all 1 ≤ i ≤ m− 1,

• has no internal zeros if aiaj 6= 0 implies ak 6= 0 for all 0 ≤ i ≤ k ≤ j ≤ 0, and
• is top-heavy if ai ≤ ad−i for all 0 ≤ i ≤ d

2 where d is the largest index such
that ad 6= 0.

Note that a log-concave sequence is unimodal if and only if it has no internal ze-
roes. For a survey of unimodality and log-concavity in combinatorics, see [Sta89,
Bre94].

We consider the following sequences of invariants of a rank r matroid M. For
some of them, we describe them only for a graphical or a realizable matroid, post-
poning their descriptions for arbitrary matroids to Section 2.

(a) For 0 ≤ i ≤ r, let Ii be the number of independent sets of M of cardinality
i. In other words, the sequence (I0, . . . , Ir) is the f -vector of the simplicial
complex whose faces are the independent sets of M.

(b) We may also consider the h-vector. That is, for 0 ≤ i ≤ r, let I ′i be defined
by the identity

∑r
i=0 I

′
iq
r−i =

∑r
i=0 Ii(q − 1)r−i.

(c) Suppose M is the graphical matroid of a finite connected nontrivial graph
G. The chromatic polynomial χG(q) of G is defined as

χG(q) = the number of proper colorings of G with at most q colors,

where a coloring of the vertices is proper if no two vertices of an edge
share the same color. It is polynomial in q of degree r + 1, and is divisible
by q(q − 1). Let (w0, . . . , wr) be the absolute values of the coefficients of
1
qχG(q), starting from the highest degree term.
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(d) Continuing the assumption that M is the graphical matroid ofG, we define
(w′0, . . . , w

′
r−1) as the absolute values of the coefficients of 1

q(q+1)χG(q+ 1).
(e) Suppose M is the realizable matroid of a set of vectors {v1, . . . , vn} span-

ning a vector space V . Let (W0, . . . ,Wr) be a sequence defined by setting
for each 0 ≤ i ≤ r,

Wi = the number of i-dimensional linear subspaces V ′ in V such
that V ′ is the span of a subset of the vectors {v1, . . . , vn}.

We leave it as an exercise to check that for the matroid associated to the graph
or the vector configuration in Figure 1, we have:

(I0, I1, I2, I3) = (1, 5, 10, 8), (w0, w1, w2, w3) = (1, 5, 8, 4),
(I ′0, I

′
1, I
′
2, I
′
3) = (1, 2, 3, 2), (w′0, w

′
1, w

′
2) = (1, 2, 1),

(W0,W1,W2,W3) = (1, 5, 6, 1).

Notice in this example that every sequence is unimodal, log-concave, and top-
heavy. Several conjectures from the 70’s posited that these sequences are uni-
modal, log-concave, or top-heavy for an arbitrary matroid. We describe these
conjectures and their history more fully in Section 2.2.

1.2. An approach from algebraic geometry. After decades of little progress, a
breakthrough happened when many of these conjectures were resolved for real-
izable matroids using algebraic geometry: Huh and Katz [Huh12, HK12] showed
that the sequence (c) is log-concave (with no internal zeros), Huh [Huh15] showed
that (d) is log-concave (with no internal zeros), and Huh and Wang [HW17] showed
that (e) is top-heavy. These developments were particularly significant in light of
the following phenomena in matroid theory:

The geometry of realizable matroids often inspires purely combinatorial con-
structions for all matroids. Certain geometric properties, a priori applicable only
to realizable matroids, persist to all matroids through these purely combinatorial
constructions. This is surprising because almost all matroids are not realizable
[Nel18], but such a creative tension between geometry and combinatorics is a re-
curring theme in matroid theory.

A recent spectacular example of this phenomenon is the development of the
Hodge theory of matroids by June Huh and his collaborators [AHK18, ADH22,
BHM+22, BHM+], which successfully resolved conjectures about log-concavity or
top-heaviness of the sequences (a),. . . ,(e) for arbitrary (not necessarily realizable)
matroids. They established that matroids satisfy combinatorial analogues of cer-
tain Hodge-theoretic properties in algebraic geometry, known sometimes as the
“Kähler package”:

Definition 1.2. Let A• =
⊕d

i=0A
i be a finite-dimensional graded real vector space

with a symmetric bilinear form P : A• × Ad−• → R, and let K be a convex subset
of graded linear operators L : A• → A•+1 satisfying P (Lx, y) = P (x, Ly) for all
x, y ∈ A•. The triple (A•, P,K) is said to satisfy the Kähler package if the following
three properties hold for all nonnegative integers i ≤ d

2 :
(PD) The pairing P : Ai ×Ad−i → R is non-degenerate (Poincaré duality).
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(HL) For any L1, . . . , Ld−2i ∈ K, the linear map

Ai → Ad−i given by x 7→ L1 · · ·Ld−2ix

is an isomorphism (hard Lefschetz property in degree i).
(HR) For any L0, L1, . . . , Ld−2i ∈ K, the symmetric bilinear pairing

Ai ×Ai → R given by (x, y) 7→ (−1)iP (x, L1 · · ·Ld−2iy)

is positive definite when restricted to the kernel of the map Ai → Ad−i+1

given by x 7→ L0L1 · · ·Ld−2ix (Hodge-Riemann relations in degree i).

Classical Hodge theory tells us that these properties are satisfied when A• is
the cohomology ring of real (p, p)-forms on a complex projective manifold, P is
the Poincaré duality pairing, and K consists of multiplication by ample divisor
classes (see [Huy05] or [Voi02]).

The geometry behind realizable matroids led to purely combinatorial construc-
tions for various “cohomologies” of a matroid. These constructions include the
Chow ring of a matroid [FY04, AHK18], the conormal Chow ring of a matroid
[ADH22], and the intersection cohomology of a matroid [BHM+]. For a matroid
realizable over C, all three satisfy the Kähler package due to classical algebraic
geometry. The incredible result of June Huh and his collaborators—Karim Adipr-
asito, Federico Ardila, Tom Braden, Graham Denham, Eric Katz, Jacob Matherne,
Nick Proudfoot, Botong Wang—is that the Kähler package continues to hold for
these “cohomologies” of a matroid even when the matroid is not realizable.

We survey this remarkable development in matroid theory and its connection to
algebraic geometry in four parts. In Section 2, we give a brief introduction to ma-
troids, and describe the long-standing conjectures resolved by the Hodge theory of
matroids. In Section 3, we explain how the conjectures in the case of realizable ma-
troids were resolved using algebraic geometry. In Section 4, we discuss the Kähler
package for Chow rings of fans and matroids, and how the validity of (HR) im-
plies the conjectures about log-concavity. In Section 5, we discuss the intersection
cohomology of a matroid, and explain its implication to top-heaviness.

Several interesting topics had to be omitted, even though they are closely re-
lated to the topics discussed here. A partial list includes the following:

• The Kazhdan-Lusztig theory of matroids [EPW16], which was an inspira-
tion behind the construction of intersection cohomology of a matroid. We
point to [Pro18] for a survey of Kazhdan-Lusztig-Stanley polynomials in a
more general context.
• The study of matroids through the polyhedral geometry of their base poly-

topes, their subdivisions, and the geometry of the Grassmannian [GGMS87,
Laf03]. We point to the survey [Ard22, Section 4] and references therein.
• Other approaches to the “cohomology” of a matroid in the broader context

of tropical geometry, for instance [IKMZ19, AP].

We hope that this survey will spark the reader’s general interest in this active field
of the study of matroids from an algebro-geometric perspective.
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Notation. Throughout, let E = {1, . . . , n} be a finite set of cardinality n. For a
subset S ⊆ E, we denote by eS =

∑
i∈S ei the sum of standard basis vectors in

k
E , where the field k will be clear in context. An algebraic variety is reduced and

irreducible (over an algebraically closed field).

Acknowledgements. The author thanks June Huh for helpful conversations, and
Matt Baker, Andrew Berget, Tom Braden, Eric Katz, and Matt Larson for helpful
suggestions and comments on a preliminary draft of this article.

2. BACKGROUND IN MATROID THEORY

Here we give a minimal introduction to matroids. In addition to standard ref-
erences on matroids such as [Wel76, Oxl11], we point to [Ard22, Bak18, Huh18,
Kat16] for surveys tailored towards studying matroids from an algebro-geometric
viewpoint.

2.1. Constructions. Since subsets of independent sets are independent, we may
specify a matroid by its maximal independent sets, called the bases of the matroid.

Example 2.1. For an integer 0 ≤ r ≤ n, the uniform matroid of rank r on E is the
matroid Ur,n whose bases are all subsets of cardinality r. When n = r, we say that
Un,n is the Boolean matroid on E. The Boolean matroid U0,0, i.e. when E = ∅ so
n = r = 0, is called the trivial matroid. Any uniform matroid Ur,n is realizable
over any infinite field k as a general collection of n vectors in V = k

r.

Example 2.2. We may visualize a collection of vectors in a 4-dimensional vector
space as a collection of points in the projective 3-space P3. For example, the 5
column vectors of the matrix


1 0 0 −1 0

0 1 0 −1 0

0 0 1 −1 0

0 0 0 0 1



can be visualized as the purple points, four of which lie in a common projective
plane. The bases of this matroid are {1235, 1245, 1345, 2345}.

We define the dual matroid M⊥ of a matroid M on ground set E by declaring

the set of bases of M⊥ = {E \B : B a basis of M}.

For example, we have U⊥r,n = Un−r,n. For the matroid M in Example 2.2, its dual
M⊥ has the set of bases {1, 2, 3, 4}. Many notions in matroid theory come in pairs
via matroid duality. For instance, an element e ∈ E is a loop of M if it is in no
bases, and is a coloop if it is in every basis of M. The matroid in Example 2.2 has
no loops and has a coloop 5, or equivalently, its dual matroid has no coloops and
has a loop 5.
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Another useful way of describing a matroid is by its rank function. For a ma-
troid M = (E, I), its rank function rkM : 2E → Z is defined by

rkM(S) = max{|I| : I ∈ I and I ⊆ S} for every subset S ⊆ E.

In particular, an independent set of a matroid M is a subset I ⊆ E whose rank
rkM(I) equals its cardinality |I|. That is, independent sets are the minimal subsets
of E with respect to a given rank. Considering the maximal subsets leads to the
notion of flats of a matroid.

Definition 2.3. A flat of a matroid M on E is a subset of E that is maximal for its
rank. That is, a subsetF ⊆ E is a flat of M if rkM(F∪{e}) > rkM(F ) for all e ∈ E \ F .

The set of flats of a matroid M forms a poset under inclusion. This poset is a
lattice with meet and join defined by

F ∧ F ′ = F ∩ F ′ and F ∨ F ′ = the smallest flat containing F ∪ F ′.

For example, the lattice of flats of the matroid in Example 2.2 is

∅

5 4 3 2 1

45 34 35 25 24 23 15 24 13 12

345 245 235 145 135 125 1234

12345

Exercise 2.4.

(1) Show that every subset is contained in a unique flat of the same rank. In
particular, the join of flats is well-defined.

(2) How can one recover the bases of a matroid from the lattice of its flats?
(3) Compute the lattice of flats of the matroid of the graph in Figure 1.

We record some linear algebraic interpretations of the notions introduced for a
matroid M realized by a set of vectors {v1, . . . , vn} spanning a vector space V :

• The bases of M are subsets B ⊆ E such that {vi : i ∈ B} is a basis of V .
• An element e ∈ E is a loop if and only if ve = 0.
• We have rkM(S) = dim span{vi : i ∈ S} for any subset S ⊆ E.
• The flats of M are subsets F ⊆ E such that F = V ′ ∩ {v1, . . . , vn} for some

linear subspace V ′ ⊆ V . That is, the flats correspond to the different spans
of subsets of the vectors.

Per the last bullet point, we now define the sequence (e) for arbitrary matroids.
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Definition 2.5. For a matroid M of rank r, the Whitney numbers of the second
kind (W0,W1, . . . ,Wr) are defined by

Wi = the number of flats of M with rank i.

Exercise 2.6. Show that if M is the graphical matroid of the complete graph on N
vertices, then its flats of rank i correspond to partitions ofN intoN− i (nonempty)
parts. In particular, the numbers (W0,W1, . . . ,WN−1) in this case are known as the
Stirling numbers of the second kind.

Matroid duality also admits a linear algebraic interpretation, given in the next
exercise.

Exercise 2.7. Let kE � V be the map given by ei 7→ vi, and let K be its kernel.
The short exact sequence 0 → K → k

E → V → 0 dualizes to 0 → V ∨ → k
E →

K∨ → 0. Show that the surjection kE � K∨ realizes the dual matroid M⊥.

An important pair of operations for forming new matroids from a given ma-
troid is the restriction and contraction.

Definition 2.8. For a matroid M on ground set E, and a subset A ⊆ E, we define
two matroids M|A and M/A on ground setsA andE\A, respectively, by specifying
their rank functions:

rkM|A(S) = rkM(S) for all S ⊆ A.

rkM/A(S) = rkM(S ∪A)− rkM(A) for all S ⊆ E \A.

The matroid M|A is called the restriction of M to A, and the matroid M/A is
called the contraction of M by A. The deletion M \ A of M by A is the restric-
tion M|(E \A).

These operations behave particularly well for a flat F of a matroid M:

• The set of flats of M|F is {F ′ : F ′ a flat of M contained in F}.
• The set of flats of M/F is {F ′ \ F : F ′ a flat of M containing F}.

These operations have a graphical and linear algebraic interpretations as well:
For the graphical matroid of a graph G, the deletion corresponds to deleting the
corresponding edges, and the contraction corresponds to contracting the corre-
sponding edges. When a matroid M is realized by a set of vectors {vi : i ∈ E}, the
restriction M|A is realized by the subset of vectors {vi : i ∈ A}. The contraction
M/A is realized by the images of the vectors {vi : i ∈ E \A} under the quotient by
the span of {vi : i ∈ A}.

Exercise 2.9. Show that deletion and contraction are dual notions, that is, we have
(M \A)⊥ = M⊥/A.

2.2. Invariants. Introduced for graphs by Tutte [Tut67] and extended to matroids
by Crapo [Cra69], the Tutte polynomial is among the most famous invariants of
a matroid. For the proofs of the statements here, as well as a fuller treatment of
Tutte polynomials, see [BO92].
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Definition 2.10. Tutte polynomial of a matroid M of rank r on ground set E is a
bivariate polynomial defined as

TM(x, y) =
∑
S⊆E

(x− 1)r−rkM(S)(y − 1)|S|−rkM(S).

The Tutte polynomial is the universal deletion-contraction invariant:

Theorem 2.11. The Tutte polynomial can be defined recursively by

TM(x, y) =


xTM/e(x, y) if e ∈ E a coloop in M

yTM\e(x, y) if e ∈ E a loop in M

TM\e(x, y) + TM/e(x, y) if e ∈ E neither loop nor coloop

with TU0,0(x, y) = 1. If f is an invariant of matroids with values in a (commutative
unital) ring R such that f(U0,0) = 1 and there exists x0, y0, a, b ∈ R satisfying

f(M) =


x0f(M/e) if e ∈ E a coloop in M

y0f(M \ e) if e ∈ E a loop in M

af(M \ e) + bfM/e) if e ∈ E neither loop nor coloop

for all matroids M and an element e. Then, we have

f(M) = a|E|−rkM(E)brkM(E)TM

(x0

b
,
y0

a

)
.

The theorem implies the following basic properties of the Tutte polynomial:

• The Tutte polynomial TM(x, y) of a matroid M has nonnegative coefficients.
• The constant term of TM(x, y) is zero unless M is the trivial matroid.
• For the dual matroid M⊥, we have TM⊥(x, y) = TM(y, x).

Univariate specializations of the Tutte polynomial leads to many interesting
combinatorial sequences. For example, we deduce from the definition that for a
matroid M of rank r,

TM(q + 1, 1) =

r∑
i=0

Iiq
r−i,

where we recall from (a) that Ii is the number of independent sets of M of cardi-
nality i. Consequently, we have that the sequence (I ′0, . . . , I

′
r) of (b) is given by

TM(q, 1) =

r∑
i=0

I ′iq
r−i.

Another important specialization is the characteristic polynomial χM of a ma-
troid M of rank r, defined as

χM(q) = (−1)rTM(1− q, 0).

The basic properties of the Tutte polynomial listed above imply that the coeffi-
cients of χM(q) have alternating signs, and that χM(q) is divisible by (q− 1) unless
M is a trivial matroid. Thus, one often divides out (q − 1) to define the reduced
characteristic polynomial χM(q) = χM(q)/(q − 1). It follows from Theorem 2.11
that χM = 0 if M has a loop.
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The characteristic polynomial of a graphical matroid essentially equals the chro-
matic polynomial of the graph in the following way.

Exercise 2.12. Show that if M is the graphical matroid of a finite graph G, and G

has c many connected components, then qcχM(q) = χG(q). (Hint: Appeal to Theo-
rem 2.11 by showing that both satisfies an identical deletion-contraction relation).

We may now state the sequences (c) and (d), which we only stated for graphical
matroids, for arbitrary nontrivial matroids: They are the coefficients of TM(1+q, 0)

and 1
qTM(q, 0), respectively.

Summarizing, the have the following sequences for a matroid M of rank r.
(a) The coefficients (I0, . . . , Ir) of TM(q + 1, 1) =

∑r
i=0 Iiq

r−i.
(b) The coefficients (I ′0, . . . , I

′
r) of TM(q, 1) =

∑r
i=0 I

′
iq
r−i.

(c) The coefficients (w0, . . . , wr) of TM(q + 1, 0) =
∑r
i=0 wiq

r−i.
(d) The coefficients (w′0, . . . , w

′
r−1) of 1

qTM(q, 0) =
∑r
i=0 Iiq

r−1−i.
(e) The Whitney numbers of the second kind (W0, . . . ,Wr) of M.

Theorem 2.13. [AHK18, ADH22, BHM+] Let M be a matroid of rank r.
(a) The sequence (I0, . . . , Ir) is unimodal, log-concave, and top-heavy.
(b) The sequence (I ′0, . . . , I

′
r) is unimodal, log-concave, and top-heavy.

(c) The sequence (w0, . . . , wr) is unimodal, log-concave, and top-heavy.
(d) The sequence (w′0, . . . , w

′
r−1) is unimodal, log-concave, and top-heavy.

