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The Number of Distinct Subsums of ¿^. \/i

By M. N. Bleicher and P. Erdos

Abstract.   In this paper we improve the lower bounds for the number,  S(N),   of distinct

values obtained as subsums of the first  N  terms of the harmonic series.   We obtain a

bound of the form

fc+1/iVlog2   ïtf \

sw > \w   n ^iN)

whenever log^ , ,N > k + 1, for  k > 3. Slight modifications are needed for  k= 1, 2.

We begin by discussing the number  Qk(N)   of integers   n < N, n = p^p2 • • • pk> where

Pj > e    '~   , i = 2, ■ ■ •, k.   We prove that

jvr ^+1 / \        »r        fc+l
N TT / fc \      N        TT

I   log,Af « QJN) <    1 +- I-   I [   log.JV.
log TV   }l\     *' W \       xoSk+.N)AOgN    fj3        '

This bound is valid for   logfc+1JV > k + 1   and for   1 « a « 2(1 - e2(4)/e3(4)).   The

symbols  log,-*   and   e¡(x)   are defined by

«,(*)
e0(x) = x,        ei+.(x) = e

log0x = x,        l°g¿+t* = logOog^),

where   log x   denotes the logarithm to the base   e.

In this paper we improve the lower bounds given in [2] and [3] for the number,

S{N),  of distinct values obtained as subsums of the first A^ terms of the harmonic

series.  The estimates in [1], [2] and [3] were derived because the upper bound was

needed for lower estimates of the denominators of Egyptian fractions.   In this paper

we concentrate on the lower bounds.  We obtain a bound of the form

(^nV«)S{N)>e

whenever logfc+ .N > k + 1, for k > 3. Slight modifications are needed for k = 1,2;

see Corollaries 1, 2, 3 and 4 for more details.  In order to do this we begin by discuss-

ing the number  Qk{N)  of integers n <N,n = p.p2 ■ ■ ■ pk  where pi>eap'~1,

i = 2, • • • , k.   We first prove that
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¡cïV ÏÏ l08,'v *QÁN) * ('+¡wv)î^ E ,0i''v'

This bound is valid for logft+ x N > k + 1   and for   1 < a < 2(1 - e2(4)/e3(4)).  The

bounds on N and  a  are for convenience in evaluating the range of validity and the

constants in the inequality, not for essential reasons.  The symbols  log,- x   and  e,(x)

are defined by

e0{x) = x,      e,.+ 1(x) = e'     ,

log0x = x,       logf+ ,x = log(log,.x),

where  log x  denotes the logarithm to the base  e.

In fact we prove the following slightly stronger version.

Theorem.   // 1 < a < 2(1 - e2(4)/e3(4)) = 1.999 • • • , then:

For k = 1,

N

log AT(1+^)<0^ = ̂ <to¿V(1+2ie^)'

w/iere z7ie /ower bound holds for N > 59 and i/ze «pper bound for N>2; QX{N) = 0

/or Af<2.

For k = 2,

¡of^^rr), ̂ 3^ + TT J < Ö2W < Í7r770og3^ + 2)
log AT'

where the lower bound holds for log3 N> 2  and the upper bound for N ~> e3(- 2) =

3.1 •• •   (i.e.,   log3 # > -2); Q2{N) = 0 for N < 22.

For it > 3,

/V    *+' W(logfc+r/V + Ä;)    k
Il log/7V<ôt(A0<-r—r;-  n^logJV  Y      ' iog^

w/zere i/ze /ower bound holds for logfe+1 N> k + 1   and f/ze upper bound holds for

N>ek+1i-2);Qk{N) = 0 for N < efc+1(- .13 • • • ) = efc_2(ll).

Proo/   Case 1.  /c■= 1.  In this case  Q1{N) = ttiN),  so that the result is well

known, see [4, p. 69].

Case 2.  k = 2.  Let   Q2{N) be those integers counted by  Q2{N); namely

Q2{N) = {pq: p, q  prime, eap <q,pq^N}.

The Upper Bound for   Q2{N).   Let  L   be the number which satisfies  ea    ■ L =

N.   It follows that

(1) g2(A0=     Z    WNlP) - irieap)Y
2<p<L
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where p  runs through the primes in the indicated interval.  We see from the conditions

on a  that

(2) L < log N.

