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PERFECTOID GEOMETRY AND ITS APPLICATIONS

BHARGAV BHATT

Abstract. There is a strong and classical analogy, linking number the-
ory and algebraic geometry, between the field of rational numbers and
the field of rational functions in one variable. Perfectoid geometry ani-
mates this analogy by providing a context where one can treat a (fixed)
prime number like a variable. The resulting notion has helped solve long-
standing problems in diverse areas of mathematics—not just in number
theory and algebraic geometry, but also in commutative algebra and
algebraic topology. In these notes, I will explain the definition of a per-
fectoid ring and discuss some applications.

1. Introduction

Fix a prime number p. The field Qp of p-adic numbers was introduced
by Hensel in 1897 [Hen88] as a receptacle for “p-adic Taylor expansions” of
rational numbers. It has since proven useful across mathematics.

Recall that Qp is defined as the completion of the field Q of rational

numbers with respect to the p-adic norm given by |x|p := p−vp(x) for x ∈ Q,
where vp(x) denotes the p-adic valuation of x (i.e., the highest power of
p, possibly negative, appearing when x is expressed as a product of distinct
prime powers). As large powers of p are small in this norm, a typical element
of Qp can be written as a power series

∞∑
i=n

aip
i (1)

with ai ∈ {0, 1, 2, ..., p − 1} and n ∈ Z. By analogy, note that an element
of the field Fp((t)) of Laurent series over Fp can also be written as a power
series

∞∑
i=n

ait
i (2)

with ai ∈ {0, 1, 2, ..., p− 1} and n ∈ Z.
Despite the similarity between (1) and (2), the fields Qp and Fp((t)) are

not isomorphic, even as abelian groups: the former has characteristic 0 while
the latter has characteristic p. Nevertheless, comparing the shapes of (1)
and (2), it seems natural to speculate about the existence of a more precise
relationship between the fields Qp and Fp((t)) that switches the roles of p
and t. Besides its aesthetic beauty, any precise relationship could be used
to transport structure from one side to the other. From the perspective of
an algebraic geometer interested in the study of solution sets of polynomial
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2 BHARGAV BHATT

equations, the prospect of such a relationship is especially tantalizing: one
could use the Frobenius map (a resolutely characteristic p phenomenon) to
study solution sets over the characteristic 0 field Qp!

In the last century, various attempts have been made at addressing the
speculation in the previous paragraph. Early examples include the work
of Krasner [Kra57] on “approximating” local fields of characteristic p in
terms of sequences of local fields of characteristic 0, the work of Deligne
[Del84] on the notion of “close” local fields with applications to ramification
theory, and the work of Kazhdan [Kaz86] exploiting close local fields to
relate representation theory in characteristic 0 and characteristic p. The
limiting version of these ideas finds a natural home in a result of Fontaine
and Wintenberger [FW79] giving an equivalence between the Galois theory

of certain “infinitely ramified” extensions K and K[ of Qp and Fp((t)),
respectively; this result (reviewed in §2) forms one of the basic building
blocks of the subject of p-adic Hodge theory.

The main goal of these notes (covered in §3) is to discuss a recent satisfy-
ing answer to the speculation addressed above provided by Scholze’s thesis
[Sch12]1: Scholze introduces a category of geometric objects called perfec-

toid spaces over each of the fields K and K[ from the previous paragraph,
and then proves the resulting categories are equivalent to each other! This
equivalence is robust enough to permit transport of structures from one side
to the other. In particular, it includes the Fontaine–Wintenberger theorem
as a very special case (namely, when the perfectoid space is a point), it pro-
vides some geometric meaning to the operation of “replacing p with t”, and
it gives us a tool to study algebraic geometry over the characteristic 0 field
K in terms of algebraic geometry over the characteristic p field K[.

Despite its youth, perfectoid geometry has already been useful in the
resolution of long standing problems in multiple mathematical disciplines.
While it would be impossible to summarize all the applications in a short
space, we mention at least two significant ones. In §4, we explain how it
led to the resolution of a fundamental problem in commutative algebra. In
§5, we discuss the improvements in our understanding of the cohomology of
algebraic varieties resulting from perfectoid geometry. In both cases, we do
not give any proofs, but focus instead on how one uses perfectoid spaces to
prove theorems about objects of classical interest.

2. Motivation: the Fontaine–Wintenberger theorem

In this section, we discuss (a special case of) a theorem of Fontaine and
Wintenberger that gives an equivalence between the Galois theory of an
extension K of Qp with an extension K[ of Fp((t)). The fundamental idea
here is that the heuristic analogy between Qp and Fp((t)) alluded to in §1
can be lifted to an equivalence of Galois theories if we pass up to certain

1Related ideas were developed contemporaneously in the work of Kedlaya and Liu, and
can now be found in [KL15].
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infinitely ramified extensions K and K[, respectively. In fact, there are many
choices of such pairs, and we stick to the following one to illustrate the idea.

Notation 2.1 (The fields K and K[). Consider the (infinite algebraic) ex-

tension Qp(p
1/p∞) := ∪nQp(p

1/pn) of Qp obtained by adjoining a compatible
system of p-power roots of p. The defining norm on Qp passes uniquely up

to any finite extension, and hence also up to Qp(p
1/p∞). The induced topol-

ogy on Qp(p
1/p∞), however, is not complete as Qp(p

1/p∞) has infinite degree

over Qp. Let K := Qp(p
1/p∞)∧ denote its completion. Similarly, we let

K[ := Fp((t))(t
1/p∞)∧ be the analogous construction in characteristic p.

Remark 2.2. Despite the apparent symmetry, the construction of K[ from
Fp((t)) is slightly more canonical than that of K from Qp: the extension

Fp((t))(t
1/p∞) of Fp((t)) can be described as the smallest perfect field con-

taining Fp((t)) and is thus independent of the choice of the variable t, while
no such description is available for the extension K of Qp.

Remark 2.3 (Relating K to K[ algebraically). The characteristic 0 field

K and the characteristic p field K[ evidently have some formal similarity
in their constructions. In fact, they can be related algebraically too on the
basis of the following observation: the topology on K provides access to an
auxiliary ring whose mod p reduction is related to the analogous construction
for K[. We explain this carefully next, as it is the basis of a fundamental
operation on perfectoid spaces.

The p-adic metric on K endows K with the structure of a nonarchimedean
field, so the unit ball

OK := {x ∈ K | |x|p ≤ 1} ⊂ K

is an open subring of K, and p is not invertible in this subring (since |1/p|p =
p > 1). In fact, it is not difficult to explicitly identify OK as the p-adic

completion of Z[x1/p∞ ]/(x − p), where Z[x1/p∞ ] = ∪nZ[x1/pn ] as before.

Similarly, as the t-adic metric on K[ is also nonarchimedean, the unit ball
OK[ ⊂ K[ is a ring that can be described explicitly as the t-adic completion

of Fp[t
1/p∞ ]. The relationship between K and K[ is now easy to explain:

sending p to t gives an isomorphism

OK/p ' O[
K/t

of rings via the chain

OK/p ' Z[x1/p∞ ]/(x− p, p) ' Fp[x
1/p∞ ]/x

x 7→t' Fp[t
1/p∞ ]/t ' OK[/t. (3)

Fontaine took this one step further in [Fon94, §1.2] and gave a formula

recovering OK[ (and thus K[ ' Frac(OK[)) from K: the map OK[ → OK/p
constructed above lifts uniquely to an isomorphism

OK[ ' lim←−
x 7→xp

OK/p := {(xn ∈ OK/p)n≥0 | xpn+1 = xn} (4)
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of rings. Following Scholze’s terminology from [Sch12], the ring appearing
on the right of (4) is nowadays called the tilt of OK ; the operation of tilting
is discussed further in §3.1 below.

We are now in a position to state the promised theorem:

Theorem 2.4 (Fontaine–Wintenberger [FW79]). The category of finite ex-
tensions of K is naturally equivalent to the category of finite extensions of

K[. In particular, there is a canonical isomorphism Gal(K/K) ' Gal(K[/K[)

of the absolute Galois groups of K and K[.

We refer to the equivalence in Theorem 2.4 as the tilting equivalence. Let
us first explain how to tilt in a simple example.

Example 2.5. Assume p 6= 2. Then K(
√
p) is a non-trivial degree 2 exten-

sion of K. The corresponding extension of K[ is given by K[(
√
t); this can

be checked using the characterization given in Remark 2.6 and the compu-
tation in Example 3.11. Thus, in this example, the correspondence between
characteristic 0 and characteristic p objects is literally given by replacing p
with t. (This need not be the case for more complicated field extension.)

Remark 2.6 (Characterizing the tilting equivalence). A pair of finite exten-

sions L/K and L[/K[ match up under the tilting equivalence of Theorem 2.4
exactly when we have an isomorphism OL/p ' OL[/t of rings sitting over the

isomorphism OK/p ' O[
K/t mentioned in Remark 2.3; here we implicitly use

that a finite extension of a nonarchimedean field is also a nonarchimedean
field in an essentially unique fashion.

Remark 2.7 (Variants). As mentioned before, the tilting equivalence from

Theorem 2.4 is not specific to the particular choice of K and K[. See Corol-
lary 3.13 for a vast generalization.

Theorem 2.4 has many applications, especially in p-adic Hodge theory,
primarily because it is often easier to work in characteristic p than in char-
acteristic 0. We record one such one application next, together with a sketch
of a proof to indicate how Theorem 2.4 allows us to use the Frobenius map
on K[ to prove something about K.

Corollary 2.8 (Cohomological dimension estimate). Let M be a finite di-
mensional Fp-vector space with a continuous action of Gal(K/K). Then the

continuous Galois cohomology groups H i(Gal(K/K),M) vanish for i ≥ 2.

Proof sketch. By Theorem 2.4, it suffices to prove the analogous statement
for K[. A standard argument allows us to reduce to the case where M = Fp

is the trivial representation. Using the Artin-Schreier short exact sequence

0→ Fp → K[ x 7→xp−x−−−−−→ K[ → 0,

it suffices to show that H i(Gal(K[/K[),K[) = 0 for i > 0. But this is
essentially the additive form of Hilbert’s theorem 90. �
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3. Perfectoid rings and spaces

The goal of this section is to define perfectoid rings (§3.2) and give some of
their most important properties, such as the almost purity theorem (§3.3).
We begin in §3.1 with the tilting functor, which attaches a characteristic
p ring to any commutative ring, and is one of the key tools used to study
perfectoid rings. Essentially all results discussed in this section can be found
in [Sch12] or [KL15]; the only exception is Corollary 3.14, which shall appear
in the forthcoming [BS].

3.1. Fontaine’s tilting functor. The tilting functor is the main tool for
going from characteristic 0 to characteristic p.

Construction 3.1 (Tilting). Let R be a commutative ring. The tilt R[

of R is defined as the characteristic p ring coming from the “inverse limit
perfection” of R/p, i.e.,

R[ := lim←−
x 7→xp

R/p := {(xn ∈ R/p)n≥0 | xpn+1 = xn}.

One easily checks that R[ is a perfect ring of characteristic p, i.e., the Frobe-
nius endomorphism of R[ is bijective. In particular, each f ∈ R[ admits a
unique p-th root f1/p ∈ R[; in terms of sequences f := (xn)n≥0 as above, the

p-th root is given by simply shifting the sequence, i.e., f1/p := (xn+1)n≥0.

Note that R[ only depends on R/p and hence only on the p-adic comple-
tion of R. Thus, in the sequel, we typically restrict attention to p-adically
complete rings.

Remark 3.2 (The ]-map). For any p-adically complete commutative ring R,
an elementary number theory exercise shows that the natural map R→ R/p
induces a bijection

lim←−
x 7→xp

R ' lim←−
x 7→xp

R/p =: R[

of multiplicative monoids. Explicitly, the inverse sends a p-power compatible
sequence (x0, x1, x2, ...) ∈ lim←−

x 7→xp

R/p to the sequence (y0, y1, y2, ...) ∈ lim←−
x 7→xp

R

given by

yn = lim
m→∞

x̃p
m

n+m,

where x̃r ∈ R denotes a lift of xr ∈ R/p. Consequently, we can view elements

of R[ as p-power compatible sequences (y0, y1, y2, ...) of elements of R; the
multiplication rule on sequences is the obvious one (componentwise), while
the addition is slightly funnier. A tangible observable of this construction is
that remembering only the first term of the sequence gives a multiplicative
(but typically not additive) map ] : R[ → R connecting the characteristic

p ring R[ to the original ring R. The image of this map is exactly those
elements of R that admit a compatible system of p-power roots.

Example 3.3 (The tilt of Zp). Let R = Zp be the p-adic integers, i.e., the
p-adic completion of Z or equivalently the unit ball in the nonarchimedean
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field Qp. Then R/p ' Fp; as this ring has a bijective Frobenius, we have

R[ ' Fp as well. In this case, the map ] : Fp → R[ sends 0 to 0 and the rest
is determined by the inverse to the following bijection: the (p − 1)-st roots
of 1 in Zp map bijectively down to F∗p via Hensel’s lemma.

More generally, for readers familiar with the Witt vectors W (S) of a

perfect ring S of characteristic p, we remark that W (S)[ ' S, and the
resulting map ] : S → W (S) is the Teichmüller map; the example in the
previous paragraph was simply S = Fp.

The tilting operation turns out to be quite uninteresting if we only consider
rings familiar from commutative algebra or algebraic geometry:

Example 3.4 (Tilting finite type algebras). Let R := Z[x1, ...xn] (or its
p-adic completion). Then R/p ' Fp[x1, ...xn]. The Frobenius map on R/p
is injective with image Fp[x

p
1, ..., x

p
n]. Iterating this observation, we find that

R[ = ∩mFp[x
pm

1 , ...., xp
m

n ] = Fp

is simply the set of constant polynomials.
More generally, one can show that if S is a quotient of the ring R from the

previous paragraph, then S[ '
∏r

i=1 Fp, where r is the number of connected
components of Spec(S/p).

The preceding example shows that the tilting operation is lossy if the
Frobenius map on R/p is not surjective. As we shall see soon, this cannot
happen for perfectoid rings (by fiat).

3.2. Perfectoid rings. The main definition of these notes is the following.

Definition 3.5 (Perfectoid rings). Let R be a p-torsionfree2 and p-adically
complete ring. We say that R is perfectoid if

(1) there exists some $ ∈ R such that $p = pu for a unit u ∈ R, and

(2) the Frobenius map R/p → R/p is surjective with kernel generated
by the image of any element $ ∈ R as in (1).

The category of perfectoid rings is simply the full subcategory of all com-
mutative rings spanned by perfectoid rings.

Remark 3.6 (The various meanings of “perfectoid”). The notion introduced
in Definition 3.5 is borrowed from [BMS16, §3] and sometimes called integral
perfectoid in the literature to emphasize its integral nature; in these cases,
the term perfectoid is used to describe R[1/p] (viewed as a topological ring
with a neighbourhood basis of 0 given by pnR). These notions are almost
equivalent: given the topological ring R[1/p], one can recover R up to some
very small (“almost zero”) ambiguity. The original notion of a perfectoid
algebra from [Sch12] depended on working over a fixed perfectoid field; to

2It is also possible to define perfectoid rings without requiring p-torsionfreeness, and
including perfect characteristic p rings as a special case (see [BMS16, §3]). However, in
the interest of simplicity, we stick to the p-torsionfree setting.
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the best of our knowledge, the first field independent (or “absolute”) notion
is due to Fontaine [Fon13, §1.1]

Condition (2) in Definition 3.5 rules out the phenomenon observed in
Example 3.4, while condition (1) in Definition 3.5 rules out examples like
Zp. In fact, nonzero perfectoid rings have to be quite large as they are always
non-noetherian; one can even show that the ideal

√
pR is so large that it is

its own square (see Lemma 3.9). Nevertheless, if one is willing to leave the
world of noetherian rings (the familiar setting of commutative algebra and
algebraic geometry), then there are many interesting examples.

Example 3.7. We record some basic examples of perfectoid rings and their
tilts.

(1) (Extracting p-th roots of p) Let K := Qp(p
1/p∞)∧ be the field studied

in §2. Then the ring OK = Z[p1/p∞ ]∧ ⊂ K from Remark 2.3 is

perfectoid. Indeed, taking $ = p1/p ∈ OK , one checks that both
conditions in Definition 3.5 are satisfied using the formula in (3).

The tilt (OK)[ is then identified with the ring OK[ ⊂ K[ also studied

§2 via (4). The resulting ]-map OK[ → OK sends t1/p
n

to p1/pn for

all n. In this case, we have
√
pOK = ∪np1/pnOK .

(2) (The perfectoid polynomial ring) Continuing the notation of the pre-

vious example, let R be the p-adic completion of OK [x1/p∞ ]. Then

again taking $ = p1/p ∈ OK ⊂ R, one checks that both conditions
in Definition 3.5 are satisfied, so R is perfectoid. The tilt R[ in this
case is identified with the analogous object over OK[ , i.e., R[ is the

t-adic completion of OK[ [x1/p∞ ]. The ]-map then sends x1/pn ∈ R[

to x1/pn ∈ R[. The ideal
√
pR has the same shape as in (1). There

are similar examples with a larger number of variables.

(3) (The cyclotomic extension) Let Qcyc
p := Qp(µp∞)∧ be the completion

of the algebraic extension of Qp obtained by adjoining a compatible
system of p-power roots of 1. Like the field K in (1) above, the
field Qcyc

p is a nonarchimedean field, and its unit ball Zcyc
p ⊂ Qcyc

p

is a perfectoid ring. In fact, one can describe Zcyc
p explicitly: it is

isomorphic to the p-adic completion of

Z[q1/p∞ ]/(1 + q + q2 + ...+ qp−1),

with q corresponding to a primitive p-th root of 1. The element
$ ∈ R required in Definition 3.5 can be taken to be the image
of 1 + q1/p + q2/p + ... + q(p−1)/p. In fact, the p-power compatible
system {1 + q1/pn + q2/pn + ... + q(p−1)/pn ∈ Zcyc

p /p}n≥0 gives an

element t ∈ Zcyc,[
p inducing an isomorphism of Zcyc,[

p with the t-adic

completion of Fp[t
1/p∞ ].

Remark 3.8 (The fibers of tilting: the Fargues-Fontaine curve). Note that
the perfectoid rings from (1) and (3) of Example 3.7 are distinct, but have
isomorphic tilts. Thus, the tilting operation is “many-to-one”. In fact, given
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a perfectoid ring R, the collection of all “untilts” of R[ can be organized into
an extremely interesting geometric structure known as the Fargues-Fontaine
“curve” XFF . Even though XFF is not a curve in the traditional sense of
algebraic geometry, perfectoid geometry has made it possible to take known
results and techniques used to study curves in characteristic p and trans-
fer them to the curve XFF . This transfer has already had some stunning
applications in the local Langlands program: Fargues observed [Far] that
the statement of the geometric Langlands correspondence for a curve over
Fq can be adapted to the setting of XFF , leading to a beautiful conjectural
geometrization of the local Langlands correspondence for p-adic fields. Es-
sentially simultaneously, Scholze embarked on a program in [SW, Sch17] to
transplant V. Lafforgue’s breakthrough [Laf] on the global Langlands corre-
spondence for arbitrary reductive groups over function fields to the setting
of p-adic fields using XFF as the curve. A more thorough expository account
of XFF can be found in [Mor18], and the definitive reference is [FF].

However, the tilting operation becomes “one-to-one” over a fixed base, i.e.,
given a perfectoid ring R, the functor S 7→ S[ gives a fully faithful embedding
of the category of perfectoid R-algebras into the category of R[-algebras.

For all three perfectoid rings R discussed in Example 3.7, the correspond-
ing tilt R[ had a preferred element t ∈ R[ playing roughly the same role as
p ∈ R; for example, we have R/p ' R[/t in all examples. It turns out that
a similar picture holds true for any perfectoid ring.

Lemma 3.9. Let R be a perfectoid ring. Then there exists an element $
as in Definition 3.5 that admits a compatible system {$1/pn}n≥0 of roots in

R. Viewing this system as an element t1/p ∈ R[ via Remark 3.2, the natural
map R[ → R/p gives an isomorphism

R/p ' R[/t

of rings. We also have
√
pR = ∪n$1/pnR, whence (

√
pR)2 =

√
pR.

Thus, a perfectoid ring R is related to the perfect characteristic p ring R[

via a “correspondence”

R→ R/p ' R[/t← R[ (5)

of rings, with t as in Lemma 3.9. If one only keeps track of the multiplica-
tive structure, the ]-map from Remark 3.2 lifts this correspondence to a
map R[ → R. Through this correspondence, many remarkable properties
of perfect characteristic p rings can be transferred to yield similar prop-
erties of perfectoid rings. For example, perfectoid rings are reduced and
even seminormal; they tend to have finite global dimension in the sense of
homological algebra; the category of perfectoid rings is closed under many
operations (such as pushouts) in the category of all p-adically complete rings;
and differential forms on a perfectoid ring form a p-divisible group.
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3.3. The almost purity theorem. Perhaps the most important property
of perfectoid rings is the almost purity theorem. This property refines deep
previous work of Faltings [Fal88, Fal02, Fal99] that built on Tate’s seminal
paper [Tat67]. One of the key notions introduced by Faltings was “almost
mathematics”. Roughly speaking, this refers to doing commutative algebra
over a perfectoid ring R whilst sytematically ignoring modules killed by
the (very large) ideal

√
pR; since this ideal is its own square (Lemma 3.9),

modules killed by
√
pR are closed under extensions, so ignoring them is a

sensible operation. In this language, the almost purity theorem states:

Theorem 3.10 (The almost purity theorem). Let R be a perfectoid ring.
Let S be the integral closure of R in a finite étale extension of R[1/p]. Then
S is perfectoid and R→ S is almost finite étale.

Let us briefly explain the terms appearing above. The property of being
finite étale for a map of commutative rings is the algebraic translation (under
the “rings = affine varieties” dictionary of algebraic geometry) of the notion
of a covering space map of finite degree in topology. Thus, “almost finite
étale” means roughly that the algebraic obstructions to being finite étale,
such as the functor Ext1

R(S,−), are annihilated by
√
pR; see [GR03] for an

in-depth development of many concepts from algebraic geometry and com-
mutative algebra in the context of almost mathematics. Summarizing geo-
metrically, Theorem 3.10 says that if a finite cover of Spec(R) only branches
over the divisor Spec(R/p) ⊂ Spec(R), then it is almost unbranched. (See
Remark 3.12 for why this is at least heuristically reasonable.)

To give a sense of the algebraic information captured by Theorem 3.10,
let us explain how to see the promised behaviour directly in Example 2.5.