(e) The sequence (W0, . . . ,Wr) satisfies Wi ≤ Wj for all 0 ≤ i ≤ j ≤ r − i. In
particular, it is top-heavy.

The statements of the theorem were long-standing conjectures in matroid the-
ory. The unimodality and log-concavity conjectures are due to: Welsh [Wel71] and
Mason [Mas72] for (a), Dawson [Daw84] for (b), Read [Rea68] and Hoggar [Hog74]
for (c) of graphical matroids, Heron [Her72], Rota [Rot71], and Welsh [Wel76] for
(c), and Brylawski [Bry82] for (d). Hibi [Hib92] and Swartz [Swa03] posed the
top-heaviness of (b) and (d) (respectively).1 Dowling and Wilson [DW74, DW75]
conjectured the top-heaviness of (e), generalizing a theorem of de Bruijn and Erdös
[dBE48] on point-line incidences in projective planes. There are two notable con-
jectures on (e) that remain open: Rota [Rot71] conjectured its unimodality, and
Mason [Mas72] its log-concavity.

Remark 2.14. One may ask if there is a log-concavity statement for the whole Tutte
polynomial of a matroid that explains the log-concavity of the four specializations
in Theorem 2.13. This was achieved by Berget, Spink, Tseng, and the author [BEST]
who showed that the 4-variable transformation

(x+ y)−1(y + z)r(x+ w)|E|−rTM

(
x+ y

y + z
,
x+ y

x+ w

)
1A slightly different terminology of flawless-ness appears in [Hib92] and related works [Hib89,

JKL18]. A nonnegative sequence (a0, . . . , am) is flawless if it is top-heavy and additionally satisfies
a0 ≤ · · · ≤ abd/2c, where d is the largest index such that ad 6= 0. Note that unimodal and top-heavy
sequences are flawless.
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of the Tutte polynomial of a matroid M satisfies a multivariate version of log-
concavity. We note that without such a transformation, the coefficients of TM(x, y)

can fail to be unimodal [Sch93].

In this survey, we will explain how the sequences (c) and (d) are shown to be
log-concave with no internal zeros,2 and how the sequence (e) is shown to be top-
heavy. Since χM = 0 if M has a loop, and deleting loops of a matroid does not
change the lattice of its flats, we assume the following:

Assumption. From now on, a matroid is loopless unless specified otherwise.

3. THE REALIZABLE CASE

We explain how the statements in Theorem 2.13 can be deduced using algebraic
geometry when the matroid in question is realizable. We assume familiarity with
algebraic geometry; those who prefer purely combinatorial treatments may skip
this section. For simplicity, we consider matroids realizable over C. For other
fields, one can run nearly identical arguments using the Chow cohomology ring
[Ful98] or the `-adic (intersection) cohomology in place of singular (intersection)
cohomology (I)H•(−) with rational coefficients.

Throughout this section, let M be a (nontrivial) matroid of rank r realized by a
set of vectors {vi : i ∈ E} spanning a vector space V ' Cr. The corresponding
surjection CE � V dualizes to give an r-dimensional linear subspace V ∨ ⊆ CE .

Notation. Let us denote L = V ∨ to avoid repeated use of the superscript ∨.

The set of independent sets of M can then be described also as the collection

I = {I ⊆ E : the composition L ↪→ k
E � k

I is surjective}.

We will often projectivize and work with PL ⊆ Pn−1.

3.1. Hyperplane arrangements. We first discuss some structures of the matroid
M in terms of its realization as a subspace L ⊆ CE . For each i ∈ E let Hi be the
i-th coordinate hyperplane of CE . Our assumption that M is loopless implies that
L is not contained in any Hi. We thus have an hyperplane arrangement A on L

consisting of the hyperplanes {L ∩ Hi : i ∈ E}. Dualizing the correspondence
between the flats of M and the spans of subsets of the vectors {vi : i ∈ E}, we
obtain a correspondence

{flats of M} ←→ {subspaces of L arising as intersections of hyperplanes in A}

F ←→ LF = L ∩
⋂
i∈F

Hi.

Note that the correspondence is order-reversing, and in particular, a flat of rank
r − i maps to the linear subspace LF of dimension i.

2As observed by Lenz [Len13], a result of Brylawski [Bry77, theorem 4.2] implies that the statements
for (a) and (b) follow from those for (c) and (d). The top-heaviness of (c) and (d) follows from their
unimodality due to [JKL18, Theorem 1.2].
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Example 3.1. The columns of the matrix below realizes the matroid U3,4. Equiva-
lently, the embedded subspace L ⊆ C4, where L = {x1 + x2 + x3 + x4 = 0} is the
row-span of the matrix, realizes the matroid U3,4.

1 0 0 −1

0 1 0 −1

0 0 1 −1



Next to the matrix, we have depicted the lattice of flats of M and the projectiviza-
tion of the hyperplane arrangement A in PL ' P2.

We denote the complement of the hyperplane arrangement by

L̊ = L \
⋃
A = L ∩ (C∗)E , and likewise, PL̊ = PL ∩

(
(C∗)E/C∗

)
.

Exercise 3.2. Suppose i ∈ E is not a coloop, and let F be the smallest flat contain-
ing i. Show that the subspace LF is a realization of the contraction M/F , and that
the hyperplane arrangement complement L̊ \ LF is a realization of the deletion
M \ F . What happens when i is a coloop?

The geometric study of (complements of) hyperplane arrangements and its in-
teraction with matroid theory is a rich and on-going research field; some references
include [OT92, Dim17]. Here, we only note the following classical fact [OS80],
which states that the characteristic polynomial records the dimensions of the co-
homologies of the arrangement complement.

Theorem 3.3. Let L ⊆ CE realize a matroid M of rank r. Then, we have

TM(1 + q, 0) =

r∑
i=0

dimHi(L̊)qr−i,

or equivalently, by applying the Künnuth formula to PL̊× C∗ ' L̊,

1

1 + q
TM(1 + q, 0) =

r−1∑
i=0

dimHi(PL̊)qr−1−i.

3.2. Log-concavity via intersection degrees. We now explain how the log-concavity
of the sequences (c) and (d) can be shown using algebraic geometry. We start by
describing a general strategy for log-concavity.

LetX be a smooth projective C-varietyX of dimension d. When considered as a
2d-dimensional real compact manifold, Poincaré duality for the cohomology ring
H•(X) provides the isomorphism

∫
X

: H2d(X)→ Z, called the degree map. Recall
that a divisor D on X is ample (resp. semi-ample) if the line bundle OX(mD)

is very ample (resp. globally generated) for some integer m >> 0. The general
strategy arises from the following Khovanskii-Teissier inequalities (see [Laz04a,
Section 1.6] for a history and a fuller treatment).
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Proposition 3.4. Let α, β ∈ H2(X) be the cohomology classes of two semi-ample
(or more generally, nef) divisors on a smooth projective C-variety X of dimension
d. Then,

the sequence (a0, . . . , ad) of intersection degrees of α and β, i.e. ai =

∫
X

αd−iβi

is log-concave with no internal zeros.

Sketch of the proof. By continuity, one can assume α, β to be ample, and then one
reduces to the case of surfaces via the the Bertini theorem. Then, one of the equiv-
alent forms of the Hodge index theorem for surfaces [Har77, Exercise V.1.9] ex-
actly yields the desired log-concavity. We note that the Hodge index theorem
for surfaces stated as [Har77, Theorem V.1.9] is exactly the validity of the Hodge-
Riemann relations for surfaces. �

Thus, from the realization L ⊆ CE , one may seek for a smooth projective C-
variety equipped with two semi-ample divisor classes α, β such that their inter-
section degrees yield the appropriate combinatorial sequence. We explain how
this is done for the sequences (c) and (d).

3.2.1. Log-concavity of (c). We show the slightly stronger statement that the closely
related sequence (w0, . . . , wr−1) defined by

1

1 + q
TM(1 + q, 0) =

r−1∑
i=0

wiq
r−1−i

is log-concave with no internal zeros. Theorem 3.3 states that this sequence is
exactly the betti numbers of the arrangement complement PL̊. The sought-after
projective variety is the wonderful compactification of a hyperplane arrangement
complement introduced in [DCP95].

Definition 3.5. The wonderful compactification WL is the variety obtained by
blowing-up PL at all the points {PLF : rkM(F ) = r − 1}, then by blowing-up all
strict transforms of the lines {PLF : rkM(F ) = r − 2}, and so forth. Let πL : WL →
PL be the blow-down map.

By construction πL is isomorphism on the open loci PL̊. The boundary ∂WL =

WL \ PL̊ is a simple-normal-crossing divisor on WL [DCP95]. For the sought-after
divisor classes α, β onWL, the wonderful compactification for the Boolean matroid
plays a special role.

When M = Un,n, that is, when L = CE , the wonderful compactification is
known as the permutohedral varietyXAn−1

. Explicitly, it is obtained from Pn−1 by
blowing-up all n coordinate points of Pn−1, then blowing-up all strict transforms
of
(
n
2

)
coordinate lines of Pn−1, and so forth. Let π1 : XAn−1 → Pn−1 be the

blow-down map. Blowing-down the exceptional divisors in a “reverse manner”
(see [Huh18] for a detailed description via toric geometry), one obtains a different
blow-down map π2 : XAn−1

→ Pn−1. The resulting birational transformation
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is the Cremona transformation crem : Pn−1 99K Pn−1 given by [x1, . . . , xn] 7→
[ 1
x1
, . . . , 1

xn
] in the projective coordinates.

Returning to the case where M is not necessarily Boolean, we note the follow-
ing: Because the arrangement A on PL is the restriction to PL of the coordinate
hyperplane arrangement on Pn−1, the universal property of blow-ups implies that
WL is the strict transform of PL ⊆ Pn−1 under the blow-up π1. Summarizing, we
have a commuting diagram:

(†)
WL XAn−1

PL Pn−1 Pn−1

πL π1
π2

crem

Let h be the hyperplane class of Pn−1, and define divisor classes α and β on WL

to be the restrictions of π∗1h and π∗2h, respectively. Huh–Katz [HK12] showed that

1

1 + q
TM(1 + q, 0) =

r−1∑
i=0

(∫
WL

αr−1−iβi
)
qr−1−i.

Since α and β are both hyperplane class pullbacks, they are globally-generated, so
Proposition 3.4 implies the desired log-concavity.

How might one think to do this, at least in hindsight? Two key steps are as
follows.

(1) The commuting diagram (†) shows that α is also the pullback to WL of
the hyperplane class in PL, so we may loosely interpret multiplication
by α as restriction to a general hyperplane H in PL. As a linear subva-
riety H ⊂ Pn−1, this hyperplane H is again a realization of a matroid,
known as the truncation matroid tr(M) of M. With well-known properties
of characteristic polynomials [Zas87], it is straightforward to verify that

1
1+qTtr(M)(1 + q, 0) is obtained from 1

1+qTM(1 + q, 0) by erasing the con-
stant term and then dividing by q. That is, the sequence (w0, . . . , wr−2) for
tr(M) is obtained from that of M by simply removing the last entry.

(2) With the previous step, we now only need compare
∫
WL

βr−1 with the
constant term TM(1, 0). Let PL−1 be the closure of the image of PL̊ under
the Cremona transformation, often known as the reciprocal linear space.
By the construction of β, the degree of PL−1 as a subvariety of Pn−1 equals∫
WL

βr−1. On the other hand, the degree of PL−1 also equals TM(1, 0). This
last key fact was proven in several contexts [Ter02, PS06, Huh12, HK12].
A topological approach in [Huh12] is as follows: A result of Dimca and
Papadima [DP03] from (complex) Morse theory related the Euler charac-
teristic of a hypersurface complement to the degree of the gradient map.
The hypersurface {x1x2 · · ·xn = 0} ⊂ Pn−1 is the coordinate hyperplane
arrangement that restricts to the hyperplane arrangement A on PL, and
the gradient map of x1x2 · · ·xn is exactly the Cremona map. Combining
these facts with Theorem 3.3, one can deduce degPL−1 = TM(1, 0).
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Exercise 3.6. Let L be as in Example 3.1. Verify that TM(1, 0) = 3, and verify that
PL−1 is a cubic surface known as the Cayley nodal cubic. This cubic surface has
four singular points, with a line through each pair of points; explain where these
come from in terms of the wonderful compactification WL. (Bonus: This cubic
surface has three more lines, for the total of nine; where do they come from?)

3.2.2. Log-concavity of (d). The sought-after projective variety is the variety of crit-
ical points X, formally introduced in [CDFV11] but implicit in previous works
related to Varchenko’s problem on critical points of master functions on an affine
hyperplane arrangement [Var95]. Here, in order to build upon our previous dis-
cussion in Section 3.2.1, we follow [BEST, Section 8] to describe a smooth birational
model of X in terms of the wonderful compactification WL, although it differs
slightly from the original description in [Huh15].

Consider the embeddingWL ↪→ XAn−1
in the diagram (†). LetN = NWL/XAn−1

be the normal bundle, and let XL = PWL
(N∨) be the projectivization3 of the conor-

mal bundle with the projection map p : XL → WL. Recall the blow-down map
πL : WL → PL.

The sought-after divisor classes on XL are as follows. Let γ be the pullback of
the hyperplane class in PL via the composition XL

p→WL
πL→ PL. Let δ = c1(O(1))

be the first Chern class of the line bundle O(1) from the construction of XL as a
projectivization of a vector bundle, which turns out to be semi-ample. One can
then translate [DGS12, Theorem 1.1] to the statement that

1

q
TM(q, 0) =

r−1∑
i=0

(∫
XL

γr−1−iδn−r−1+i

)
qr−1−i.

Proposition 3.4 now implies the desired log-concavity.

How might one think to do this, at least in hindsight? For the original for-
mulation of X, maximum likelihood problems in algebraic statistics provided a
motivation; see [Huh13, HS14]. For the related construction XL here, we highlight
some key steps. In either cases, one uses properties of log-tangent bundles and
their characteristic classes; see [Alu05] for an introduction to these tools.

(1) By Theorem 3.3, the constant term equals(
1

q
TM(q, 0)

)∣∣∣∣
q=0

=

(
1

1 + q
TM(1 + q, 0)

)∣∣∣∣
q=−1

= (−1)r−1χtop(PL̊),

the signed Euler characteristic of PL̊. Euler characteristics satisfy the “scis-
sors relation” that χtop(X) = χtop(X \ Z) + χtop(Z) for a closed embed-
ding Z ↪→ X of C-varieties. More generally, Chern-Schwartz-MacPherson
(CSM) classes [Mac74] of C-varieties are homological objects that respect
such scissors relation. One then uses Exercise 3.2 to show that the degrees

3Our convention for the projectivization of a vector bundle E on a variety X is that PX(E) =

ProjX Sym•(E∨), which agrees with [EH16] but is the opposite of [Har77, Laz04b].
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of the CSM classes of PL̊ satisfy the same deletion-contraction relation sat-
isfied by the coefficients of 1

−qTM (−q, 0), so that Theorem 2.11 implies that
they are the same.

(2) Having related the CSM classes to 1
−qTM (−q, 0), we now relate powers of

δ with the CSM classes of PL̊. The varieties WL and XAn−1
have simple-

normal-crossing boundaries ∂WL and ∂XAn−1
= XAn−1

\ ((C∗)E/C∗). Un-
der the embeddingWL ↪→ XAn−1

, one can show that ∂WL = WL∩∂XAn−1

scheme-theoretically. Consequently, one has a short exact sequence (see
for instance [EHL, Section 9])

0→ TWL
(− log ∂WL)→ TXAn−1

(− log ∂XAn−1
)|WL

→ N → 0.

Because XAn−1 is a toric variety with the dense open torus (C∗)E/C∗, the
log-tangent bundle TXAn−1

(− log ∂XAn−1
) is trivial [CLS11, Chapter 8].

Thus, the normal bundle N is globally-generated so that δ is semi-ample.
Moreover, the Segre classes of N , which are given by powers of −δ, equal
the Chern classes of TWL

(− log ∂WL), which are the CSM classes of the
complement WL \ ∂WL = PL̊ [Alu99].

3.3. The top-heaviness via intersection cohomology. We start with a general strat-
egy for establishing top-heaviness, which first appeared in [BE09] to establish top-
heaviness for Bruhat intervals. Suppose we have a (not necessarily smooth) projec-
tive C-varietyX with an affine stratification: There is a finite collection {Uj}j∈J of
locally closed subvarieties of X , called the strata, such that X is the disjoint union
of {Uj}j∈J , the closure Uj of any strata is again a union of strata, and each strata
is isomorphic to Cm for some m.

Theorem 3.7. [BE09, Theorem 3.1] For 0 ≤ i ≤ d = dimX , let bi be the number of
strata of dimension i. Then, we have bi ≤ bj for all 0 ≤ i ≤ j ≤ d− i.

Sketch of the proof. Let us assume we have shown that dimH2i(X) = bi. If X were
smooth, the hard Lefschetz theorem implies that (b0, . . . , bd) is in fact unimodal
and symmetric, so we would be done. Since X may not be smooth, we need con-
sider the intersection cohomology IH•(X), for which the hard Lefschetz theorem
still holds [GM83, BBD82]. There is a natural graded map H•(X) → IH•(X),
fitting into a commutative diagram

H2i(X) IH2i(X)

H2j(X) IH2j(X)

·c1(L)j−i ·c1(L)j−i

for any ample line bundle L on X , where the injectivity of the right vertical map
follows from the validity of the hard Lefschetz property for intersection cohomol-
ogy. Thus, ifH•(X)→ IH•(X) is injective, then the left vertical map is necessarily
injective, so we can conclude the desired bi ≤ bj .

The proof of dimH2i(X) = bi and the injection H•(X) ↪→ IH•(X) both follow
from combining a standard long exact sequence of cohomologies and the result
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of Weber [Web04] (see also [BE09, Theorem 2.1]) which identified the kernel of
Hk(X) → IHk(X) in terms of the weight filtration on Hk(X) given by the mixed
Hodge structure [Del71]. �

Björner and Ekedahl [BE09] used Theorem 3.7 on Schubert varieties of a gener-
alized flag variety to deduce top-heaviness for Bruhat intervals of a finite crystal-
lographic Coxeter group. In our case, for a realization L ⊆ CE of a matroid M, we
consider its matroid Schubert variety YL defined as

YL = the closure of L inside (P1)n,

where CE ⊂ (P1)n via the identification P1 = C∪{∞}. Note that the identification
P1 = C ∪ {∞} induces an affine stratification of (P1)n with strata {CS × {∞}E\S :

S ⊆ E}. One shows that this stratification restricts to give an affine stratification
of YL by using the computation of (the Gröbner basis for) the defining ideal of
YL ⊆ (P1)n given by Ardila and Boocher [AB16].