We thus deduce that

<3)        û'w^E„ot(1+ot)
Since  log N/P is almost constant on the interval under consideration, we obtain

M I ~\ \ '°8 N 1

ß2(Ar)<log(AyiogA0Y + 2 log(A7log AO j Ç   p '

The value of 2 1/p is well known, for example see [4, p. 70].  Thus we obtain

(5) ß'W < ïofAT^ + ̂ )(l0^ + B +To¿v)'

which is valid for N > 3  and where B = .26149 • • • .   If AT > e4,  i.e.,  log3 AT >

log2 4 > .326 • • ■, then this can be simplified to

(6) Ô2(A0<7V(log37V+2)/log7V

If 22<Ar<e4<55,  then  Q2{N) < ß2(54) = 5   together with  log3N>0  gives

the upper bound of the theorem for  k = 2.

The Lower Bound for  Q2{N).  From the definition of Q2{N)  we obtain

(7) Q2{N)=     Z Z      1,
Kp<N    Kq<M

where p  and  <?   run over primes in the indicated intervals and M=min{Ayp, logp/a}.

Let  Z,   be such that

(8) olN = L log L,

so that Af/logN<L < e/V/logN,  then

(9) 02(A0=     Z Z 1+     Z Z       1.
K/>a   Kq<(logp)/a L<p<N     X<q<N/P

Let   Sj   denote the first double sum and   22   the second.  Since   2j > 0  we can

obtain a lower bound for  Q2{N) by obtaining a lower bound for  22.

The Bounds for  Z2.  From the definition of  S2   in (9) we obtain

(10) Z2=     Z      ntN/P)+       Z       «N/P).
L<p<L' L'<p<N/2

where  L < l! = A^/pj, p;  is the  /th prime with  / > 7   to be determined later.  We

note that
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ÖD Z       *{NIp)=     Z     «N/p) - hiN/p,Y
L'<p<N/2 2<p<P,

We shall frequently need to estimate sums of the above type where the index of

the summation range over an interval of primes.  There is a standard technique for con-

verting the sum to a Stieltjes integral, with respect to  <2t}(x), integrating by parts twice

with  f>(x)  approximated by x  in between to obtain the following well-known lemma.

Lemma.  // fix) > 0 and f'{x) exists and is continuous and 0 < a < b

Z ñp) =
a<p<b

/WOO -x)\b + pJ(x)  dx
log(x) logx

-/>>-4(a)dx.

We recall from [4] the estimates

(12)

and

(13)

and the estimates

(14)

|#(x) - x| < x/(2 log x)    for x > 563

i9(x) - x < x/(2 log x)    for x > 1

lÍtx\+2~kx)<^    f0rx>59,

(15)

and

(16)

logx
< 7t(x)    for x > 17,

7T(X)<
log x y

fi+
logxj

for x > 1.

We use (15) which holds for N > 73   and the lemma to estimate the first sum

of (10); thus

y     N
L<p%iPl0gNlp

(17)
= N- ûjx) - x

L        *L x log x log N/xx log x log N/x

-JL {^{x) -x)^ Íx i0g jc log AVx ) dx\  .

We next show that
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(18)

THE NUMBER OF DISTINCT SUBSUMS OF   2,l/i

log3/V

33

fL(aiX)-x)íx{x\ogx\ogN/x)

To do this we note that

¿J_!_\|
dx yx log x log N/x J\

<

dx\ <

1

2 log" TV

x  log x log N/x

and that the estimate of (12),  |i?(x) - x| < x/2 log x  are both valid for the range

N/logN<x<N/2  when N>e8-5.  Thus

(19) JAÛix)-x)
dx I x log x log N/x )dX\^SLL

dx

2x log x log A/x '

Since   1/2 log2 x  is almost constant on the interval involved it can be brought

out of the integral and replaced by   1/2 log2 L; what remains is the derivative of

- log2 N/x, and we get

(20) J dx

L 2x log2 x log N/x     2 log2 L
ÏTrir7(-log2A/x)

which yields (18).

We next evaluate the first integral in (17) by taking the   1/log x  outside the

integral as   1/log V   and integrating the rest exactly to obtain

(21)
log3Af

log Af

We next note that

L    !l0g2P/    + lQg2PA   < ÇÏ_dx_
\       log3N       logN J ^Jixlogxlo log N/x '

(22)   1/ m-*   k\L_i
|^x logx logAVx|L J\ ^2 1og2¿ 1

+ <-
log NIL    2 log2 L' log N/L'      2 log2 N

Using (15) and (16), (11) and N/p, > 17, which holds since p¡ < logN and

log3 N > 2,  we deduce

(23)

z
N/P[<p <N/2     \P J      2<p<p,      X^   I \    I

\2^y^'í^))
log Nip, \ 2 log N/p,

If lfp,<B, then using N > e3(2) > e1600   and p,<log^,

(24)
NJP^N^y^i0^'

+ B_!_/ , lpgP'

2 log2 p,    p,     log Nlog TV/"

