
Gibbs Lecture

ABSTRACT. Machines with some kind of ability to see have become a reality in the last

decade, and we see vision capabilities in cameras and photography, cars, graphics

software and in the user interfaces to appliances. Such machines bring benefits to

safety, consumer experiences, and healthcare, and their operation is based on

mathematical ideas.

The visible world is inherently ambiguous and uncertain so estimation of physical

properties by machine vision often relies on probabilistic methods. Prior distributions

over shape can help significantly to make estimators for finding and tracking objects

more robust. Learned distributions for colour and texture are used to make the

estimators more selective. These ideas fit into a “generative” philosophy of vision as

inference: exploring hypotheses about the contents of a scene that explain an image

as fully as possible. More recently this explanatory approach has partly given way to

powerful, direct, “discriminative” estimation methods, whose operating parameters are

learned from large data sets. It seems likely that the most capable vision systems will

come ultimately from some kind of fusion of the generative and discriminative

approaches.

Andrew Blake, Microsoft Research.
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First, we can celebrate the fact that there are a number of commercial products

that have reached a significant scale which embody machine vision. One

widespread success has been the incorporation of face recognition in consumer

devices – cameras and phones. Here a mass market compact camera is shown

that uses face recognition to help compose a good picture, and this facility

became widespread in the early 2000s.
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Another application of machine vision that has hundreds of millions of

customers is automatic video editing. Here the background removal facility in

Microsoft Office is illustrated, that allows a non-expert user to peel a subject

away from its background, so that it can be placed in a new setting. Techniques

derived from machine vision allow this to happen with a high degree of

automation and minimal input from the user, who needs simply to make one or

two mouse strokes to achieve the result.
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Machine vision techniques have been very influential in medical diagnosis. The

figure illustrates a system for registration of two diagnostic images – here of the

lungs – taken on different occasions. The human body being flexible, there is

significant non-rigid deformation of the images between sessions. Registering

the images in this way is important for making clear comparisons between

images. An algorithm capable of achieving good registration must be able to

estimate the inter-image deformation.
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There has been a good deal of publicity in the last decade about breakthroughs

with autonomous vehicles. They use a variety of sensors and GPS mapping to

navigate automatically and avoid collisions. Some use active laser sensors to

detect obstacles and landmarks, but the system illustrated from the University of

Oxford uses cameras with machine vision.
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Three-dimensional vision is important, and a number of companies have

marketed stereo vision systems that are either passive or active (generate their

own illumination) and use either multiple optical devices together with

triangulation, or active illumination and time of flight, to detect three-

dimensional features. The camera illustrated is the first consumer 3D camera,

the Microsoft Kinect, of which around 30 million have now sold. It also uses

machine vision to detect the movement of human bodies, including the

positions of all limbs, in real time.
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Machine vision has turned out to be much harder than expected. A summer

project at MIT in 1966 planned to implement the basics of machine vision in the

month of July. Some more challenging extensions would have to be left for

August. Now, almost 50 years later, some thousands of researchers have

achieved a good deal of progress, but there is still an awful lot to do before

machine vision reaches the capability that humans and many animals enjoy.

(Sussman, Lamport & Guzman, 1966)
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This figure illustrates something of what it is that makes vision so hard. Suppose the

task is to locate precisely where the hand is in the image (centre). The result on the

right would be good, and seems quite achievable to us as we inspect the image and,

without any conscious effort, see the outline. But there is a very powerful computing

device locate in the cranium of a human that is able to bring to bear very substantial

computation, notwithstanding our lack of awareness that the computation is going on.

On the left is the typical output of signal processing algorithms that aim to bring out

the outline of the hand as a contour of high contrast. Sure enough the outline is there,

though not quite unbroken. But it is confounded by numerous additional contours

corresponding to clutter in the background and shadows and markings in the

foreground. The clutter, shadows and markings, dealt with effortlessly by our brains

and screened out from our attention, have to be dealt with explicitly by machine vision

algorithms.
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A further illustration of the nature of the machine vision challenge. Unless you have

seen it before (and it is a staple of psychology textbooks) you may not recognise

anything. But there is a prompt at the top right of the next page. Did that help? Many

of you will now see the object, and what is more, can never now return to the state of

ignorance in which you began.
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If the last one was too easy, or too hard, try this one. If you can’t see the object right

away, then the thumbnail on the next slide may help.
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If the thumbnail still doesn’t help, then look at the verbal prompt at the top right of

the next page.
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One last playful example before real work begins. Here is a blurry image of a man

using a telephone in front of his keyboard and mouse.