Theorem 3.8. [HW17, Theorem 14], [PXY18, Lemmas 7.5 & 7.6] The matroid Schu-
bert variety YL admits an affine stratification by the strata {UF : F a flat of M}
defined by

UF = YL ∩
(
CF × {∞}E\F

)
.

For each flat F , the strata UF is isomorphic to the image of the composition L �
CE � CF , which has dimension rkM(F ).

The top-heaviness of the sequence (e) now follows from Theorems 3.8 and 3.7.

Exercise 3.9. Verify Theorem 3.8 for a realization of the uniform matroid U2,3.

For Schubert varieties in generalized flag varieties, their intersection cohomol-
ogy is closely related to Kazhdan-Lusztig theory. The terminology “matroid Schu-
bert variety” was chosen for an analogous relation between the intersection coho-
mology YL and Kazhdan-Lusztig theory of matroid developed in [EPW16, PXY18].

4. TROPICAL HODGE THEORY

We will begin by explaining how polyhedral fans and matroids gives rise to
“cohomology” rings. We then discuss two fundamental theorems for these “coho-
mology” rings concerning the validity of the Kähler package (Definition 1.2). We
then explain how the log-concavity statements for arbitrary matroids can be de-
duced from these fundamental theorems. We will assume some familiarity with
the basics of polyhedral geometry. For a brief introduction see [Ful93, Chapter
1.2], and see [Zie95] for a fuller treatment.

4.1. Chow rings of fans and matroids. Let N be a lattice, i.e. a finitely generated
free abelian group Zm. LetN∨ denote its dual lattice. We writeNR = N⊗R. Recall
that a fan Σ inNR is rational if each ray ρ in Σ equals R≥0u for some u ∈ N , simplicial
if every k-dimensional cone in Σ is generated by k rays, and pure-dimensional if
every maximal cone has the same dimension. For each ray ρ, let uρ ∈ N be the
primitive ray generator, i.e. the element such that ρ ∩ N = Z≥0uρ. Let Σ(1) denote
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the set of rays of Σ. The support of Σ is denoted |Σ|. A fan Σ in NR is complete if
|Σ| = NR.

Assumption. All fans we treat will be rational, simplicial, and pure-dimensional,
but not necessarily complete.

Definition 4.1. The Chow (cohomology) ring (with real coefficients) of a fan Σ in
NR is the graded R-algebra

A•(Σ) =
R[xρ : ρ ∈ Σ(1)]

IΣ + JΣ

where IΣ and JΣ are the ideals

IΣ =
〈∏
ρ∈S

xρ : S ⊆ Σ(1) do not form a cone in Σ
〉

and

JΣ =
〈 ∑
ρ∈Σ(1)

m(uρ)xρ : m ∈ N∨
〉
.

It is an exercise to show that the k-th graded piece Ak(Σ) of A•(Σ) is generated
by square-free monomials of degree k in the variables. In particular, Ak(Σ) = 0

for all k greater than the dimension d of Σ, and A•(Σ) =
⊕d

i=0A
i(Σ) is a finite-

dimensional graded real vector space.

Exercise 4.2. For two fans Σ and Σ′, show that A•(Σ× Σ′) = A•(Σ)⊗A•(Σ′).

Borrowing language from algebraic geometry, let us call a linear combination
of the variables xρ a divisor and its image in A1(Σ) its divisor class on Σ. Because
Σ is simplicial, a divisor D =

∑
ρ∈Σ(1) cρxρ determines a piecewise-linear function

ϕD on |Σ| by assigning the value cρ to each primitive ray generator uρ.

Definition 4.3. A divisor D on a complete fan Σ is ample if the piecewise-linear
function ϕD is strictly-convex, i.e. ϕD(u) +ϕD(v) < ϕD(u+ v) for all u, v ∈ NR not
in the same cone of Σ. It is nef if only the weak inequality ≤ is satisfied.

For a not necessarily complete fan Σ, a divisor D is ample (resp. nef) if ϕD is
the restriction of the piecewise-linear function of an ample (resp. nef) divisor on a
complete fan containing Σ as a subfan. We denote by K(Σ) ⊂ A1(Σ) the convex
set of the divisor classes of ample divisors on Σ.4 We often consider K(Σ) as a set
of graded linear maps A•(Σ)→ A•+1(Σ) given by multiplication.

In terms of toric geometry, the ring A•(Σ) is the Chow cohomology ring of the
toric variety XΣ associated to the fan Σ [Dan78, Bri96]. When Σ is the normal
fan of a simple polytope, the toric variety XΣ is a projective variety with mild (i.e.
orbifold) singularities, whose ample cone isK(Σ). Classical results in algebraic ge-
ometry then imply the validity of the Kähler package for the ring A•(Σ). Stanley
used this to resolve McMullen’s g-conjecture on the number of faces of a simple
polytope [Sta80]. Afterwards, McMullen [McM93] gave a purely combinatorial

4Technically, our definition of ample/nef divisors on non-complete fans differs from that of
[ADH22], which makes our K(Σ) a subset of the one in [ADH22], but will suffice for our discussion.
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proof of the Kähler package that works even for nonrational fans (with no associ-
ated toric variety in the background). In our case, the fans will be generally not
complete, so a priori there is no reason to expect any validity of the Kähler pack-
age, since the associated toric varieties are generally non-compact. The miraculous
results is that certain fans from matroids turn out to enjoy the Kähler package.

For a matroid M on E of rank r, we construct a fan introduced and studied
in [Stu02, AK06, Spe08] as tropical geometric analogues of linear spaces. The fan
will be in the real vector space over the lattice ZE/ZeE . For a subset S ⊆ E, let
us denote by eS the image of of eS =

∑
i∈S ei ∈ RE under the quotient map

RE → RE/ReE .

Definition 4.4. The Bergman fan ΣM of a rank r matroid M is a pure (r − 1)-
dimensional fan in RE/ReE consisting of the maximal cones R≥0{eF1 , . . . , eFr−1},
one for each maximal chain ∅ ( F1 ( F2 ( · · · ( Fr−1 ( E of nonempty proper
flats of M.

Example 4.5. The Bergman fans of U2,3 and U3,4 are depicted below.

Example 4.6. For the Boolean matroid Un,n, note that the maximal cones of its
Bergman fan ΣUn,n correspond to permutations of the ground setE. The fan ΣUn,n

is known as the permutohedral fan or as the braid arrangement, denoted ΣAn−1
.

Note that by construction the Bergman fan of any matroid M (on ground set E) is
a subfan of ΣAn−1 . See [AA] for a survey of remarkable combinatorial properties
of the permutohedral fan.

Definition 4.7. The Chow ring A•(M) of a matroid M is the Chow ring A•(ΣM) of
its Bergman fan. Explicitly, it is

A•(M) =

r−1⊕
i=0

Ai(M) =
R[xF : F a nonempty proper flat of M]

IM + JM

where IM and JM are the ideals

IM =
〈
xFx

′
F : F 6⊆ F ′ and F 6⊇ F ′

〉
and

JM =
〈∑
F3i

xF −
∑
G3j

xG : i, j ∈ E
〉
.
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Remark 4.8. When M has a realization L ⊆ CE , the wonderful compactification
WL defined in Section 3.2.1 is the closure of PL̊ inside the toric variety XΣM

. The
resulting pullback map of cohomologies is an isomorphism between the Chow
ring A•(M) = A•(XΣM

) of the toric variety of ΣM and the cohomology ring of
WL [FY04, DCP95]. This “Chow equivalence” is informed by the theory of tropi-
cal compactifications [Tev07]; see [MS15, Chapter 6] for an introduction. While the
Kähler package for the Chow ring in this realizable case thus follows from classi-
cal Hodge theory, [AHK18, Theorem 5.12] states that the existence of such Chow
equivalence is equivalent to the realizability of the matroid.

Definition 4.9. The conormal fan ΣM,M⊥ of a (loopless and coloopless) matroid M

is a fan in RE/ReE × RE/ReE whose support equals the support of the product
ΣM × ΣM⊥ .

We omit the precise definition, which involves the intricate and interesting com-
binatorics of the bipermutohedron and biflags introduced in [ADH22]. See [ADH22,
Section 2.8] for its origin story.

Remark 4.10. Just as the Chow ring A•(M) of a matroid M is modeled after the
wonderful compactification, the conormal Chow ring of a matroid is modeled after
the geometry described in Section 3.2.2. For instance, Exercise 2.7 suggests how the
product ΣM×ΣM⊥ can serve as a polyhedral model of the projectivized conormal
bundle XL = PWL

(N∨).

4.2. Fundamental theorems of tropical Hodge theory. We now discuss two fun-
damental theorems concerning the Kähler package for Chow rings of not neces-
sarily complete fans. To state them, we need a few more terminologies.

For a cone σ of a fan Σ in NR, the star stσ(Σ) is a fan in NR/ span(σ) whose
cones are the images under the projection NR → NR/ span(σ) of the cones of Σ

containing σ. Geometrically, the toric variety Xstσ(Σ) of the star is the closure of
the torus-orbit of XΣ corresponding to the cone σ.

Exercise 4.11.

(1) The star of the Bergman fan ΣM at the ray R≥0eF corresponding to a
nonempty proper flat F is isomorphic to the product ΣM|F × ΣM/F .

(2) Show that the Chow ringA•(stσ Σ) of the star is isomorphic to the quotient
ring A•(Σ)/〈a ∈ A•(Σ) : a ·

∏
ρ∈σ xρ = 0〉.

A positive Minkowski weight on a (pure) d-dimensional fan Σ is a linear map
deg : Ad(Σ) → R such that deg(

∏
ρ∈σ xρ) > 0 for any maximal cone σ of Σ. It

defines a symmetric bilinear pairing A• × Ad−• → R by (x, y) 7→ deg(xy), which
by abuse of notation we also denote deg.

Geometrically, Minkowski weights in general are fundamental objects in tropi-
cal intersection theory, serving the role of “Chow homology classes.” For their def-
inition and properties, see [FS97, KP08] and [MS15, Chapter 6], as well as [AHK18,
Section 5]. Fans arising in the context of tropical compactifications (Remark 4.8)
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provide many examples of positive Minkowski weights. For instance, the follow-
ing can be deduced from what is known as the cover-partition property of flats of
a matroid.

Proposition 4.12. [AHK18, Proposition 5.2] For a matroid M of rank r, the assign-
ment xF1 · · ·xFr−1 7→ 1 for any maximal chain ∅ ( F1 ( · · · ( Fr−1 ( E of
nonempty proper flats of M gives a well-defined linear map degM : Ar−1(M)→ R.

Similarly, the conormal fan of a matroid also has a natural positive Minkowski
weight degM,M⊥ . The key notion for the statement of the two fundamental theo-
rems is the notion of Lefschetz-ness of fans, introduced in [ADH22].

Definition 4.13. A fan Σ of dimension d is said to be Lefschetz if the following are
satisfied:

(1) HomR(Ad(Σ),R) is spanned by a positive Minkowski weight deg.
(2) The triple (A•(Σ),deg,K(Σ)) satisfies the Kähler package (Definition 1.2).
(3) For any positive dimensional cone σ of Σ, the star stσ(Σ) is Lefschetz.

We can now state the two fundamental theorems.

Theorem 4.14. [AHK18, Theorem 1.4] The Bergman fan ΣM of a matroid M is
Lefschetz.

Theorem 4.15. [ADH22, Theorem 1.6] Let Σ and Σ′ be fans in NR with the same
support, and suppose K(Σ) and K(Σ′) are nonempty. Then Σ is Lefschetz if and
only if Σ′ is Lefschetz.

The product of two Lefschetz fans is again Lefschetz [AHK18, Section 7.2].
Combining this with the two theorems yields the following.

Corollary 4.16. The conormal fan of the matroid is Lefschetz.

Exercise 4.17. Let M be a matroid of rank 3. Let α =
∑
G3i xG for any i ∈ E. Note

that α ∈ A•(M) is independent of the choice of i due to the linear relations JM.
(1) Show that degM(x2

F ) = −1 for any flat F of rank 2.
(2) Show that degM

(
α2
)

= 1 for any element i ∈ E.
(3) Show that degM(αxF ) = 0 for any element i ∈ E and a flat F of rank 2.
(4) Use these steps to establish the Kähler package for A•(M) with K = R≥0α.

Let us give a broad overview of the proofs of the two theorems. Both employs
the following strategy for establishing the Kähler package for a graded R-algebra
A• of “dimension d” in the sense that A• =

⊕d
i=0A

i. This general strategy and
variations thereof appear in several previous works on the Kähler package across
varied mathematical fields, such as the works of McMullen [McM93] on simple
polytopes, Elias and Williamson [EW14] on Soergel bimodules, and [dCM09] on
the topology of algebraic maps.

(i) It suffices to show the statements of (HL) and (HR) in Definition 1.2 in
the special case where L0 = L1 = · · · = Ld−2i, because this “non-mixed”
version of the Kähler package implies the original “mixed” version of the
Kähler package [Cat08] (see also [ADH22, Theorem 5.20]).
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(ii) Next, one can set up an induction on the “dimension” d as follows. In
many situations, the quotient algebra A•/ ann(x) for certain choices of
x ∈ A1 is again in the family of graded R-algebras that one is seeking
to establish the Kähler package for. Here, ann(x) denotes the annihilator
{a ∈ A• : ax = 0}. The key observation then is that(

(HR) in degree i of A•/ ann(x)

for sufficiently many x ∈ A1

)
=⇒

(
(HL) in degree i

for the original A•

)
(see for instance [BES, Proposition 6.1.6]). Because the quotient A•/ ann(x)

has smaller “dimension”, i.e. its d-th graded part is zero, one can now pro-
ceed by induction on d.

(iii) By the validity of (HL) from the inductive hypothesis, the validity of (HR)
for any single element L ∈ K then implies (HR) for all L ∈ K. Thus, the
last step is to finish the induction by establishing (HR) for a well-chosen
L ∈ K. This is often the most intricate step.

Returning to the case of matroids, step (ii) is provided by Exercise 4.11, which
showed thatA•(M)/ ann(xF ) ' A•(ΣM|F ×ΣM/F ) for a nonempty proper flat F of
M. Hence, one can induct on the rank of the matroid. In the case of Theorem 4.15,
step (ii) is essentially built into the definition that the stars of Lefschetz fans are
Lefschetz, so that one can induct on the dimension of the fan.

In the original proof [AHK18] of Theorem 4.14, in order to carry out step (iii),
Adiprasito, Huh, and Katz introduced the notion of “flips,” inspired by the proof
of the Kähler package for simple polytopes by McMullen [McM93]. This process
converts the Bergman fan of ΣM through a sequence of fans until it reaches a fan for
which (HR) can be verified easily, and the process is set up such that the validity
of (HR) for any one fan in the sequence implies (HR) for all fans in the sequence.
Geometrically, one may interpret the process of flips as a combinatorial abstraction
of the process of constructing the wonderful compactification WL as a sequence of
blow-ups (Definition 3.5).

Afterwards, it was recognized that a key property of semi-small maps [dCM02]
inspires a strategy that can greatly simplify step (iii). For a map f : X → Y of
smooth projective varieties, the pullbacks to X of ample divisors on Y generally
fail (HL) and (HR) in the cohomology ring of X , since the pullbacks are gener-
ally not ample on X but only nef (i.e. is a limit of ample divisors). However, a
characterizing property of a semi-small map is that the pullbacks still satisfy (HL)
and (HR). This inspires the following approach: One can look for a map Ã• → A•

of graded algebras, behaving like a pullback along a semi-small map. If (HR) is
known to hold for Ã•, say by induction, step (iii) would follow.

This insight allowed Braden, Huh, Matherne, Proudfoot, and Wang to give a
considerably simplified proof of Theorem 4.14 in [BHM+22]. Using that the dele-
tion M \ e of a matroid M by a non-coloop element e behaves like a semi-small
map, they carry out step (iii) by an induction that reduces to the case of Boolean
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matroids. This insight on semi-small maps is also essential in the proof of Theo-
rem 4.15 by Ardila, Denham, and Huh. A key step [ADH22, Theorem 5.9], build-
ing upon the works [Wło97, AKMW02], states that any two fans with the same
support can be related by a sequence of edge stellar subdivisions, which are oper-
ations on fans that play the role of semi-small maps in toric geometry.

4.3. Applications of Hodge-Riemann relations in degree 1. The Kähler package
gives rise to log-concave sequences in the following way.

Proposition 4.18. Suppose Σ is a Lefschetz fan of dimension d with a positive
Minkowski weight deg. Then, for any nef divisor classes α and β,

the sequence (a0, a1, . . . , ad) defined by ai = deg(αd−iβi)

is log-concave with no internal zeros.

Proof. We may assume that α, β are ample, and show that the sequence is strictly
positive and log-concave, since a limit of such sequences is necessarily log-concave
with no internal zeros. Strict positivity is then implied by Hodge-Riemann rela-
tions (HR) in degree 0. For log-concavity, (HR) in degree 1, with L1 · · ·Ld−2 =

αd−i−1βi−1, implies that the symmetric bilinear pairing A1(Σ)×A1(Σ)→ R given
by (x, y) 7→ deg(xy ·αd−i−1βi−1) has at most one positive eigenvalue. This implies
that the symmetric matrix[

deg(α2 · αd−i−1βi−1) deg(αβ · αd−i−1βi−1)

deg(αβ · αd−i−1βi−1) deg(β2 · αd−i−1βi−1)

]
cannot be positive definite, but it also cannot be negative definite because all of
its entries are positive. Hence, the determinant of the matrix is non-positive, or
equivalently, a2

i ≥ ai−1ai+1. �

Returning to showing log-concavity for a matroid M of rank r, one now searches
for appropriate divisor classes on the Bergman fan ΣM or the conormal fan ΣM,M⊥ .
This step benefits heavily from the geometry of realizable matroids explained in
Section 3.