Example 3.11 (Almost purity for a simple quadratic extension). Consider

the perfectoid ring OK = Z[p1/p∞ ]∧ from Example 3.7 (1) with fraction field

K, so
√
pOK = ∪np1/pnOK . Assume p 6= 2, and consider the quadratic

extension L = K(
√
p). We shall explain why OL is almost projective as an

OK-module (as predicted by Theorem 3.10). In other words, we check why

the functor Ext1
OK

(OL,−) is annihilated by p1/pn for all n ≥ 0.
By chasing a long exact sequence, it is enough show the following: for

each n ≥ 0, there exists a projective OK-submodule Sn ⊂ OL with cokernel
killed by p1/pn . To construct Sn, note that p1/(2pn) ∈ L for all n ≥ 0 since

p1/pn , p1/2 ∈ L. Now |p1/(2pn)| =
√
|p1/pn | < 1, so p1/(2pn) ∈ OL. Let

Sn := OK [p1/(2pn)] ⊂ OL be the OK-subalgebra generated by p1/(2pn). We

then have a presentation Sn ' OK [xn]/(f(xn)), where f(x) := x2 − p1/pn .
A classical result of Dedekind (see [HS06, Theorem 12.1.1]) implies that the
discriminant f ′(xn) = 2xn kills the quotient OL/Sn. As 2 is invertible, it

follows that x2
n = p1/pn also annihilates OL/Sn, as promised.

Remark 3.12 (Why is it called a purity theorem?). The name “almost
purity theorem” is appropriate in view of the analogy with the classical
Zariski–Nagata purity theorem in algebraic geometry. The latter says that
if f : X → Y is a finite surjective map of complex varieties with X normal
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and Y smooth, then the ramification locus of f is a (possibly empty) finite
union of pure codimension 1 subvarieties of Y . In particular, if we already
know that the ramification locus of f has codimension ≥ 2, then f must be
unramified.

The almost purity theorem is a similar assertion for the map Spec(S) →
Spec(R) (with notation as in Theorem 3.10). Indeed, by hypothesis, this
morphism is unramified at all points of Spec(R) where p is invertible, so
the ramification locus is contained in the complementary locus {p = 0} ⊂
Spec(R), which has codimension 1. But the defining function p of this lo-
cus is already “infinitely ramified” in R via the perfectoid condition (see
Lemma 3.9), so it cannot ramify further in S. There is thus no ramification
in codimension 1, so one might expect that f is unramified by analogy with
the previous paragraph; Theorem 3.10 says that this heuristic reasoning is
almost true (in the technical sense of almost mathematics).

We also refer to [Kis, Sch] for related remarks.

One reason the almost purity theorem is useful is that it permits us to
transfer information from the characteristic 0 ring R[1/p] to the characteris-

tic p ring R[[1/t] by passage through the correspondence (5). For example,
this strategy leads to the following vast generalization of Theorem 2.4.

Corollary 3.13. Let R be a perfectoid ring, and fix t ∈ R[ as in Lemma 3.9.
Then the category of finite étale R[1/p]-algebras is equivalent to the category

of finite étale R[[1/t]-algebras. In particular, we have an isomorphism

π1(Spec(R[1/p])) ' π1(Spec(R[[1/t]))

of fundamental groups.

Sketch of proof. Let S be the integral closure of R in a finite étale R[1/p]-
algebra. Theorem 3.10 implies that S is perfectoid and that R→ S is almost
finite étale. Reducing modulo p, we get that R[/t ' R/p → S[/t ' S/p
is also almost finite étale. Using almost mathematical analogs of stan-
dard results in algebraic geometry and the tilting corrrespondence, one then
proves that R[ → S[ is also almost finite étale (where “almost” is now

meant with respect to the ideal
√
tR[ = ∪nt1/p

n
R[). Inverting t shows that

R[[1/t] → S[[1/t] is finite étale, which gives the functor in one direction.
The other direction is similar (and easier, as the analog of Theorem 3.10 is
easier in characteristic p). �

For completeness, we remark that one may also extend Corollary 2.8 to
arbitrary perfectoid rings.

Corollary 3.14 (Cohomological dimension estimate). Let R be a perfectoid
ring. Then the Fp-cohomological dimension of Spec(R[1/p])ét is ≤ 1.

Remark 3.15 (A comment on perfectoid spaces). In our exposition above,
we have avoided discussing the theory of perfectoid spaces, sticking to per-
fectoid rings as much as possible. While this suffices for a first glimpse,
it is important to develop the theory of perfectoid spaces for most serious
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applications (including the proof of the almost purity theorem, even though
the latter is formulated purely algebraically!). Due to the p-adically com-
plete nature of the rings involved, this theory is essentially analytic: to
each perfectoid ring R, one attaches a so-called affinoid perfectoid space
Spa(R[1/p], R) using Huber’s theory of adic spaces [Hub93, Hub94, Hub96].
Roughly speaking, points of this space are identified with certain nonar-
chimedean valuations on R[1/p], the ring of analytic functions on this space
is R[1/p], and the basic open subsets are the loci where certain inequalities
are satisfied; one then defines a perfectoid space to be an adic space that is
locally of the form Spa(R[1/p], R). See [Sch12] for details.

Note that the perfectoid space Spa(R[1/p], R) is best viewed as a tool to
study the topological ring R[1/p] and not the perfectoid ring R (i.e., the
space “lives in” characteristic 0). As mentioned before, the difference is not
too significant as the topological ring R[1/p] almost recovers R.

4. Application: the direct summand conjecture

The first major application of perfectoid geometry we discuss comes from
commutative algebra: it is the resolution of Hochster’s direct summand con-
jecture (DSC) by André [And18b, And18a].

The DSC asserts a fundamental property of “regular” rings. Recall that
regularity is the commutative algebraic formulation of the geometric notion
of smoothness; such rings are always products of domains, and typical ex-
amples include fields and PIDs (such as Z), as well as polynomial or power
series rings over such rings.

Theorem 4.1 (DSC). Let R be a regular ring, and let f : R → S be an
injective ring map that exhibits S as a finitely generated R-module. Then f
admits an R-linear splitting.

Theorem 4.1 is relatively easy when R has characteristic 0 (i.e., contains
Q), and was settled by Hochster himself [Hoc73] when R has positive charac-
teristic (i.e., contains Fp for some prime p). Prior to André’s work, the best
general mixed characteristic result was Heitmann’s [Hei02], settling Theo-
rem 4.1 when dim(R) ≤ 3. In particular, the conjecture was wide open for
R = Z[x, y, z] before André’s work.

Remark 4.2 (Historical comments). The DSC was formulated in the late
60s by Hochster. It has inspired significant amounts of research in com-
mutative algebra; in particular, the modern theory of F -singularities traces
its origins to ideas stemming from the resolution of a special case of this
conjecture. The DSC has also occupied a central spot in the network of
interlocked conjectures in commutative algebra that came to be known as
the homological conjectures; see [Hoc07, Hoc16] for a survey of the state of
affairs immediately prior to Theorem 4.1. Thanks to Theorem 4.1 and re-
lated ideas, many of these conjectures, with the notable exception of Serre’s
positivity conjecutre, are now resolved (see Remark 4.3).
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We now give a brief outline of the proof of Theorem 4.1, highlighting the
critical role played by the theory of perfectoid rings and spaces.

Outline of the proof of Theorem 4.1 in mixed characteristic. The proof can
be divided broadly into three steps.

(1) Reduce to the case where R = V Jx1, .., xnK is a formal power se-
ries over a p-adic valuation ring V . (This reduction was known for
decades, and is due to Hochster himself.)

(2) Settle the case where f [1/p] is unramified. The key idea here is
to pass from R up to the perfectoid ring R∞ obtained as the p-

adic completion of R[p1/p∞ , x
1/p∞

i ] (see Example 3.7 (2)), to use the
almost purity theorem (Theorem 3.10) to get an “almost splitting”
over R∞, and then to descend back down to R using faithful flatness
of R → R∞ (which makes crucial use of the regularity of R). See
[Bha14] for a careful exposition of this step.

(3) Reduce the general case to the one in (2). This reduction involves
first passing up to a carefully constructed perfectoid extension R∞ of
R where a certain discriminant for the map f acquires a compatible
system of p-power roots); once R∞ is constructed, the key new idea is
to use (a strengthened form of) the perfectoid analog of the Riemann
extension theorem [Sch15, §II.3] to push all the ramification into
characteristic p, which then permits us to argue as in (2).

A more complete outline can be found in [And18c]. �

Remark 4.3 (Progress inspired by Theorem 4.1). As mentioned before, the
ideas informing Theorem 4.1 have already had significant impact in com-
mutative algebra going well beyond the direct summand conjecture. A non-
exhaustive list of examples includes: a simplified proof of DSC and the res-
olution of the “derived” direct summand conjecture [Bha18a], the analog of
Boutot’s theorem in mixed characteristic [HM], the development of a theory
of test ideals in mixed characteristic [MS18] robust enough to lift [ELS01] to
mixed characteristic, and the construction of weakly functorial big CM al-
gebras and the consequent resolution of many other homological conjectures
[And18d, Gab18]. We refer the interested reader to a forthcoming survey
article by Ma and Schwede.

5. Application: the cohomology of algebraic varieties

In this section, we discuss how perfectoid geometry has improved our
understanding of the cohomology of algebraic varieties. We begin by recall-
ing the classical Hodge decomposition theorem over the complex numbers
in §5.1; the p-adic analog of this result is the subject of §5.2. In §5.3, we
explain a (consequence of) a recent result in integral p-adic Hodge theory,
which gives geometric representatives for torsion cohomology classes.
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5.1. Complex Hodge theory. Hodge theory began with results of de
Rham and Hodge describing the singular cohomology of compact complex
manifolds in terms of differential data. A summary of this description is the
following result [Voi07, §II.6]:

Theorem 5.1 (de Rham, Hodge). Let X be a compact complex manifold.
Assume X admits a Kähler metric. For each n ≥ 0, there is a canonical
isomorphism (called the Hodge decomposition)

Hn(X; C) '
⊕

i+j=n

H i(X,Ωj
X),

where Ωj
X denotes the sheaf of holomorphic differential j-forms on X.

Theorem 5.1 is a remarkable assertion about the relation between the
topology and the geometry of X: the singular cohomology groups Hn(X; C)

are purely topological invariants ofX, while the cohomology groupsH i(X,Ωj
X)

are defined in terms of the complex structure on X. In particular, this result
allows us to interpret data, such as cycles γ ∈ Hi(X; C), geometrically in
terms of differential forms on X. We shall see in §5.3 how one can do the
same for cycles γ ∈ Hi(X; Fp) with torsion coefficients.

5.2. Rational p-adic Hodge theory. Fix a prime number p. Our goal in
this section is to discuss the analog of Theorem 5.1 in p-adic geometry. Thus,
we shall work over a fixed complete and algebraically closed nonarchimedean
extension C of Qp (playing the role of the complex numbers). The p-adic
analog of Theorem 5.1 describes p-adic étale cohomology (which is the analog
of singular cohomology in this setting) in terms of differential forms and is
summarized in the following result:

Theorem 5.2 (Hodge-Tate theory). Let X/C be a proper smooth rigid an-
alytic space (for example, a smooth projective variety). Then there exists a
degenerate E2-spectral sequence (called the Hodge-Tate spectral sequence)

Ei,j
2 : H i(X,Ωj

X/C)(−j)⇒ H i+j
ét (X;C),

where the twist (−j) denotes the Tate twist3.
Moreover, if X is defined over a discretely valued subfield K ⊂ C, then

the degeneration of the preceding spectral sequence is canonical, i.e., there
exists a canonical isomorphism

Hn
ét(X;C) '

⊕
i+j=n

H i(X,Ωj
X/C)(−j)

of C-vector spaces.

3The Tate twist (−j) in p-adic Hodge theory is roughly analogous to the factors of (2πi)j

that appear in complex Hodge theory when relating singular and de Rham cohomology,
such as

∫
S1

dz
z

= 2πi. These can be ignored at first pass, epecially if one is solely interested

in geometric questions, and not arithmetic ones.
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Remark 5.3 (A comment on the proofs). The existence of the Hodge-
Tate spectral sequence was established in [Sch13b, §3.3] (which builds on
[Sch13a]), while its degeneration was proven [BMS16, §13] using a remark-
able algebraization technique due to Conrad-Gabber [CG]. However, it
is important to note that Theorem 5.2 records the culmination of a long
line of successful research beginning with the work of Tate [Tat67] and
Fontaine [Fon82, Fon81]. In particular, special cases of Theorem 5.2 were
proven earlier using many different methods (including almost mathemat-
ics [Fal88, Fal02, Fal99], syntomic cohomology [FM87, Tsu99], K-theory
[BK86, Niz98], and derived de Rham cohomology [Bei12]), and the second
half of Theorem 5.2 can be proven directly without knowing in advance about
the degeneration of the Hodge-Tate spectral sequence.

We now sketch very informally the key steps involved in proving Theo-
rem 5.2 using perfectoid spaces.

(1) Find a “cover” f : X∞ → X where X∞ is a perfectoid space, and
relate H∗ét(X∞, C) to the coherent cohomology H∗(X∞,OX∞) on
X∞ using the theory of perfectoid spaces (e.g., the Artin-Schreier
sequence, as in Corollary 2.8).

(2) Calculate H∗ét(X,C) using the descent spectral sequence for the map
f from (1). Differential forms on X naturally appear on the E2-page
of the relevant spectral sequence.

We refer to [Bha17, Lecture II] for a more thorough exposition of this
strategy in the case of abelian varieties.

Remark 5.4 (New period maps). One can use Theorem 5.2 to define certain
new “period maps” analogous to constructions in classical Hodge theory. Let
us recall the latter first, and then say a few words about the former.

The Hodge decomposition in Theorem 5.1 does not vary holomorphically
when X varies in a holomorphic family. Instead, it is the Hodge filtration
that varies holomorphically, i.e.,

FilkHn(X; C) :=
⊕

i+j=nj≥k
H i(X,Ωj

X) ⊂ Hn(X; C)

varies holomorphically with X. This means the following: given a family
X → S of compact Kähler manifolds over a simply connected base S, then
(after choosing parallel transport isomorphisms between the cohomologies
of all the fibers) there is a holomorphic “period map” from S to a suitable

Grassmannian given by sending s ∈ S to the subspace FilkHn(Xs; C) ⊂
Hn(Xs; C), where Xs is the fibre over s. This period map plays an important
role in understanding moduli spaces of algebraic varieties over C.

Similarly, in the p-adic setting, the Hodge-Tate filtration (i.e., the filtra-
tion induced by the Hodge-Tate spectral sequence) varies p-adic analytically.
One may then mimic the previous discussion to define p-adic period maps
(called the Hodge-Tate period maps) for certain families of proper smooth
rigid spaces. These maps were first discovered by Scholze in [Sch15] in his
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study of the moduli space of abelian varieties, and formed the key geometric
ingredient in his work on the torsion Langlands correspondence. In fact, an
early hint of the power of this technique can be found in the work of Scholze–
Weinstein [SW13] that uses the Hodge-Tate filtration to give a p-adic analog
of Riemann’s classification of abelian varieties. Relatedly, the Hodge-Tate
period map also plays a key role in the work of Caraiani–Scholze [CS17]
proving torsionfreeness results for the cohomology of Shimura varieties.

The preceding two period maps, though formally analogous, are distinct:
the Hodge filtration over C and the Hodge-Tate filtration over C go in op-
posite directions. For example, H1(X,OX) is a quotient of H1(X; C) for
a compact Kähler complex manifold X, while H1(Y,OY ) is a subspace of
H1

ét(Y ;C) for a proper smooth rigid space Y/C.

5.3. Integral p-adic Hodge theory. Theorem 5.1 provides a relative sat-
isfactory description of singular cohomology with rational coefficients via
differential forms. However, it does not answer the following question:

(∗) Given (say) a smooth projective variety X over C, is there a way to
relate torsion classes in H i(X,Z) to differential forms?

Recently, a partial answer to (∗) was provided in [BMS16], fusing ideas
from perfectoid geometry with constructions in homological algebra. Roughly
speaking, the answer states that p-torsion classes in H i(X,Z) can be under-
stood as differential forms on the “mod p reduction” of X. A special case
can be stated precisely as follows:

Theorem 5.5. Let X ⊂ Pn
Q be a smooth projective variety defined by equa-

tions with coefficients in Z. Assume that p is a prime of good reduction, i.e.,
reducing the equations defining X modulo p gives a smooth projective variety
Xp ⊂ Pn

Fp
. If we write Xan for the complex manifold X(C) attached to X,

then we have
dimFp H

i(Xan; Fp) ≤ dimFp H
i
dR(Xp).

Moreover, this inequality can be sharp.

As a corollary, one obtains the following purely algebraic criterion for
proving the non-existence of torsion in singular cohomology.

Corollary 5.6. In the notation from Theorem 5.5, if dimCH
i
dR(Xan) =

dimFp H
i
dR(Xp), then H i+1(Xan,Z) has no p-torsion.

Remark 5.7. Theorem 5.5 more generally holds for a proper smooth formal
scheme over a p-adic valuation ring (see [BMS16]). In fact, one can also
replace “smooth” with “semistable” [CK], which is a much more ubiquitous
hypothesis in practice. Besides [BMS16], we refer to the surveys [Mor16,
Sch16, Bha18b] for more leisurely expositions.
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VERIFYING QUANTUM COMPUTATIONS AT SCALE: A

CRYPTOGRAPHIC LEASH ON QUANTUM DEVICES

THOMAS VIDICK

Abstract. Quantum computing enthusiasts hope to soon reach a stage where

engineered devices based on the laws of quantum mechanics are able to imple-
ment computations that can no longer be emulated on a classical computer.

Once that stage is reached, will it be possible to verify the results of the quan-

tum device?
Recently Mahadev introduced a solution to the following problem: given

black-box access to a quantum device, i.e. given only the ability to generate

classical instructions and obtain classical readout information in return, is
it possible to delegate a quantum computation to the device in a way that

the outcome obtained can be verified on a classical computer — even when

the quantum device may be faulty or even adversarially designed to fool the
verification procedure?

Mahadev’s solution combines the framework of interactive proof systems
from complexity theory with quantum information and an ingenious use of

classical cryptographic techniques to tie a “cryptographic leash” around the

quantum device. In these notes I give a self-contained introduction to her
elegant solution, explaining the required concepts from complexity, quantum

computing and cryptography and how they are brought together in Mahadev’s

protocol for the verification of quantum computations.

Quantum mechanics has been a source of endless fascination throughout the 20th
century — and continues to be in the 21st. Two of the most thought-provoking
aspects of the theory are the exponential scaling of parameter space (a pure state of
n qubits requires 2n − 1 complex parameters to be fully specified), and the uncer-
tainty principle (measurements represented by non-commuting observables cannot
be performed simultaneously without perturbing the state). The conceptual dif-
ficulty of the problem of verification of quantum computations stems from both
aspects. Suppose given the description of an experiment that can be modeled in
quantum mechanics — say, a number N of individual photons are emitted by lasers
in a certain configuration, then made to interact according to optical equipment
such as mirrors and beam-splitters, and finally some observation is made, for exam-
ple counting the number of photons that hit a strategically located detector within
a certain time period. Quantum mechanics provides a set of formal rules that, in
principle, allow for the computation of the distribution of possible outcomes ob-
tained in this experiment — what is the probability that any number of photons hit
the detector within the prescribed time frame. These rules yield extremely precise
predictions that have been verified in countless experiments. In general however,
computing the prediction requires a number of operations that scales exponentially
with N , the total number of photons in the experiment. What this means in prac-
tice is that as soon as N exceeds, say, 80, it becomes all but infeasible, using even
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2 THOMAS VIDICK

the most powerful supercomputers available today, to predict the outcome of any
nontrivial quantum experiment.

This should come as no surprise. Indeed it is the same difficulty, that of classical
simulation of quantum evolutions, that prompted Feynman to bring forward the
idea of a quantum computer in the first place: a computer that by its very nature
would have the ability to efficiently simulate any quantum process. While such a
“universal quantum simulator” remains a distant technological challenge, smaller-
scale quantum devices have begun to appear that will soon have the capacity to
simulate the evolution of specific quantum-mechanical systems, enabling physicists
to e.g. make predictions regarding properties of new materials. Such simulators will
become interesting the day when they are able to generate predictions that could
not have been obtained on a classical computer. Assuming such a “classically un-
simulatable quantum simulator”, can we check that the simulator is accomplishing
the task it was asked to perform — given that the task could not have been ac-
complished on a classical computer? If the simulator makes a wrong prediction, be
it due to a default in the implementation, or even by malice, is there any way that
the error can be detected without having to rely on yet another quantum simulator
to duplicate the first simulator’s results?

In addition to the exponential scaling of quantum mechanics, that provides a
barrier to the direct classical simulation of quantum experiments, other quantum
phenomena, such as the uncertainty principle, place fundamental limits on our
ability to verify that a quantum mechanical evolution proceeds as expected. Any
attempt by the experimentalist at making intermediate observations on the state
of a subset of the elementary particles involved in the operation of her quantum
simulator risks altering the outcome of the computation, so that it is not clear at
all if the results of low-level benchmarks can be meaningfully pieced together to
certify the simulator’s final result.

Not all is lost. There obviously are some quantum computations whose outcome
can be easily checked. A famous example is factoring: having run Shor’s quantum
algorithm for finding a prime factor p of an integer n, it is easy to execute Euclid’s
algorithm to check that p|n. If every quantum computation had this property
— that the correct outcome of the computation can be efficiently verified on a
classical computer — then our question would be moot. However, there are very
good reasons to think that this is not the case. In the language of complexity
theory, the set of languages (informally, problems) that can be decided efficiently
with the help of a classical (probabilistic) computer is denoted BPP (for “bounded-
error probabilistic polynomial-time”), while with a quantum computer one gets
BQP (for “bounded-error quantum polynomial-time”). Clearly BPP is a subset of
BQP, and it is generally believed that the latter is strictly larger, with factoring
being a possible problem that would separate the two classes. While factoring lies
in NP (for “non-deterministic polynomial-time”), the class of languages that can
be efficiently verified on a classical computer, given the right witness, or proof,
complexity theorists strongly believe that there are problems in BQP that do not
even lie in NP (they also believe that there are problems in NP, such as the traveling
salesman problem or any NP-complete problem, that are not in BQP, so that the
two classes are incomparable).1 Can all efficiently describable experiments based on

1In fact, a much stronger claim can be proven in the restricted model of “oracle separations”,
in which one places restrictions on the ways through which the computer can access its input [14].
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quantum mechanics be executed in a way that allows the outcome of the experiment
to be certified correct (i.e. matches the predictions of quantum mechanics) using
a verification procedure that does not itself rely on the manipulation of quantum
information?

P

BPP
BQP

NP IP

Figure 1. Known inclusions between complexity classes. Note
that NP is not known to contain BPP because in NP, the veri-
fication procedure is assumed deterministic. With a randomized
verifier, one obtains the class MA (for “Merlin-Arthur”) that does
contain BPP.