© Antonio Torralba
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But it turns out the telephone is in fact a shoe and the mouse is a stapler. It seems that,

as humans doing vision, we are happy to build hypotheses to explain such visual

evidence as is available – and then to revise the hypotheses as better evidence

appears.

The previous examples – the dalmation and the preacher – also illustrate the ability of

human vision to survive extremes of visual noise and ambiguity, and nonetheless find

evidence for hypotheses about the content of the scenes.



The celebrated psychologist Richard Gregory has consistently expressed this view of

what vision is doing – testing hypotheses against such evidence as may be available in

a visual scene. Similarly, the conclusion of the neurophysiologist Horace Barlow, after

many years of study of visual physiology, is that perception is about extracting

knowledge about the visible world in the presence of noise and ambiguity.

So this also is what machine vision has to do, and algorithms need to be designed to

do it. The algorithms must have an inherent capability to deal with noise and

uncertainty. Probability is the calculus of uncertainty, and so we should expect the

ideas of probability to be important in the design of those algorithms.
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Cars with autonomous visual capability are already on the market. The system

illustrated here from Mercedes is able to brake when a pedestrian steps out in front of

the car, avoiding collision entirely in some cases, and mitigating injury in many others.

The design of the vision system inside the cars involves four main steps. First is

segmentation, in which objects which may be pedestrians are delineated from the

background. Next is classification in which the identity of an object as a pedestrian is

verified. The pedestrians are likely to be moving, so their motion must be tracked.

Lastly the tracked motion is used in the car’s actuation systems to control braking.

This lecture will address principally the first of these steps, the segmentation.

(Keller, Enzweiler & Gavrila, 2011)
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The task of segmentation requires foreground objects – in this case pedestrians – to

be explicitly delineated in the scene. This has to be done not only on individual

snapshots, but taking account of continuous motion, both of the object and of the

(car-mounted) camera.

(Gavrila & Philomin 1999)

(Hogg, 1983)

(Toyama and Blake 2001)
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Here is the setting and mathematical notation for thinking about the segmentation

problem.

(Osher & Sethian, 1988; Caselles, Kimmel & Sapiro, 1995)
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The aim is to minimize the energy 𝐸 with respect to the variable foreground set ℱ,

and in principle also with respect to the unknown mean intensity values for foreground

and background, but we neglect them for the time being, assuming them to be

known and fixed. However, to express the energy as a functional, amenable to

variational calculus, the variable set needs to be replaced by some sort of function

representing ℱ.

(Chan & Vese, 2001; Mumford & Shah, 1988)
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A popular way to represent ℱ as a function is by means of the “level set” function 𝜙.

This is by no means the only way to represent ℱ, but it has the great advantage of

allowing variable topology. That is illustrated here where the set on the left consists of

a single connected component. Then on the right, following a change in 𝜙, the set ℱ

splits into 2 connected components.
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Here is the level set construction illustrated for the original problem of pedestrian

tracking. On the right, the level set function 𝜙 is shown in grey, with the zero-level in

green, and the zero-set as a red contour, whose pre-image is the blue boundary of ℱ

in the image domain Ω.

© Daniel Cremers
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So now the job is to express the energy as a functional, in terms of the level set 𝜙.
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Each term in 𝐸 could be expressed as an integral over the image domain Ω, in terms

of the Heavyside step function 𝐻 . Furthermore, in place of 𝐻 , a smooth

approximation 𝐻∗ is used to ensure that the dependence of 𝐸 on 𝜙 is differentiable. If

we had used 𝐻 itself in the integrals above, then they would express 𝐸 ℱ, 𝐼 exactly,

but as it is they approximate 𝐸 in a way that ensures differentiability.
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So here is the approximation to 𝐸, a functional that we denote 𝐸∗.
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This illustration shows the results of an algorithm executing gradient descent on 𝐸∗,

towards the minimum. The initial value of 𝝓 has a level set consisting of many circles,

as shown, and the gradient descent moves progressively towards the outline of the

object.