The divisor classes for the log-concavity of the sequence (c) come from an invo-
lutive symmetry of the permutohedral fan ΣAn−1

(Example 4.6). As −ei = eE\i,
the minus map x 7→ −x on RE/ReE gives an involution of ΣAn−1

. This equips
ΣAn−1 with two distinguished coarsenings to a normal fan of a simplex: Let Σ∆

(resp. be Σ∇) be the fan whose rays are {ei : i ∈ E} (resp. {−ei : i ∈ E}) and
whose cones are generated by any subsets of the rays with cardinality ≤ n − 1.
The fan ΣAn−1

is a common refinement of both the fans Σ∆ and Σ∇.
Let us fix an element i ∈ E, and let ϕ∆ be the piecewise-linear function on Σ∆

given by ei 7→ 1 and ej 7→ 0 for all j 6= i, which is clearly a convex (but not strictly-
convex) function. Restricting this piecewise-linear function to ΣM, it defines a
divisor on ΣM whose divisor class is denoted α ∈ A1(M). Similarly, starting with
the fan Σ∇, we obtain a divisor class β. Both α and β are nef, and independent
of the choice of i ∈ E we fixed. Algebraically, we may take α =

∑
F3i xF and

β =
∑
F 63i xF for any choice of i ∈ E. We have the following.
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Proposition 4.19. [HK12, Proposition 5.2], [AHK18, Proposition 9.5] With the no-
tations as above, we have

1

1 + q
TM(1 + q, 0) =

r−1∑
i=0

degM(αr−1−iβi)qr−1−i.

Combining the proposition with Theorem 4.14 and Proposition 4.18, we obtain
that the coefficients of 1

1+qTM(1+q, 0) is log-concave with no internal zeros, which
implies the same property for the coefficients of TM(1 + q, 0), i.e. the log-concavity
of the sequence (c). One can also consider other kinds of divisor classes on ΣM and
their values under degM to study properties of matroids: See for instance [Eur20,
BES, BST, DR22].

Remark 4.20. In geometric terms, the toric variety of ΣAn−1 is the permutohedral
variety defined in Section 3.2.1. That the fan ΣAn−1 coarsens to Σ∆ and Σ∇ gives
the two blow-down maps π1, π2 : XAn−1

→ Pn−1, related by the Cremona trans-
formation, which were described in (†). Thus, the divisor classes α and β here and
the computations involving them agree with those described in Section 3.2.1.

For the sequence (d), recall that the conormal fan of a matroid M is a fan in
RE/ReE × RE/ReE with support equal to the support of ΣM × ΣM⊥ . Let

p : RE/ReE × RE/ReE → RE/ReE be the projection to the first factor, and

s : RE/ReE × RE/ReE → RE/ReE be the addition map (x, y) 7→ x+ y.

By pulling back the piecewise-linear function ϕ∆ on RE/ReE along these two
maps, we obtain two divisor classes γ and δ.

Proposition 4.21. [ADH22, Theorem 1.2] With the notations as above, we have

1

q
TM(q, 0) =

r−1∑
i=0

degM,M⊥(γr−1−iδn−r−1+i)qr−1−i.

Combining the proposition with Corollary 4.16 and Proposition 4.18, we con-
clude the log-concavity of the sequence (d). The proposition was proved via an in-
tricate combinatorics of biflags in [ADH22] and the Chern-Schwartz-MacPherson
classes of matroids [LdMRS20]. By developing a new framework of tautological
classes of matroids, Berget, Spink, Tseng and the author proved a formula [BEST,
Theorem A & Theorem 9.7] that contains both Proposition 4.19 and Proposition 4.21
as special cases.

Note that only a part of the Kähler package, the Hodge-Riemann relations in
degrees at most 1, was all that is required for concluding log-concavity. Extract-
ing the essence of the analytic properties behind (HR) in degrees at most 1 leads
to the fascinating theory of Lorentzian polynomials [BH20] and (equivalently)
completely log-concave polynomials [ALOGV18]. One powerful feature of this the-
ory is that it often allows one to reduce to “dimension 2” cases, mirroring the
feature in classical algebraic geometry that (HR) in degree 1 can be reduced to
the case of surfaces. For instance, by reducing to an analysis of rank 2 matroids,
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Brändén and Huh [BH20] and independently Anari, Liu, Oveis-Gharan, and Vin-
zant [ALOGV18] proved that the sequence (a) is in fact ultra-log-concave, in the
sense that

I2
i(
n
i

)2 ≥ Ii−1Ii+1(
n
i−1

)(
n
i+1

) for all i,

which was conjectured by Mason [Mas72]. Moreover, by analyzing rank 3 ma-
troids (cf. Exercise 4.17), one can use Lorentzian polynomials to give a simplified
proof of the log-concavity of the sequence (c) [BES, BL]. We point to [Huh22, Sec-
tion 2] for a survey of Lorentzian polynomials and their applications.

5. INTERSECTION COHOMOLOGY OF A MATROID

We describe the intersection cohomology of a matroid, and its role in show-
ing the top-heaviness of the sequence (e). We begin by considering the following
graded algebra.

Definition 5.1. For a matroid M of rank r, its Möbius algebra a graded R-algebra
B•(M) =

⊕r
i=0B

i(M) where Bi(M) has basis {yF : F a rank i flat of M} for each
0 ≤ i ≤ r, and multiplication is given by

yF · yF ′ =

{
yF∨F ′ if rkM(F ) + rkM(F ′) = rkM(F ∨ F ′)
0 otherwise.

A strategy for the top-heaviness is to show that there is an injective linear map
Bi(M)→ Br−i(M) for every i ≤ r/2. The statement of the hard Lefschetz property
inspires a candidate for such a map: the multiplication by a power of an element
in B1(M). We then immediately face the difficulty that B•(M) usually cannot sat-
isfy Poincaré duality (PD) or the hard Lefschetz property (HL), since the sequence
(W0, . . . ,Wr) of the dimensions of graded pieces is usually not symmetric.

The intersection cohomology IH•(M), introduced in [BHM+], is a graded vec-
tor space containing B•(M) that “most efficiently” amends the failure of (PD) and
(HL). We give a broad outline of their construction and their properties. The fol-
lowing remark explains some geometric motivation.

Remark 5.2. Recall from Section 3.3 the matroid Schubert variety YL of a realiza-
tion L ⊆ CE of a matroid M. One deduces from Theorem 3.8 that the algebra
B•(M) is the cohomology ring (in even degrees) of the matroid Schubert variety YL
(see [HW17, Theorem 14]). The variety YL is usually quite singular, which wit-
nesses the failure of (PD) and (HL) for B•(M). Motivated by the proof of The-
orem 3.7, one seeks to understand the intersection cohomology IH•(YL), which
contains B•(M) as a subalgebra.

To do so, let f : X → YL be a resolution of singularities of YL. The decompo-
sition theorem of Beilinson, Bernstein, Deligne, and Gabber [BBD82] implies that
H•(X) can be decomposed into a direct sum ofB•(M)-modules, and that IH•(YL)

is a direct summand. In general, computing these decompositions to get a handle
on IH•(YL) can be intractible, but for YL there is a resolution f : ỸL → YL by the
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augmented wonderful variety ỸLof L [BHM+22] (see also [EHL]), whose cohomol-
ogy ring H•(ỸL) and the injection B•(M) ↪→ H•(ỸL) have explicit combinatorial
descriptions in terms of the matroid M.

We first find a bigger graded R-algebra containingB•(M) that satisfies the Käh-
ler package. The augmented Bergman fan [BHM+22, Definition 2.4] of a matroid
M of rank r is an r-dimensional fan in RE closely related to the Bergman fan ΣM.
Its Chow ring has the following explicit description.

Definition 5.3. The augmented Chow ring (with real coefficients) of a matroid M

is the graded R-algebra

CH•(M) =
R[yi, xF : i ∈ E, F a (possibly empty) proper flat of M]

ĨM + J̃M

where ĨM and J̃M are the ideals

ĨM =
〈
xFxF ′ : F 6⊆ F ′ and F 6⊇ F ′

〉
+
〈
yixF : i /∈ F

〉
and

J̃M =
〈
yi −

∑
F 63i

xF : i ∈ E
〉
.

The augmented Chow ring has the following useful features:
• The assignment yF 7→

∏
i∈F yi defines an injection B•(M) ↪→ CH•(M) of

graded R-algebras [BHM+22, Proposition 2.28].
• Theorem 4.14 combined with Theorem 4.15 implies that the augmented

Bergman fan is Lefschetz, because the support of the augmented Bergman
fan of M can be identified with the support of the usual Bergman fan of the
free co-extension matroid of M (see [EHL, Section 5.3]). Thus, the Chow ring
CH•(M) satisfies the Kähler package.

Thus, we have found a bigger algebra containing B•(M) that satisfies the Kähler
package. However, we are not done because CH•(M) is “too big”: To conclude
injectivity properties for B•(M), we need the graded linear operators K satisfy-
ing (HL) on CH•(M) to come from B1(M), but this is almost never the case—a
positive linear combination of the yi’s usually does not satisfy (HL) on CH•(M).
One instead must consider the followingB•(M)-submodule of CH•(M) that “most
efficiently” repairs the the failure of (HL) on B•(M).

Definition 5.4. Up to isomorphism there is a unique indecomposable B•(M)-
module direct summand of CH•(M) containing B•(M). This direct summand is
the intersection cohomology IH•(M) of M.

In fact, the authors of [BHM+] establish a canonical decomposition of CH•(M)

as a B•(M)-module, and identify the direct summand IH•(M). This decomposi-
tion along with the Kähler package for CH•(M) is then fed into a highly intricate
version of the general strategy for establishing the Kähler package outlined in Sec-
tion 4.2, resulting in the following main theorem.

Theorem 5.5. [BHM+, Theorem 1.6] The intersection cohomology IH•(M) of a
matroid M satisfies the Kähler package with K = {

∑
e∈E ceye : ce > 0}.



26 CHRISTOPHER EUR

As a corollary, for any positive linear combination ` =
∑
e∈E ceye and 0 ≤ i ≤

j ≤ r − i, we have a commuting diagram

Bi(M) IHi(M)

Bj(M) IHj(M)

·`j−i ·`j−i

where the right vertical map is injective by the hard Lefschetz property of IH•(M).
The left vertical map is thus injective, and the desired top-heaviness of the se-
quence (e) follows.

6. CONCLUSION

Matroids are combinatorial structures that capture the essence of independence.
There were several conjectures about the behavior of sequences of invariants of a
matroid, involving log-concavity or top-heaviness. June Huh and his collabora-
tors made fundamental contribution to matroid theory [AHK18, ADH22, BHM+],
resolving many of these conjectures. They began by answering the conjectures for
realizable matroids using algebraic geometry, a significant step on its own. Then,
with considerable effort, they were able to extract the combinatorial heart, and
establish Hodge-theoretic properties for arbitrary, not necessarily realizable, ma-
troids. This development of the Hodge theory of matroids forms an integral part
of the foundation for studying matroids from an algebro-geometric perspective.
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FROM SPHERE PACKING TO FOURIER INTERPOLATION

HENRY COHN

Abstract. Viazovska’s solution of the sphere packing problem in eight dimen-

sions is based on a remarkable construction of certain special functions using
modular forms. Great mathematics has consequences far beyond the problems
that originally inspired it, and Viazovska’s work is no exception. In this article,

we’ll examine how it has led to new interpolation theorems in Fourier analysis,
specifically a theorem of Radchenko and Viazovska.

1. Sphere packing

The sphere packing problem asks how densely congruent spheres can be packed in
Euclidean space. In other words, what fraction of space can be filled with congruent
balls, if their interiors are required to be disjoint?1 Everyone can pack spheres
intuitively in low dimensions: the optimal two-dimensional packing is a hexagonal
arrangement, and optimal three-dimensional packings are stacks of optimal two-
dimensional layers, nestled together as closely as possible into the gaps in the layers
(see Figure 1.1).

In fact, these packings are known to be optimal. The two-dimensional problem
was solved by Thue [37, 38], with a more modern proof by Fejes Tóth [19], and the
three-dimensional problem was solved by Hales [21]. The two-dimensional proof is
not so complicated, but the three-dimensional proof is difficult to check, because it
relies on both enormous machine calculations and lengthy human arguments in a
sequence of papers. To give a definitive demonstration of its correctness, Hales and
a team of collaborators have produced a formally verified proof [22], i.e., a proof
that has been algorithmically verified using formal logic.

On the one hand, the solution of the three-dimensional sphere packing problem
is a triumph of modern mathematics, a demonstration of humanity’s ability to
overcome even tremendously challenging obstacles. On the other hand, to a general
audience it can sound like a parody of pure mathematics, in which mathematicians
devote immense efforts to proving an intuitively obvious assertion. It’s natural
to feel discouraged about the future of a subfield in which it’s easy to guess the
answer and almost impossible to prove it. For comparison, a rigorous solution of the
four-dimensional sphere packing problem remains far out of reach. If the difficulty
increases as much from three to four dimensions as it did from two to three, then
humanity may never see a proof.

One noteworthy change as we move to higher dimensions is that we lose much
of our intuition, and the answer is no longer easy to guess. For example, it is
not always true that we can obtain an optimal packing in Rn by stacking optimal

2020 Mathematics Subject Classification. Primary 52C17, 42A15.
1To make this question precise, one should take the limit as r → ∞ of the density for packing

unit spheres in a sphere of radius r, or a cube of side length r. One obtains the same limit for any

reasonable container (see, for example, [6]).
1
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Figure 1.1. A two-dimensional cross section of an optimal three-
dimensional sphere packing, with dotted lines indicating spheres in
an adjacent layer.

(n − 1)-dimensional layers (see [14] for details). In sufficiently high dimensions,
there are no conjectures for optimal packings, the best upper and lower bounds
known for the packing density differ by an exponential factor in the dimension,
and we cannot even predict whether the densest packings should be crystalline or
disordered. In short, we know shockingly little about how spherical particles behave
in high dimensions. Of course this means there are plenty of intriguing phenomena
to explore.

Certain dimensions stand out in the midst of this ignorance as having exceptionally
dense packings. The most amazing of all are eight and twenty-four dimensions,
which feature the E8 root lattice and the Leech lattice Λ24. (We will not construct
these lattices here; see [18, 36, 15] for constructions.) Recall that a lattice in Rn is
just a discrete subgroup of rank n; in other words, for each basis v1, . . . , vn of Rn,
the set

{a1v1 + · · ·+ anvn : a1, . . . , an ∈ Z}
is a lattice. Every lattice leads to a sphere packing by centering congruent spheres
at the lattice points, with the radius chosen as large as possible without overlap.
Lattice packings are common in low dimensions, but there is no reason to expect an
optimal packing to have this sort of algebraic structure in general. For example,
in R10 the best packing known, the aptly named Best packing [4], has density
more than 8% greater than any known lattice packing in R10. By contrast, the E8

and Leech lattices yield impressively dense packings with extraordinary symmetry
groups, and their density and symmetry are so far out of the ordinary that it is
difficult to imagine how they could be improved.

In 2016 Maryna Viazovska [39] solved the sphere packing problem in R8 with an
innovative use of modular forms, which was soon extended to R24 as well [12]; both
E8 and the Leech lattice do indeed turn out to be optimal sphere packings. These
are the only cases in which the sphere packing problem has been solved above three
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dimensions. Although the proofs require more machinery than those in two or three
dimensions, most notably the theory of modular forms, they are much shorter and
simpler than one might fear. Viazovska’s proof dispelled the gloomy possibility that
higher-dimensional sphere packing could be beyond human understanding, and she
was awarded a Fields medal in 2022 for this line of work.

In addition to her breakthrough in sphere packing, Viazovska’s modular form
techniques have led to unexpected consequences, such as interpolation theorems
showing that a radial function f can be reconstructed from the values of f and its

Fourier transform f̂ on certain discrete sets of points. Although Fourier interpolation
may sound rather far afield from sphere packing, it turns out to be closely connected.
In this article, we’ll explore how Viazovska’s work led to this connection and how to
prove a fundamental interpolation theorem of Radchenko and Viazovska [33]. For
comparison, [16], [8], [40], [41], and [9] are expositions of her work that focus on
other themes.

2. From sphere packing to Fourier analysis

The connection between packing problems and Fourier analysis originated in the
work of Delsarte [17] on linear programming bounds for error-correcting codes. For
sphere packings in Euclidean space, a continuous analogue of Delsarte’s work was
developed by Cohn and Elkies [10]. The quality of this bound depends on the choice
of an auxiliary function satisfying certain inequalities, and Viazovska’s breakthrough
amounted to figuring out how to optimize that choice.

We will normalize the Fourier transform of an integrable function f : Rn → C by

f̂(y) =

∫
Rn

f(x)e−2πi⟨x,y⟩ dx,

where ⟨·, ·⟩ denotes the usual inner product on Rn. We’ll generally restrict our
attention to Schwartz functions, i.e., infinitely differentiable functions f such that
for all real numbers c > 0 and nonnegative integers i1, . . . , in,∣∣∣∣ ∂i1+···+in

∂xi1
1 · · · ∂xin

n

f(x1, . . . , xn)

∣∣∣∣ = O(|x|−c)

as |x| → ∞. These smoothness and decay conditions can be somewhat weakened in
each application below, but Schwartz functions are the best-behaved case. We’ll
also frequently study radial functions, i.e., functions f for which f(x) depends only
on |x|, in which case we will write f(r) for r ∈ [0,∞) to denote the value f(x) with
|x| = r and f ′ for the radial derivative of f . Note that the spaces of radial functions
and of Schwartz functions are both preserved by the Fourier transform.

The linear programming bound is the following method for producing a density
bound from a suitable auxiliary function f . The name “linear programming bound”
refers to the fact that optimizing this bound can be recast as an infinite-dimensional
linear programming problem (i.e., linear optimization problem).

Theorem 2.1 (Cohn and Elkies [10]). Let f : Rn → R be a radial Schwartz function
and r a positive real number such that

(1) f(x) ≤ 0 whenever |x| ≥ r,

(2) f̂(y) ≥ 0 for all y, and

(3) f(0) = f̂(0) = 1.
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Figure 2.1. A plot of the numerically computed linear program-
ming bound [1] and the best sphere packing density currently known
[15]. The plot shows the n-th root of the density in dimension n,
with n = 8 and n = 24 marked by vertical lines.

Then the optimal sphere packing density in Rn is at most the volume vol(Bn
r/2) of a

ball of radius r/2 in Rn.