In these notes I present a solution to the problem of verification of quantum com-
putation due to Mahadev [12]. Her result makes verification possible by injecting an
additional ingredient, the use of a post-quantum cryptographically secure scheme,
to restore symmetry between the quantum device and the classical experimentalist
attempting to verify it. Informally, the experimentalist will use the cryptography
to set things up in a way such that the device has no choice but to implement the
required computation, or be detected — or break the cryptographic assumption,
which is why it is important that we select a scheme that is post-quantum secure,
i.e. believed secure even against full-fledged quantum computers. The notes are
written in a way that aims to make the most important insights of Mahadev’s work
accessible to any mathematician, with or without background in complexity theory
or quantum information. As a result, the presentation will remain rather informal,
and we alert the reader whenever the discussion makes an important shortcut.

The outline for the remainder of the notes is as follows. First we introduce
the formal setup for the verification problem. This will require us to delve in
the wonderful framework of interactive protocols from complexity theory, that we
illustrate with a toy scheme for the verification of classical computation. Then we
describe a specific problem about quantum states, which the verification question
reduces to. Finally, we describe the protocol of Mahadev and give the key ideas
that go in its analysis.

To keep the presentation focused we do not survey prior works and other ap-
proaches to verification in any depth. The question has a long history, that prior
to Mahadev’s work had resulted in partial answers for different models of verifica-
tion. Some of the most important results include the concurrent works of Aharonov
et al. [1] and Broadbent et al. [5] showing how to achieve verification in a model
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where the verification procedure itself has access to a small, trusted quantum com-
puter, and the work of Reichardt et al. [17] in a model where the verification
procedure is entirely classical, but has access to two spatially isolated quantum
computers, sharing entanglement, whose implementation of a quantum computa-
tion it aims to verify. In contrast to Mahadev’s result presented here, these works
achieve information-theoretic (instead of computational) soundness guarantees in
their respective models. For an in-depth discussion of these and related works, I
recommend the recent survey by Gheorghiu et al. [9].

1. Interactive protocols

The concept of an interactive proof system can be difficult to digest for the
mathematician, in part because it involves some amount of personification — there
is the verifier, the prover — and even worse, these imaginary beings are ascribed
intentions — the prover is trying to demonstrate something to the verifier, while
the verifier attempts to catch any cheating behavior from the prover — not the
kind of language that is frequently used in, say, the theory of differential equations
or operator spaces. Please bear with me — interactive proofs are the single most
powerful idea to have emerged out of complexity theory since the 1990s, and they
are a key element of Mahadev’s solution.

It all starts with the complexity class NP, whose study originates in the works of
Cook, Karp, and Levin in the 1970s. A complexity class is a collection of languages.
A (promise) language L is a pair of subsets Lyes, Lno ⊆ {0, 1}∗, the set of sequences
over the alphabet {0, 1} of arbitrary but finite length (a.k.a. “bit strings”). For
example, Lyes could be the set of (suitably encoded) 3-SAT formulas that admit
a satisfying assignment,2 and Lno the set of formulas that are not satisfiable. The
language L = (Lyes, Lno) is called 3-SAT. A language L is in the class NP if there
exists a real polynomial p and a Turing machine V (for our purposes, the reader
may replace the intimidating notion of “Turing machine” by any intuitive notion
of efficient computation, such as an “algorithm”) such that V has two input tapes,
and is such that for all x ∈ Lyes ∪ Lno, (i) if x ∈ Lyes then there exists a w, the
witness, or proof, such that V (x,w) halts in at most p(|x|) steps, where |x| denotes
the length of x, and returns 1 (for “accept”), and (ii) if x ∈ Lno then for any w,
V (x,w) halts in at most p(|x|) steps and returns 0 (for “reject”). Property (i) is
usually referred to as the completeness condition (valid statements have an accepted
proof), and (ii) as the soundness condition (invalid statements have no accepted
proof). The fact that 3-SAT is in NP follows since given as input a 3-SAT formula
ϕ, if the formula is satisfiable then there exists a witness w that proves this (e.g. w
is a satisfying assignment for ϕ), whereas if the formula is not satisfiable, it is easy
for V to check that any given purported assignment w is indeed invalid.

Informally, NP captures the collection of problems that have efficiently verifiable
solutions, such as factoring, 3-SAT, the traveling salesman problem, or mathemat-
ical theorems (that have reasonably short proofs within a prespecified axiomatic
system). A key insight from research in complexity theory in the 1990s is that
the collection of languages that admit “efficient verification” can be substantially
extended by allowing interactive protocols for verification. Consider a verification

2A 3-SAT formula is an AND of 3-variable ORs, e.g. a Boolean formula of the form ϕ =
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x5 ∨ x6) ∧ · · · , where the variables xi ∈ {0, 1} and xi denotes variable
negation.
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procedure V , referred to as the verifier (personification, here it comes...), that is
allowed to “ask questions” about a claimed proof to another entity, the prover, as
illustrated in Figure 2. Can this provide an advantage, in the sense of allowing ver-
ification of languages that lie beyond those languages in NP, which admit “static”
proofs?

V P

Input x

“accept”/“reject”

Figure 2. An example of a 4-message interactive proof between
a verifier V , assumed to be computationally bounded, and an all-
powerful prover P .

Note that in the context of interactive proofs it is always assumed that both
verifier and prover are given access to an input x (e.g. a 3-SAT formula), and that
the prover aims to convince the verifier that the input is in the language (e.g. the
formula is satisfiable). The verifier, in turn, aims to make the right decision, by
taking information from the prover but “verifying” it before making a decision.
This reflects an asymmetry in the definition of NP: for valid statements, there
should exist a proof, while for invalid statements, no purported proof should be
accepted. In contrast to NP, for general interactive proof systems we allow the
verifier to be randomized and sometimes make an erroneous decision, as long as
for every input the probability of making an error in deciding that input is small:
this ensures that repeating the verification procedure sufficiently many times and
taking the majority decision yields an outcome that is erroneous with arbitrarily
small probability.3 Formally, we have the following two requirements:

• Completeness: For any x ∈ Lyes, there exists a prover that is accepted by
the verifier with probability at least 2

3 .
• Soundness: For any x ∈ Lno and any prover, the verifier accepts with

probability at most 1
3 .

The set of languages for which there exists an interactive proof system satisfying
these two requirements is denoted IP. To gain intuition as to how interaction may
help, consider the following toy problem. The input x is interpreted as a bivariate
polynomial P (y, z) defined over a prime field Fp, such that P has degree at most d
in each of its variables. Think of p as much larger than d: the input size, measured
in number of bits, is roughly (d + 1)2 log p (a list of coefficients), and p could
be exponentially larger. Let Lyes be the set of all such polynomials such that
S =

∑
y,z P (y, z) = 0, and Lno the set of polynomials such that S 6= 0. Computing

S näıvely takes time O(p2), where the O(·) hides a multiplicative factor of order
the time it takes to evaluate P at any given point, i.e. polynomial in d and log p.

3It is not hard to see that interactive proof systems with deterministic verifiers cannot decide
languages beyond NP, so this is an essential modification.
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Consider the following protocol, using which the verifier can be led to making the
right decision while having to invest a computational effort of O(p) only. The first
step in the protocol is a message from the prover to the verifier, which consists in
the claimed value of S, together with a “supporting statement” in the form of a
degree-d polynomial Q(z) such that S =

∑
y Q(z). (The honest prover can find such

a Q without difficulty by setting Q(z) =
∑
y P (y, z).) Upon receipt of an arbitrary

(S,Q), the verifier first checks the equality S =
∑
z Q(z), which takes O(p) time.

Next, she selects a uniformly random z∗ ∈ Fp and checks that Q(z∗) =
∑
y P (y, z∗),

which again requires time O(p). Note that, if it was the case that Q(·) 6=
∑
y P (y, ·),

by the Schwartz-Zippel lemma the probability that Q(z∗) =
∑
y P (y, z∗) would be

at most d/p, which is small provided p is much larger than d, as we assumed. Thus
the verifier makes the right decision with high probability, on any input P .

This “protocol” reduces the verifier’s effort from order p2 to order p. The atten-
tive reader will have realized that the protocol is in fact non-interactive — there is
a single message from the prover to the verifier. Applying the same idea to poly-
nomials with more variables yields an interactive protocol, in which variables are
randomly fixed by the verifier one at a time, with exponential savings in the amount
of time required for verification, from order pm to order mp, with m representing
the number of variables. This idea, of efficiently verifying claims about the sum
of the values taken by a multivariate polynomial, forms the basis of a celebrated
result in complexity theory, the inclusion of PSPACE (the class of languages that
can be decided using polynomial space, but arbitrary time) in IP [11, 18]. While
the state of the art in complexity theory does not allow one to prove that PSPACE
is a strictly larger class than NP, this is generally believed to be the case, so that
interaction seems to significantly broaden the class of languages that have efficient
verifiers.

In fact, it sufficiently broadens it so as to encompass the class BQP of languages
that can be efficiently decided on a quantum computer! Using the idea of Feynman
path integrals the probability that a quantum circuit returns the outcome “0” can
be expressed as the sum of exponentially many complex numbers, each of which
can be directly computed by taking a product of entries of the matrices that specify
the quantum gates of the circuit; this exponential sum can be exactly computed
(modulo finite-precision issues) in polynomial space. Given that PSPACE is in IP,
it follows that there exists an interactive protocol, of the form described above,
that allows a classical polynomial-time verifier to verify the outcome of a quantum
computation by asking questions to an untrusted prover. But there is a major hitch.
The model of interactive proofs does not place limitations on the computational
effort required of the prover, even in the case when it needs to come up with the
“right” argument to convince the verifier (i.e. for an input x ∈ Lyes). In the
protocol for computing sums of polynomials described earlier, the prover has to
compute multiple exponential-sized intermediate sums, that in general will take
time pm. Unfortunately, following the proofs that BQP is in PSPACE is in IP
leads to a very similar protocol, in which the prover has to compute exponentially
large sums for which there is no reason to think there would be an efficient quantum
algorithm.

There has been very little progress in tweaking the protocols obtained in this
way to decrease the computational effort required for the honest prover (see e.g.
the recent [2]). Mahadev’s work takes a different path by explicitly introducing a
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computational limitation on the cheating prover: that it does not have the ability to
break a cryptographic scheme that is believed secure against quantum polynomial-
time attackers. To explain her approach we first introduce the model of quantum
computation and the specific problem that is verified by her protocol; this is done
in the next section.

2. Quantum computations

In this section we give a light introduction to the formalism of quantum comput-
ing. Our goal in doing so is to provide the minimal background required to describe
a reduction from the problem of deciding the outcome of a quantum circuit to an-
other problem, of deciding the existence of a quantum state that satisfies certain
simple constraints, that is the starting point for Mahadev’s protocol. The latter
decision problem is formulated in Theorem 2.3, so that the impatient reader may
skip ahead, read the statement of the theorem, and proceed to the next section, in
which we describe Mahadev’s protocol. (Notation used in the theorem statement
is introduced progressively throughout this section.)

σ1

σ2 σ3

σ4
σ5

σ6

J13

J34
J26

Figure 3. Schematic representation of an instance of the Ising
spin problem. Here each σi is a variable in {0, 1}, and each Jij a
fixed coupling constant in [−1, 1] (not all Jij are represented on
the figure). The goal is to find an assignment to the variables that
minimizes the expression (2.1).

2.1. Warmup: the Ising spin problem. As a warmup, let’s consider a problem
from classical statistical physics, and see how we can reduce the verification of a
classical computation to it. Consider a graph with n vertices, such that each vertex
i ∈ {1, . . . , n} is associated a value (or, “state”) σi ∈ {0, 1}, and each edge (i, j)
is associated a real weight (or, “coupling constant”) Jij such that |Jij | ≤ 1. (See
Figure 3.) Vertices represent particles that can be in one of two states, σi = 0 or
σi = 1, and edges represent interactions between particles, where the interaction
can be attractive (Jij < 0) or repulsive (Jij > 0). The energy of a configuration
σ ∈ {0, 1}n is defined as4

(2.1) Hising(σ) = −
∑
(i,j)

Jij (−1)σi+σj .

Informally, the energy functional (a.k.a. Hamiltonian) Hising measures the number
of edge constraints that are not satisfied by an assignment σ, with each violation

4Technically the expression in (2.1) can take negative values, which may not seem appropriate
for an “energy”. Correcting this is just a matter of introducing an additive shift.
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giving a penalty of |Jij |. It is well-known that the problem of deciding, given as
input n, the coefficients Jij , and two thresholds a, b such that b − a is at least a
constant independent of n, whether the minimum of Hising over all σ ∈ {0, 1}n is
less than a, or larger than b, is an NP-complete problem (i.e. any problem in NP
reduces to it); moreover, this holds even for the case where Jij ∈ {−1, 0, 1} for all
(i, j).

NAND

NAND

NAND

NAND

NAND

0

1

0

0

1

0

1

0

0

1

0

1

1

0

1

1

1

1

1

1
1

0

1

1

0

σ1, . . . , σ5 σ6, . . . , σ10 σ11, . . . , σ15 σ16, . . . , σ20 σ21, . . . , σ25

x

w

{
{

Figure 4. The tableau of a classical circuit. Here x = 10, w = 10,
and there is one ancilla qubit, initialized to 0. The circuit has 5
reversible NAND gates (a, b) 7→ (a, 1 − ab). The tableau is given
by σ ∈ {0, 1}25, that represents the state of each of the 5 circuit
wires at successive stages of an execution of the circuit.

To understand why the Ising problem is as hard as any problem in NP, let’s
see how we can reduce the problem of deciding whether, given a classical circuit
C acting on n + m + r bits and an input string x ∈ {0, 1}n, there exists a string
w ∈ {0, 1}m such that the circuit accepts (x,w, 0r). By definition any problem
in NP can be expressed in this form, with x the input, w the witness, and C the
verifier’s circuit. In general C is specified by a sequence of gates (C1, . . . , C`) taken
from some fixed gate set, that we may without loss of generality restrict to the
sole (reversible) NAND gate, that maps (a, b) to (a, 1 − ab). Next consider the
tableau of the computation performed by the circuit. This is simply a list of values
for all wires in the circuit, starting from the input wires (initialized to (x,w, 0r))
to the output wire (that should equal 1, which stands for “accept”). (See also
Figure 4.) Given a tableau, it is possible to verify that the tableau is correct by
checking the propagation of each gate, one at a time: if the inputs to a NAND
gate are σi1 , σi2 ∈ {0, 1}, the output should be (σi3 = σi1 , σi4 = 1− σi1σi2). Wires
corresponding to the input string x should be initialized to the right value, whereas
wires associated with the witness string w can take arbitrary values. We can express
this set of constraints as a Hamiltonian HC : {0, 1}T → R, where T is the total
number of wires in the circuit:

(2.2) HC = Hin +Hprop +Hout ,

where Hin is a summation of energy penalties5 1σik
6=xk

with ik the input wire
associated with the k-th bit of x and 1σij

6=0 with ij the input wire associated

with the j-th ancilla bit, Hprop a summation of penalties of the form 1σik
6=σij

+

1σik+1
6=1−σij

σi`
for each NAND gate mapping (ij , i`) to (ik, ik+1), and Hout consists

of a single penalty term 1σiT
6=1, for iT the output wire. Then, HC is such that there

5We use the notation 1E for the indicator that event E occurs.
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exists σ such that HC(σ) = 0 if and only if there is a witness w such that C accepts
(x,w, 0r); otherwise, HC(σ) ≥ 1 for all σ.

Note that HC doesn’t quite have the form (2.1) of an Ising spin Hamiltonian yet:
some of its terms involve three variables at a time, and moreover not all terms are
directly expressed as a function of the parity of the sum of two variables. With a
little more work, using so-called “gadgets” it is possible to complete the reduction
and find an H ′C that is equivalent to HC (in terms of capturing the same decision
problem) but is of the form (2.1).

Remark 2.1. By adding penalty terms 1σik
6=0 for all input wires associated to w we

can force the witness to be 0, in which case the Hamiltonian directly captures the
problem of deciding if the circuit accepts its input x, or not. The above reduction
thus maps the problem of deciding whether a given classical circuit returns the
outcome 1, or not, to the problem of deciding whether an Ising Hamiltonian has a
configuration with energy 0, or not.

Our next step is to devise a quantum analogue of this reduction. For this we first
introduce some of the basics of quantum computation: quantum states, operations,
and measurements.

2.2. Quantum states and observables.
States. An n-qubit quantum state is specified by a density matrix, a positive semi-
definite matrix ρ on the 2n-dimensional Hilbert space H = (C2)⊗n such that ρ has
trace 1. Density matrices generalize classical probability distributions over n bits,
as the latter can be represented by a probability vector p : {0, 1}n → [0, 1] that we
can embed on the diagonal of a density matrix.

Even though in general we may allow arbitrary Hilbert spaces, for convenience
we generally assume that the space comes endowed with a canonical decomposition
as a tensor product of n copies of C2, for some finite integer n, and that moreover
each copy of C2 has a canonical basis (e1, e2). We generally use the “ket” notation
to write the canonical basis as |0〉 = e1, |1〉 = e2, and we refer to this basis as
the “computational basis”. A quantum state is called pure if its density matrix
has rank 1; in this case we can also represent the state as a unit vector expressed
in the canonical basis {ei1 ⊗ · · · ⊗ ein}, or {|ei1 · · · ein〉} in the more compact ket
notation. An arbitrary pure state thus has an expansion |ψ〉 =

∑
x∈{0,1}n αx|x〉,

where the {αx} are complex coefficients such that
∑
x |αx|2 = 1. The associated

density matrix is the rank-1 projection ρ = |ψ〉(|ψ〉)† = |ψ〉〈ψ|, where the “bra”
notation 〈ψ| = (|ψ〉)† is used for the conjugate-transpose.
Evolution. Evolutions in quantum mechanics are unitary. For a unitary U , a pure
state |ψ〉 evolve as |ψ〉 7→ U |ψ〉, and a density matrix ρ evolves as ρ 7→ UρU†. For
U to be implementable on a quantum computer we require that it decomposes as
a product U = UT · · ·U1, where each Ui is a unitary that acts non-trivially on at
most two qubits, i.e. it can be written as a tensor product of a unitary on C2 ⊗C2

with the identity on the remaining space. Moreover, each Ui should be taken
from a finite “gate set” of allowed operations on the computer. A sample gate set

contains the unitaries {H,T,CNOT}, where H = 1√
2

(
1 1
1 −1

)
is the Hadamard

gate, T =

(
1 0
0 eiπ/4

)
the T (sometimes also called π/8) gate, and CNOT the

two-qubit unitary that sends |a〉|b〉 7→ |a〉|a⊕ b〉 for any a, b ∈ {0, 1}.
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A fundamental theorem in quantum computing, the Solovay-Kitaev theorem,
states that for the purpose of efficient circuit representations any finite set of 1 and
2-qubit gates is as good as any other, as long as it generates a dense subgroup in
SU(2) (which is the case for the above-defined set). More formally,

Theorem 2.2 (Solovay-Kitaev ’97). There is a constant c such that for any finite
gate set G ⊆ SU(2) such that the group 〈G〉 generated by G is dense in SU(2) and
G is closed under inverse, for any ε > 0 there is an ` = O(logc(1/ε)) such that G`

is an ε-net in SU(2).6

Given a function f : {0, 1}n → {0, 1}m specified by a classical circuit, it is
possible to devise a quantum circuit of comparable size for the unitary Uf that
maps |x〉|b〉 to |x〉|f(x) ⊕ b〉 for x ∈ {0, 1}n, b ∈ {0, 1}m. (This observation is
not completely trivial, as the classical circuit may use non-reversible gates, for
which there is no direct quantum analogue; nevertheless, it is possible to show
that any classical circuit over, say, {AND,OR,NOT} can be efficiently simulated
by a reversible circuit.) We often consider the application of the unitary Uf “in
superposition”: by linearity,

Uf :
∑

x∈{0,1}n
αx|x〉|0m〉 7→

∑
x∈{0,1}n

αx|x〉|f(x)〉 .

Observables. It remains to discuss measurements. A measurement of a set of qubits
is specified by an orthonormal basis of the Hilbert space associated with the qubits.
The outcome of the measurement is the label of one of the basis vectors, and the
probability with which each basis vector is obtained equals the squared norm of
the component of the state that is in the direction of that basis vector. Formally,
suppose |ψ〉 is a state in (C2)⊗n ⊗ (C2)⊗m, and that the first n qubits of |ψ〉
are measured in the orthonormal basis {|φi〉}i∈1,...,2n of (C2)⊗n. To compute the
probability of the i-th outcome being obtained, we expand |ψ〉 in the basis {|φi〉}
as

|ψ〉 =

2n∑
i=1

|φi〉|φ′i〉 ,

where the |φ′i〉 are arbitrary vectors in (C2)⊗m (not necessarily normalized or or-
thogonal). The probability of the i-th outcome is then given by ‖|φ′i〉‖2. It will later
be important to remember that a measurement collapses the state: once the out-
come i has been obtained and recorded, the state undergoes a non-unitary evolution

|ψ〉 7→ |ψi〉 =
|φi〉|φ′i〉
‖|φ′i〉‖

.7

A measurement in the basis {|φi〉}, together with a choice of a real number λi
associated with each outcome i, can be succinctly represented as an “observable”
O =

∑
i λi|φi〉〈φi|. For a quantum state ρ, the real number Tr(Oρ) is precisely the

expectation of λi, under the distribution on i obtained by measuring the state ρ in
the basis {|φi〉}. An example is the observable associated with a measurement of a

6An ε-net is a set of points S ⊆ SU(2) such that for all U ∈ SU(2), there is V ∈ S such that
‖U − V ‖ ≤ ε. Here the norm is the operator norm, but any norm would give essentially the same
result, since the space has small dimension.

7If the conflict between the statements that “quantum mechanics requires all evolutions to be
unitary” and “a measurement is an irreversible process” puts you ill at ease, you are not alone.
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qubit in the computational basis {|0〉, |1〉}, labeling the first outcome “1” and the
second “−1”, whose associated observable is the Pauli σZ matrix,

σZ =

(
1 0
0 −1

)
.

Similarly, a measurement in the Hadamard basis {H|0〉, H|1〉} is represented by the
Pauli σX observable,

σX = HσZH
† =

(
0 1
1 0

)
.