(Cremers, Rousson & Deriche 2007)
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One of the main points of this lecture is that probability is a necessary part of the

shape tracking framework, because of the need to deal effectively with the noise and

ambiguity that is inherent to the vision task. So far we have seen how variational

methods address the noise problem to some degree. But the most powerful methods

for dealing with noise and ambiguity exploit specific properties of the class of objects.

This can be done by using a posterior probability distribution instead of the Energy

functional. The first step towards seeing how this works, is to transform the functional

𝐸∗ to a posterior distribution by exponentiating as above – what could be more

appropriate for the Gibbs lecture?
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Here is the probability distribution written out term by term. The four additive terms

from the functional 𝐸 become four multiplicative factors as shown. Comparing this

distribution with the Bayes formula for a posterior distribution, it is evident that the

first two terms are independent of the data 𝐼 – they correspond to the prior

distribution. The second two terms are data dependent, and they correspond to the

data likelihood.

We refer to the posterior distribution here as a generative model because it constitutes

a full explanation of the data 𝐼(𝒓) in terms of the hypothesised shape 𝝓.

So now the opportunity is to replace each of the prior and likelihood terms by terms

which relate specifically to the object class. The prior distribution can capture the

properties of shape for the object class. The likelihood can capture the properties of

texture.
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One way of acquiring a prior model for shape is to learn it from examples. Here, a

large training set of hand outlines are summarised using the standard statistical

technique of Principal Components Analysis (PCA). The result is a low-dimensional

space that captures almost all the variability of the training set. For instance the first

dimension 𝑎1 of this space captures the opening and closing of the fingers. The

second dimension emphasises thumb adduction, and so forth. Just a few dimensions,

of the order of a dozen, are sufficient to capture all most all of the shape variation. The

low dimensional 𝑎1, 𝑎2, … is now a representation of shape, restricted to a subset of

shapes similar to those in the training set. What is more, PCA also yields a Gaussian

probability distribution over the 𝑎1, 𝑎2, … , which is the prior distribution over the

shape subset.

(Cootes and Taylor, 1995)
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The PCA methodology can be applied successfully to shape represented by .

Training shapes are represented by their level set functions, which are summarised to

give a low dimensional representation of allowed shapes in terms of 𝛼, together

with the Gaussian prior distribution for shapes over 𝛼 as shown.

(Leventon, Grimson & Faugeras, 2000)
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Here is a typical set of outline shapes for a walking person, represented by their level-

set functions. (Note the level set function for a given shape is not unique, so the signed

distance function, suitably smoothed, is used to construct the level-set function.) See

how, in the bottom left frame, the topology of the outline changes, something that is

handled happily by the level-set formulation, and which would defeat other

representations of shape such as parametric outline curves.

(Cremers, 2006)
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A further elaboration of prior shape modelling acknowledges that the shape evolves

over time, and that the choice of shape, given the history of shapes, is strongly

conditioned by the immediate history. Hence the prior distribution for shape at time t

is modelled by a Markov model as shown, for example an autoregressive model.

(Blake and Isard 1998; Cremers, 2006)
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Tracking with learned dynamical model , in presence of noise and occlusion.

1. Noisy walker

2. Tracked with a shape model but no translation prior

3. The same model but now with an occluder – tracking fails

4. Combined translation/deformation prior, now succeeds even with the occluder

These rather impressive demos of the power of prior models are videos, unfortunately

not currently available in this canned version of the talk. Maybe later.
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It has been shown how a class-specific prior model of shape can be built by learning

from examples. Now for a specific model of object texture. Starting with the

foreground likelihood term earlier, it is re-expressed in a new form, in three steps. First

the integral is replaced by a sum over image pixels. Second, the sum is taken outside

the exponential and becomes a product over pixels. Third, the exponential expression

is expressed more generally as a general distribution 𝑝f over pixel colour, and this

invites the learning of that distribution for foreground appearance.