It is far from obvious how to produce good auxiliary functions f for use in this
theorem, or how to optimize the choice of f , i.e., minimize r. In fact, the exact
optimum is known only for n = 1, 8, and 24. However, one can perform a numerical
optimization over a suitable space of functions, such as polynomials of fixed degree
times a Gaussian, with the hope that it will converge to the global optimum as the
degree tends to infinity. Figure 2.1 compares the resulting numerical bound with
the density of the best packing known.

In most dimensions, the linear programming bound seems nowhere near sharp,
but the upper and lower bounds appear to touch in eight and twenty-four dimensions.
Cohn and Elkies conjectured that they were equal in those cases, and the solutions of
the sphere packing problem in these dimensions come from proving this conjecture.2

The optimal auxiliary functions in eight and twenty-four dimensions have come to
be known as magic functions, because obtaining an exact solution in these dimensions
feels like a miracle. To see how this miracle comes about, we will examine a proof
of Theorem 2.1 for the special case of lattice packings. It is based on the Poisson

2The linear programming bound also seems to be sharp in two dimensions, but no proof is
known, despite the fact that the two-dimensional sphere packing problem itself can be solved by
elementary means.
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summation formula, which states that∑
x∈Λ

f(x) =
1

vol(Rn/Λ)

∑
y∈Λ∗

f̂(y)

for every Schwartz function f : Rn → C and lattice Λ in Rn. In this formula,
vol(Rn/Λ) is the volume of the quotient torus (i.e., the volume of a fundamental
parallelotope for the lattice, or equivalently the absolute value of the determinant
of a basis), and Λ∗ is the dual lattice, which is spanned by the dual basis v∗1 , . . . , v

∗
n

to any basis v1, . . . , vn of Λ (i.e., ⟨v∗i , vj⟩ = δi,j). Poisson summation expresses a
fundamental duality for Fourier analysis on Rn, and we can apply it as follows.

Proof of Theorem 2.1 for lattice packings. Suppose our sphere packing consists of
spheres centered at the points of a lattice Λ in Rn. The sphere packing density is
scaling-invariant, and so without loss of generality we can assume that the minimal
nonzero vectors in Λ have length r. In other words, the sphere packing uses spheres of
radius r/2, so that neighboring spheres are tangent to each other. Then the packing
density is vol(Bn

r/2)/vol(R
n/Λ), since there is one sphere for each fundamental cell

of Λ.
We now apply Poisson summation to the auxiliary function f , to obtain∑

x∈Λ

f(x) =
1

vol(Rn/Λ)

∑
y∈Λ∗

f̂(y).

The left side of this equation is bounded above by f(0) = 1, because f(x) ≤ 0 when-

ever |x| ≥ r, and the right side is bounded below by f̂(0)/vol(Rn/Λ) = 1/vol(Rn/Λ),
since every summand is nonnegative. Thus, we conclude that 1/vol(Rn/Λ) ≤ 1, and
the sphere packing density satisfies vol(Bn

r/2)/vol(R
n/Λ) ≤ vol(Bn

r/2), as desired. □

The proof for more general packings is similar in spirit, but it applies Poisson
summation to periodic packings given by unions of translates of a lattice. See [10]
or [8] for the details.

Note that the proof of Theorem 2.1 does not actually require f to be radial.
However, the conditions on f are linear and rotation-invariant, and thus we can
assume f is radial without loss of generality via rotational averaging.

What sort of function f could show that a lattice Λ is an optimal sphere packing?

The proof given above drops the terms f(x) with x ∈ Λ\{0} and f̂(t) for y ∈ Λ∗\{0}.
Thus, we obtain a sharp bound if and only if all these omitted terms vanish. Because

f and f̂ are radial functions, these conditions amount to saying that f vanishes

on all the nonzero vector lengths in Λ, while f̂ vanishes on all the nonzero vector
lengths in Λ∗. Furthermore, the last sign change should occur at the first root of f .

It turns out that the E8 and Leech lattice are both self-dual, and their nonzero
vector lengths are simply

√
2k for integers k ≥ 1 in E8 and k ≥ 2 in Λ24. Thus,

we know exactly what the roots of the magic functions should be. These roots are
shown in Figure 2.2 for eight dimensions.

Now the whole problem comes down to constructing magic functions with these

roots. That might not seem so difficult, but controlling the behavior of f and f̂
simultaneously is a subtle problem. Of course we can obtain any roots we’d like for

f or f̂ in isolation, but not necessarily at the same time. This phenomenon is a form
of uncertainty principle [7, 20, 11], much like the Heisenberg uncertainty principle.
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Figure 2.2. This diagram, which is taken from [8], shows the

roots of the magic function f and its Fourier transform f̂ in eight
dimensions. It is not an accurate plot, since these functions decrease
very rapidly.

Viazovska gave a remarkable construction of the eight-dimensional magic function
in terms of modular forms, which are a class of special functions defined on the upper
half-plane H = {z ∈ C : Im(z) > 0} and satisfying certain transformation laws. The
general theory of modular forms can feel somewhat forbidding to beginners, but
Poisson summation gives us a simple way to get our hands on one example. The
theta function θ : H → C is defined by

θ(z) =
∑
n∈Z

eπin
2z = 1 + 2eπiz + 2e4πiz + 2e9πiz + · · · ,

which converges because z ∈ H means Im(z) > 0. This function satisfies two key
identities,

(2.1) θ(z + 2) = θ(z) and θ(−1/z) = (−iz)1/2θ(z).

The first identity follows immediately from the defining series, while the second
is more subtle and will be proved below. In this equation, we have to choose the
branch for (−iz)1/2 carefully. Throughout this paper, fractional powers such as this
one will be defined to be positive on the upper imaginary axis (0,∞)i in H and
continuous on H.

To prove that θ(−1/z) = (−iz)1/2θ(z), we will use Poisson summation for the
one-dimensional lattice Z in R. Consider the complex Gaussian f : R → C defined
by

f(x) = eπizx
2

with z ∈ H. When z is purely imaginary, this function is an ordinary Gaussian, and
the other points in H behave much the same. In particular, one can check that

(2.2) f̂(y) = (−iz)−1/2eπi(−1/z)y2

,

which is the complex generalization of the fact that the Fourier transform of a wide
Gaussian is a narrow Gaussian and vice versa. Now Poisson summation says that∑

x∈Z
f(x) =

∑
y∈Z

f̂(y),

because Z is self-dual. This equation amounts to∑
x∈Z

eπizx
2

=
∑
y∈Z

(−iz)−1/2eπi(−1/z)y2

,

and thus θ(−1/z) = (−iz)1/2θ(z).
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−3 −2 −1 0 1 2 3

Figure 2.3. The regions shown here are ideal hyperbolic triangles
(i.e., triangles in the hyperbolic plane with vertices at infinity), and
they are fundamental domains for the action of Γθ on the upper
half-plane. In particular, each Γθ-orbit intersects each triangle
exactly once, unless it intersects the boundary of the triangle. The
dots show a typical Γθ-orbit.

The functions z 7→ z + 2 and z 7→ −1/z map H to itself, and they generate a
group of linear fractional transformations of H called Γθ, in honor of the function θ.
One can put a metric on H that turns it into the hyperbolic plane, at which point Γθ

becomes a discrete group of isometries of H, but we will not need this interpretation.
See Figure 2.3 for a picture of a Γθ-orbit in H.

Together with analyticity and some growth conditions, the identities (2.1) say
that θ is a modular form of weight 1/2 for the group Γθ. Viazovska’s solution of
the eight-dimensional sphere packing problem constructs the magic function using θ
and a number of other modular forms, in a way that looks rather mysterious. What
do modular forms have to do with radial Schwartz functions?

Instead of examining the details of her construction, let’s think about a bigger
picture. We know the eight-dimensional magic function f should satisfy

f
(√

2k
)
= 0 for k ≥ 1,

f ′(√2k
)
= 0 for k ≥ 2,

f̂
(√

2k
)
= 0 for k ≥ 1, and

f̂ ′(√2k
)
= 0 for k ≥ 1,

as in Figure 2.2. Viazovska conjectured that this data, together with the nonzero
value f ′(√2

)
, would be enough to determine f uniquely. In fact, that turns out to

be true:

Theorem 2.2 (Cohn, Kumar, Miller, Radchenko, and Viazovska [13]). Let (n, k0)
be (8, 1) or (24, 2). Then every radial Schwartz function f : Rn → C is uniquely

determined by the values f
(√

2k
)
, f ′(√2k

)
, f̂

(√
2k

)
, and f̂ ′(√2k

)
for integers

k ≥ k0. Specifically, there exists an interpolation basis ak, bk, âk, b̂k of radial Schwartz
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functions on Rn for k ≥ k0 such that for every f and x ∈ Rn,

f(x) =

∞∑
k=k0

f
(√

2k
)
ak(x) +

∞∑
k=k0

f ′(√2k
)
bk(x)

+

∞∑
k=k0

f̂
(√

2k
)
âk(x) +

∞∑
k=k0

f̂ ′(√2k
)
b̂k(x),

where these sums converge absolutely.

In particular, up to scaling the magic function is the interpolation basis function
bk0

in this theorem. One does not need this interpolation theorem to solve the
sphere packing problem, but it is needed for analyzing ground states of more general
particle systems in R8 and R24 (see [13]), and it provides a broader context for the
magic functions.

Theorem 2.2 is similar in spirit to other interpolation theorems in mathematics.
The simplest and most famous of these theorems is Lagrange interpolation, which
says that a polynomial in one variable of degree less than n can be reconstructed
from its values at any n distinct points. If the interpolation points are x1, . . . , xn,
then we can write down an interpolation basis p1, . . . , pn as

(2.3) pk(x) =

n∏
j=1
j ̸=k

x− xj

xk − xj
,

so that every polynomial f of degree less than n is given by

f(x) =

n∑
j=1

f(xj)pj(x).

Lagrange interpolation can be generalized to Hermite interpolation, which takes
into account derivatives along similar lines to Theorem 2.2: a polynomial f can be
reconstructed from the values f (j)(xk) with 0 ≤ j < dk and 1 ≤ k ≤ m if its degree
is less than

∑m
k=1 dk.

One important relative of Lagrange interpolation is Shannon sampling, which in

the case of Schwartz functions f : R → C says that if f̂ vanishes outside the interval
[−r/2, r/2] for some r, then f is determined by its values on r−1Z via

f(x) =
∑
n∈Z

f(n/r)
sinπ(rx− n)

π(rx− n)
.

This theorem plays a crucial role in information theory, since it says that a band-
limited signal (i.e., one with a limited range of frequencies) is determined by periodic
samples. It’s worth noting that the product formula

(2.4)
sinπx

πx
=

∞∏
j=1

(
1− x

j2

)
is analogous to the products (2.3) in the Lagrange interpolation basis. Much is
known about Shannon sampling and its variations; see, for example, [27] and the
references cited therein.

Both Lagrange interpolation and Shannon sampling rely on a notion of size. We
measure the size of a polynomial by its degree, and the size of a bandlimited function

by its bandwidth, the smallest r such that supp(f̂) ⊆ [−r/2, r/2]. Then the larger a
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function is, the more interpolation points are required to reconstruct it, with “more”
referring to density in the bandlimited case. Here the intuition is that size controls
how many roots a function can have.3

Puzzlingly, Theorem 2.2 shows no sign of a similar notion of size. It is reminiscent

of Shannon sampling, in that it takes into account both f and f̂ , but it treats them
symmetrically. In particular, there is little hope of a product formula along the

lines of (2.3) or (2.4), because specifying the roots of f will not yield the roots of f̂ .
There seems to be a fundamental difference between these interpolation formulas,
and neither Lagrange interpolation nor Shannon sampling offers a clue as to how to
prove Theorem 2.2.

3. First-order Fourier interpolation

How does one prove an interpolation theorem like Theorem 2.2? We’ll examine a
technically simpler variant due to Radchenko and Viazovska, which is important
in its own right and a beautiful illustration of Fourier interpolation. It deals with
functions of one variable (so “radial” becomes “even”), and it studies interpolation
to first order, without derivatives. This first-order interpolation theorem does not
seem to have any applications to sphere packing, but it’s a fundamental fact about
Fourier analysis, and it is remarkable that it was not known until well into the 21st
century.

Theorem 3.1 (Radchenko and Viazovska [33]). There exist even Schwartz functions
an : R → R for n = 0, 1, 2, . . . such that every even Schwartz function f : R → R
satisfies

f(x) =

∞∑
n=0

f
(√

n
)
an(x) +

∞∑
n=0

f̂
(√

n
)
ân(x)

for all x ∈ R, and these sums converge absolutely.

There is also a corresponding theorem about odd functions (Theorem 7 in [33]),
which can be proved in almost the same way. We’ll focus on even functions here
for simplicity. Note also that the root spacing has changed from

√
2n to

√
n in

comparison with Theorem 2.2, which reflects the change in the order of interpolation.
As a consequence of this interpolation theorem, if an even Schwartz function

f : R → R satisfies f
(√

n
)
= f̂

(√
n
)
= 0 for n = 0, 1, 2, . . . , then f vanishes

identically. It’s not so surprising that constructing an explicit interpolation basis
a0, a1, . . . would require special functions, such as modular forms, but it’s noteworthy
that even this corollary about vanishing does not seem easy to prove directly.

In the remainder of this section, we’ll sketch a proof of Theorem 3.1. The sketch
will omit a number of analytic details, but it will outline the techniques and explain
where additional work is required.

The central question is where the interpolation basis a0, a1, . . . comes from. We
need to characterize these functions and prove that they have the desired properties.
A first observation is that the interpolation basis is not quite unique, because Poisson
summation over Z implies that every even Schwartz function f satisfies

f(0) + 2f(1) + 2f(2) + · · · = f̂(0) + 2f̂(1) + 2f̂(2) + · · · .

3Furthermore, size is related to growth at infinity. For degrees of polynomials this is clear, while
a bandlimited function of bandwidth r can be analytically continued to the entire complex plane
and satisfies |f(z)| = O(eπr|z|). In other words, it is an entire function of exponential type πr.
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In particular, f̂(0) is determined by the values f(0), f(1), f(2), . . . and f̂(1), f̂(2), . . . .
To account for this redundancy, we will impose the constraint â0 = a0, so that the
interpolation formula becomes

f(x) = (f(0) + f̂(0))a0(x) +

∞∑
n=1

f
(√

n
)
an(x) +

∞∑
n=1

f̂
(√

n
)
ân(x).

It turns out that this formula is now irredundant, with no additional linear relations

between the values f
(√

n
)
and f̂

(√
n
)
, and the interpolation basis is uniquely

determined. Substituting f = an shows that we can characterize an by its values at
the points

√
m with m = 0, 1, 2, . . . . Specifically, for n,m ≥ 1, we must have

an
(√

m
)
=

{
1 if m = n, and

0 otherwise,

ân
(√

m
)
= 0, and an(0) + ân(0) = 0, while a0 must satisfy â0 = a0, a0(0) = 1/2,

and a0
(√

m
)
= 0 for all m ≥ 1.

These constraints let us get a handle on an, and we can use them to compute
numerical approximations to an. More dramatically, they allow us to use Viazovska’s
modular form techniques from [39] to construct an explicitly. For example, we can
write down a0 as follows:

Lemma 3.2. Let a0 : R → C be defined by

a0(x) =
1

4

∫ 1

−1

θ(z)3eπizx
2

dz,

where we integrate over a semicircle in the upper half-plane H. Then a0 is an even
Schwartz function with Fourier transform â0 = a0, and it satisfies a0(0) = 1/2 and
a0
(√

m
)
= 0 for all positive integers m.

We’ll use the same semicircular contour of integration in all integrals from −1
to 1 below. Recall that the theta function in this integral is defined for z ∈ H by

θ(z) =
∑
n∈Z

eπin
2z

and satisfies the functional equations θ(z + 2) = θ(z) and θ(−1/z) = (−iz)1/2θ(z).

Sketch of proof. The function a0 is manifestly even, and we can prove that it is a
Schwartz function by analyzing the behavior of θ(z) as z tends to ±1. Specifically,
if we remove small neighborhoods of ±1 from the contour, then we obtain a smooth
function of x. One can show that this function and its derivatives are rapidly
decreasing as x → ∞, essentially because the complex phases interfere destructively.
To show that a0 itself is a Schwartz function, we just have to check that the behavior
as z → ±1 is not bad enough to ruin this analysis.
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To show that â0 = a0, we can take the Fourier transform of the complex Gaussian
under the integral sign using (2.2) and change variables to u = −1/z, to obtain

â0(x) =
1

4

∫ 1

−1

θ(z)3(−iz)−1/2eπi(−1/z)x2

dz

=
1

4

∫ −1

1

θ(−1/u)3(i/u)−1/2eπiux
2

u−2 du

=
1

4

∫ 1

−1

θ(u)3eπiux
2

du

= a0(x),

where the third line follows from θ(−1/u)3 = (−iu)3/2θ(u)3 and

−(−iu)3/2(i/u)−1/2u−2 = 1

for u ∈ H. (To check this last identity, note that the left side is always ±1, it is
continuous for u ∈ H, and it equals 1 when u = i.)

Finally, we can compute a0
(√

m
)
for nonnegative integers m using the identity

a0
(√

m
)
=

1

4

∫ 1

−1

θ(z)3emπiz dz

=
1

4

∫ 1+i

−1+i

θ(z)3emπiz dz,

where we have deformed the contour to a straight line from −1 + i to 1 + i, which is
possible because the integrals between 0 and −1 + i and between 1 + i and 1 cancel
due to θ(z + 2) = θ(z). Now we write

θ(z) = 1 + 2eπiz + 2e4πiz + 2e9πiz + · · ·

and expand θ(z)3 as a series in powers of eπiz. By orthogonality, the value

a0
(√

m
)
=

1

4

∫ 1+i

−1+i

θ(z)3emπiz dz

is 1/2 times the coefficient of e−mπiz in this expansion of θ(z)3. In particular,
a0(0) = 1/2 and a0

(√
m
)
= 0 for positive integers m, as desired, since there are no

negative powers of eπiz in this series. □

What made this proof work is that the identity θ(−1/z)3 = (−iz)3/2θ(z)3 gave
us â0 = a0, while the identity θ(z + 2)3 = θ(z)3 let us compute the values a0

(√
m
)

as Fourier series coefficients. One can obtain each basis function an using similar
constructions, which require increasingly elaborate replacements for θ(z)3 as n grows,
and it is not immediately clear how to describe or analyze them systematically.
Furthermore, obtaining the basis functions individually does not explain why the
interpolation formula actually holds: these functions could in principle exist yet not
suffice to reconstruct an arbitrary even Schwartz function in Theorem 3.1.