2.3. Quantum spin problems. With the basics of quantum computing in place,
we return to the Ising spin problem introduced in Section 2.1 and discuss its “quan-
tization”. Recall the Hamiltonian Hising introduced in (2.1). We can interpret this
Hamiltonian as an “energy functional”, that associates an energy to any configu-
ration σ. In quantum mechanics, a Hamiltonian is any linear operator on Hilbert
space, with the restriction that the operator should be Hermitian (and bounded;
for convenience here we only consider finite-dimensional spaces, so that the lat-
ter condition is automatic). The interpretation is that the Hamiltonian associates
a definite energy λi ∈ R to any quantum state that happens to be in one of its
eigenstates |φi〉. The energy of an arbitrary state ρ is then computed linearly as
Tr(Hρ).8 Often it is also required that the Hamiltonian be local, meaning that H
can be expressed as a sum of a polynomial number of terms hi, each of them the
tensor product of the identity on (n− k) qubits, and an arbitrary Hamiltonian on
the remaining k qubits, for some constant k.

Using the notation introduced in the previous section, the Ising spin Hamiltonian
can be recast as a quantum Hamiltonian, H ′ising = −

∑
(i,j) Jij σ

i
Zσ

j
Z , where σiZ is

shorthand for the observable that is σZ on the i-th qubit and the identity on the

others, σiZ = Id⊗(i−1)⊗σZ ⊗ Id⊗(n−i). Since this Hamiltonian is diagonal in the
computational basis, its eigenstate with smallest eigenvalue, also called its “ground
state” or minimal energy state, is always attained at a pure computational basis
state |σ〉, for some σ ∈ {0, 1}n.

Things get more interesting when we consider Hamiltonians made of a combina-
tion of non-commuting observables. Consider for example the 2-qubit Hamiltonian

(2.3) HEPR = −1

2
(σ1
Xσ

2
X + σ1

Zσ
2
Z) .

As a matrix, this can be written as

HEPR =


−1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 −1

 .

8The reader may have noticed that the syntactic requirements for “Hamiltonians” and “ob-
servables” are identical. Physically, a Hamiltonian is meant to represent a specific observable,

that corresponds to the energy of a system; mathematically, the two notions are interchangeable.
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What is remarkable about this Hamiltonian is that its smallest-eigenvalue eigenstate
is a state

|φ+〉 =
1√
2

(
|0〉|0〉+ |1〉|1〉

)
=

1√
2


1
0
0
1

 ,

also known as “EPR pair”, that has the property of being entangled : it cannot be
expressed in the form |φ1〉 ⊗ |φ2〉, for any |φ1〉 and |φ2〉.

The possibility for quantum Hamiltonians to force entanglement in their ground
state distinguishes them from classical Hamiltonians, whose eigenstates are compu-
tational basis states, and in particular product states. As a result, while a classical
Hamiltonian always has a minimal energy configuration that can be described using
O(n) bits (hence, as already observed, the problem of deciding its minimum energy
is in NP), for quantum Hamiltonians this need not be the case. The complexity
class QMA (for “Quantum Merlin-Arthur”) is the quantum analogue of NP: QMA
is the collection of all (promise) languages L = Lyes ∪ Lno such that it is possi-
ble for a quantum polynomial-time verifier to correctly decide whether an input
x ∈ Lyes or x ∈ Lno, with error at most 1

3 , with the help of a “quantum proof” |φ〉
provided by an all-powerful, but untrusted, quantum prover. The problem of decid-
ing the minimal energy of a local Hamiltonian, to within some inverse polynomial
precision, is an example of a problem that is in QMA: informally, given a claimed
minimum-eigenvalue eigenstate presented as a quantum state, it is possible to es-
timate the associated eigenvalue by making the appropriate energy measurement.
Moreover, Kitaev established a quantum analogue of NP-completeness of 3-SAT by
showing that the local Hamiltonian problem is QMA-complete, i.e. the constraints
expressed by any polynomial-time quantum verification procedure can be reduced
to constraints of the form checked by a local Hamiltonian.

2.4. Certificates for quantum computations. Back to our quest for a certifi-
cate for quantum computations. We have seen that the computation carried out
by a classical circuit could be represented by a “tableau”, such that the property of
being a valid tableau can be encoded in a classical Hamiltonian, thereby reducing
the task of deciding whether a classical circuit accepts its input to the task of de-
ciding whether the associated Hamiltonian (that can be efficiently computed from
the circuit) has a small enough eigenvalue.

What is the correct notion of a tableau for quantum circuits? The first idea is to
consider the juxtaposition of the quantum state of an `-gate circuit at each step of
the computation, i.e. the tensor product |ψ0〉⊗· · ·⊗|ψ`〉 of the states |ψi〉 obtained
by executing the circuit from scratch and stopping after i gates have been applied.
While this is a well-defined n(`+1)-qubit quantum state (see Figure 5) the property
of being a valid “quantum tableau” cannot be enforced using a local Hamiltonian!
The reason is subtle, and has to do with the possible presence of entanglement at
intermediate steps of the computation. Indeed, there are quantum states that are
very different, in the sense that they are perfectly distinguishable by some global
observable, yet cannot be distinguished at all by any local observable, that would
act on at most, say, half the qubits. An example is given by the two n-qubit “cat”
(named after the homonymous animal) states

|ψ±〉 =
1√
2

(
|0 · · · 0〉 ± |1 · · · 1〉

)
.
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CNOT

H

T

|ψ0〉|0〉
⊗
+

|ψ1〉|1〉
⊗
+

|ψT 〉|T 〉
⊗
+

|ψtableau〉 =
|ψhist〉 =

CNOT

CNOT

Figure 5. Two different ways to create a tableau from a quantum
circuit. The state |ψtableau〉 is the tensor product of the state of the
circuit at each time step. The state |ψhist〉 is their superposition,
indexed by a clock register that goes from |0〉 to |T 〉.

The two states |ψ+〉 and |ψ−〉 are easily seen to be orthogonal, so that they can
be perfectly distinguished by a measurement (using any orthonormal basis that
contains both states). But it is an exercise to verify that for any observable that
acts on at most (n−1) of the n qubits, both states give exactly the same expectation
value. (Informally, this is because any measurement on a strict subset of the qubits
of the state necessarily destroys the coherence — the only relevant information, the
± sign, is encoded “globally” and cannot be accessed locally.) Note that this is a
uniquely quantum phenomenon: if two classical strings of bits have each of their
bits equal, one pair at a time, then the strings are “globally” identical. Not so for
quantum states.

So näıve tableaus will not do. In the late 1990s the physicist Alexei Kitaev
introduced a very powerful idea that provides a solution. Kitaev’s idea is to replace
the juxtaposition of snapshot states by their superposition (see Figure 5). A special
ancilla system, called the “clock”, is introduced to index different elements of the
superposition. Thus, instead of defining a tableau as |ψ0〉 · · · |ψ`〉, Kitaev considers
the state

(2.4) |ψhist〉 =
1√
`+ 1

∑̀
i=0

|i〉|ψi〉 .

Kitaev showed that, assuming the clock register is encoded in unary, it is possible
to check the correct propagation of every step of the circuit directly on this super-
position by only applying local observables, in a manner very similar to what we did
for classical tableaus: there is a set of observables Hin that checks that |ψ0〉 has the
right format; a set of observables Hprop that checks propagation of the circuit, and
an observable Hout that checks that the “output qubit” of the circuit is in the right
state. The key point that makes this possible is that, while equality of quantum
states cannot be decided locally when the states are juxtaposed, it becomes possible
when they are given in superposition: as an exercise, verify that a measurement of
the first qubit of the state

|ψSWAP 〉 =
1√
2

(
|0〉|ψ0〉+ |1〉|ψ1〉

)
in the Hadamard basis {H|0〉, H|1〉} returns the first outcome with probability
exactly 1

2 (1 + |〈ψ0|ψ1〉|2). With more work, replacing the use of gadgets for the
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classical case by techniques from perturbation theory, it is possible to write the
resulting Hamiltonian as a linear combination of local terms that all take the form
of the EPR Hamiltonian (2.3). (Such a Hamiltonian is called a Hamiltonian “in
XZ form”, for obvious reasons.) The result is the following theorem from [6].

Theorem 2.3. For any integer n ≥ 1 there are n′ = poly(n), a = a(n) and
δ ≥ 1/ poly(n) such that the following holds. Given an `-gate quantum circuit
C = C1 · · ·C` acting on n qubits, such that ` = poly(n), and an input x for the
circuit, there exist efficiently computable real weights {Jij , i, j ∈ {1, . . . , n′}} such
that |Jij | ≤ 1 and if

(2.5) HC = −
∑
i,j

Jij
2

(
σiXσ

j
X + σiZσ

j
Z

)
,

then:

• (Completeness) If the circuit C accepts its input x with probability at least
2/3,9 then the smallest eigenvalue of HC is at most a;
• (Soundness) If the circuit C accepts its input x with probability at most 1/3,

then the smallest eigenvalue of HC is at least a+ δ.

Remark 2.4. Analogously to Remark 2.1 about the Ising spin problem being NP-
hard, it is possible to modify Theorem 2.3 so that the completeness and soundness
statements specify that “if there exists a state |φ〉 such that C accepts on input
(x, |φ〉) with probability at least 2/3...” and “if there does not exist a state |φ〉 such
that C accepts on input (x, |φ〉) with probability greater than 1/3...” respectively.
Thus, Theorem 2.3 can be adapted to show that the problem of estimating the
minimal energy of a Hamiltonian of the form (2.5) is a QMA-complete problem.

Theorem 2.3 provides us with a roadmap for the verification of quantum circuits:
it is sufficient to verify the existence of a quantum state that yields certain statistics,
when some of its qubits are measured in the computational (σZ observable) or
Hadamard (σX observable) basis. The reason this can be considered progress is that
we no longer need to check any dynamics; it is sufficient to collect measurement
statistics and estimate the energy. In particular, the theorem readily leads to a
verification protocol in a model where the prover has a full quantum computer,
and the verifier only has a limited quantum device — namely, a one-qubit memory,
together with the ability to measure the qubit using either the σX or σZ observables.

Such a verification protocol was introduced in [7], and can be summarized as
follows. First, given as input a description of the circuit C the prover is asked
to prepare a state |ψ〉 such that |ψ〉 is a minimum-eigenvalue eigenstate of the
Hamiltonian HC given in (2.5). While it may not be immediately obvious at the
level of our description, it is possible to prepare such a “history state” (2.4) by
executing a quantum circuit that is only mildly more complex than the original
circuit C. The prover is then asked to send the qubits of |ψ〉 to the verifier one
at a time. The verifier secretly selects a random pair (i, j) such that Jij 6= 0
ahead of time (without telling the prover), and measures qubits i and j, when she
receives them, either both using σX , or both using σZ . The verifier ignores all other
qubits received from the prover. For simplicity, assume all Jij ∈ {−1, 0, 1}; it is
straightforward to adapt the outline to the general case where Jij ∈ [−1, 1]. Then,

9The constants 1/3 and 2/3 are a matter of convention, and can be replaced by any constants
0 < s < c < 1.
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if the product of the two outcomes obtained matches the sign of Jij , the verifier
accepts; otherwise, she rejects. It is straightforward to check that this procedure
accepts any state |ψ〉 with probability 1

2−
1
2s 〈ψ|HC |ψ〉, where s = |{(i, j) : Jij 6= 0}|.

Repeating the protocol a number of times that scales quadratically with s/δ and

accepting if and only if a fraction at least 1
2 −

a+δ/2
2s accept results in a protocol

that accepts valid claims, and rejects erroneous claims, with probability close to 1.
Even though the verifier’s “quantumness” in this protocol is limited — she only

needs to hold one qubit at a time — this capability is crucial for the analysis, as it
is used to guarantee the “existence” of the state that is being measured: it allows
us to meaningfully talk about “the state |ψ〉 whose first qubit is the first qubit
received by the verifier; whose second qubit is the second qubit received by the
verifier; etc.”. These qubits are distinct, because the verifier has seen and then
discarded them (it would be a different matter if they were returned to the prover).
In particular, the fact that a one-qubit computer can be trivially simulated on a
classical piece of paper is immaterial to the argument.

With a classical verifier things become substantially more delicate. How can we
verify the existence of an n-qubit state with certain properties, while having only
access to classical data about the state, data that, for all we know a priori, could
have been generated by a simple — classical — laptop? To achieve this we need
to find a way for the verifier to establish that the prover holds an n-qubit state,
without ever having the ability to directly probe even a single qubit of that state.
The major achievement in Mahadev’s work is a method to do just this; it is the
topic of the next section.

3. Verifying quantum computations

In the previous section we reduced the problem of verifying the outcome of an
arbitrary quantum computation to the following decision problem.

Input: An integer n, the description of an n-qubit Hamiltonian H
in XZ form,

(3.1) H = −
∑

1≤i<j≤n

Jij
2

(
σiXσ

j
X + σiZσ

j
Z

)
,

a real number a, and δ > 0.
Promise: The smallest eigenvalue of H is either less than a, or at
least a+ δ.
Decision: Accept if and only if the smallest eigenvalue of H is less
than a. (We refer to such H as “YES” instances.)

The reduction guarantees that the “promise gap” δ can be taken to be at least
some inverse polynomial in n. For ease of exposition we will further assume that
all coefficients Jij lie in {−1, 0, 1}, and that a = −

∑
|Jij |. In physical language

this corresponds to a “frustration-free” Hamiltonian, meaning that in the case of
a YES instance an eigenstate with smallest eigenvalue a is also an eigenstate with
eigenvalue 1 of each of the local terms hij = 1

2 (σiXσ
j
X + σiZσ

j
Z). (This last assump-

tion is with loss of generality, as it is not hard to see that the resulting problem lies
in NP; nevertheless, we make it because it helps simplify the presentation without
hiding any interesting steps.)

Our starting point for deciding this problem is the protocol described at the
end of Section 2.4. To remove any quantum computation at the verifier’s side, we
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“delegate” the verifier’s single-qubit measurements in that protocol to the prover,
who is asked to report the classical measurement outcome. If this procedure were
implemented näıvely the prover could easily claim that any Hamiltonian is a YES
instance: the first time it is asked to measure a qubit, the prover returns an arbitrary
outcome in {±1}; the second time, it has learned the pair (i, j) the verifier is
interested in, and can return an outcome that leads to acceptance (i.e. one that is
identical to the first outcome in case Jij > 0, and opposite otherwise).

In order to obtain a sound protocol, the verifier faces what may seem like an
insurmountable task: ensure that the prover reports measurement outcomes that
are consistent with outcomes obtained by measuring the right qubits of a fixed n-
qubit state in the right basis. Here “fixed” means that the prover should not change
the state it measures depending on the verifier’s question! The main idea we will
deploy to achieve this originates in the construction of commitment protocols in
cryptography. The key ingredient in Mahadev’s verification protocol for quantum
computations is a commitment protocol that allows a quantum prover to “com-
mit” to a quantum state using only classical information. Before introducing this,
we review the classical notion of commitment, and how it can be achieved using
collision-resistant hash functions.

3.1. Classical commitments. Consider the following toy task of “coin-flipping
over the phone”: Alice is at work; Bob is at home; they would like to decide over
the phone who will cook dinner tonight. Neither volunteers: they need to flip a
coin. Clearly neither of them trusts the other to do this properly, so they need
a protocol that makes it infeasible for either party to bias the outcome in their
favor. Here is a way to achieve this using “commitments”. Bob chooses a value
b ∈ {0, 1} — ideally, he chooses it uniformly at random, but this is up to him.
He then “commits” to b by sending Alice some information c — think of Bob as
inserting a piece of paper with b written on it in a large safe, handing the safe to
Alice, but keeping the key to himself. Then, Alice herself chooses a bit a ∈ {0, 1},
and announces it directly to Bob. Finally, Bob reveals his bit b by giving Alice the
“key” r to the safe. Alice uses r to open the safe and check Bob’s claimed value
for b. If the check goes through, they jointly agree that the bit d = a ⊕ b is likely
to be unbiased. Finally, they use d to designate the night’s cook-in-chief.

Now that we’re convinced of the fundamental need for commitments, let’s dis-
cuss how to construct them. The coin-flipping protocol described in the previous
paragraph implicitly relies on two requirements: the commitment should be hiding
(Alice does not learn b, unless Bob explicitly reveals it to her) and binding (once
he has committed, Bob cannot “reveal” any value other than the one he committed
to).

Observe that there does not exist a commitment scheme such that both proper-
ties hold with perfect, information-theoretic security. Clearly, if Bob’s commitment
c contains no information about b, then the distributions of c conditioned on b = 0
and b = 1 must be identical; in particular, the scheme couldn’t be binding. Thus
achieving commitments requires a limitation on either Alice or Bob’s abilities, i.e.
to relax either the hiding or binding property to hold provided the malicious party,
Alice or Bob, is computationally bounded. It is possible to achieve schemes that are
computationally binding and information-theoretically hiding, or vice-versa; moti-
vated by our target application we discuss an example of the former kind of scheme.
The scheme relies on the existence of a family of collision-resistant hash functions
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(CRHF). A CRHF is a family of functions {fn : {0, 1}n → {0, 1}m(n)}, for n ≥ 1
and m(n) < n, such that for any x, fn(x) can be evaluated efficiently, but it is com-
putationally infeasible to find a pair of inputs x 6= x′ such that fn(x) = fn(x′).10

Collision-resistant hash functions are widely used in cryptography, and many con-
structions are known based on assumptions such as the Diffie-Hellman assumption
about hardness of the discrete logarithm problem or the Learning with Errors prob-
lem about hardness of solving noisy linear equations. (We sketch a construction
based on the latter in Section 4. Unconditionally proving the existence of CRHF
would imply that P6=NP,11 so we have to rely on computational assumptions.)

V

P

function fn

c

b ∈ {0, 1}
r ←R {0, 1}n−1

c← fn(b‖r)

commitment
phase

reveal
phase

b, r
if c 6= fn(b‖r)
then abort

o/w, return b

Figure 6. A computationally binding commitment protocol based
on the use of a CRHF family {fn}. The symbol x ←R S means
that x is selected uniformly at random from the finite set S.

Let {fn : {0, 1}n → {0, 1}n/2} be a CRHF family. Here is a commitment scheme
based on fn (see also Figure 6). Both parties agree on a “security parameter”
n ≥ 1. To commit to a bit b ∈ {0, 1}, Bob selects a uniformly random r ∈
{0, 1}n−1 and sends c = fn(b‖r) to Alice, where the symbol ‖ is used to denote
string concatenation. To reveal b, Bob sends both b and r to Alice, who checks
that c = fn(b‖r). This scheme is computationally binding, because to “change his
mind” Bob needs to identify r0 and r1 such that fn(0‖r0) = fn(1‖r1), which is
a collision. Note that the scheme as described is not necessarily hiding, as it is
not part of the definition of a CRHF that fn should hide information about its
input. For our purposes this will not matter, as we will be looking for a different
property than hiding (in our context we mostly care about protecting the verifier
(Alice) against the prover (Bob), not the converse). Nevertheless, we mention that
it is possible to achieve a scheme that is information-theoretically hiding using the
following small variant. To commit to b ∈ {0, 1}, Bob selects uniformly random
(u, x) ∈ {0, 1}n such that u · x = b , and sends c = (c1, c2) = (u, fn(x)) to Alice.
When Bob is asked to reveal b, he sends b and x to Alice, who checks that c1 ·x = b
and c2 = fn(x). Informally, this variant is information-theoretically hiding because
fn(x) only reveals about n/2 bits of information about x, so that to a party that
does not know x, the distribution of u, even conditioned on u · x = b for some
b, is statistically close to uniform. In other words, the distributions (u, fn(x))
conditioned on b = 0 or b = 1 are within total variation distance of each other that
is exponentially small in n.

10Formally, given 1n as input, no randomized polynomial-time procedure can produce a col-

liding pair (x, x′) with more than negligible in n probability. A negligible function ε(n) is one

such that ε(n)p(n)→n→∞ 0 for any polynomial p(n).
11The converse implication is not known to hold.
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3.2. Committing to a qubit. Recall that our goal is to constrain the quantum
prover to correctly report the outcomes of measurements on a pair of qubits of
an n-qubit state |ψ〉 that it holds, without being able to change the state or the
measurement as a function of the specific qubit(s) that it is asked to measure. Note
the analogy to the situation discussed in the previous section: ideally, we would like
the prover to “commit” to each of the n qubits of its state |ψ〉 ahead of time, in a
way that any subsequent request to “reveal” the outcome of a measurement of one
or more of the qubits in a basis of the verifier’s choice can only be answered by the
prover with the correct outcome of the requested measurement on the qubits, lest
the prover be caught cheating. This guarantee should hold as long as the prover
does not break the computational assumption that breaks the commitment scheme.
(The assumption that the scheme described here ultimately rests on is the hardness
of the “Learning with Errors” problem, introduced in Section 4.)

Commitments to qubits, using qubits, can be devised using similar ideas as in the
classical case. The key innovation that underlies Mahadev’s scheme is a method to
“commit” to a qubit using only classical information. Let’s start with the most näıve
adaptation of the commitment scheme described in Section 3.1, that would apply
it directly, in superposition, to a quantum state. Let f : {0, 1}n → {0, 1}m be an
arbitrary function (we will progressively formulate four specific requirements on f ,
that are stronger than those of a CRHF, so we start with the general case). Starting
from an arbitrary single-qubit state |ψ〉 = α|0〉+ β|1〉, the prover can compute the
classical commitment by first creating an additional register that contains a uniform
superposition over all (n− 1)-bit strings and then computing the commitment:

|ψ〉 = α|0〉+ β|1〉 7→
(
α|0〉+ β|1〉

) ( 1√
2n−1

∑
r∈{0,1}n−1

|r〉
)
|0n〉

7→ |ψ′〉 =
1√

2n−1

∑
r∈{0,1}n−1

α|0〉|r〉|f(0‖r)〉+ β|1〉|r〉|f(1‖r)〉 .(3.2)

Now suppose that the prover measures the last register in the computational basis
to obtain a classical “commitment string” c ∈ {0, 1}m, that it returns to the verifier.
Recall from Section 2.2 that any measurement induces a collapse of the state. This is
not something that we want to happen in an uncontrolled fashion, because we don’t
want the commitment procedure to destroy the committed qubit, that may itself
be in a superposition. A collapse can be avoided by ensuring that any measured
string c has exactly one preimage of the form 0‖r0, and one preimage of the form
1‖r1. So let’s make the assumption that

Assumption (2TO1): Both functions f0 : r 7→ f(0‖r) and f1 : r 7→
f(1‖r) are injective, and they have the same range.

If this holds then upon having obtained a measurement outcome c = f(0‖r0) =
f(1‖r1) for some r0, r1 ∈ {0, 1}n−1 the state |ψ′〉 collapses to the post-measurement
state consistent with the outcome obtained,

(3.3) |ψ′′〉 =
(
α|0〉|r0〉+ β|1〉|r1〉

)
|c〉 .