A learned distribution like 𝑝f is often referred to as a bag of pixels model. It regards all

the pixels of the foreground (and similarly of the background) as being drawn

independently from one foreground colour distribution. This model is over-simple, in

that if you simulate from it you get nothing very like the image. Yet in practice it still

captures enough of the superficial properties of the image to succeed at some kinds

of foreground/background analysis. (It can also be shown that the resulting analysis is

also precisely consistent with certain more elaborate models of appearance, such as a

Markov model over pixels, which would give more plausible simulations.)
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Here is an illustration of learned foreground and background for the Llama image. On

the left, the colours of all pixels are shown mapped into RGB colour space. There is no

very apparent separation between foreground and background distributions. This is

because the Llama is somewhat camouflaged against its background. On the right, the

foreground distribution (blue) is modelled as a set of Gaussian components, and

similarly the background, and it is clear that there is some separation between

foreground and background distributions, but not a complete separation. An attempt

to distinguish between foreground and back ground purely on the basis of colour

would fail, but succeeds when combined with the general shape prior from the

variational energy 𝐸 earlier.
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The principles of the previous slides underlie software for background removal in

interactive graphics that is widely used, for instance in all Microsoft Office applications

since 2010.

(Rother, Kolmogorov & Blake, 2004)

(Boykov & Jolly, 2001)
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Research from Oxford shows how level-set representation of shape together with bag-

of-pixel models can be used to segment very agile motion.

(Bibby & Reid, 2008)
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In the next few slides, we digress temporarily from automatic segmentation to explore 

another capability of level-sets, this time in three dimensions. The Kinect 3D camera is 

capable of capturing 3D depth maps of a scene rapidly. The aim of Kinect Fusion is to 

aggregate overlapping depth maps obtained from a moving camera into one, high 

quality depth map, with the gaps that appear in a single depth-map filled in, and the 

measurement noise abated by statistical fusion. The medium for fusion of depth 

information is a level set function on a 3D grid. From an individual viewpoint, the 

level-set function is in fact a pixel-by-pixel map for the probability of occupancy. In 

multiple views, the individual maps are overlaid in a global coordinate frame and 

fused statistically to obtain a refined level-set function.

(Izadi, Kim, Hilliges, Molyneaux, Newcombe, Kohli, Shotton, Hodges, Freeman, Davison 

& Fitzgibbon, 2011)
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Bill Gates at the University of Washington in 2013, demonstrating Kinect fusion.
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Gates is scanning a toy house by moving the Kinect camera around it. The top left

shows the depth map from an individual viewpoint, and the top-centre shows the

corresponding colour view, with a depth-map triangulation at the top right. On the

bottom row is the depth map from fusing multiple views.
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Kinect Fusion doesn’t only work on dead mathematicians. Here the combinatorics

expert Bela Bollobas is scanned also….

1/23/2014
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… and captured in 3 dimensions.
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Finally a tour round a Cambridge bookshop, using a version of Kinect Fusion that is

capable of extended operation without running out of memory or using excessive

computation.

(Niessner, Zollhoefer, Izadi & Stamminger, 2013)
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A bird’s eye view of the scanned structure of the bookshop. Most of the 3 story

bookshop is scanned in a walk-through lasting about 6 minutes. The result is finally

represented as a 33 million triangle mesh.
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At this point the lecture returns to the modelling and segmentation of shape. The final

theme of the lecture is that, powerful though it undoubtedly is, generative modelling –

exploring shape hypotheses to find the hypothesis that explains the image data as fully

as possible, is not enough on its own for robust tracking of moving shapes.

Now in a more complex setting, the aim is to track the detailed motion of a moving

human body in three-dimensions. Again the Kinect depth-sensing camera is used to

obtain 3D shape data. The model is also more complex than the 2D outline models

used earlier, consisting of a jointed, articulated doll-like simulation, like an artists

dummy, but simulated by computer graphics. (This is no longer using the level-set

formulation.) A generative model to explain the depth-image consists of adjusting the

configuration of the dummy to simulate as closely as possible the sensed depth-map.

As a person enters the scene, carrying their depth map into the scene and up to the

dummy …
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… the depth-map enters the basin of attraction of the model and the dummy locks

onto the moving shape. Locking on is achieved by gradient descent on an error

function that measures the degree of mismatch between the sensed depth map and

the depths simulated from the dummy.