To give a uniform account of these functions, we will construct generating
functions for the interpolation basis. For τ ∈ H, let

F (τ, x) =

∞∑
n=0

an(x)e
nπiτ ,
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and denote its Fourier transform in x by

F̂ (τ, x) =

∞∑
n=0

ân(x)e
nπiτ .

Being Fourier series, these functions satisfy the functional equations

F (τ + 2, x) = F (τ, x) and F̂ (τ + 2, x) = F̂ (τ, x).

Furthermore, the formula (2.2) for the Fourier transform of a complex Gaussian
implies that the interpolation formula from Theorem 3.1 for the function f(x) =

eπiτx
2

is equivalent to

F (τ, x) + (−iτ)−1/2F̂ (−1/τ, x) = eπiτx
2

,

and thus F and F̂ must satisfy this functional equation as well.
In fact, these functional equations turn out to be almost all we need to obtain a

working interpolation basis. The following lemma is stated somewhat informally,
but it can be made precise.

Lemma 3.3. If there exists a function F such that F and F̂ satisfy these three
functional equations and certain analyticity and growth bounds, then Theorem 3.1
follows.

Sketch of proof. The idea behind the proof is surprisingly simple. If F and F̂ are
sufficiently well-behaved, then the functional equations F (τ + 2, x) = F (τ, x) and

F̂ (τ + 2, x) = F̂ (τ, x) imply that they can be expanded as Fourier series. We can
define the functions an to be the Fourier coefficients of F (τ, x), and ân must be

the corresponding coefficient of F̂ (τ, x), as in the original definitions of F and F̂
above. The fact that there are no terms with n < 0 amounts to boundedness as
Im(τ) → ∞, and the constraint that a0 = â0 can be phrased similarly (namely that

F (τ, x)− F̂ (τ, x) decays as Im(τ) → ∞).
Now the third functional equation says that

∞∑
n=0

an(x)e
nπiτ +

∞∑
n=0

ân(x)(−iτ)−1/2enπi(−1/τ) = eπiτx
2

,

which becomes
∞∑

n=0

an(x)f
(√

n
)
+

∞∑
n=0

ân(x)f̂
(√

n
)
= f(x)

if we set f(x) = eπiτx
2

. In other words, it states that the interpolation theorem
holds when f is a complex Gaussian.

One can show that complex Gaussians span a dense subspace of the even Schwartz
functions. To complete the proof, all we need to show is that for each x ∈ R, the
functional Λx that takes an even Schwartz function f to

Λx(f) = f(x)−
∞∑

n=0

f
(√

n
)
an(x)−

∞∑
n=0

f̂
(√

n
)
ân(x)

is continuous, so that vanishing on a dense subspace implies vanishing everywhere.
The topology on the space of Schwartz functions is defined by a family of seminorms,
and proving that Λx is continuous requires proving that the seminorms of an and
ân grow at most polynomially as n → ∞. To prove the required bounds, we can
use Fourier orthogonality to write an(x) and ân(x) as integrals in τ of F (τ, x) and
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F̂ (τ, x), respectively, and then use suitable growth bounds for F and F̂ to bound
the seminorms of these integrals. □

We can now imitate the construction of a0 from θ(z)3 in Lemma 3.2 to obtain

the generating functions F and F̂ explicitly. To do so, we will replace θ(z)3 with the

functions K and K̂ from the following proposition, which is again stated informally.

Note that K̂ is not a Fourier transform of K; instead, this notation is simply

mnemonic, since K̂ will be used to construct F̂ .

Proposition 3.4. There exist meromorphic functions K and K̂ on H × H that
satisfy the following conditions for all τ, z ∈ H:

(1) K(τ + 2, z) = K(τ, z) and K̂(τ + 2, z) = K̂(τ, z),

(2) K(τ, z + 2) = K(τ, z) and K̂(τ, z + 2) = K̂(τ, z),

(3) K(−1/τ, z) = −(−iτ)1/2K̂(τ, z),

(4) K(τ,−1/z) = (−iz)3/2K̂(τ, z),

(5) z 7→ K(τ, z) and z 7→ K̂(τ, z) have poles only when z is in the Γθ-orbit of τ ,
(6) all their poles are simple poles,
(7) the residue of z 7→ K(τ, z) at z = τ is 1/(2πi) and at z = −1/τ is 0 (in

other words, there is no pole there),

(8) the residue of z 7→ K̂(τ, z) at z = τ is 0, and

(9) K and K̂ satisfy certain growth bounds, which we will not discuss here.

The motivation behind the transformation laws in Proposition 3.4 is that they
generalize how θ(z)3 transforms, and we’ll see that they perfectly describe what

we need to obtain F and F̂ as integrals of K and K̂. At first glance the most
mysterious aspect may be the poles, which did not occur for θ(z)3. We’ll see below

that the poles lead to the inhomogeneous term eπiτx
2

in the functional equation

F (τ, x) + (−iτ)−1/2F̂ (−1/τ, x) = eπiτx
2

.

Before we examine how to use K and K̂ to construct F and F̂ , we will take a
look at how Proposition 3.4 is proved.

Sketch of proof. The functions K and K̂ can be described explicitly in terms of
modular forms, using three ingredients: the theta function θ, the modular function
λ, and a Hauptmodul (principal modular function) J for the group Γθ.

We have already been using θ, and λ is a similar analytic function on H that
dates back to the 19th century. For our purposes, its key properties will be how Γθ

acts on it, namely

λ(z + 2) = λ(z) and λ(−1/z) = 1− λ(z).

Note that it is not quite invariant under Γθ. We define J(z) to be λ(z)(1−λ(z))/16,
so that J(z) is invariant under both generators of Γθ; i.e.,

J(z + 2) = J(z) and J(−1/z) = J(z).

Then it turns out that J generates the function field of the quotient of H by the
action of Γθ (this quotient has genus 0), and J(z) = J(τ) if and only if z and τ are
in the same orbit of Γθ.

Using these tools, we can guess much of what K(τ, z) and K̂(τ, z) should look like.
Conditions (3) and (4) suggest that these functions should have factors of θ(τ)θ(z)3,
to get the correct weights for the transformation laws. Conditions (4) and (5) imply
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that they should be given by 1/(J(z)− J(τ)) times something holomorphic, and
the signs in (3) and (4) can be obtained using 1− 2λ(−1/z) = −(1− 2λ(z)).

In fact, we can take

K(τ, z) = θ(τ)θ(z)3
J(z)(1− 2λ(τ)) + J(τ)(1− 2λ(z))

4(J(z)− J(τ))

and

K̂(τ, z) = θ(τ)θ(z)3
J(z)(1− 2λ(τ))− J(τ)(1− 2λ(z))

4(J(z)− J(τ))
,

and fairly routine computations show that (1) through (9) hold. The functions K

and K̂ turn out to be uniquely determined by these conditions, but we will not
verify that here, to avoid having to state the conditions more carefully and deal
with residues and growth bounds.

It’s worth noting that one can simplify some of the verification by writing K and

K̂ in terms of the function h := 1− 2λ via

K(τ, z) = θ(τ)θ(z)3
1− h(τ)h(z)

4(h(τ)− h(z))

and

K̂(τ, z) = θ(τ)θ(z)3
1 + h(τ)h(z)

4(h(τ) + h(z))
.

For example, h is a Hauptmodul for a subgroup of Γθ called Γ(2), and these formulas

show that the poles of z 7→ K(τ, z) and z 7→ K̂(τ, z) occur only on the Γ(2)-orbits
of τ and −1/τ , respectively. □

All that remains is to use K and K̂ to construct functions F and F̂ for use in
Lemma 3.3. To do so, we can imitate Lemma 3.2. As a first attempt to produce F
from K, we could try setting

(3.1) F (τ, x) =

∫ 1

−1

K(τ, z)eπizx
2

dz.

However, this formula can’t possibly hold for all τ , because the integrand has poles
on the Γθ-orbit of τ , and as one varies τ , sometimes these poles cross the contour
of integration. Instead, we can use this definition only on subsets of H for which
the poles avoid the contour of integration. As shown in Figure 2.3, one such subset
consists of all the points τ ∈ H such that τ has distance strictly greater than 1
from 2Z. For such τ , we define F (τ, x) by (3.1); we will deal with other values of τ
via analytic continuation in Lemma 3.5.

To obtain F̂ (τ, x) we can take the Fourier transform of F (τ, x) in x. For τ strictly
further than distance 1 from 2Z, we can use the semicircular contour, and almost
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exactly the same computation as in the proof of Lemma 3.2 shows that

F̂ (τ, x) =

∫ 1

−1

K(τ, z)(−iz)−1/2eπi(−1/z)x2

dz

= −
∫ 1

−1

K(τ,−1/z)(i/z)−1/2eπizx
2

z−2 dz

= −
∫ 1

−1

K̂(τ, z)(−iz)3/2(i/z)−1/2z−2eπizx
2

dz

=

∫ 1

−1

K̂(τ, z)eπizx
2

dz.

Lemma 3.5. The functions τ 7→ F (τ, x) and τ 7→ F̂ (τ, x) can be analytically
continued to all of H, and they satisfy the functional equations F (τ +2, x) = F (τ, x),

F̂ (τ + 2, x) = F̂ (τ, x), and F (τ, x) + (−iτ)−1/2F̂ (−1/τ, x) = eπiτx
2

.

Sketch of proof. Let S = {τ ∈ H : |τ − 2n| > 1 for all n ∈ Z}. We have defined

F (τ, x) and F̂ (τ, x) for τ ∈ S, and the functional equations

F (τ + 2, x) = F (τ, x) and F̂ (τ + 2, x) = F̂ (τ, x)

for τ ∈ S are immediate consequences of

K(τ + 2, z) = K(τ, z) and K̂(τ + 2, z) = K̂(τ, z).

To prove the lemma, it will suffice to analytically continue τ 7→ F (τ, x) and

τ 7→ F̂ (τ, x) to some open neighborhood of the closure of S in H, such that
the continuations satisfy

F (τ, x) + (−iτ)−1/2F̂ (−1/τ, x) = eπiτx
2

whenever τ and −1/τ are both in this neighborhood. Then we can use the functional
equations to extend these functions to all the hyperbolic triangles in Figure 2.3.4

We can now use the information about poles and residues in Proposition 3.4.
When we analytically continue F (τ, x) to τ just below the semicircle from −1 to 1,
the only relevant pole of z 7→ K(τ, z) is at z = τ , since −1/τ is the only other
nearby point in the Γθ-orbit of τ , and there is no pole at that point. We can set

(3.2) F (τ, x) =

∫
Cτ

K(τ, z)eπizx
2

dz,

where Cτ is a deformation of the semicircle to form a contour from −1 to 1 that
passes below τ , so that τ never lies on the contour.

Similarly, we can analytically continue F̂ (τ, x) to just below the semicircle via

F̂ (τ, x) =

∫
C′
τ

K̂(τ, z)eπizx
2

dz,

where this time there is no pole at x = τ , and the condition is that the contour C′
τ

stays above the pole of z 7→ K̂(τ, z) at z = −1/τ .
Now we can prove the functional equation

F (τ, x) + (−iτ)−1/2F̂ (−1/τ, x) = eπiτx
2

4Note that as we pass from a triangle to the adjacent triangles, we can never reach the same
triangle via two different paths of adjacencies, and thus we don’t need to worry about inadvertently
defining a multivalued function of τ .
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as follows when τ is just below the semicircle. The identity

K(−1/τ, z) = −(−iτ)1/2K̂(τ, z),

or equivalently

K̂(−1/τ, z) = −(−iτ)1/2K(τ, z),

shows that

(−iτ)−1/2F̂ (−1/τ, x) =

∫
C′
−1/τ

(−iτ)−1/2K̂(−1/τ, z)eπizx
2

dz

=

∫
C′
−1/τ

−(−iτ)−1/2(−iτ)1/2K(τ, z)eπizx
2

dz

= −
∫
C′
−1/τ

K(τ, z)eπizx
2

dz.

(3.3)

Combining (3.2) and (3.3) with the residue theorem implies that

F (τ, x) + (−iτ)−1/2F̂ (−1/τ, x)

is 2πi times the sum of the residues of all the poles of z 7→ K(τ, z)eπizx
2

between Cτ
and C′

−1/τ . The only pole that could lie between these contours is at z = τ , since

z 7→ K(τ, z) has no pole at z = −1/τ , and by construction it does lie between them.

The residue of z 7→ K(τ, z)eπizx
2

at z = τ is eπiτx
2

/(2πi), and so

F (τ, x) + (−iτ)−1/2F̂ (−1/τ, x) = eπiτx
2

,

as desired. □

Lemma 3.5 shows that F (τ, x) and F̂ (τ, x) can be analytically continued to all
τ ∈ H in such a way that they satisfy the three functional equations. That is almost
everything we need to prove Theorem 3.1 using Lemma 3.3. However, to apply

this lemma we need to verify certain growth conditions for F (τ, x) and F̂ (τ, x) as τ
approaches the real line. Verifying these conditions is the most technical part of the
proof of the interpolation theorem, and we will not examine it here. In short, the

verification combines bounds on K and K̂ with careful accounting of how quickly
the inhomogeneous terms from the third functional equation can accumulate during
the analytic continuation. Once this is done, the proof of Theorem 3.1 is complete.

This proof is satisfyingly thorough, in that it not only proves the interpolation
formula, but also provides plenty of additional information. For example, we can
obtain explicit formulas for the interpolation basis a0, a1, . . . by using the identity
K(τ + 2, z) = K(τ, z) to write K as a Fourier series

K(τ, z) =

∞∑
n=0

φn(z)e
nπiτ

when Im(τ) is large. Then

an(x) =

∫ 1

−1

φn(z)e
πizx2

dz,

which generalizes Lemma 3.2. Similarly, the Fourier coefficients of K̂ yield formulas
for ân.
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On the other hand, some aspects of the proof are quite delicate. For example, it
is very sensitive to the form

√
n of the interpolation points. Specifically, the proof

of the functional equation

F (τ, x) + (−iτ)−1/2F̂ (−1/τ, x) = eπiτx
2

,

depends on the fact that the complex Gaussian x 7→ eπiτx
2

equals enπiτ when evalu-
ated at the interpolation point x =

√
n. If we replaced

√
n with other interpolation

points rn, then the Fourier series for F (τ, x) would have to be replaced with

∞∑
n=0

an(x)e
r2nπiτ ,

and it would no longer satisfy F (τ + 2, x) = F (τ, x) if the values r2n are not integers.
That would disrupt the algebraic mechanism behind the proof.

Much remains to be understood regarding generalizations of the Radchenko-
Viazovska theorem and how Fourier interpolation fits into a broader picture. One
significant line of work [2, 3] connects Fourier interpolation to uniqueness theory
for the Klein-Gordon equation [24, 25, 26]. Other noteworthy papers examine the
density of possible interpolation points [28, 34] and whether they can be perturbed
[30], interpolation formulas using zeros of zeta and L-functions [5], and extensions
to non-radial functions [35, 31, 32]. Perhaps the most surprising development so
far has been a paper on sphere packing and quantum gravity [23], which shows
the equivalence of linear programming bounds with the spinless modular bootstrap
bound for free bosons in conformal field theory, and which furthermore shows that
certain bases of special functions constructed by Mazáč and Paulos [29] for the
conformal bootstrap can be transformed into Fourier interpolation bases.
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A STROLL AROUND THE CRITICAL POTTS MODEL

MARTIN HAIRER

Abstract. Over the past decade or so, a broad research programme spear-

headed by H. Duminil-Copin and his collaborators has vastly increased our
understanding of a number of critical or near-critical statistical mechanics mod-
els. Most prominently, these include the q-state Potts models and, essentially

equivalently, the FK cluster models. In this short review, we present a small
selection of recent results from this research area.
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1. Introduction

One of the simplest, yet extremely rich, models of statistical mechanics is the
Ising model which has historically been introduced as a toy model for the behaviour
of ferromagnets. (This model was actually first invented by Wilhelm Lenz in 1920,
who then gave it to his student Ernst Ising to study.) The definition of the model
goes as follows. Given a finite graph G, identified here with its set of vertices, we
consider the configuration space Ω = {−1, 1}G and define on Ω an energy functional
E(σ) = − 1

2

∑
x∼y σxσy, where x ∼ y if and only if the vertices x and y are connected

by an edge in G. One should think here of the vertices of G as indexing spatial
locations, for example of individual atoms in a metallic solid, of the graph structure
as indicating which locations are neighbours in space, and of σx as denoting a spin
variable associated to such a location. The energy is then defined in such a way that
states of low energy are those where many pairs of neighbouring spins are aligned.

Given an inverse temperature β, one then defines a probability measure µβ on
Ω by setting µβ({σ}) = Z−1 exp(−βE(σ)), where Z is such that µβ(Ω) = 1. For
definiteness, when we talk about “the Ising model on G at inverse temperature β”,
we mean the measure µβ as just described. The interpretation of the model in terms
of spins and atoms suggests that an interesting special case is that where G is a large
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piece of a lattice, for example G = ΛN = {−N, . . . , N}d or G = Zd ∩NO for some
open set O ⊂ Rd with smooth boundary, with edges between nearest neighbours.
Writing µN

β for the Ising model on GN , it turns out that the limit µβ = limN→∞ µN
β

exists and can therefore be interpreted as the Ising model on Zd.
One very interesting qualitative feature of this model is that it exhibits a phase

transition in every dimension d ≥ 2: there exists a critical (dimension-dependent)
value βc which delineates two regimes in which the measure µβ behaves very differ-
ently. At “high temperature”, namely for β < βc, the spontaneous magnetisation,
namely the random quantity M = N−d

∑
i∈ΛN

σi, converges to 0 in probability as
N → ∞. For β > βc on the other hand, it converges in probability to a limiting
random variable that can take exactly two possible values ±hβ ̸= 0 with equal
probabilities. The actual value of βc is only known in dimension 2 where it equals
βc = log

(
1 +

√
2
)
[Ons44]. (There is no phase transition at all in dimension 1

and the spontaneous magnetisation M always vanishes, so in some sense βc = +∞
there.)