This state is interesting. Observe that the initial superposition that defined |ψ〉
got slightly muddled by the inclusion of r0 and r1. Nevertheless, morally the su-
perposition is preserved: most importantly, the coefficients α, β that define it are



VERIFYING QUANTUM COMPUTATIONS 19

unchanged. In fact, the state |ψ′′〉 is unitarily related to |ψ〉, by the simple unitary

(3.4) Uc : |0〉|r0〉 7→ |0〉|0〉 , |1〉|r1〉 7→ |1〉|0〉
(extended in an arbitrary way to the whole space). However, although this unitary
exists, it may not be easy for the prover to implement it! This is because doing so
seems to require the identification of both r0 and r1 from c, which would require
the prover to find a collision for f . Even though we only need it later, let’s already
make an assumption about f that is known as collapsing, a stronger property than
being collision resistant.

Assumption (C): Consider the following abstract game between the
prover and a trusted (quantum) “challenger”.12 First, the prover is
required to prepare an arbitrary state of the form |φ〉 =

∑
x αx|x〉,

where x ranges over the domain of f . The prover hands the state
|φ〉 over to the challenger, who evaluates f in superposition on
|φ〉 and measures the image register, obtaining a c in the range
of f and the (suitably normalized) post-measurement state |φ′〉 =∑
x:f(x)=c αx|x〉. The challenger returns to the prover the string

c together with either the state |φ′〉 or the probabilistic mixture∑
x:f(x)=c |αx|2|x〉〈x| obtained by measuring the same state |φ′〉 in

the computational basis (and throwing away the outcome). The
prover wins if it correctly guesses which is the case. Assumption (C)
on the function f states that no quantum polynomial-time prover
can succeed in this game with probability non-negligibly larger than
1
2 .

The reason that Assumption (C) implies collision resistance is that, if the function
were not collision resistant, the prover could identify a colliding pair (x0, x1) and
submit |φ〉 = 1√

2
(|x0〉 + |x1〉) to the challenger. It could then measure the chal-

lenger’s response in a basis containing the two states 1√
2
(|x0〉 ± |x1〉) and guess

that, in case the “−” outcome is obtained, the challenger must have measured; in
the other case, the prover guesses at random.

At this point we have completed the description of the commitment phase of the
protocol; this phase is summarized in the top part of Figure 7. Before proceeding to
a description of the reveal phase, we give a formal definition for a single-qubit state
σ to which the prover is “committed” to at the end of the commitment phase. Note
that we have to be careful with the meaning that we ascribe to any such definition:
for all we know, at this point it could be that the prover has not yet performed
any “quantum” actions; in fact, it could even have selected c without performing a
single evaluation of the function f . It would in any case be hopeless to make claims
about the “true” state of the prover, as the latter may include information that is
never made accessible to the verifier.

What matters for our ultimate verification goal is that there exists a state that
underlies the measurement outcomes revealed by the prover, and that this state
is independent of the basis with respect to which the prover is asked to “reveal”.
To define such a state we look ahead to the structure of the reveal phase. In the
classical protocol described in Figure 6 the phase consists of the prover returning the

12This game is not meant to be executed in the protocol; rather, it is meant to indicate a task
that the prover should not be able to complete.
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bit b ∈ {0, 1} and the string r ∈ {0, 1}n−1 that allows the verifier to check that the
commitment equals to the claimed value b. In the quantum case, the reveal phase
comes in two flavors: the “Z-reveal phase” and the “X-reveal phase”. Informally,
in either phase the prover reveals to the verifier information that allows it to obtain
the outcome of a measurement of the committed qubit in the corresponding basis.
Since measurements in the computational and Hadamard basis cannot be performed
simultaneously, only one of the reveal phases can be executed, at the verifier’s
choice.

As we will see, the information requested from the prover in either of the two
possible reveal phases is, analogously to the classical case, a pair formed by a single
bit followed by an (n − 1)-bit string: n bits in total. We refer to these n bits as
the prover’s “reveal string”. In general the prover’s actions can be modeled by two
measurements, one for each possible reveal phase. Each of the measurements has
outcomes that range in the set of n-bit strings. Since the state of the prover after
the commitment phase is only defined up to an arbitrary choice of basis, we may
without loss of generality assume that in one of the phases, say the Z-reveal phase,
the associated measurement is a direct measurement of n of the prover’s qubits in
the computational basis. In other words, we may fix a basis in which the prover’s
post-commitment state can be expressed as

(3.5) |ψ̃〉 =
∑

b∈{0,1},r∈{0,1}n−1

α̃b,r |b〉|r〉|φb,r〉 ,

for arbitrary coefficients α̃b,r and normalized states |φb,r〉, and such that moreover

in the Z-reveal phase the prover directly measures the first n qubits of |ψ̃〉 in the
computational basis and uses the n-bit outcome (b, r) as its reveal string.

Having fixed a convenient basis for the prover’s measurement in the Z-reveal
phase, the measurement that the prover performs to produce its n-bit X-reveal
string is expressed as the composition of an arbitrary unitary V acting on the
entirety of the prover’s space, followed by a measurement of the first n qubits in
the Hadamard basis. Using that {Id, σX , σZ , σXσZ} form a basis for the space of
linear operators on C2, any such unitary has an expansion as

V = Id⊗VI + σX ⊗ VX + σZ ⊗ VZ + σXσZ ⊗ VXZ .

It is not hard to verify that the linear map defined by

(3.6) Ṽ : |b〉|φ〉 7→
(
|b〉VI |φ〉+(−1)b|b〉VZ |φ〉

)
|0〉+

(
|b〉VX |φ〉+(−1)b|b〉VXZ |φ〉

)
|1〉

where |φ〉 is arbitrary, is an isometry, hence is an admissible operation in quantum

mechanics.13 (Note that Ṽ increases dimension by a factor 2. The new qubit
register, in third position, is called a “purifying system”.) We are ready to make a
crucial definition.

Definition 3.1 (Committed qubit). Given a commitment string c ∈ {0, 1}m and
an arbitrary post-commitment state for the prover of the form (3.5), let σ be the

single-qubit state obtained from |ψ̃〉 by applying the isometry Ṽ defined in (3.6)
and returning the first qubit of the resulting state. We refer to σ as the committed
qubit.

13For the expert, Ṽ is obtained from V by a σZ -twirl, followed by a conditional σX bit-flip.
The motivation for this definition will become clear in the analysis of the X-reveal phase.
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Note that the verifier does not know the state σ; in fact, strictly speaking σ is
not present on the prover’s space at any time. The point is that σ exists, and is
well-defined (mathematically) as a function only of the prover’s post-commitment

state |ψ̃〉 and the unitary V .

Remark 3.2. The state σ introduced in Definition 3.1 is a single-qubit state. Even-
tually we need the prover to commit to an n′-qubit state. This is done by requiring
n′ commitment strings c1, . . . , cn′ . There are still only two reveal phases; in each
phase, the prover reports n′ n-bit strings that are meant to reveal to the verifier the
outcomes obtained by measuring all n′ qubits in the same basis, computational or
Hadamard. In her paper [12] Mahadev gives a more complicated construction that

allows mixing of the two bases (so, there are 2n
′

possible reveal phases). This is
not needed here due to the specific form (3.1) of the Hamiltonian we aim to verify.

V

P

function f

c

|ψ〉 = α|0〉 + β|1〉 ∈ C2

measure to obtain c

commitment
phase

Z-reveal
phaseb, rif c 6= fn(b‖r),

Evaluate f
in superposition

measure Z? measure in comp. basis

u, d

measure X?

aZ ← b

aX ← u⊕ d
·(r0 ⊕ r1)

to obtain b, r

measure in Had. basis
to obtain u, d

X-reveal
phase

then abort

Figure 7. Committing to a qubit.

The preceding discussion establishes a definition of a state σ, that may not exist
directly on the provers’ space at any time in the protocol, but that is explicitly
defined from states and operators that are a function of the provers’. To conclude
it remains to describe each of the X-reveal and Z-reveal phases, and show how
the verifier can extract truthful computational or Hadamard basis measurement
outcomes on σ from the prover’s reveal string in each phase.

3.2.1. Measuring in the computational basis. We start with a description of the
Z-reveal phase. Recall that we made a choice of basis for the prover’s space such
that its post-commitment state is of the form |ψ̃〉 in (3.5), and moreover in the
Z-reveal phase the prover directly returns the outcome (b, r) of a measurement of

the first n qubits of |ψ̃〉 in the computational basis. Having received (b, r), the
verifier records the bit aZ = b ∈ {0, 1}. We call aZ the verifier’s “decoded bit” for
the computational basis.

Our goal is to show that the distribution of aZ is identical to the distribution
obtained by measuring the committed qubit σ in the computational basis. Ac-
cording to Definition 3.1, the committed qubit is defined from |ψ̃〉 by applying the

isometry Ṽ defined in (3.6) and returning the first qubit. Observe that Ṽ has a
block-diagonal form: it stabilizes the spaces |0〉 ⊗ H′ and |1〉 ⊗ H′, where H′ is
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the Hilbert space associated with all but the prover’s first qubit. As a result the
outcome of a measurement of the first qubit of |ψ̃〉, or of Ṽ |ψ̃〉, in the computational
basis, are identically distributed: the verifier’s decoded bit aZ = b has exactly the
right distribution.

Of course we set things up in this way, essentially defining the committed qubit
so that the property holds. The analysis of the X-reveal phase is more challenging.
Before turning to it, we add a small test to the Z-reveal phase, whose purpose will
become clear later. We call the test the “preimage test”: in this test, the verifier
checks that b‖r is a preimage of c under f , i.e. that f(b‖r) = c. In case the test
fails, the verifier aborts (irrespective of the value taken by the decoded bit aZ).
Note that this test is identical to the test performed by the verifier in the reveal
phase of the classical commitment protocol described in Section 3.1.

A honest prover, whose state |ψ̃〉 is the state |ψ′′〉 in (3.3), always passes the
preimage test. For the purpose of the analysis of the X-reveal phase given below
we make the simplifying assumption that, in case the Z-reveal phase is executed,
the prover always returns a pair (b, x) that passes the verifier’s preimage test.14 As

a consequence, the expression for the state |ψ̃〉 simplifies to

(3.7) |ψ̃〉 =
∑

b∈{0,1}

α̃b |b〉|rb〉|φb〉 ,

where r0 and r1 are such that f(0‖r0) = f(1‖r1) = c, since using Assumption
(2TO1) all other (b, r) would be rejected by the preimage test. This additional
assumption requires that in any execution of the commitment protocol protocol,
there is a positive probability that the verifier executes the Z-reveal phase, as
otherwise the preimage test would never be executed. In the case of the verification
protocol, each of the two reveal phases is chosen with probability 1/2, so that this
is not an issue.

3.2.2. Measuring in the Hadamard basis. Similarly to the Z-reveal phase, in the
X-reveal phase the verifier expects an X-reveal string (u, d) ∈ {0, 1} × {0, 1}n−1
from the prover, supposedly obtained as the outcome of a measurement of the first
n qubits of the post-commitment state |ψ̃〉 in (3.7) in the Hadamard basis. Upon
receiving such a (u, d) from the prover, the verifier records the decoded bit

(3.8) aX = u⊕ d · (r0 ⊕ r1) ∈ {0, 1} .
In addition, in case d = 0n−1 the verifier aborts (the purpose for this additional
condition will become clear later). To understand the expression (3.8), consider the
outcome of a Hadamard measurement on the first n qubits of a state of the form
|ψ′′〉 in (3.3), when for example α = β = 1√

2
. Applying the H gate on the first n

qubits yields (omitting the last register, that contains |c〉)

H⊗n|ψ′′〉 =
1√

2n+1

∑
b∈{0,1}

( ∑
u∈{0,1}

(−1)ub|u〉
)
⊗
( ∑
d∈{0,1}n−1

(
(−1)d·r0 + (−1)d·r1

)
|d〉
)

=
1√

2n−1

∑
u∈{0,1},d∈{0,1}n−1

1d·r0=u⊕(d·r1)|u〉|d〉 ,

14More generally, the prover may have a small probability of failure, leading to an error term
that needs to be accounted for. This is a technical issue that can be accommodated using standard

arguments, so we ignore it here.
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so that in this case, for any outcome (u, d) that can be obtained with non-zero
probability by the prover, the verifier’s decoded bit is aX = u ⊕ d · (r0 ⊕ r1) = 0,
which agrees with the outcome of a measurement of the state 1√

2
(|0〉+ |1〉) in the

Hadamard basis. (Moreover, the probability of obtaining d = 0n−1 is exponentially
small, so that the honest prover has only a tiny chance of leading to an abort.)
Informally, the addition of d · (r0 ⊕ r1) to the bit u acts as a “decoding” operation
that accounts for interference created by the strings r0, r1 that have been appended
to the prover’s qubit in the commitment phase. Note that this decoding procedure
requires the verifier to have the ability to recover the preimages r0 and r1 from
the prover’s commitment string c. This motivates an additional assumption on the
function f :

Assumption (T): There is “trapdoor information” such that, given
the trapdoor, it is possible to efficiently invert f , i.e. given c, recover
r0, r1 such that f(0‖r0) = f(1‖r1) = c.

The above argues for “completeness” of the phase, meaning that the verifier’s
decoded bit is correct in case the prover performs the intended actions. In general,
as discussed earlier the actions of an arbitrary prover can be modeled as the ap-
plication of a unitary V acting on the entirety of the prover’s space, followed by a
measurement of the first n qubits in the Hadamard basis. Our task is then to argue
that the verifier’s decoded bit aX , as defined in (3.8), has the same distribution
as the result of a Hadamard measurement of the committed qubit (Definition 3.1).
We will show a weaker statement, which is that the two distributions are compu-
tationally indistinguishable. For distributions on a single bit, the two notions are
essentially equivalent, but this would not be the case if we considered measurements
on more qubits.15

We start from the distribution of the verifier’s decoded bit aX . Recall from
Section 2.2 that given a quantum state ρ̃ = |ψ̃〉〈ψ̃| the expectation value of an

observable O is given by Tr(Oρ̃) = 〈ψ̃|O|ψ̃〉. Here the observable O is obtained
by first applying V , followed by a Hadamard H⊗n on the first n qubits, then a
measurement in the computational basis of all qubits but the first to obtain the
string d (this corresponds to applying the projection |d〉〈d|), then a σX bit-flip on the
first qubit, as a function of the outcome d obtained (this corresponds to applying

the unitary σ
d·(r0⊕r1)
X ), and finally measuring the first bit in the computational

basis (this corresponds to the observable σZ). As a result, the expectation value of
(−1)aX can be expressed as

E
[
(−1)aX

]
=

∑
d∈{0,1}n−1

〈ψ̃|V †H⊗n
(
(σ
d·(r0⊕r1)
X σZσ

d·(r0⊕r1)
X )⊗ |d〉〈d|

)
H⊗nV |ψ̃〉 .

The expectation value of (−1)b, where b is the outcome of a measurement of the
committed qubit σ in the Hadamard basis, can be expressed similarly except that
due to the use of the isometry Ṽ in the definition of the committed qubit, the

15This is a limitation of Mahadev’s approach, that is unimportant for the application at hand
— recall that the verifier only needs to verify measurements on pairs of qubits at a time — but

would be interesting to lift in future work.
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unitary V has been conjugated by a random σZ operator:16

E
[
(−1)b

]
=

1

2
E
[
(−1)aX

]
+

1

2

∑
d∈{0,1}n−1

〈ψ̃|σZV †σZH⊗n
(
(σ
d·(r0⊕r1)
X σZσ

d·(r0⊕r1)
X )⊗ |d〉〈d|

)
H⊗nσZV σZ |ψ̃〉

=
1

2
E
[
(−1)aX

]
−1

2

∑
d∈{0,1}n−1

〈ψ̃|σZV †H⊗n
(
(σ
d·(r0⊕r1)
X σZσ

d·(r0⊕r1)
X )⊗ |d〉〈d|

)
H⊗nV σZ |ψ̃〉 ,

where all σZ operators act on the first qubit, and for the second line we used
σZH = HσX to commute the innermost σZ all the way to the middle, where
we simplified σXσZσX = −σZ . Taking the difference between the two terms,
simplifying the middle expression using anti-commutation, and cancelling out cross-
terms gives∣∣∣E[(−1)aX

]
−E

[
(−1)b

]∣∣∣
=

1

2

∣∣∣ ∑
d∈{0,1}n−1

(−1)d·(r0⊕r1)
(
〈0, r0, φ0|V †H⊗n

(
σZ ⊗ |d〉〈d|

)
H⊗nV |0, r0, φ0〉

+ 〈1, r1, φ1|V †H⊗n
(
σZ ⊗ |d〉〈d|

)
H⊗nV |1, r1, φ1〉

)∣∣∣ ,(3.9)

where to write this last expression we used the assumption that the state |ψ̃〉 can
be expressed as in (3.7), i.e. the prover succeeds in the verifier’s preimage test in
the Z-reveal phase with probability 1. To argue that the right-hand side of (3.9)
cannot be large, we make the following final assumption.

Assumption (HC): No quantum polynomial-time procedure can,
given as input a description of f , return a quadruple (c, r, u, d)
such that f(b‖r) = c for some b ∈ {0, 1}, d 6= 0n−1, and u =
d·(r0⊕r1), where r0, r1 are the two preimages of c, with probability
non-negligibly larger than 1

2 .

If the expression on the right-hand side of (3.9) were non-negligible, there would
be a violation of Assumption (HC): a quantum polynomial-time “adversary” (to

the assumption) could simulate the prover to prepare |ψ̃〉, then measure the first n
qubits register to obtain (b, rb). It would then apply the unitary V and measure the
first n qubits in the Hadamard basis to obtain a string (u, d). Finally, the adversary
would return the tuple (c, r, u, d); (3.9) exactly measures the correlation of the bit
u with the correct value d · (r0 ⊕ r1).

Thus Assumption (HC) guarantees that the expression in (3.9) is negligibly small,
completing the soundness analysis of the Hadamard basis submeasurement protocol:
the verifier’s decoded bit aX is negligibly close in distribution to the outcome of a
measurement of the committed qubit in the Hadamard basis. (At this point we warn
the reader that our argument only considers the case of a single qubit. Extending

16For the second part of the state on the right-hand side of (3.6), corresponding to the last

qubit being in state |1〉, there is also a missing “σX” operator on the first qubit, labeled |b〉. A
σX has no effect on the outcome of a measurement in the Hadamard basis, so it can be ignored

here.
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it to the case of n qubits can be done, but requires the use of assumption (C) to
argue that the σZ operators applied on committed qubits that are eventually not
measured by the verifier do not have a noticeable effect on the marginal distribution
of outcomes for the two qubits that are considered.)

3.3. Summary. To conclude we summarize the verification protocol introduced
progressively in the previous sections. (See also Figure 7.) The input to the protocol
is the classical description of an n-qubit Hamiltonian H of the form (3.1). The goal
of the verifier is to determine if the smallest eigenvalue of H is less than a, or larger
than a+ δ. For this she can interact with a prover, that claims to have the ability
to prepare an eigenstate |ψ〉 of H with associated eigenvalue no larger than a. In
order to check this claim, the verifier proceeds as follows.

In a first phase, she selects n functions f1, . . . , fn : {0, 1}n(λ) → {0, 1}m(λ) satis-
fying assumptions (2TO1), (C), (T), and (HC). Here λ is an integer that plays the
role of “security parameter”; the larger the λ the more secure the scheme. Gen-
erally one may think of λ as being of the same order as n. The verifier sends the
public information allowing evaluation of the functions fi to the prover. The prover
replies with “commitment strings” c1, . . . , cn. This ends the commitment phase.

In the second phase, the verifier runs either the Z-reveal phase, or the X-reveal
phase, each chosen with probability 1

2 . In the case of a Z-reveal phase, the verifier
asks the prover for the outcome of a measurement of each of its committed qubits in
the computational basis. The prover sends back n pairs (bi, ri), for i ∈ {1, . . . , n}.
The verifier checks that for each i, fi(bi‖ri) = ci; if not she aborts. Then, the verifier
records outcomes aZ,i = bi. In the case of an X-reveal phase, the prover sends back
n pairs (ui, di) and the verifier records outcomes aX,i = ui ⊕ di · (r0,i ⊕ r1,i), where
0‖r0,i and 1‖r1,i are the two preimages of ci under fi (that the verifier computes
using the trapdoor information for fi).

Finally, the verifier selects a random (i, j) such that Jij 6= 0. If Jij > 0 and
aX,i = aX,j or aZ,i = aZ,j (depending on the basis subprotocol performed), or if
Jij < 0 and aX,i 6= aX,j or aZ,i 6= aZ,j , the verifier accepts. Otherwise, she rejects.

To show that this protocol is sound, we argue that, assuming the prover’s ac-
tions lead to a small probability of the verifier aborting, there must exist an n-qubit
“committed state” ρ, that can be defined from the provers’ actions, and has the fol-
lowing property: the distribution of any pair of decoded bits recorded by the verifier
for measurements in the computational, or Hadamard, basis is negligibly close to
the distribution of outcomes obtained by directly measuring the committed state in
the appropriate basis. The proof of this follows the outline given in the preceding
sections by extending the definition of a committed qubit in Definition 3.1 to n
committed qubits in the natural way, and extending the arguments in Section 3.2.1
and Section 3.2.2 to apply to two qubits at a time. A detailed proof would require
a more formal treatment than we aim for here; we refer the interested reader to the
paper [12].

Our description would not be satisfying if we did not discuss assumptions (2TO1),
(C), (T), and (HC). Are these assumptions reasonable? While (2TO1) and (T) are
fairly standard assumptions in classical cryptography, for which it is possible to find
multiple constructions, Assumption (C) is less common (though it has been used
in different contexts in quantum cryptography), and Assumption (HC) is even less
usual (though it can be seen as a strengthening of a more standard “(non-adaptive)
hardcore bit property”). In the next section we sketch a construction of a function
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family satisfying all four assumption simultaneously, based on the computational
hardness of the “Learning with Errors” problem in cryptography.

4. A construction based on the learning with errors problem

In the previous section we have identified four assumptions on a family of func-
tions {fn : {0, 1}n → {0, 1}m} that are sufficient for the resulting verification pro-
tocol to be computationally sound. Can the four assumptions be simultaneously
satisfied? Strictly speaking, we do not know the answer. In this section we sketch a
construction that nearly satisfies the assumptions. The construction appears in [4],
and a mild modification of it is used in Mahadev’s scheme. Even though the as-
sumptions introduced in the previous section will not all be strictly satisfied by the
construction, it is possible to verify that the protocol remains sound.

4.1. The LWE problem. Our starting point is the Learning with Errors (LWE)
problem, introduced by Regev [15]. The hardness of this problem has become a
widely used computational assumption in cryptography, for at least three reasons.
The first is that it is very versatile, allowing the implementation of advanced prim-
itives such as fully homomorphic encryption [8], program obfuscation [20], traitor
tracing [10], and many others. The second is that the assumption can be reduced
to the hardness of worst-case computational problems on lattices: an efficient pro-
cedure that breaks the LWE assumption on average can be used to solve the closest
vector problem in (almost) any lattice. The third reason, that is most relevant to
the use of the LWE assumption for the verification protocol presented here, is that
in contrast to the RSA assumption or the discrete logarithm problem so far it is
believed that the LWE problem may be hard for quantum computers, so that cryp-
tographic schemes based on it remain (to the best of published knowledge) secure
against quantum attacks.