Note that successful locking-on requires a high degree of cooperation and

observation from the moving human subject, willingly to walk into the basing of

attraction of the model. The cooperative human has to walk, arms outstretched,

towards the dummy, watching the screen as carefully as an aeroplane pilot lining up to

land on the runway.
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Furthermore, beyond the issue of needing to line up carefully to initialise the model,

failures can also occur “in flight”. Here the skeleton of the dummy is displayed as yellow

curves. At one moment the skeleton is tracking motion successfully ….
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… but at the next, an agile motion has thrown the dummy out of its basin of attraction,

never to recover.
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One way of seeing the difficulty with purely generative modelling is to consider this

picture of the posterior distribution over 𝛼 , simplified to one dimension. If the

posterior were unimodal, as illustrated on the left, then maximising the posterior

(minimising the energy) by gradient following would work correctly. But the more

usual situation, as shown in measurements from an image of a hand (right), is that the

posterior is multi-modal. It is the noise and ambiguity inherent in images that causes

the multi-modality.
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An adjunct to pure generative modelling, whose introduction is essential to achieve 

robust tracking, is discriminative modelling. In the discriminative paradigm we start 

over with the building of a model for recognition. It really shares little or no machinery 

with the generative model, but ultimately has to be combined (currently in an ad hoc 

fashion) with generative modelling, to achieve a robust and precise tracking system 

overall. The discriminative element contributes robustness, and the generative element 

ensures precision and detail.

The discriminative element uses a typically even lower dimensional representation 𝛼′

of shape and/or position, which however is not used as a hypothesis in a Bayesian 

model. Instead, values of 𝛼′, or a simple posterior distribution for 𝛼′ is estimated 

directly from the image 𝐼. Even then, unlike the generative case, discriminative 

modelling does not use the whole of 𝐼 but just a few particularly salient 

features 𝑓1 𝐼 , … , 𝑓𝑁 𝐼 . These features are designed to be computed efficiently, and 

the choice of the most salient components is made as part of an extended learning 

procedure.
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A seminal example of discriminative model is the face detector shown above, developed at

Mitsubishi laboratories, which was so revolutionary and effective that it was rapidly

incorporated in consumer cameras, to help automatically compose good shots of people.

The posterior distribution for 𝛼′ is computed directly from the salient features, which

themselves are computed by placing masks of weights (illustrated on the right), at various

random locations in the image, and computing the weighted sum of intensity values under

each mask. Initially this is done with large numbers of randomly generated masks, and the

few of those that are most salient are selected by the learning process – known as

boosting.

(Viola & Jones, 2001)
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Quite a different kind of discriminative model is shown here, and this is the kind used

to assist the generative model in 3D human body tracking with the Kinect camera. The

problem here is to label each pixel of an image with one of a number (20 in this

example) of classes, according to object type. A classifier the outputs a probability

distribution over the 20 classes is applied to each pixel. The probabilities are

computed directly from image features, which can be ones similar to those used in the

face-detection example.

(Shotton, Winn, Rother & Criminisi, 2006)
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To apply this methodology to human body motion, the body is treated as an assembly

of parts, and each as one of a number (31 in this example) of possible parts. To build

the classifier, it is necessary to assemble a training set of labelled bodies, cover all likely

body shapes and configurations.

To do this, a number of examples ….

53



… quite a number ….
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… a substantial number …
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… really surprisingly many ….
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… in fact, over a million labelled examples were needed to achieve good classification

performance.
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And the result is a system that yields labelled depth maps, which can then be 

simplified to give estimates of the positions of the major joints of the body, and those 

positions, in turn, initialise the generative model.

(Shotton, Fitzgibbon, Cook, Sharp, Finocchio, Moore, Kipman,  Blake,  2011)
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Here is an illustration of the discriminative and generative models, in combination,

succeeding where the generative model, on its own, does not.
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Kinect’s 3D body motion tracking system is now widely used for gaming.
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Kinect 3D body motion tracking is also finding many other applications, for example in

robotics, and in medicine as illustrated here.
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The best future vision systems are likely to combine the generative and the

discriminative.

Currently, the discriminative and generative sub-systems are typically “bolted”

together, but I am optimistic that a truly elegant and powerful synthesis of the

generative with the discriminative will be found in future – one that gives a consistent

probabilistic account of the combined system, and does so with the necessary

computational efficiency.
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In the meantime it is a cause for some celebration that there are machines working on

a commercial scale that incorporate machine vision. This is in large measure thanks to

mathematical – geometric and probabilistic – principles, mathematical thinking that is

making the world safer, healthier and more interesting, by means of machines that see.

Microsoft Research
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