The expression and just mentioned result for the spontaneous magnetisation
M has the flavour of a “law of large numbers”, so it is natural to ask whether
there is an associated “central limit theorem” describing the fluctuations of the
magnetisation. In other words, does the law of the quantity N−d/2

∑
i∈ΛN

(σi −M)
converge to that of a normal distribution? This is indeed the case when β ̸= βc,
but the corresponding variance diverges as β → βc. The behaviour at the critical
temperature is highly non-trivial and it is not even clear at first sight how such an
expression should be normalised. In other words, does there exist a value α such
that the law of

N−α
∑
i∈ΛN

(σi −M)

admits a non-degenerate limit distribution as N → ∞ when β = βc? It was shown in
a recent series of works [CGN15, CGN16] that if one chooses α = 15/8 in dimension
d = 2, then this is indeed the case. Actually even more was shown there, namely
one can consider the joint distribution of finitely many quantities of the form

INϕ (σ) = N−α
∑

x∈ΛN

ϕ(x/N)σx , (1.1)

for ϕ a smooth test function supported on [−1, 1]d, and these all converge. One way
of interpreting this is that there exists a random distribution ζ on the hypercube
such that the quantities INϕ (σ) all converge jointly in law to the quantities ζ(ϕ).

This time however, unlike in the central limit theorem, the limiting distributions
are not Gaussian (the random variables ζ(ϕ) actually exhibit an even faster decaying
tail behaviour) and no nice closed form expression exists for them (but there does
exist a closed form expression for their joint moments, which was first derived
heuristically in the physics literature [BPZ84, Car84, BG93] and recently made
rigorous in [CHI15]). Note that the exponent α is closely related to the behaviour
of Ecσuσv (where Ec denotes the expectation under µβc

) since, assuming that
Ecσuσv ≈ |u− v|−2δ, one finds that

Ec

(
INϕ (σ)

)2
= N−2α

∑
u,v

ϕ(u/N)ϕ(v/N)Ecσuσv

≲ N−2α
∑
u,v

|u− v|−2δ ≈ N2d−(2δ∧d)−2α ,

2

tfc
Cross-Out



A STROLL AROUND THE CRITICAL POTTS MODEL 3

so that one expects the relation α = d − (δ ∧ d/2), which (correctly) leads to
the prediction δ = 1

8 . Interestingly, the limiting distribution ζ exhibits a form
of covariance under the action of the conformal group(oid) in the following sense.
Given any smooth simply connected domain D ⊂ R2, one can consider expressions
like (1.1), but this time with ΛN = ND ∩ Z2. It turns out that these do again
converge, this time to a random distribution ζD on the domain D. Given two such
domains D and D̄ and a bijective conformal map ψ : D → D̄, the pushforward η of
ζD̄ to D given by

η(ϕ) = ζD̄(ϕ ◦ ψ−1) , (1.2a)

is equal in law to the random distribution η̄ given by

η̄(ϕ) = ζD(|ψ′|15/8ϕ) = ζD(|ψ′|αϕ) , (1.3)

where α = 2 − δ is as above. This and a number of other properties of the Ising
model at criticality allows to associate it to the conformal field theory with central
charge c = 1

2 .
The picture in dimensions greater than 2 is less clear. For d ≥ 5, it was shown in

[Aiz81, Aiz82, Frö82] that the correct scaling exponent to use in (1.1) at β = βc is
α = 1+ d

2 and that the limit is a Gaussian Free Field, namely the Gaussian random
distribution with correlation function given by the Green’s function of the Laplacian
(with Neuman boundary conditions on the square). In dimension d = 3, virtually
nothing is known rigorously about the critical Ising model, not even the value of
its scaling exponents, although much progress has been made at a non-rigorous
(but very well supported) level with the development of the “conformal bootstrap”
[ESPP+12, ESPP+14]. Regarding the case d = 4, it was somewhat unclear until
very recently whether the Ising model at criticality should be “trivial” (i.e. described
by Gaussian distributions) or not. This was eventually settled by Aizenman and
Duminil-Copin in the work [ADC21] where they show that any subsequential limit
for expressions of the form (1.1) as N → ∞ (and β → βc) must necessarily be
Gaussian.

1.1. A general picture. The general picture that has been emerging over the past
half century or so regarding the behaviour of many statistical mechanics systems
can be summarised as follows:

(1) Many of the simplest local equilibrium systems in dimension 2 or higher do
exhibit a phase transition, namely there exists a critical value βc at which the
qualitative large scale behaviour of the system changes abruptly. In general,
a system may depend on additional parameters in which case one may see a
more complicated phase diagram with several regions in parameter space
where the global behaviour of the system displays qualitatively different
behaviour. In any case, the “high temperature / small β phase” is expected
to behave in such a way that what happens in well separated regions of
space is very close to independent.

(2) In dimension 2, many of these systems appear to exhibit a form of conformal
invariance at criticality, even though no rotation symmetry is built a priori
into their description. When this happens, the link to 2d conformal field
theories (and the associated probabilistic objects like SLE [Sch00], QLE
[MS16], etc) provides a hugely powerful machinery to predict – and in a
number of cases also rigorously prove – their behaviour. In the case of the
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Potts model (see below for its definition), these links are on a strong rigorous
footing for q ∈ {0, 2}, but much needs to be done for other values of q.

(3) The universe of local statistical mechanics models can be subdivided into
broad classes of models that exhibit a shared large-scale behaviour at
criticality. These are called “universality classes” and, in the 2d equilibrium
case, they are expected to come in families parametrised by a real parameter,
the central charge. (For certain values of the central charge, one expects
to have several “subclasses”, but we will not discuss this kind of subtlety
here.)

(4) Although one still expects conformal invariance at criticality in higher
dimensions, this is a much smaller symmetry there and therefore appears to
provide somewhat less insight1. One also expects the situation there to be
more rigid than in two dimensions, with fewer universality classes. (Possibly
only a discrete family.)

(5) Models that have “obvious” variants in every dimension typically have a
critical dimension above which their behaviour at criticality is “trivial” in
the sense that it exhibits Gaussian behaviour. (Typically with correlation
function given by the Green’s function of the Laplacian.) In the case of
the Ising universality class, this critical dimension is 4, while in the case of
Bernoulli percolation it is 6.

One important branch of modern probability theory aims to put this general
picture onto rigorous mathematical footing. The remainder of this article is devoted
to a short overview of some of the recent contributions to this vast programme,
mainly focusing around the example of the critical Potts model where much recent
progress was made by Hugo Duminil-Copin and his collaborators.

Acknowledgements. This work was supported by the Royal Society through a research
professorship, grant number RP/R1/191065. Sections 3 and 4 of this review were previously
published in my 2022 laudatio for Hugo Duminil-Copin’s Fields medal.

2. The Potts and random cluster models

The Potts model is a natural generalisation of the Ising model: this time the configuration
space is given by Ω = {1, . . . , q}G and the corresponding energy functional is given by
Eq(σ) = −

∑
x∼y 1{σx = σy}. We denote by

Pβ,q(σ) ∝ exp
(
−Eq(σ)

)
,

the corresponding Gibs measure. Note that the case q = 2 yields the Ising model, modulo
a recentering of the energy (which doesn’t affect the measures µβ = Pβ,2). For q ̸= 2, the
Potts model does not exhibit the kind of exact solvability that the Ising model does in two
dimensions (as discovered by Onsager [Ons44] in his famous computation of its partition
function), so that it is one of the simplest possible models of statistical mechanics that
isn’t known to be exactly solvable.

One important feature of the Potts model is that it is very closely related to a different
model, the random cluster model, introduced by Fortuin and Kasteleyn [FK72], which
however makes sense for all q > 0, not just integer values. This model is usually interpreted
as a percolation model, i.e. its state space is given by Ω̄ = {0, 1}E where E denotes the set
of edges of the graph G and, given a configuration ω ∈ Ω̄, we say that the edge e is “open”

1See however the recent breakthrough made in the approximation of the critical exponents
of the 3d Ising model using the “conformal bootstrap” [ESPP+12, ESPP+14] already mentioned
above.
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if and only if ωe = 1. Given two fixed parameters p ∈ (0, 1) and q > 0, the probability of a
configuration ω is then proportional to

Qp,q(ω) ∝ p|ω|(1− p)|1−ω|q|Kω| ,

where |ω| =
∑

e∈E ωe and Kω denotes the set of connected components (also called
“clusters” in this context) of the subgraph Gω of G given by replacing the edge set E with
the set Eω = {e : ωe = 1} of “open” edges. (Here an isolated vertex counts as a connected
component.)

It turns out, see for example [Gri06, Thm 1.13] that given any finite graph G and
provided that β and p are related by the identity

p = 1− e−β , (2.1)

one can find a probability measure P on Ω× Ω̄ with the following properties:

• The marginal of P on Ω coincides with the Potts model, namely P(A×Ω̄) = Pβ,q(A).

• The marginal of P on Ω̄ coincides with the random cluster model, namely P(Ω×A) =
Qp,q(A).

• Under P, almost every configuration (σ, ω) is such that for every open edge xy (i.e.
such that ωxy = 1), one has σx = σy.

• Conditional on a configuration σ, the law of ω under P is obtained by setting the
values {ωxy : σx = σy} to be i.i.d. Bernoulli random variables with parameter p.

• Conditional on a configuration ω, the law of σ under P is obtained by assigning to
every cluster A ∈ Kω independently a “colour” σA ∈ {1, . . . , q}, and then setting
σx = σA for all x ∈ A.

The advantage of the random cluster model is that it exhibits a nice duality in the case
when G is a connected planar graph (for example a chunk of the two-dimensional lattice).
In that case, one can define a dual graph (G∗, E∗) whose vertex set G∗ consists of the
faces of the original graph G and such that there a bijection between E and E∗ mapping
any edge e ∈ E to an edge e∗ connecting the two faces adjacent to E. (This may generate
self-loops.)

Every configuration ω on E then determines a dual configuration ω∗ on E∗ by setting
ω∗
e∗ = 1− ωe, where e and e∗ are related as just described. See Figure 1 for an example

of a configuration ω on a chunk of the square lattice, as well as the corresponding dual
configuration. Write Q∗

p,q for the pushforward of the measure Qp,q under the map ω 7→ ω∗.
One then has the following result.

Proposition 2.1. The measure Q∗
p,q coincides with the random cluster model on G∗ with

parameters (p∗, q) where p∗ is given by

p∗ =
q − pq

p+ q − pq
.

Proof. Recall that, given any configuration ω, Gω is the (planar) subgraph of G obtained
by only retaining the “open edges” Eω = {e : ωe = 1}. The proof is then based on two
remarks. First, writing Fω for the set of faces of Gω (with the usual convention that there
is an infinite outer face) and Kω for the set of its connected components, we note that one
has the identity

|G|+ |Fω| = 1 + |Eω|+ |Kω| .
(This variant of the Euler characteristic formula is true for any planar graph and can easily
be shown by induction over the number of vertices and edges. The reason why we have G
appearing there is to emphasise that the vertex set of the graph Gω is independent of the
configuration ω, which will be important in the sequel.) The second remark relates the
graph Gω to the subgraph G∗

ω∗ of G∗ generated by the configuration dual to ω.2 One can

2Note that G∗
ω∗ is very different from the dual graph of Gω .
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Figure 1. On the left, we draw a configuration ω for the random
cluster model with N = 11, with one of the clusters highlighted in
red. On the right, the same configuration is drawn together with its
dual configuration in light blue. The face of the dual configuration
corresponding to the cluster is shaded in light red.

see that connected components of Gω are then in one-to-one correspondence with faces
of G∗

ω∗ , see Figure 1 for an illustration of this fact. In other words, one has the identity
|Kω| = |F ∗

ω∗ |.
Using this correspondence and the fact that |Eω|+ |E∗

ω∗ | = |E| by definition of the dual
configuration, it then follows that

Q∗
p,q(ω

∗) ∝ p|ω|(1− p)|1−ω|qk(ω) ∝
(
p/(1− p)

)|Eω|
q|Kω|

=
(
p/(1− p)

)|E|−|E∗
ω∗ |

q|F
∗
ω∗ | ∝

(
(1− p)/p

)|E∗
ω∗ |

q1+|K∗
ω∗ |+|E∗

ω∗ |−|G∗|

∝
(
q(1− p)/p

)|E∗
ω∗ |

q|K
∗
ω∗ | =

(
p∗/(1− p∗)

)|E∗
ω∗ |

q|K
∗
ω∗ | ∝ Qp∗,q ,

which is precisely the desired claim. □

Since the square lattice is self-dual, this leads to the natural conjecture that the critical
value of p for the random cluster model on Z2 is given by the (unique) value such that
p∗ = p, namely

p2(q − 1)− 2pq + q = 0 ⇒ p =
q −√

q

q − 1
= 1− 1

1 +
√
q
.

Thanks to (2.1) and the close link between the random cluster model and the Potts model,
this motivates the following recent result [BDC12].

Theorem 2.2. The critical inverse temperature for the q-colour Potts model is given by
βc = log(1 +

√
q).

In the remainder of this article, we describe several recent results for the random cluster
and Potts models at criticality. Our main focus is on the two-dimensional case, but we’ll
see that one important result is the continuity of the phase transition in dimension 3.

3. (Dis)continuity of phase transitions

One very natural question in statistical mechanics is whether one can take the limit
N → ∞ for the finite volume Gibbs measures. At this stage, we note that there are
actually several inequivalent natural ways in which one can define the Ising or Potts model
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Figure 2. Typical Ising configurations for β < βc (left) and β > βc (right).

in a region of size N of Zd. One possibility is to simply consider ΛN = {−N, . . . , N}d
as a subgraph of the lattice Zd, as we have done so far. However, one could also extend

configurations σ ∈ {1, . . . , q}ΛN to all of {1, . . . , q}Z
d

by fixing a reference configuration

σ̄ ∈ {1, . . . , q}Z
d

and postulating that σx = σ̄x for x ̸∈ ΛN . (A natural choice is to take σ̄
constant and we will mainly consider such a situation here.) Finally, one could identify
−N with N in ΛN and consider the Potts model on larger and larger discrete tori. In this
way, we have different choices of “boundary conditions” yielding different definitions for
the finite volume measures µβ,N .

In many examples of interest (including the case of the Potts models), the measure
µβ = limN→∞ µβ,N is well-defined (i.e. independent of the choice of boundary condition)
for β < βc while one can obtain several distinct limits in the case β > βc. Figure 2 shows
typical samples drawn from µβ for the Ising model with σ̄ ≡ 1. In the case β > βc, the
resulting sample clearly “remembers” the bias introduced by σ̄ in the sense that a typical
configuration consists of a “sea” of spins taking the dominant value +1 (brown) with
small “islands” of spins taking the value −1 (yellow). Had we set σ̄ ≡ −1, we would have
obtained a sample with the opposite behaviour, which illustrates the non-uniqueness of the
infinite-volume measure µβ in this case. In the case β < βc on the other hand, each one of
the two possible spin values is about equally represented and the measure is symmetric
under the substitution 1 ↔ −1, which illustrates the uniqueness of µβ . It is in fact a
theorem in the case of the Ising model that for β > βc there exist exactly two translation
invariant infinite volume measures µ±

β corresponding to boundary conditions σ̄ ≡ ±1 and
that every accumulation point of µβ,N for any sufficiently homogeneous boundary condition
as N → ∞ is a convex combination of µ+

β and µ−
β . (In fact a similar statement holds

for the Potts model with q states, where one has exactly q distinct infinite volume Gibbs
measures when β > βc.)

This raises the question of the uniqueness of µβ at β = βc. If it is, then we say that the
phase transition is continuous, otherwise it is said to be discontinuous. The reason for this
terminology is that continuity in this sense turns out to be equivalent to the continuity of
the maps β 7→ µ±

β at β = βc. It has been known for quite some time [Yan52, AF86] that
the phase transition for the Ising model is continuous in dimensions d = 1, 2 as well as
d ≥ 4. The reason why dimensions 1 and 2 are typically much better understood is that
the Ising model is “solvable” in these dimensions in the sense that explicit expressions
can be derived for the expectation of a large number of observables under µβ,N (this
solution is straightforward in d = 1 [Isi25] where no phase transition is present, but it
was a major breakthrough when Onsager obtained his exact solution for d = 2 [Ons44]).
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Dimension d = 4 on the other hand is the “upper critical dimension” beyond which the
model is expected to be “trivial” (i.e. described by Gaussian random variables in the
scaling limit) which allows to use a number of powerful techniques, including for example
the lace expansion [HS94, Sak07].

This leaves the case d = 3 which is of course the physically most interesting one since the
Ising model is a toy model of ferromagnetism and its dimensions represent the usual spatial
dimensions. Heuristic considerations suggest that the phase transition is also continuous
there, and this is consistent with physical experiments, assuming that the Ising model
belongs to the same universality class as that of a genuine physical magnet. In the article
[ADCS15], Duminil-Copin et al. gave the first rigorous proof that this is indeed the case.
The proof relies on the introduction of the quantity

M(β) = inf
B⊂Z3

1

|B|2
∑

x,y∈B

∫
σxσy µ

0
β(dσ) ,

where µ0
β denotes the infinite volume limit obtained from using “free” conditions, as well as

three main steps. First, they rely on results of [FSS76, FILS78] to argue that the Fourier
transform of x 7→

∫
σ0σx µ

0
β(dσ) belongs to L1 at β = βc, which implies that M(βc) = 0.

Then, and this is the main step, they show that having M(β) = 0 implies that a certain
percolation model with long-range correlations constructed from the Ising model admits
no infinite clusters. Finally, they use a variant of the “switching lemma” [GHS70] to show
that the quantity

∫
σ0σx µ

+
β (dσ) −

∫
σ0σx µ

0
β(dσ) is dominated by an explicit function

times the probability of the origin belonging to an infinite cluster in the above mentioned
model and therefore has to vanish at β = βc. Once this is known, it is not too difficult
to show that the spontaneous magnetisation of the Ising model at criticality must vanish
(namely one has

∫
σ0 µ

+
βc
(dσ) = 0), which in turn yields the desired uniqueness statement.