The LWE assumption comes in multiple flavors, all roughly equivalent. Here we
formulate the decisional LWE assumption on the difficulty of distinguishing samples
from two distributions. To state the problem, fix a size parameter n ≥ 1, an integer
modulus q ≥ 2, a number of equations m ≥ n log q, and an error distribution
χ over Zq. Given χ, write χm for the distribution over Zmq that is obtained by
sampling each entry of a vector independently according to χ. The decisional LWE
assumption is the following.

(Decisional LWE) Let A be a uniformly random matrix in Zm×nq ,
s a uniformly random vector in {0, 1}n, e a random vector in Zmq
drawn from χm, and r a uniformly random vector in Zmq . Then no
classical or quantum probabilistic polynomial-time procedure can
distinguish (A,As+ e) from (A, r).

We include a few words of explanation for the reader unaccustomed with the no-
tion of computational indistinguishibility between ensembles of distributions. Note
that the distribution of (A,As+e) and the distribution of (A, r) are in general very
far from each other: provided m is sufficiently larger than n a random vector r will
not lie in the column span of A, nor even be close to it. What the (decisional) LWE
assumption asserts is that, even though in principle these distributions are far from
each other, it is computationally difficult, given a sample from the one or the other,
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to tell which is the case.17 Note that without the error vector e the task would be
easy: given (A, y), solve for As = by and check whether the solution has coefficients
in {0, 1}. The LWE assumption is that the inclusion of e makes the task substan-
tially more arduous. In particular, it is well-known that Gaussian elimination is
very sensitive to errors, which rules out the most natural approach. To the reader
with a geometric mind, it might help to picture a discrete lattice (all integer linear
combinations of the columns of A, as a subset of Rm) such that to each lattice point
is added a little noise, in the form of a discrete Gaussian distribution with small
variance centered at the lattice point. Even though all the Gaussian “blobs” thus
obtained are well separated, given a point in any one of them, it is (conjecturally)
hard to recover the center of the blob, i.e. the closest lattice vector.

We comment briefly on the choice of parameters. The integer n should generally
be thought of as the security parameter; the larger the more secure (in particular
it is always possible to guess s and check validity of the equations, giving an attack
in time roughly 2n). The modulus q should be at least polynomial in n, but can
be as large as exponential; this will be the case in our construction. The error
distribution χ can be chosen in multiple ways. A common choice is to set χ a dis-
cretized centered Gaussian distribution with variance αq, for some small parameter
α (typically chosen as an inverse polynomial function of n); this is generally denoted
DZq,αq. For more details on LWE and its applications, we refer to the survey [16].

4.2. Construction. To specify the function f we describe how public and private
parameters for the function are chosen. Let λ be an integer that plays the role
of security parameter (i.e. the number 2λ is thought of as an estimate of the time
required to break assumptions such as (HC)).

First, integers n,m and a modulus q are chosen such that n = Ω(λ), q ≥ 2 is
a prime, and m = Ω(n log q). Then, a matrix A ∈ Zm×nq is sampled at random,

together with a “trapdoor” in the form of a matrix R ∈ Z`×mq , where n ≤ ` ≤ m
is a parameter. The sampling procedure has the property that the distribution of
A is statistically close to uniform, and R is such that G = RA ∈ Z`×nq is a “nice”
matrix, in the sense that given b = Gs + e, for any s ∈ Znq and e small enough,

it is computationally easy to recover s.18 That such a sampling procedure would
exist and be efficiently implementable is non-trivial, and relies on the underlying
lattice structure given by the columns of A; see [13]. Finally, a uniformly random
s ∈ {0, 1}n, and a random e ∈ Zmq distributed according to DZq,αq with α of order

1/(
√
mn log q),19 are sampled. The public information is (A, y = As + e). The

private information is the pair (R, s).
Next, we discuss how the function can be evaluated, given the public parameters

(A, y). We define two functions f0, f1 that should be understood as f(0‖·) and
f(1‖·) respectively. For b ∈ {0, 1} the function fb takes as input an x ∈ Znq (that
can be seen as an element of Zwn2 for w = dlog qe) and returns Ax + e′ + by,
which is an element of Zmq ⊆ Zwm2 . Here, e′ is a vector sampled at random from

17Computational hardness only makes sense as the input size goes to infinity, which is why to
be precise we should consider a family of distributions, parametrized by the integer n, and argue

that the samples become harder and harder to distinguish as n→∞.
18One can think of G as a matrix whose rows are almost orthonormal, so that Gaussian

elimination on G induces only small propagation of the errors.
19The precise choice of α is delicate, and the parameters given here should only be treated as

indicative; we refer to [4, Section 8] for the right setting of parameters.
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a distribution DZq,α′q such that α′ is “much larger” than α. The inclusion of e′

makes f a “randomized” function, which is the main way in which the construction
differs from the requirements expressed in Section 3. A formal way around this is
to think of fb as the function that returns not Ax + e′ + by, but the distribution
of Ax + e′ + by, when e′ ∼ DZq,α′q and all other variables are fixed. In practice,
the evaluation of f on a quantum computer (as required of the “honest” prover in
the verification protocol) involves preparing a weighted superposition over all error
vectors, and computing the function in superposition.

We would, of course, rather do away with this complication. Why is the error
vector necessary? It is there to satisfy the important requirement that the functions
f0 and f1 are injective with overlapping ranges, i.e. Assumption (2TO1). Injectivity
follows from the existence of the trapdoor for A and an appropriate setting of
the standard deviation of the error distribution, which guarantee that (given the
trapdoor) x can be recovered from Ax+e′+by (with high probability over the choice
of e′). To make the function ranges overlap, we need the distribution of Ax+ e′ to
have the same support as the distribution of Ax′+e′+y = A(x′+s)+(e′+e). The
first distribution considers an arbitrary vector in the column span of A, shifted by
e; the second considers the same, except that the shift is by (e′ + e). For the two
distributions to (almost) match, we need the distribution of e′ to (almost) match
the distribution of e+e′. This is possible as long as the standard deviation σ′ = α′q
is substantially larger than the standard deviation σ = αq; provided this holds it is
an exercise to compute the statistical distance between the two Gaussian and verify
that it can be made very close to 1.

With this important caveat in place, we have specified the function f , and verified
property (2TO1). Property (T) follows from the existence of the secret information
(R, s). Given a b ∈ {0, 1} and an element c = Ax+ e′ + by = A(x+ bs) + (e′ + be)
in the range of fb it is possible to use the trapdoor matrix R to recover x+ bs and
subtract bs to deduce the preimage x of c under fb.

The two remaining properties, the collapsing property (C) and the hardcore bit
property (HC), require more work, and we refer to [4] for a detailed exposition.
We remark that the two properties are not entirely new. Property (C) was been
introduced by Unruh as a strengthening of the classical property of collision re-
sistance required for his work on the security of commitment protocols that are
computationally binding against quantum adversaries [19]. Similar “hardcore bit”
properties to (HC) have been shown for many LWE-based cryptographic schemes
(see e.g. [3]). Usually the property states that “for any vector d ∈ Znq \{0}, the
value d ·s ∈ Zq is indistinguishable from uniform, even given a sample (A,As+e)”.
Our property (HC) is subtly stronger, in that the adversary may choose the vector
d itself, possibly as a function of the sample (A,As + e). An additional difficulty
stems from the specific “bit” that the adversary predicts in our setting. In the
definition of Assumption (HC) this bit is the value u = d · (r0⊕r1), where r0, r1 are
the binary representation of the two preimages in Znq , x0 and x1 = x0 − s, of the
prover’s commitment string c ∈ Zmq . (Recall that the use of the binary represen-
tation came from the requirements on the honest prover, that is asked to perform
a measurement in the Hadamard basis, yielding a binary string of outcomes.) It
is in order to complete the argument showing that a procedure that returns the
information asked for in Assumption (HC), i.e. the quadruple (c, r, u, d), can be
turned into a procedure that breaks the decisional LWE assumption, that we need
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to assume that the secret vector s is a binary vector. The result is a somewhat
roundabout construction that we may hope will be simplified in future work.

Acknowledgments. I am indebted to Urmila Mahadev for numerous conversa-
tions that helped clarify her work. I thank Alexandru Georghiu, Urmila Mahadev
and Oded Regev for comments on earlier versions of these notes.
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THE SHUFFLE CONJECTURE

STEPHANIE VAN WILLIGENBURG

On the occasion of Adriano Garsia’s 90th birthday

Abstract. Walks in the plane taking unit-length steps north and east from
(0, 0) to (n, n) never dropping below y = x, and parking cars subject to pref-

erences, are two intriguing ingredients in a formula conjectured in 2005, now
famously known as the shuffle conjecture.

Here we describe the combinatorial tools needed to state the conjecture.

We also give key parts and people in its history, including its eventual alge-
braic solution by Carlsson and Mellit, which was published in the Journal of

the American Mathematical Society in 2018. Finally, we conclude with some

remaining open problems.

They can see the topography ...
the treetops, but we can see the
parakeets.

Adriano Garsia

Often, in order to delve deep into the structure of an abstract mathematical
construct, the treetops, we need to interpret it concretely with a combinatorial
visualization, the parakeets. The shuffle conjecture, as we will see, is one such
story. In this article we will integrate the motivation, history and mathematics of
the shuffle conjecture as we proceed. Hence we will begin by recalling necessary
concepts from combinatorics in Section 1, and from algebra in Section 2, in order
to state the shuffle conjecture in Theorem 3.2. This recently proved conjecture is,
in essence, a formula for encoding the graded dimensions of the symmetric group
representation, in the character of a particular vector space on which the symmetric
group Sn acts. In Section 3 we also discuss some of the motivation and history of
the shuffle conjecture, including its refinement known as the compositional shuffle
conjecture whose algebraic resolution by Carlsson and Mellit, announced in 2015 [5]
and published in 2018 [6], rocked the combinatorial community. We mention some
of their proof ingredients in Section 4, where we also conclude with some future
avenues.

1. The combinatorics of Dyck paths and parking functions

A crucial concept for the statement of the shuffle conjecture is that of parking
functions. Although originally studied by Pyke [25], they were introduced as a
model for parking n cars subject to preferences by Konheim and Weiss who were

2010 Mathematics Subject Classification. Primary 05E05, 05E10, 20C30.
The author was supported in part by the National Sciences and Engineering Research Council

of Canada, and in part by funding from the Simons Foundation and the Centre de Recherches
Mathématiques, through the Simons-CRM scholar-in-residence program.
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studying data storage [21, Section 6: A parking problem – the case of the capricious
wives]. Konheim and Weiss also proved that the number of parking functions
involving n cars is (n+1)(n−1). Since then these functions have arisen in a plethora
of places from hyperplane arrangements [31] to chip-firing [8]. More details on
parking functions can be found in, for example, the survey by Yan [34]. Rather
than using the original definition, in terms of drivers parking cars, we will instead
use an equivalent definition introduced by Garsia, for example in his paper with
Haiman [10, p 227]. However, before we do this, we need to define a Dyck path.

Definition 1.1 (Dyck path). A Dyck path of order n is a path in the n×n lattice
from (0, 0) to (n, n) that consists of n unit-length north steps and n unit-length
east steps, which stays weakly above the line y = x.

Example 1.2. If we let N denote a unit-length north step, and E denote a unit-
length east step, then the following path NNNEEENNENEENNEE from (0, 0)
in the bottom-left corner to (8, 8) in the top-right corner is a Dyck path of order 8.

�
�

�
�

�
�
�

�
�
�

�
�

Definition 1.3 (parking function). A parking function of order n is a Dyck path
of order n such that each north step has a label, called a car, written in the square
to its immediate right. The cars are 1, 2, . . . , n, each occurring exactly once, and
cars in the same column increase from bottom to top. We denote the set of all
parking functions of order n by PFn.

Example 1.4. An example of a parking function, which we will use throughout
this article, is given in Figure 1.

We now define three statistics on parking functions that will be useful later, the
first of which is the area of a parking function.

Definition 1.5 (area). If π is a parking function, then its area is the number of
complete squares between the Dyck path of π and y = x, denoted by area(π).

Example 1.6. If π is the parking function from Figure 1, then by counting the
number of complete squares in each row contributing to the area, from bottom to
top, we get

area(π) = 0 + 1 + 2 + 0 + 1 + 1 + 0 + 1 = 6.

The second statistic is slightly more intricate than the area.

Definition 1.7 (dinv). Consider a parking function π, and a pair of cars {c1, c2}
in it.
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Figure 1. A parking function of order 8

• If the cars c1, c2 are in the same diagonal (that is, their squares are the
same distance from y = x) with the larger car occurring further right, then
{c1, c2} is a primary diagonal inversion. Let Dinvpri(π) be the set of all
such pairs.
• If the cars c1, c2 are in adjacent diagonals with the larger car occurring

in the higher diagonal (that is, its square is distance 1 further from y = x
than that of the smaller car) and further left, then {c1, c2} is a secondary
diagonal inversion. Let Dinvsec(π) be the set of all such pairs.

Then

dinv(π) = |Dinvpri(π)|+ |Dinvsec(π)|.

Example 1.8. If π is from Figure 1, then {3, 7} is a primary diagonal inversion,
but {5, 7} is not, since the smaller car 5 occurs further right. Likewise {5, 8} is a
secondary diagonal inversion, but {3, 4} is not, since the smaller car 3 occurs in
the higher diagonal and further left. Note that {4, 8} is neither type of diagonal
inversion since the cars are not in the same or adjacent diagonals.

Hence,

Dinvpri(π) = {{2, 4}, {3, 6}, {3, 7}, {3, 5}, {6, 7}}
Dinvsec(π) = {{1, 3}, {1, 6}, {1, 7}, {6, 8}, {7, 8}, {5, 8}}

so

dinv(π) = |Dinvpri(π)|+ |Dinvsec(π)| = 5 + 6 = 11.

Our third statistic is a permutation associated to a parking function.

Definition 1.9 (word). If π is a parking function, then its word is the permutation
in one-line notation obtained by reading cars from the diagonal furthest from y = x
to the diagonal y = x, and within a diagonal reading from right to left. We denote
this by word(π).

Example 1.10. If π is from Figure 1, then

word(π) = 85763142.
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With our three statistics now defined, we end this section by recalling the i-
descent set of a permutation, in our case specialized to the word of a parking
function.

Definition 1.11 (ides). If π is a parking function, then its i-descent set is

ides(π) = {i | i+ 1 is left of i in word(π)}.

Example 1.12. If π is from Figure 1 with word(π) = 85763142 from Example 1.10,
then

ides(π) = {2, 4, 6, 7}.

2. The algebras of quasisymmetric and symmetric functions

We now start to turn our attention to the algebraic ingredients needed to state
the shuffle conjecture after first recalling the notions of compositions and partitions.

A composition α of n, denoted by α � n, is a list of positive integers α =

α1α2 · · ·α`(α) such that
∑`(α)
i=1 αi = n. We call the αi the parts of α, call n the size

of α and call `(α) the length of α. If, furthermore, α1 ≥ α2 ≥ · · · ≥ α`(α), then we
say that α is a partition of n, and denote this by α ` n. For example, 332 is both
a composition and partition, with size 8 and length 3.

Now we focus on defining the algebra of quasisymmetric functions, before using
them to define the algebra of symmetric functions.

The algebra of quasisymmetric functions, QSym, is a subalgebra of C[[z1, z2, . . .]],
meaning that QSym is a vector space, over C, of formal power series in the variables
z1, z2, . . ., in which we can also multiply the elements together. A basis for it is
given by the set of all fundamental quasisymmetric functions that we now define in
the variables Z = {z1, z2, . . .}, indexed by subsets of [n− 1] = {1, 2, . . . , n− 1}.

Definition 2.1 (fundamental quasisymmetric function). Let S = {s1, s2, . . . , s|S|} ⊆
[n− 1]. Then the fundamental quasisymmetric function Fn,S is defined to be

Fn,S =
∑

zi1zi2 · · · zin
where the sum is over all n-tuples (i1, i2, . . . , in) satisfying

i1 ≤ i2 ≤ · · · ≤ in and ij < ij+1 if j ∈ S.

Example 2.2. We have that

F3,{1} = z1z
2
2 + z1z

2
3 + z2z

2
3 + · · ·+ z1z2z3 + z1z2z4 + · · ·

whereas

F3,{2} = z21z2 + z21z3 + z22z3 + · · ·+ z1z2z3 + z1z2z4 + · · · .

Quasisymmetric functions were first mentioned implicitly in Stanley’s thesis,
with regard to P -partitions, published in 1972 [30], and then Gessel developed and
published much of the classical theory explicitly in 1984 [11]. Since then they have
arisen in a variety of areas, for example, from probability [18] to category theory
[1]. However, our interest lies in a special case of a result from Gessel’s original
paper [11, Theorem 3]. For this we first need to define Young diagrams and Young
tableaux.

Given a partition λ = λ1λ2 · · ·λ`(λ) ` n, we define its Young diagram, also
denoted by λ, to be the array of left-justified boxes with λi boxes in row i from
the top. Given the Young diagram, λ, a standard Young tableau (SYT) of shape λ,
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T , is a filling of the n boxes of λ with 1, 2, . . . , n each appearing exactly once such
that the entries in the rows increase when read from left to right, and the entries
in each column increase when read from top to bottom. We denote the set of all
SYTs of shape λ by SY T (λ).

Example 2.3. We have that T = 1 3 4 5

2 6 8

7

is an SYT of shape 431 ` 8.

Given an SYT, T , of shape λ ` n, we define its descent set to be

Des(T ) = {i | i+ 1 is in the same column or left of i} ⊆ [n− 1].

Example 2.4. If T is from Example 2.3, then

Des(T ) = {1, 5, 6} ⊆ [7].

We can now define the algebra of symmetric functions, Sym, which is a subal-
gebra of QSym. This algebra is so called because its elements are invariant under
any permutation of its variables, and a basis for it is the set of all Schur functions
that we now define as a special case of [11, Theorem 3].

Definition 2.5. Let λ ` n. Then the Schur function sλ is defined to be

sλ =
∑

T∈SY T (λ)

Fn,Des(T ).

Example 2.6. We have that s21 = F3,{1} + F3,{2} from the SYTs below.

1 3

2

1 2

3

The Schur functions are not the only basis of Sym. Another basis that will be
vital to our story is the basis consisting of all elementary symmetric functions: We
define the i-th elementary symmetric function ei to be

ei = s1i

where 1i is the partition consisting of i parts equal to 1. Then if λ = λ1λ2 · · ·λ`(λ) `
n we define the elementary symmetric function eλ to be

eλ = eλ1
eλ2
· · · eλ`(λ) .

Similarly, there exists the basis consisting of all complete homogeneous symmetric
functions: We define the i-th complete homogeneous symmetric function hi to be

hi = si.

Then if λ = λ1λ2 · · ·λ`(λ) ` n we define the complete homogeneous symmetric
function hλ to be

hλ = hλ1
hλ2
· · ·hλ`(λ) .

Symmetric functions date back to Girard [12] in 1629, although Schur functions
are much younger, dating to an 1815 paper of Cauchy [7]. The Schur functions
were named after Schur who in 1901 proved that they were characters of the irre-
ducible polynomial respresentations of the general linear group [27], while standard
Young tableaux were defined by Young in his 1928 publication [35, p 258]. Sub-
stantial historical notes on this subject can be found in Stanley’s second volume
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on enumerative combinatorics [32, Chapter 7], which is also an excellent resource
for symmetric functions and some related representation theory, as is the book by
Sagan [26].

3. The space of diagonal harmonics and the shuffle conjecture

With our essential combinatorial and algebraic notations now defined, we can
begin to work towards our statement of the shuffle conjecture, which is about the
vector space of diagonal harmonics. However, before we do that, let us define our
desired space.

Let Xn = {x1, x2, . . . , xn} and Yn = {y1, y2, . . . , yn}. Then the space of diagonal
harmonics, DHn, is the vector space of polynomials in these variables, f(Xn, Yn),
which satisfy

(3.1) ∂ax1
∂by1f(Xn, Yn) + ∂ax2

∂by2f(Xn, Yn) + · · ·+ ∂axn∂
b
ynf(Xn, Yn) = 0

for all a, b ≥ 0 and a+ b > 0. That is,

DHn = {f(Xn, Yn) ∈ C[Xn, Yn] |
n∑
i=1

∂axi∂
b
yif(Xn, Yn) = 0,∀a, b ≥ 0, a+ b > 0}.

Example 3.1. DH2 consists of all polynomials f(X2, Y2) = f(x1, x2, y1, y2) such
that

a+ b = 1 gives ∂x1
f(X2, Y2) + ∂x2

f(X2, Y2) = 0 when a = 1 b = 0
∂y1f(X2, Y2) + ∂y2f(X2, Y2) = 0 a = 0 b = 1

a+ b = 2 gives ∂2x1
f(X2, Y2) + ∂2x2

f(X2, Y2) = 0 when a = 2 b = 0
∂x1

∂y1f(X2, Y2) + ∂x2
∂y2f(X2, Y2) = 0 a = 1 b = 1

∂2y1f(X2, Y2) + ∂2y2f(X2, Y2) = 0 a = 0 b = 2

etc, and we can check that the solution set has basis {1, x1 − x2, y1 − y2}.

The symmetric group, Sn, acts naturally on DHn by the diagonal action that
permutes the Xn and Yn variables simultaneously. Namely, given σ ∈ Sn and
f(Xn, Yn) = f(x1, x2, . . . , xn, y1, y2, . . . , yn) we have that

σf(x1, x2, . . . , xn, y1, y2, . . . , yn) = f(xσ(1), xσ(2), . . . , xσ(n), yσ(1), yσ(2), . . . , yσ(n)).

By Equation (3.1) we see that if f(Xn, Yn) ∈ DHn, then σf(Xn, Yn) ∈ DHn. Fur-
thermore, if we let DHc,d

n be the subspace of DHn whose elements have total degree
c in the variables x1, x2, . . . , xn, and total degree d in the variables y1, y2, . . . , yn,
then if f(Xn, Yn) ∈ DHc,d

n , then σf(Xn, Yn) ∈ DHc,d
n . This enables us to define

the bigraded Frobenius characteristic of DHn

(3.2) DHn[Z; q, t] =
∑
c,d≥0

tcqd
∑
λ`n

sλ Mult(χλ, DHc,d
n )

where, as before sλ is a Schur function in the variables Z = {z1, z2, . . .} and
Mult(χλ, DHc,d

n ) is the multiplicity of the irreducible character of Sn, χλ, in the
character of DHc,d

n under the diagonal action of Sn.
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3.1. The shuffle conjecture. The shuffle conjecture is a combinatorial formula
for computing DHn[Z; q, t] in Equation (3.2), but before we give it and do an
example we will briefly recount a skeletal history that motivated it. More details
on this fascinating story can be found in the excellent state-of-the-art survey article
by Hicks [19], and the illuminating texts by Bergeron [3] and Haglund [13].