Considering more general values of q for the Potts model illustrates in a rather striking
way the fact that continuity of the phase transition, whatever the dimension, is a rather
non-trivial property that isn’t necessarily expected in general. Indeed, it was conjectured by
Baxter in the 70’s [Bax71, Bax73] that the Potts model on Z2 exhibits a continuous phase
transition if and only if q ≤ 4. The pair of articles [DCST17, DCGH+21] by Duminil-Copin
et al. provides proofs of both directions of this conjecture. For the sake of brevity we will
not comment on the proofs in any detail, but we note that the proof of continuity of the
phase transition for q ≤ 4 is almost completely disjoint from that in the case of the 3d Ising
model. A milestone is again to show that the model at criticality with boundary condition
set to one fixed element of S admits no infinite cluster. However both the proof of this
fact (exploiting a form of discrete holomorphicity of certain cleverly chosen observables)
and the proof of its equivalence with the uniqueness of the infinite-volume measure at
criticality (actually they show equivalence of a list of 5 quite distinct properties which are
of independent interest for the study of the critical Potts model) are completely different.

Regarding the proof of discontinuity when q > 4, the main tool is a close relation, first
discovered by Temperley–Lieb [TL71] in a restricted context and then by Baxter et al.
[BKW76] in more generality, between the FK model on Z2 and the so-called six-vertex
model. Configurations of the latter can be visualised as jigsaws where one assigns to each
vertex of Z2 (or a subset thereof) one of the six (oriented) tiles

and one enforces the admissibility constraint that the tiles fit together seamlessly. One
further postulates that the probability of seeing a given admissible configuration is propor-
tional to c#p, where #p denotes the number of purple tiles in the configuration and c is
some fixed constant. The relation between the six-vertex model and the critical FK model
holds for the specific choice c =

√
2 +

√
q. The advantage gained from this relation is that

8
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the six-vertex model is “solvable” in a certain sense using the transfer matrix formalism.
This doesn’t get one out of the woods since the transfer matrices VN involved are very
large: they act on a vector space of dimension 2N , but are block diagonal with each block

V
[n]
N acting on a subspace of dimension

(
n
N

)
. Each of these blocks is irreducible with

positive entries and therefore admits a Perron–Frobenius vector. The main technical result

of [DCST17] is a very sharp asymptotic for the Perron–Frobenius eigenvalues of V
[N/2−r]
N

for fixed r as N → ∞. Interestingly, the authors are able to prove that the ratios between
these values converge to finite (and explicit, at least as explicit convergent series) limits as
N → ∞ and that the values themselves diverge exponentially in N with known exponent,
but the common lower-order behaviour of that divergence is not known. This asymptotic
is however sufficient to obtain good control over the partition function of the six vertex
model and to exploit it to compute an explicit expression for the inverse correlation length
of the critical Potts model with free boundary conditions when q > 4. The finiteness of
that expression finally allows to deduce the discontinuity of the phase transition.

To conclude this section, I would like to mention the beautiful article [DCRT19] which,
although not quite dealing with the question of continuity of the phase transition, does have
a related flavour. The question there is that of the “sharpness” of the phase transition which
in this particular case is couched as the question whether it is really true that the measure
µβ has exponentially decaying correlations (in the sense that the covariance between f(σ0)
and f(σx) decays exponentially fast as |x| → ∞ for any “nice enough” function f : S → R)
for every β < βc and not just for small enough values where a perturbation argument
around β = 0 (where f(σ0) and f(σx) are independent under µ0 as soon as x ̸= 0) may
apply. One difficulty with this type of statements is that one will in general not know any
closed-form expression for βc: in the case of the FK model on the square lattice such an
expression can be derived by a duality argument [BDC12], but it is not known for more
general situations. The main result of [DCRT19] is that the phase transition of the FK
model on any vertex-transitive infinite graph is sharp.

The main tool in their proof is a novel and far-reaching generalisation of the OSSS
inequality [OSSS05]. The context here is that of increasing random variables f : {0, 1}E →
[0, 1] (for a finite set E and for the natural coordinate-wise partial order on {0, 1}E) where
{0, 1}E is furthermore equipped with a probability measure P that is itself monotonic
in the sense that for every F ⊂ E and every e ∈ E \ F , the conditional probabilities
P(we = 1 | FF ) are increasing functions. (Here FF denotes the σ-algebra generated by the
evaluations w 7→ we for e ∈ F .) One then considers any algorithm that reveals one by one
the values of an input w ∈ {0, 1}E in such a way that the coordinate to be revealed next
depends in a deterministic way on the information gleaned from the revealement up to
that point. (In particular, the first coordinate to be revealed is always the same since no
information has been obtained yet at that point.) The algorithm stops once the revealed

values are sufficient to determine the value of f(w), thus yielding a random set Ê ⊂ E of
revealed values. The result of [DCRT19] is then that one has the inequality

Var(f) ≤
∑
e∈E

P(e ∈ Ê) Cov(f, we) , (3.1)

which looks formally the same as the result of [OSSS05], but the assumption there was
that the measure P is simply the uniform measure. Since the latter is clearly monotonic (it
is such that P(we = 1 | FF ) is constant), the results of [OSSS05] follow as a special case.

Using this result, [DCRT19] then obtain the following dichotomy which yields the
desired sharpness statement.

Theorem 3.1. Let G be any transitive graph and let Pβ,n be the FK measure on the ball
Λn of radius n in G. Then, there exists βc ∈ R such that, for every β < βc there exists
cβ > 0 such that Pβ,n(0 ↔ ∂Λn) ≲ e−cβn, uniformly in n. For β > βc on the other hand,
there exists c > 0 such that Pβ,n(0 ↔ ∂Λn) ≥ cmin{1, β − βc}.
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Once (3.1) is known, the proof is surprisingly simple and relies on two ingredients. First,
one can show that the measures Pβ,n and the function 10↔∂Λn satisfy the assumptions
of (3.1). Setting θn(β) = Pβ,n(0 ↔ ∂Λn), a clever choice of search algorithm for the
(potential) cluster connecting the origin 0 to ∂Λn then allows to show that one has the
bound

θ′n(β) ≳
∑
e∈E

Covβ(10↔∂Λn , we) ≥
n

8Σn(β)
θn(β)(1− θn(β)) . (3.2)

where Σn =
∑n−1

k=0 θn. The fact that the first inequality holds is known and can be checked
in an elementary way. The second fact is that any sequence of functions β 7→ θn(β)
satisfying a differential inequality of the form (3.2) necessarily satisfies a dichotomy of the
type appearing in the statement of Theorem 3.1. Since we are not interested in the regime
where θn is large, we can rewrite (3.2) as θ′n ≥ cn

Σn
θn. The fact that the θn then should

satisfy such a dichotomy is quite clear: if β is such that they converge to a non-vanishing
limit θ, then Σn/n ∼ θ and one must have θ′ ≥ c. If on the other hand they converge
to 0 on a whole interval [a, b], then that convergence must take place sufficiently fast so
that Σn/n ≫ θn (since otherwise the previous argument applies). Since Σn/n ∼ θn for

θn ∼ n−α as soon as α < 1, it is then plausible that for any c < b one has θn ≪ n−1/2

(say), implying θ′n ≳
√
nθn and therefore θn ≲ e−

√
n(c−β) for β < c. This shows that Σn is

bounded for β < c, leading to θ′n ≳ nθn and therefore an exponentially (in n) small bound
as claimed.

4. Rotational invariance for the critical FK models

As already mentioned a number of times, a crucial feature of 2d equilibrium statistical
mechanics is the fact that most models (at least those with sufficiently “local” interactions)
are expected to obey a form of conformal invariance, or equivariance as in (1.2), when
considering large-scale observables (crossing probabilities, averages, etc) at the critical
temperature. This expectation and the resulting link to the well understood world of 2d
conformal field theories allows to generate a plethora of conjectures regarding the large-scale
behaviour of these models, but these are in many cases extremely hard to prove. Consider
for example the N -step 2d self-avoiding random walk which is simply the uniform measure
on all functions h : {0, . . . , N} → Z2 such that h(0) = 0 and such that |h(i+ 1)− h(i)| = 1
for all i < N . Exploiting the expected conformal invariance of its suitably rescaled large-N
limit, one expects the size of h(N) to be of order N3/4 and its rescaling by N3/4 to converge
to a specific continuous random curve, namely SLE8/3 [LSW04]. Rigorously, almost nothing
non-trivial is known: although the diameter of the range of h trivially has to be at least√

N/π, the current best lower bound on the endpoint does not even match that! Instead,

one only knows the bound (E|h(N)|p)1/p ≥ 1
6
Np/(2p+2) that was recently obtained by

Madras [Mad14]. Similarly, while one trivially has |h(N)| ≤ N , the best non-trivial upper
bound is pretty much the weakest possible improvement, namely that for every p ≥ 1 one
has limN→∞ N−1(E|h(N)|p)1/p = 0, obtained around the same time by Duminil-Copin
and Hammond [DCH13]. One main obstruction is that there is at the moment no proof
showing that the self-avoiding random walk is conformally invariant at large scales.

While this illustrates the importance of showing that statistical models are conformally
invariant (or at least rotationally invariant as a crucial first step) at criticality, the strategy
of proof for such claims has so far mostly relied on finding a large enough collection of
observables that already satisfy a discrete analogue of conformal invariance, typically by
solving a discrete analogue of the Cauchy–Riemann equations. See for example Chelkak
and Smirnov’s proof of conformal invariance for the Ising model on isoradial graphs [CS12]
and Smirnov’s proof of conformal invariance for critical percolation [SS11]. The two-
dimensional FK model with q ≤ 4 already mentioned in Section 3 is one of the simplest
models where conformal invariance at criticality is expected, but where it is not known
how to obtain this from a suitable discrete conformal invariance. In the recent work
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[DCKK+20], Duminil-Copin et al. show that the large-scale behaviour of these models is
indeed rotationally invariant.

To define the notion of “large-scale behaviour”, we recall that the configuration space of
the FK model is the same as that for regular percolation, see Figure 1. Such a configuration
can alternatively be described as a collection of non self-intersecting loops separating the
percolation clusters from the clusters of the dual configuration. (Actually it naturally
yields two collections of loops, depending on whether the loop encloses a percolation cluster
of the primary or of the dual configuration, but we will ignore this detail for the sake of
our exposition.) Given two collections F and F̄ of non self-intersecting loops in the plane,
one then defines a distance between them in the following way. Given (small) η > 0, write
Bη ⊂ R2 for a large chunk of a fine lattice in R2, for example Bη = ηZ2 ∩ [−η−1, η−1]2.
Given a loop γ and assuming that its image doesn’t intersect the set Bη, one then denotes
by [η]γ its homotopy class in R2 \ Bη. One then postulates that dH(F , F̄) ≤ η if and only
if, for every γ ∈ F that encloses at least two elements of Bη but not all of it, there exists
γ̄ ∈ F̄ such that [γ]η = [γ̄]η and vice-versa. (The H here stands for ‘homotopy’.)

Given a metric space (M,d), the metric d lifts naturally to a metric on the space of
probability measures on M which metrises the topology of weak convergence (at least
when M is “nice”, for example Polish). This is done by considering the Wasserstein (also
sometimes called Kantorovich–Rubinstein or Monge–Kantorovich) distance

d(µ, ν) = inf
P∈C(µ,ν)

∫
d(x, y)P(dx, dy) ,

where C(µ1, µ2) denotes the set of all couplings between µ1 and µ2, that is probability
measures on M2 with ith marginal equal to µi. Note that with this definition, the map
that assigns to x the probability measure δx concentrated at x is an isometry.

Fix now once and for all q ∈ [1, 4] and consider a smooth bounded simply connected
domain Ω ⊂ R2. For ε > 0, write Pε,Ω for the critical FK measure (viewed as a measure
on collections of loops) on εZ2 ∩ Ω with free boundary conditions. We also write Pε for
the limit of Pε,Ω as Ω → R2. Given an angle θ ∈ R, we also write Rθ for the rotation by
θ, which naturally acts on loops in R2. The large-scale rotational invariance of the critical
FK model can then be formulated as follows.

Theorem 4.1. For every domain Ω ⊂ R2 as above and every angle θ one has

lim
ε→0

dH
(
R∗

θPε,Ω,Pε,RθΩ

)
= 0 .

Furthermore, one has limε→0 dH(R∗
θPε,Pε) = 0.

We only focus on the second statement since it turns out that the first one can be
deduced from it without too much effort. In fact, the authors of [DCKK+20] show a type
of universality statement for the FK model on rectangular lattices, but its formulation
requires some preparation. We start by defining a specific class of isoradial embeddings of
the two-dimensional square lattice into the plane. Recall that a planar graph embedded in
the plane is isoradial if, for each face f , there exists a circle of radius 1 containing all the
vertices of f . (For example, the canonical embedding of the square lattice is isoradial.)

Given a bi-infinite sequence α : Z → (−π
2
, π
2
), we consider the map ια : Z

2 → R2 given
by

ια : (x, y) 7→
(
x+ sy, cy

)
, sy =

∑
k∈(0,y]

sin(αk) , cy =
∑

k∈(0,y]

cos(αk) ,

with the convention that for y < 0,
∑

(0,y] = −
∑

(y,0]. This defines an isoradial graph

L(α) by considering the embedding of {(x, y) : x + y even} (joined by diagonal edges)
under ια (see Figure 3). The dual graph L∗(α) of L(α) is then given by the embedding of
{(x, y) : x+ y odd}. The associated “diamond graph” has as its vertices both the vertices
of L(α) and the centres of its faces, and its edges are given by all pairs (v, f) with v a
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Figure 3. Examples of graphs L(α). On the left is a generic α
while on the right α is constant but non-zero. The graph itself is
drawn in black, the vertices of its dual graph are drawn in white,
and the associated diamond graph is light gray. In red, we draw
one of the symmetry axes of the second graph.

vertex and f a face such that v ∈ f . The diamond graph is simply given by the embedding
of the usual lattice Z2 with nearest-neighbour edges under ια.

It is crucial at this stage to note that the critical FK model on L(α) is not given by
simply pushing forward the critical FK model on Z2 under the map ια. Instead, one
reweighs each edge of the graph in a very specific way that depends on the length of the
edge. More specifically, viewing a configuration of the FK model as a subset ω ⊂ E of
the set of edges of the (finite) graph on which the model is considered, the probability of
seeing a given configuration ω is proportional to( ∏

e∈ω

pe
)( ∏

e∈E\ω

(1− pe)
)
qk(ω) , (4.1)

where k(ω) denotes the number of connected components of the subgraph ω. The formula
for pe as a function of q and the length of the edge e is explicit but not relevant for the
sake of this discussion.

The most important step in the proof is to show that the large-scale connectivity
properties of the critical FK model on L(α) are very close to those of the model on L(Tjα),
where Tj swaps the jth and (j + 1)th component:

(Tjα)k =


αj+1 if k = j,
αj if k = j + 1,
αk otherwise.

Furthermore, there exists a natural coupling between the FK measures on the two lattices
which implements this “closedness”. This part of the proof exploits the link to the six
vertex model and its “solvability” using the transfer matrix formalism. One then deduces
from this that the model on the standard lattice L(0) is very close to that on a rotated
rectangular lattice L(α) with k 7→ αk constant (see the right half of Figure 3). This works
by fixing some large N > 0 (which is then eventually sent to infinity) and starting from

α
(i)
k = α1k≥N and then swapping components in such a way as to move some of the

non-zero components down until une ends up with α
(f)
k = α(1|k|≤N + 1k>3N ). Since one

has L(0) ≈ L(α(i)) and L(α) ≈ L(α(f)), the desired statement follows if one can control
the error made at each step of the argument. This turns out to be extremely delicate and
one has to exploit subtle stochastic cancellations along the way. One trick is to allow the
vertices of the set Bη around which the homotopy classes are computed to move a little bit
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with each application of a swapping operator Tj and to show that this motion ends up
being diffusive (and therefore “slow”) rather than ballistic.

Once one knows that limε→0 dH(Pε,L(0),Pε,L(α)) = 0, the second part of Theorem 4.1
follows at once. The idea is simply to note that L(α) is invariant under reflection along a
line with angle π

4
− α

2
, but that the effect of this reflection on L(0) is the same as that of a

rotation by angle α (since it is itself invariant under reflection along a line with angle π
4
),

so that

dH(Pε, R
∗
αPε) ≤ dH(Pε,L(0),Pε,L(α)) + dH(Pε,L(α), R

∗
αPε,L(0)) = 2dH(Pε,L(0),Pε,L(α)) ,

and the claim follows.
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Probab. Stat. 52, no. 1, (2016), 146–161. arXiv:1307.3926. doi:10.1214/14-AIHP643.

[CHI15] D. Chelkak, C. Hongler, and K. Izyurov. Conformal invariance of spin correlations
in the planar Ising model. Ann. of Math. (2) 181, no. 3, (2015), 1087–1138. doi:

10.4007/annals.2015.181.3.5.

[CS12] D. Chelkak and S. Smirnov. Universality in the 2D Ising model and conformal
invariance of fermionic observables. Invent. Math. 189, no. 3, (2012), 515–580.
arXiv:0910.2045. doi:10.1007/s00222-011-0371-2.

https://arxiv.org/abs/1912.07973
https://dx.doi.org/10.4007/annals.2021.194.1.3
https://arxiv.org/abs/1311.1937
https://dx.doi.org/10.1007/s00220-014-2093-y
https://dx.doi.org/10.1007/BF01011304
https://dx.doi.org/10.1103/PhysRevLett.47.1
https://dx.doi.org/10.1103/PhysRevLett.47.1
https://dx.doi.org/10.1002/sapm197150151
https://dx.doi.org/10.1088/0022-3719/6/23/005
https://arxiv.org/abs/1006.5073
https://dx.doi.org/10.1007/s00440-011-0353-8
https://dx.doi.org/10.1103/PhysRevB.47.14306
https://dx.doi.org/10.1088/0305-4470/9/3/009
https://dx.doi.org/https://doi.org/10.1016/0550-3213(84)90052-X
https://dx.doi.org/https://doi.org/10.1016/0550-3213(84)90241-4
https://arxiv.org/abs/1205.6610
https://dx.doi.org/10.1214/13-AOP881
https://arxiv.org/abs/1307.3926
https://dx.doi.org/10.1214/14-AIHP643
https://dx.doi.org/10.4007/annals.2015.181.3.5
https://dx.doi.org/10.4007/annals.2015.181.3.5
https://arxiv.org/abs/0910.2045
https://dx.doi.org/10.1007/s00222-011-0371-2


14 MARTIN HAIRER

[DCGH+21] H. Duminil-Copin, M. Gagnebin, M. Harel, I. Manolescu, and V. Tassion.
Discontinuity of the phase transition for the planar random-cluster and Potts models
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