In 1988 Kadell looked for [20] and then Macdonald found [24] a generalization
of Schur functions, with additional parameters q, t, Pλ[Z; q, t] where λ ` n. This
generalization specialized to the Schur functions at q = t, and to other well-known
functions such as the elementary symmetric functions, Hall-Littlewood functions,
and Jack symmetric functions, which were likewise recovered by setting q and t
to various values. These functions were then transformed by Garsia and Haiman

[10, p 194], thus creating modified Macdonald polynomials H̃λ[Z; q, t]. At the same
time they were studying DHn[Z; q, t] and conjectured a formula for it in terms of

the H̃λ[Z; q, t]. Bergeron and Garsia noted that this formula was almost identical

to the formula for the elementary symmetric functions en in terms of H̃λ[Z; q, t].

More precisely, if the coefficient of H̃λ[Z; q, t] in en was Cλ, then its conjectured
coefficient in DHn[Z; q, t] was

tn(λ)qn(λ
′)Cλ

where if λ = λ1λ2 · · ·λ`(λ), then n(λ) =
∑`(λ)
i=1 λi(i − 1) and λ′ = λ′1λ

′
2 · · ·λ′`(λ′) is

the transpose of λ, which is the partition created from λ by setting

λ′i = number of parts of λ that are ≥ i.

For example, if λ = 211, then λ′ = 31. This inspired Bergeron to officially define
the nabla operator in the paper with Garsia [4, Equation (4.11)] as follows.

∇H̃λ[Z; q, t] = tn(λ)qn(λ
′)H̃λ[Z; q, t]

Hence when Haiman, using algebraic geometry, proved the conjectured formula for
DHn[Z; q, t] [17, Theorem 3.2] this automatically yielded that [17, Proposition 3.5]

(3.3) DHn[Z; q, t] = ∇en
since from above

en =
∑
λ`n

CλH̃λ[Z; q, t]

and now it was proved that

DHn[Z; q, t] =
∑
λ`n

tn(λ)qn(λ
′)CλH̃λ[Z; q, t].

Haiman had also proved [17, Proposition 3.6] that

dim(DHn) = (n+ 1)(n−1).

This supported the search for a collection of (n+1)(n−1) objects, such as all parking
functions of order n, along with statistics on them, in order to find a formula to
compute ∇en more easily. The shuffle conjecture of Haglund, Haiman, Loehr,
Remmel and Ulyanov [14, Conjecture 3.1.2] conjectured such a formula, which
we give now. This conjecture was proved recently, as a consequence of proving a
refinement of it called the compositional shuffle conjecture, by Carlsson and Mellit
[6, Theorem 7.5]. However, many still refer to it as the shuffle conjecture, and hence
we will too.
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Theorem 3.2 (the shuffle conjecture).

∇en =
∑

π∈PFn

tarea(π)qdinv(π)Fn,ides(π)

Example 3.3. Let us compute n = 2. In order to compute ∇e2, we first need to
calculate the elements of PF2 that are as follows.

�
�
�
��

1

2

�
�

�
��

2

1

�
�
�

��

1

2

π(1) π(2) π(3)

They have
area(π(1)) = 1 dinv(π(1)) = 0
area(π(2)) = 0 dinv(π(2)) = 0
area(π(3)) = 0 dinv(π(3)) = 1

word(π(1)) = 21 ides(π(1)) = {1}
word(π(2)) = 12 ides(π(2)) = ∅
word(π(3)) = 21 ides(π(3)) = {1}

and hence
∇e2 = tF2,{1} + F2,∅ + qF2,{1} = F2,∅ + (q + t)F2,{1}.

By Equation (3.3) and the definition of DHn[Z; q, t] in Equation (3.2) we know
that ∇e2 can be written as a positive linear combination of Schur functions. Using
Definition 2.5 we have that

s2 = F2,∅ and s11 = F2,{1}

from the respective SYTs

1 2 and 1

2

and hence
∇e2 = s2 + (q + t)s11.

It is still an open problem to find a formula for ∇en that is a manifestly positive
linear combination of Schur functions.

We conclude this subsection with an indication of why the shuffle conjecture was

so called. The name arose because the coefficient of the monomial zλ1
1 zλ2

2 · · · z
λ`(λ)
`(λ)

in ∇en is equal to [14, Corollary 3.3.1]∑
tarea(π)qdinv(π)

where the sum is over all π ∈ PFn such that word(π) is a shuffle of the lists

[1, 2, . . . , λ1], [λ1 + 1, λ1 + 2, . . . , λ1 + λ2], . . . , [m+ 1,m+ 2, . . . , n]

where m =
∑`(λ)−1
i=1 λi, that is, within word(π) the numbers within each list appear

in order when word(π) is read from left to right.

Example 3.4. Given the lists [1 , 2 ] and [3,4] note that 1342 is a shuffle of the
lists, but 1432 is not since 3 and 4 are not in order.
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3.2. The compositional shuffle conjecture. The conjecture that Carlsson and
Mellit proved was not the shuffle conjecture from the previous subsection, but rather
a refinement of it known as the compositional shuffle conjecture. This refinement by
Haglund, Morse and Zabrocki [15, Conjecture 4.5] centred around further symmetric
functions Cα, where α � n, that satisfy

en =
∑
α�n

Cα

so that

(3.4) ∇en =
∑
α�n

∇Cα

and involved a fourth statistic on parking functions, that of a touch composition.

Definition 3.5 (touch). If π is a parking function of order n, then note the set of
row numbers from bottom to top where there is a car in a square on the diagonal
y = x

{i1 = 1, i2, . . . , ik}.
Then the touch composition is

touch(π) = (i2 − i1)(i3 − i2) · · · (n+ 1− ik).

Example 3.6. If π is from Figure 1, then the set of row numbers where there is a
car in a square on y = x is {1, 4, 7} and hence

touch(π) = 332.

We can now state the compositional shuffle conjecture of Haglund, Morse and
Zabrocki [15, Conjecture 4.5], which was proved by Carlsson and Mellit [6, Theorem
7.5].

Theorem 3.7 (the compositional shuffle conjecture). Let α � n.

∇Cα =
∑
π∈PFn

touch(π)=α

tarea(π)qdinv(π)Fn,ides(π)

Observe that proving this would immediately prove the shuffle conjecture since
if we sum over all α � n, then the left-hand side would yield ∇en by Equation (3.4)
and the right-hand side would lose its touch composition restriction.

Example 3.8. Let us compute n = 2. From Example 3.3 we have that the elements
of PF2 are again as follows.

�
�
�
��

1

2

�
�

�
��

2

1

�
�
�

��

1

2

π(1) π(2) π(3)

They have

touch(π(1)) = 2
touch(π(2)) = 11
touch(π(3)) = 11
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hence

∇C2 = tF2,{1}

∇C11 = F2,∅ + qF2,{1}

and from Example 3.3

∇e2 = tF2,{1} + F2,∅ + qF2,{1} = ∇C2 +∇C11.

4. The proof and further directions

On 25 August 2015 Carlsson and Mellit posted an article on the arXiv [5] titled
simply “A proof of the shuffle conjecture”, in which they proved the compositional
shuffle conjecture, which in turn proved the shuffle conjecture. In their proof they
refined the compositional shuffle conjecture yet further and proved this refinement.

They worked with the right-hand side of the compositional shuffle conjecture
under what is known as the ζ map, which takes a parking function π to a new Dyck
path with cars placed in the squares along y = x such that when the cars are read
from right to left we obtain word(π). This required them to develop an analogue of
touch that they called touch′. They also worked with the reverse ordering of cars, so
that, for example, in a parking function the cars in the same column decrease when
read from bottom to top. The list of other ingredients that they were required
to create is impressive and included a generalization of the double affine Hecke
algebra; partial Dyck paths; numerous operators including raising and lowering
operators involving Hecke algebra operators and plethysm, and a modification of
Demazure-Lusztig operators; and a recurrence that their refinement satisfied.

To give a further idea of the complexity of the proof, this proof was almost 30
pages in length and took Haglund a full semester to check. In order to make it
more accessible to combinatorialists, at the request of Garsia, Haglund and Xin
expanded the proof, and their resulting article [16] is 60 pages in length.

4.1. Further directions. Carlsson and Mellit’s proof of the shuffle conjecture was
published in the Journal of the American Mathematical Society in 2018 [6], but
there remain many related open problems, some of which we now conclude with.

(1) A Schur-positive formula for ∇en By Equation (3.3) and Equation (3.2)
we know that when we express ∇en as a linear combination of Schur func-
tions

∇en =
∑
c,d≥0

tcqd
∑
λ`n

Dλsλ

we have that the coefficients Dλ must be nonnegative integers since they are
counting multiplicities. It remains an open problem to find a combinatorial
formula for the Dλ, namely a formula that would compute them directly
as nonnegative integers by counting a set of objects.

(2) Nabla on other symmetric functions While the search for a combina-
torial formula for ∇en has now been concluded with the proof of the shuffle
conjecture, it remains to prove the formula of Loehr and Warrington [23,
Conjecture 2.1] for

∇sλ
as the formula would generalize the result for ∇en since en = s1n . However,
a conjecture of Loehr and Warrington [22, p 667] for

∇pn
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where pn is the n-th power sum symmetric function

pn = zn1 + zn2 + · · ·
was recently proved by Sergel [28, Theorem 4.11] who has also conjectured
the existence of a formula [29, Conjecture 3.1] for

∇mλ

where mλ is the monomial symmetric function

mλ =
∑

zλ1
i1
zλ2
i2
· · · zλ`(λ)i`(λ)

for λ = λ1λ2 · · ·λ`(λ) and the monomials are distinct.
(3) A formula for q, t-Kostka polynomials The modified Macdonald poly-

nomials H̃λ, λ ` n, can be expanded as a linear combination of Schur
functions

H̃λ =
∑
µ`n

K̃µλ(q, t)sµ

where the K̃µλ(q, t) are known as q, t-Kostka polynomials. It is still an open
problem to find a combinatorial formula for them, although such formulas
have been found for λ = m1n−m by Stembridge [33, Theorem 2.1], and
also for λ = 2m1n−2m by Fishel [9, Theorem 1.1], and others. Assaf,
furthermore, has a theorem that enables the unification of these two cases
[2, Theorem 18].
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[32] R. Stanley, Enumerative combinatorics. Volume 2, Cambridge University Press (1999).

[33] J. Stembridge, Some particular entries of the two-parameter Kostka matrix, Proc. Amer.

Math. Soc. 121 (1994) 367–373.
[34] C. Yan, Parking functions, In Handbook of Enumerative Combinatorics, Discrete Math.

Appl. (2015) 835–894.
[35] A. Young, On quantitative substitutional analysis (third paper), Proc. Lond. Math. Soc.

(1928) 255–292.

Department of Mathematics, University of British Columbia, Vancouver, BC V6T

1Z2, Canada
E-mail address: steph@math.ubc.ca



ROBERT LAZARSFELD

Introduction

Let X be a smooth complex projective curve – or equivalently a compact Riemann
surface – of genus g ≥ 2, and denote by

H1,0(X) = Γ
(
X,Ω1

X

)
the C-vector space of holomorphic 1-forms on X. Recalling that dimH1,0(X) = g, choose
a basis

ω1 . . . , ωg ∈ H1,0(X).

It is classical that the ωi do not simultaneously vanish at any point x ∈ X, so one can
define a holomorphic map

φX : X −→ Pg−1 , x �→ [ω1(x), . . . , ωg(x) ]

from X to a projective space of dimension g− 1, called the canonical mapping of X. With
one well-understood class of exceptions, φX is an embedding, realizing X as an algebraic
curve

X ⊆ Pg−1

of degree 2g − 2. Any compact Riemann surface admits many projective embeddings, but
the realization just constructed has the big advantage of being canonically defined up to
a linear change of coordinates on Pg−1. Therefore the extrinsic projective geometry of a
canonically embedded curve must reflect its intrinsic geometry, and working this principle
out is an important theme in the theory of algebraic curves.

Given any projective variety, one can consider the degrees of its defining equations. An
important theorem of Petri from 1922 states that with a slightly wider range of exceptions, a
canonical curveX ⊆ Pg−1 is cut out by quadrics, i.e. polynomials of degree two. Classically
that seemed to be the end of the story, but in the early 1980s Mark Green realized that
Petri’s result should be the first case of a much more general statement involving higher
syzygies. In other words, one should consider not only the defining equations themselves,
but the relations among them, the relations among the relations, and so on. The resulting
conjecture has attracted a huge amount of attention over the past thirty-five years.

As of this writing, Green’s conjecture remains open. However Voisin made a major
breakthrough in 2002 by proving that it holds for general curves, where one rules out
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for instance all the sorts of exceptional cases alluded to above. Her proof introduced a
number of very interesting new ideas, but at the end of the day it relied on some difficult
and lengthy cohomological calculations. Prior to Voisin’s work, O’Grady and Buchweitz–
Schreyer had observed that one might be able to attack the syzygies of generic canonical
curves by studying a very concrete and classical object, namely the developable surface
of tangent lines to a rational normal curve. A substantial body of experimental evidence
supported this proposal, but in spite of considerable effort nobody was able to push through
the required computations. In a recent preprint [2], however, Aprodu, Farkas, Papadima,
Raicu and Weyman have succeeded in doing so. Their work is the subject of the present
report.

This note is organized as follows. Section 1 is devoted to the geometry of canonical
curves, the basic ideas around syzygies, and the statement of Green’s conjecture. The case
of general curves, and its relation to the tangent surface of rational normal curves occupies
§2. Finally, in §3 we explain the main geometric ideas underlying the work of AFPRW. My
understanding of this picture was worked out with Lawrence Ein.

We work throughout over the complex numbers. In particular, we completely ignore
contributions of [2] to understanding what parts of Green’s conjecture work in positive
characteristics.

I thank the authors of [2] for sharing an early draft of their paper. I profited from cor-
respondence with David Eisenbud, Gabi Farkas, Claudiu Raicu, Frank Schreyer and Claire
Voisin. I am particularly grateful to Lawrence Ein, with whom I worked to understand the
paper of AFPRW from an algebro-geometric perspective.

1. Canonical curves, syzygies and Green’s conjecture

Canonical curves and Petri’s theorem. Denote by X a smooth complex projective
curve of genus g ≥ 2, and as in the Introduction consider the canonical mapping

φX : X −→ Pg−1 , x �→ [ω1(x), . . . , ωg(x)],

arising from a basis ω1, . . . , ωg ∈ H1,0(X) of holomorphic 1-forms on X. By construction
the inverse image of a hyperplane cuts out the zero-locus of a such a 1-form, and therefore
consists of 2g − 2 points (counting multiplicities). It is instructive to consider concretely
the first few cases.

Example 1.1. (Genus 2 and hyperelliptic curves). Suppose g(X) = 2. Then the
canonical mapping is a degree two branched covering

φX : X −→ P1.

In general, a curve of genus g admitting a degree two covering X −→ P1 is called hyper-
elliptic. Thus every curve of genus 2 is hyperelliptic, but when g ≥ 3 these are in many
respects the “most special” curves of genus g. The canonical mapping of a hyperelliptic
curve factors as the composition

X −→ P1 ⊆ Pg−1
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of the hyperelliptic involution with an embedding of P1 into Pg−1. It follows from the
Riemann–Roch theorem that these are the only curves for which φX is not an embedding:

Fact. If X is non-hyperelliptic, then the canonical mapping

φX : X ⊆ Pg−1

is an embedding.

Example 1.2. (Genus 3 and 4). Assume that X is not hyperelliptic. When g(X) = 3,
the canonical mapping realizes X as a smooth curve of degree 4 in P2, and any such curve
is canonically embedded. When g = 4, φX defines an embedding

X ⊆ P3

in which X is the complete intersection of a surface of degree 2 and degree 3.

Example 1.3. (Genus 5). This is the first case where one sees the interesting behavior
of quadrics through a canonical curve. Consider a canonically embedded non-hyperelliptic
curve of genus 5

X ⊆ P4 , degX = 8.

One can show that there is a three-dimensional vector space of quadrics through X, say
with basis Q1, Q2, Q3. There are now two possibilities:

(a). X is trigonal, i.e. there exists a degree three branched covering

π : X −→ P1.

In this case each of the fibres of π spans a line in P4, and hence any quadric
containing X must also contain each of these lines. They sweep out a ruled surface
S ⊆ P4 containing X, and three quadrics through X meet precisely along S:

Q1 ∩ Q2 ∩ Q3 = S.

The canonical curve X is cut out in S by some cubic forms.

(b). X is not trigonal, i.e. cannot be expressed as a 3-sheeted branched covering of P1.
Then X is the complete intersection of the the three quadrics containing it:

X = Q1 ∩ Q2 ∩ Q3.

This is the general case.

Example 1.4. (Genus 6). Consider finally a non-hyperelliptic canonical curve X ⊆ P5

of genus 6. Now the polynomials of degree two vanishing on X form a vector space of
dimension 6, and there are three cases:

(a). If X is trigonal, then as above the quadrics through X intersect along the ruled
surface S swept out by the trigonal divisors.

(b). Suppose that X is a smooth curve of degree 5 in P2. In this case the canonical
image of X lies on the Veronese surface

X ⊆ V ⊆ P5,
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a surface of degree 4 abstractly isomorphic to P2, and V is the intersection of the
quadrics through X in canonical space.

(c). The general situation is that X is neither trigonal nor a plane quintic, and then
X ⊆ P5 is cut out by the quadrics passing through it. Note however that X is
not the complete intersection of these quadrics, since they span a vector space of
dimension strictly greater than the codimension of X.

We conclude this subsection by stating Petri’s theorem. Consider a non-hyperelliptic
canonical curve X ⊆ Pg−1. Let S = C[Z0, . . . , Zg−1] be the homogeneous coordinate ring
of canonical space Pg−1, and denote by

IX ⊆ S

the homogeneous ideal of all forms vanishing on X. We ask when IX is generated by forms
of degree 2: this is the strongest sense in which X might be cut out by quadrics.

Theorem 1.5 (Petri). The homogeneous ideal IX fails to be generated by quadrics if and
only if X is either trigonal or a smooth plane quintic.

Note that the Petri-exceptional curves fall into two classes: there is one family (trigonal
curves) that appears in all genera, and in addition one “sporadic” case.

In retrospect, Petri’s statement suggests some natural questions. For example, how
does one detect algebraically curvesX that can be expressed as a degree 4 branched covering
X −→ P1, or that arise as smooth plane sextics? Or again, what happens in the generic
case, when X does not admit any unusually low degree mappings to projective space?
Green’s beautiful insight is that one should consider for this not just the generators of IX
but also its higher syzygies.

Syzygies. The idea to study the relations – or syzygies – among the generators of an ideal
goes back to Hilbert. Making this precise inevitably involves a certain amount of notation,
so perhaps it’s best to start concretely with the simplest example.1

The rational normal curve C ⊆ P3 of degree 3 is the image of the embedding

ν : P1 −→ P3 , [ u, v ] �→ [ u3, u2v, uv2, v3].

Writing [Z0, . . . , Z3 ] for homogeneous coordinates on P3, it is a pleasant exercise to show
that C can be described as the locus where a catalecticant matrix drops rank:

C =

{
rank

[
Z0 Z1 Z2

Z1 Z2 Z3

]
≤ 1

}
.

Therefore C lies on the three quadrics

Q02 = Z0Z2 − Z2
1 , Q03 = Z0Z3 − Z1Z2 , Q13 = Z1Z3 − Z2

2

1We refer the reader to [6] for an systematic introduction to the theory from an algebraic perspective,
and [1] for a more geometric viewpoint.
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given by the 2× 2 minors of this matrix, and in fact these generate the homogeneous ideal
IC of C. While the Qij are linearly independent over C, they satisfy two relations with
polynomial coefficients, namely

(*)
Z0 ·Q13 − Z1 ·Q03 + Z2 ·Q02 = 0

Z1 ·Q13 − Z2 ·Q03 + Z3 ·Q02 = 0.

One can derive these by repeating a row of the matrix defining C and expanding the
resulting determinant along the duplicate row. Moreover it turns out that any relation
among the Qij is a consequence of these.

We recast this discussion somewhat more formally. Write S = C[Z0, . . . , Z3] for the ho-
mogeneous coordinate ring of P3. The three quadric generators of IC determine a surjective
map

S(−2)⊕3 −→ IC ,

where S(−2) denotes a copy of S re-graded so that multiplication by the Qij is degree
preserving. The relations in (*) come from choosing generators for the kernel of this map.
So the upshot of the previous paragraph is that one has an exact sequence

0 �� S(−3)⊕2

(
Z0 Z1

−Z1 −Z2
Z2 Z3

)
�� S(−2)⊕3

(Q13 Q03 Q02 ) �� IC �� 0

of S-modules. This is the minimal graded free resolution of IC .

The general situation is similar. Sticking for simplicity to the one-dimensional case,
consider a non-degenerate curve

C ⊆ Pr

i.e. one not lying on any hyperplanes. We suppose in addition that C is projectively
normal, a technical condition that holds for any embedding of sufficiently large degree (and
for non-hyperelliptic canonical curves thanks to a theorem of Noether.) Put

S = C[Z0, . . . , Zr],

and denote by IC ⊆ S the homogeneous ideal of C. Then IC has a minimal resolution E•
of length r − 1:

(1.1) 0 �� Er−1
�� . . . �� E2

�� E1
���� IC �� 0,

where Ei = ⊕S(−ai,j). It is elementary that ai,j ≥ i+ 1 for every j.

Green realized that the way to generalize classical statements about quadratic gener-
ation of IC is to ask when the first p steps of this resolution are as simple as possible.

Definition 1.6. One says that C satisfies Property (Np) if

Ei = ⊕S(−i− 1) for every 1 ≤ i ≤ p.

Thus (N1) holds if and only if IC is generated in degree 2. The first non-classical condition
is (N2), which asks in addition that if one chooses quadratic generators Qα ∈ IX , then the
module of syzygies among the Qα should be spanned by relations of the form

(*)
∑

Lα ·Qα = 0,
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where the Lα are linear polynomials. Condition (N3) would ask that the syzygies among
the coefficient vectors describing the relations (*) are themselves generated by polynomials
of degree one.

Example 1.7. The twisted cubic C ⊆ P3 discussed above satisfies (N2). On the other
hand, an elliptic curve E ⊆ P3 of degree 4 is the complete intersection of two quadrics,
whose homogeneous ideal has a Koszul resolution:

0 −→ S(−4) −→ S(−2)⊕2 −→ IE −→ 0.

Thus E satisfies (N1) but not (N2).

Return now to a non-hyperelliptic canonical curve X ⊆ Pg−1 of genus g. Petri’s
theorem states that X satisfies (N1) unless it is trigonal or a smooth plane quintic. Green’s
conjecture vastly extends this by predicting when X satisfies condition (Np).

Green’s conjecture. In order to state Green’s conjecture, it remains to understand the
pattern behind the exceptional cases in Petri’s theorem.

Let X be a curve of genus g ≥ 2, and suppose given a non-constant holomorphic
mapping

ϕ : X −→ Pr.

We assume that X does not map into any hyperplanes, in which case we write r(ϕ) = r:
this is often called the dimension or rank of ϕ. If ϕ has degree d in the sense that a general
hyperplane pulls back to d points on X, we set d(ϕ) = d. The Clifford index of ϕ is then
defined to be

Cliff(ϕ) = d(ϕ)− 2 · r(ϕ).
A classical theorem of Clifford states that if d(ϕ) ≤ g − 1, then

Cliff(ϕ) ≥ 0,

and equality holds if and only if X is hyperelliptic and ϕ : X −→ P1 is the hyperelliptic
involution (or a mapping derived from it by a Veronese-type construction).

We now attach an invariant to X by considering the minimum of the Clifford indices
of all “interesting” mappings:

Definition 1.8. The Clifford index of X is

Cliff(X) = min
{
Cliff(ϕ) | d(ϕ) ≤ g − 1

}
.

One has

0 ≤ Cliff(X) ≤
[
g − 1

2

]
,

for every X, the first inequality coming from Clifford’s theorem, and the second (as we
explain in the next section) from Brill-Noether theory. Moreover

Cliff(X) = 0 ⇐⇒ X is hyperelliptic,
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and similarly one can show that when X is non-hyperelliptic,

Cliff(X) = 1 ⇐⇒ X is either trigonal or a smooth plane quintic.

It is now clear what to expect for higher syzygies:

Conjecture 1.9 (Green, [9]). Let X ⊆ Pg−1 be a non-hyperelliptic canonical curve. Then
the Clifford index of X is equal to the least integer p for which Property (Np) fails for X.

The case p = 1 is exactly Petri’s theorem, and the first non-classical case p = 2 was
established by Schreyer [11] and Voisin [12]. There is a symmetry among the syzygies of
canonical curves, and knowing the smallest value of p for which (Np) fails turns out to
determine the grading of the whole resolution of IX .

One implication in Green’s statement is elementary: it was established in the appendix
to [9] that if Cliff(X) = p, then (Np) fails for X. What remains mysterious as of this writing
is how to show conversely that unexpected syzygies actually have a geometric origin.

2. General curves of large genus and the tangent developable to
rational normal curves

General curves. The most important instance of Green’s conjecture – which is the actual
subject of the present report – is the case of “general” curves. We start by explaining a
little more precisely what one means by this.

In the 1960s, Mumford and others constructed an algebraic variety Mg whose points
parameterize in a natural way isomorphism classes of smooth projective curves of genus
g ≥ 2. This is the moduli space of curves of genus g. One has

dim Mg = 3g − 3,

formalizing a computation going back to Riemann that compact Riemann surfaces of genus
g ≥ 2 depend on 3g − 3 parameters. Special classes of curves correspond to (locally
closed) proper subvarieties of Mg: for example, hyperelliptic curves are parameterized by
a subvariety Hg ⊆ Mg of dimension 2g − 1, showing again that hyperelliptic curves are
special when g ≥ 3. One says that a statement holds for a general curve of genus g if it
holds for all curves whose moduli points lie outside a finite union of proper subvarieties of
Mg.

The question of what mappings ϕ : X −→ Pr exist for a general curve X was studied
classically, and the theory was put on a firm modern footing in the 1970s by Kempf,
Kleiman-Laksov, Griffiths-Harris and Gieseker, among others: see [4]. For our purposes,
the basic fact is the following:

Theorem 2.1 (Weak form of Brill–Noether theorem). Let X be a general curve of genus
g ≥ 2. Then there exists a map ϕ : X −→ Pr of degree d and dimension r if and only if

g ≥ (r + 1)(g − d+ r).

In particular, Cliff(X) =
[
g−1
2

]
.
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Green’s conjecture then predicts the shape of the minimal resolution of the ideal of a
general canonical curve of genus g. This is the stunning result established by Voisin [13],
[14].

Theorem 2.2 (Voisin’s Theorem). Put c = [g−3
2
]. Then a general canonical curve X ⊆

Pg−1 of genus g satisfies Property (Nc).

The symmetry mentioned following the statement of Green’s conjecture imposes limits on
how far (Np) could be satisfied, and one can view Voisin’s theorem as asserting that the
syzygies of a general canonical curve are “as linear as possible” given this constraint.

General principles imply that the set of curves for which the conclusions of Theorems
2.1 or 2.2 hold are parameterized by Zariski-open subsets of Mg. So to prove the results
it would suffice to exhibit one curve of each genus g for which the assertions are satisfied.
However it has long been understood that this is not a practical approach. Instead, two
different strategies have emerged for establishing statements concerning general canonical
curves.

The first is to consider singular rational curves. For example, a rational curve Γ ⊆ Pg−1

of degree 2g− 2 with g nodes can be realized as a limit of canonical curves. The first proof
of Theorem 2.1, by Griffiths and Harris, went by establishing that Γ satisfies an appropriate
analogue of the statement, and then deducing that 2.1 must hold for a general smooth curve
of genus g. A difficulty here is that the nodes themselves have to be in general position,
requiring a further degeneration. Eisenbud and Harris subsequently found that it is much
better to work with cuspidal curves: we will return to this shortly. More recently, tropical
methods have entered the picture to give new proofs of Theorem 2.1.

A different approach, initiated in [10], involves K3 surfaces. These are surfaces

S = S2g−2 ⊆ Pg

of degree 2g − 2 whose hyperplane sections are canonical curves. It turns out to be quite
quick to show that these curves are Brill-Noether general provided that S itself is generic.
While it is not easy to exhibit explicitly a suitable K3, it is known by Hodge theory that
they exist in all genera. This re-establishes the existence of curves that behave generically
from the perspective of Brill-Noether theory.

This was the starting point of Voisin’s proof of Theorem 2.2. Under favorable circum-
stances the resolution of a surface restricts to that of its hyperplane section, so it suffices
to show that a general K3 surface of genus g satisfies the conclusion of 2.2. However so
far this doesn’t really simplify the picture. Voisin’s remarkable new idea was to pass to a
larger space, namely the Hilbert scheme

S[c+1] = Hilbc+1(S)

parameterizing finite subschemes of length (c + 1) on S. Voisin showed that the syzygies
of S are encoded in a quite simple-looking geometric statement on S[c+1]. The required
computations turn out to be rather involved, but in a real tour de force Voisin succeeded in
pushing them through. Interestingly, it later emerged that her computations could be used
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to establish many other cases of Green’s conjecture, eg that it holds for a general curve of
each gonality, or for every curve appearing on a K3 surface. See [1] for some examples and
references.

At about the same time that Green formulated his conjecture in the early 1980s,
Eisenbud and Harris [7] realized that many of the difficulties involved in degenerating to
nodal rational curves disappeared if one worked instead with rational curves with g cusps.
The advantage of these curves is that they behave Brill-Noether generally without any
conditions on the location of the singular points. This raised the possibility that one might
use g-cuspidal curves to study syzygies of general canonical curves. It was at this point
that Kieran O’Grady, and independently Buchweitz and Schreyer, remarked that it should
suffice to understand the syzygies of a very classical object, namely the tangent surface to
a rational normal curve.

The tangent developable of a rational normal curve. Let C ⊆ Pg be a rational
normal curve of genus g. By definition this is the image of the embedding

P1 ↪→ Pg given by [s, t] �→ [ sg , sg−1t , . . . , stg−1 , tg ].

One can associate to C (as to any smooth curve) its tangent surface

T = Tan(C) ⊆ Pg,

defined to be the union of all the embedded projective tangent lines to C. In the case at
hand, one can describe T very concretely. Specifically it is the image of the map

(2.1) ν : P1 ×P1 −→ Pg

given matricially by

ν
(
[s, t]× [u, v]

)
= [ u v ] · Jac(μ),(2.2)

where Jac(μ) is the 2× (g + 1) matrix of partials of μ = [ sg, sg−1t, . . . , stg−1, tg]. In other
words,

ν
(
[s, t]× [u, v]

)
=

[
g · sg−1u , (g − 1) · sg−2tu+ sg−1v , . . . , g · stg−1v

]
.

Note that ν is one-to-one, and maps the diagonal Δ ⊆ P1×P1 isomorphically to C. However
ν is not an embedding: it ramifies along the diagonal, and T has cuspidal singularities
along C. The tangent surface T is a complex-geometric analogue of one of the classes of
developable surfaces studied in differential geometry. A pleasant computation shows that
deg(T ) = 2g − 2.2

The upshot of this discussion is that the hyperplane sections of T are rational curves
Γ ⊆ Pg−1 of degree 2g − 2 with g cusps – in other words, the degenerations of canonical
curves with which one hopes to be able to prove the generic case of Green’s conjecture.
This led to the

2Either observe that ν is given by an (incomplete) linear series of type (g − 1, 1) on P1 × P1, or use
Riemann-Hurwitz for a degree g mapping P1 −→ P1 to see that there are 2g−2 tangent lines to C meeting
a general linear space Λ ⊆ Pg of codimension 2.
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Folk-Conjecture 2.3. The tangent developable surface

T = Tan(C) ⊆ Pg

satisfies Property (Np) for p =
[
g−3
2

]
.

With a small argument showing that T indeed has the same syzygies as its hyperplane
sections, it has been well understood since the mid 1980s that this would imply the result
(Theorem 2.2) that Voisin later proved by completely different methods.

The important thing to observe about 2.3 is that it is a completely concrete statement.
Via the parameterization (2.2), the conjecture was quickly verified for a large range of genera
using early versions of the computer algebra system Macaulay. That such an utterly down-
to-earth assertion could resist proof for thirty-five years has been something of a scandal.
Happily, the work of Aprodu, Farkas, Papadima, Raicu and Weyman has remedied this
situation.

3. Sketch of the proof of Conjecture 2.3

In this section, we outline the main ideas of the work of AFPRW proving Folk Conjec-
ture 2.3.

The actual write-up in [2] is a bit long and complicated, in part because the authors
work to extend their results as far as possible to positive characteristics, and in part because
they are fastidious in checking that the maps that come up are the expected ones. Here
I focus on the essential geometric ideas that seem to underlie their computations. This
understanding of the argument was worked out together with Lawrence Ein.

Computing the syzygies of T . The first step in the argument of [2] is to understand the
tangent developable T = Tan(C) and its syzygies in terms of more familiar and computable
objects. This culminates in Theorem 3.3 below, which describes the relevant syzygies
linear algebraically. Some of the computations of AFPRW apparently elaborate on earlier
(unpublished) work of Weyman, as outlined in Eisenbud’s notes [5].

A basic principle guiding algebraic geometry holds that spaces are determined by the
polynomial functions on them, so we will need to understand those on T . It is in turn
natural to expect that functions on the tangent developable should be described using the
mapping ν : P1 × P1 −→ T from (2.1), which realizes T as the homeomorphic image of
P1 × P1 cusped along the diagonal. In order to get a sense of how this should go, let us
start with a one-dimensional toy example.

Consider then the mapping

ν0 : A
1 = C −→ A2 = C2 , ν0(t) =

(
t2 , t3

)
.

This maps A1 homeomorphically onto the cuspidal curve

T0 = {y2 = x3} ⊆ A2
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in the plane, and the polynomial functions on T0 are realized as the subring

C[T0] = C[t2, t3] ⊆ C[t] = C[A1]

of the regular functions on the affine line. The point to note is that we can describe C[T0]
intrinsically, without using the map ν0. Specifically, there is a C-linear derivation

δ0 : C[t] −→ C , δ0(f) = f ′(0),

and C[T0] = ker(δ0). Moreover while δ0 is not C[t]-linear, it is linear over C[t2, t3], giving
a short exact sequence 0 −→ C[T0] −→ C[A1] −→ C −→ 0 of C[T0]-modules.

This model generalizes. Writing OX to denote the (sheaf of locally) polynomial func-
tions on a variety X, one has

Proposition 3.1. There is a C-linear derivation

δ : OP1×P1 −→ Ω1
Δ , δ(f) = df |Δ

with ker δ = OT . Moreover, this gives rise to a short exact sequence

(3.1) 0 −→ OT −→ OP1×P1
δ−→ Ω1

C −→ 0

(of sheaves) on Pg.3

It is easy to describe the syzygies of OP1×P1 and Ω1
C , and then the plan is to use (3.1) to

analyze the syzygies of T .

At this point we require some additional syzygetic notation. As above denote by
S = C[Z0, . . . , Zg] the homogeneous coordinate ring of Pg, and consider a finitely generated
graded S-module M . As in (1.1), M has a minimal graded free resolution E•

. . . �� E2
�� E1

���� E0
�� M �� 0,

where Ei = Ei(M) = ⊕S(−ai,j).
4 Write

Ki,1(M) =
{
minimal generators of Ei(M) of degree i+ 1

}
.

This is a finite dimensional vector space whose elements we call ith syzygies of weight 1.
(The space Ki,q of syzygies of weight q are defined analogously.) For instance the ideal IC
of the twisted cubic C ⊆ P3 discussed in §1 satisfies

dimK2,1(IC) = 2 , dimK1,1(IC) = 3.

When M is the S-module associated to a coherent sheaf F on Pg, we write simply Ki,1(F).
In particular, the weight one syzygies of of the tangent developable T – which, as it turns
out, govern Conjecture 2.3 – are given by Ki,1(OT ).

Proposition 3.1 then yields

3Strictly speaking, the middle term in (*) is the direct image ν∗
(OP1×P1

)
, but we wish to minimize

sheaf-theoretic notation.
4We are purposely introducing a shift in indexing, so that here our resolutions start in homological

degree zero rather than one. The reason for this is that we henceforth wish to view the resolution (1.1) of
an ideal I as coming from one of S/I with E0 = S.
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Corollary 3.2. For every i ≥ 1 one has an exact sequence

(3.2) 0 −→ Ki,1(OT ) −→ Ki,1(OP1×P1) −→ Ki,1(Ω
1
C).

Happily, it is quite easy to work out the two right-hand terms in the exact sequence (3.2).

Let U denote the two-dimensional complex vector space of linear functions on P1, so
that P1 = P(U) is the projective space of one-dimensional quotients of V . The group
SL2(C) acts on everything in sight, and in particular the Koszul groups Ki,1 will be rep-
resentations of SL2(C). After choosing an identification Λ2U = C, a standard calculation
shows that there is a canonical SL2-equivariant isomorphism

(3.3) Ki,1(OP1×P1) = Λi+1Sg−2U ⊗ S2iU,

as well as a natural inclusion

(3.4) Ki,1(Ω
1
C) ⊆ Λi+1Sg−1U ⊗ Si+1U. 5

In view of Corollary 3.2, one then anticipates a mapping

(3.5) γ : Λi+1Sg−2U ⊗ S2iU −→ Λi+1Sg−1U ⊗ Si+1U

whose kernel is Ki,1(OT ). AFPRW in effect devote very substantial effort to elucidating
this map, but the upshot is that it is built from several off-the-shelf pieces. To begin with,
there is a natural inclusion

(3.6) S2iU −→ Λ2Si+1U

which is dual to the so-called Wahl map Λ2Si+1U∗ −→ S2iU∗.6 Recalling that Λi+1
(
A⊗B

)
contains Λi+1A⊗Si+1B as a summand for any vector spaces A and B, γ then arises as the
composition

(3.7)

Λi+1Sg−2U ⊗ S2iU �� Λi+1Sg−2U ⊗ Si+1U ⊗ Si+1U

�� Λi+1
(
Sg−2U ⊗ U

)⊗ Si+1U �� Λi+1Sg−1U ⊗ Si+1U.

We summarize this discussion as

Theorem 3.3. With γ as just specified, Ki,1(OT ) sits in the exact sequence

0 −→ Ki,1(OT ) −→ Λi+1Sg−2U ⊗ S2iU
γ−→ Λi+1Sg−1U ⊗ Si+1U.

5In arbitrary characteristic, which is the setting considered in [2], the computations are more delicate
because one has to distinguish between divided and symmetric powers. Working as we are over C, we can
ignore this.

6If W is any two-dimensional C-vector space with coodinates x, y, the Wahl or Gaussian mapping

Λ2Si+1W −→ S2iW is given (up to scaling) by f ∧ g �→ det

(
fx fy
gx gy

)
.
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Hermite reciprocity and Koszul modules. Computations such as (3.3) and (3.4) are
made by studying the cohomology of certain Koszul-type complexes. These can be difficult
to deal with because they involve high wedge powers of a vector space or vector bundle. One
of Voisin’s key insights was that upon passing to a Hilbert scheme, complicated multilinear
data are encoded into more geometric questions about line bundles. The next step in the
proof of AFPRW is an algebraic analogue of this strategy: one uses a classical theorem
of Hermite to reinterpret Theorem 3.3 in a more tractable form involving only symmetric
products. (In fact the analogy goes farther: a quick proof of Hermite reciprocity proceeds
by interpreting ΛaSbU as the space of global sections of a line bundle on the projective
space Pa = Hilba(P1).)

As above, let U denote a complex vector space of dimension 2. The result in question
is the following.

Hermite Reciprocity. For any a, b > 0 there is a canonical SL2(C)− linear isomorphism

(3.8) ΛaSbU = Sb+1−aSaU.

(See for example [8, Exercise 11.35].) In positive characteristics this is no longer true, and
one of the contributions of [2] is to give a characteristic-free variant.

Plugging this into Theorem 3.3, one arrives at:

Corollary 3.4. The Koszul group Ki,1(OT ) is the kernel of the map

(3.9) γ′ : S2iU ⊗ Sg−i−2Si+1U −→ Si+1U ⊗ Sg−i−1Si+1U

obtained by pulling back the Koszul differential 7

Λ2Si+1U ⊗ Sg−i−2Si+1U −→ Si+1U ⊗ Sg−i−1Si+1U

along the “co-Wahl” mapping S2iU −→ Λ2Si+1U appearing in (3.6).

We now come to one of the main new ideas of [2], namely the introduction of Koszul
(or Weyman) modules to study (3.9). To understand the motivation, set V = Si+1U ,
A = S2iU , and put q = g − i − 2. On the one hand we have from (3.6) an inclusion
A ⊆ Λ2V , while for q ≥ 0 there is a Koszul complex

Λ2V ⊗ SqV −→ V ⊗ Sq+1V −→ Sq+2V.

The construction of γ′ involved splicing these together, giving a three-term complex

(3.11) A⊗ SqV
γ′−→ V ⊗ Sq+1V −→ Sq+2V

7For any vector space V and integer a > 0, there is a natural map

Λ2V ⊗ SaV −→ V ⊗ Sa+1V

which fits into the longer Koszul-type complex

(3.10) Λ2V ⊗ SaV −→ V ⊗ Sa+1V −→ Sa+2V −→ 0.
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whose left-hand kernel K = ker γ′ we would like to understand. Now suppose we knew
that (3.11) is exact. Since in any event the map on the right is surjective, this would yield
an exact sequence

0 −→ K −→ A⊗ SqV
γ′−→ V ⊗ Sq+1V −→ Sq+2V −→ 0,

and we could immediately compute dimK. The very nice observation of AFPRW is that
the exactness of (3.11) is essentially automatic provided only that q ≥ dimV − 3.

Turning to details, let V be any complex vector space of dimension n, and suppose
given a subspace A ⊆ Λ2V . As above, this determines for q ≥ 1 a three-term complex

A⊗ SqV −→ V ⊗ Sq+1V −→ Sq+2V

whose homology Wq(V,A) is called (the degree q piece of) the Koszul module associated
to A and V . The essential result is:

Theorem 3.5. Assume that no decomposable forms 2-forms η ∈ Λ2V ∗ vanish on A. Then

(3.12) Wq(V,A) = 0 for q ≥ dimV − 3.

This was originally proved in characteristic zero in [3] by a relatively painless application
of Bott vanishing. An alternative (but largely equivalent) proof in characteristic zero uses
vector bundles on projective space and considerations of Castelnuovo–Mumford regularity.
In [2] the argument is extended to positive characteristics.

Remark 3.6. (Topological applications of Theorem 3.5) Before [2], the same authors
had used Koszul modules in [3] to study some interesting topological questions, involving
for example Kähler groups.

Completion of the proof. It is now immediate to complete the proof of Folk Conjecture
2.3. To begin with, using the symmetry in the resolution of T mentioned following the
statement of Green’s Conjecture 1.9, one sees that 2.3 is equivalent to the assertion that

(3.13) K[g
2

]
,1
(OT ) = 0.

AFPRW treat separately the case of even and odd genus, so suppose that g = 2n − 3 is
odd. Put

i =
[g
2

]
= n− 2,

set V = Si+1U – so that dimV = n – and let q = g − i − 2 = n − 3. Corollary 3.4 shows
that Kn−2,1(OT ) is governed by the complex

S2(n−2)U ⊗ Sn−3V −→ V ⊗ Sn−2V −→ Sn−1V

computing the Weyman module Wn−3(V, S
2(n−2)U). The hypotheses of Theorem 3.5 are

satisfied, and so Wn−3(V, S
2(n−2)U) = 0. Therefore we get an exact sequence

0 −→ Kn−2,1(OT ) −→ S2(n−2)U ⊗ Sn−3V
γ′−→ V ⊗ Sn−2V −→ Sn−1V −→ 0.

A computation of dimensions then shows that dimKn−2,1(OT ) = 0, and we are done!
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1:00 PM  |  Bhargav Bhatt 
	        University of Michigan

Perfectoid Geometry and its Applications
Hear about a great new tool for number theory that allows you to treat a prime 
number like a variable.

2:00 PM  |  Thomas Vidick 
	        California Institute of Technology

Verifying Quantum Computations at Scale: 
a Cryptographic Leash on Quantum Devices
Quantum computers would be amazing–but could you trust one?
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3:00 PM  |  Stephanie van Willigenburg 
	        University of British Columbia

The Shuffle Conjecture
Dyck paths, symmetric functions–what's it all about?

4:00 PM  |  Robert Lazarsfeld 
	        Stony Brook University

Tangent Developable Surfaces and the 
Equations Defining Algebraic Curves
Some lovely old geometry and an algebraic idea inspired by 
topology have simplified the proof of a central conjecture about 
generic Riemann surfaces.
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