Now with the aid of (10), (11) and (24) as well as (17), (21), (22) and (24) we

obtain for  log3 N>2   and  //p; < B,
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^Nlog3N/       log2p,       log p._j^
y >—^- i--^- +0log AT   y      log3N       logN     2 1og/Ylog3/Y

(25) __±__ + i_^L + _t_^
2 1og#     log3A^      log3Af

1_ ,      loBPz
72     ~ ~ ^

>)2 log2 p,log3 TV     log3/Vlog/V/

Taking p, = 1597,  / = 251   so that all the previous conditions are satisfied and

using B = .261 • • •, l/p¡ = .157 ■ • • , 1/2 log2 p, < .0005 and log3 N> 2, we deduce

(26, '    Z>*üíW1+_L\
^2       log TV   \      n !°g3A7'

Since  02(A0 > 2, + 22   and by (13),   2, > 0, (26) implies the desired lower

bound of the theorem for the case  k = 2.

Case 3.  k~> 3.  We now proceed by induction on  k.   Suppose  k > 2  and that

for  2 < k' < k the theorem is true for k replaced by  k' ; we now show it is true

for  it.

The Lower Bound for  Qk{N).  Let   Qk{N)  denote the set of integers counted

by Qk{N).  As before let L = A/log N   We claim that

(27) (lk{N)D      U     {qp-.q&H^^N/p)}
L<p<N

where the union is disjoint.  The disjointness follows from the fact that p> L =

A/logN >\ogN> q  and thus distinct choices of p  and  q  yield distinct products.

To see the containment we note that since  k > 3, q  must have at least two prime

factors, so that the largest prime factor of q,  say  p ,  is at most N/2p < log A/2;

thus

/log n\
a\ 2 ;(28) logp>logN-\og2N>a[-^-j>ap

so that  qp  is one of the integers in   Q_k{N).

The containment (27) leads immediately to the inequality

(29) Qk{N)>    Z    Qk-xWPl
L<p<L'

where  L'   can have any value satisfying L' > L.   We define  V   by

(30) Z'=/V-/e((log2A01/1O84Af).

With this choice we can show that

(31) logkN/p > logkN/L' > (logfc+ j A)(l - (logs A0/log4 A).
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For  ¡t>3,  (31) yields

(32) \ogk N/p >k;

while for  k = 3  (31) yields

(33) log3N/p>2,

where we have used  logfc+ XN > k + 1.

From (32) and (33) we see that the hypothesis of the inductively assumed theo-

rem is satisfied for estimating the summands Qk_1{N/p) in (29).

We define  Qk{x)  by

(34) ß^=iofi nW:
3

thus in the range of summation in (29) by the inductive hypothesis  Qk_l{N/p) <

Qk-ÁN/pY
From the lemma we get

Qk{N)>^~Qk-x{N/x)

(35)

\f^>£- L       log X

/*'    ,    , d QkWx) A

L dx   log x

We first obtain lower estimates for the first and_last terms in the RHS of (35)

and estimate the middle term, which is the main term, last.  By (12), the estimate

|#(x) - x| < x/2 log x  is valid in the range under consideration.   Since x/2 log x  is

increasing in x  while  Qk_1{N/x)  is decreasing, we see that

li'l
(36)

(37)

--¿Qt.WMl \<2-^2— • öfc_,(logA0.logx    ^fc-lv '    \l\ 2 log2TV

A straightforward calculation yields

dfëk-iWx?(Qk-xWx)\\

A    logx      /I\dx\    logx      j\        x logx

Thus the absolute value of the last term of the RHS of (35) is bounded above by

(38) f %J^ dx < ̂ 1%. ¿Nix) dx.
J L log   X log" L J L      K    l

Similarly for the main term

i-aO\ rL' Qk_,{N/x) i     rL'~
(39) i x dx>v\,\   Qk_.{N/x)dx.

J L        logx log L J L     K   1

Putting together (35), (36), (38), and (39), we obtain
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1
(ï^-^&k->imdX

Ï^Ôfc-iOogAO.

We can evaluate the integral in (40) by parts with  u = \l3 log^N/x)  and  v =

-log2{N/x)  to obtain

(41)

JL ' k {L
Qk_x.{N/x) dx = -N log2N/xfl log-N/x\

3 \L

+ SLLt.wiin**,*/*) ) dx.

Since

¿(n htv/x) '
!=3\i=3 /

>
1

log3A/x

(41) leads to

(42)

SLLQk-i{N/x) dx >-N n  log/ N/x

+fLQk_1{N/x)llog3N/xdx.

The last integral can be approximated by substituting for  Qk_1{N/x)  and simplifying

to get

fl ßfc_,W*)/log3 N/x dx =jLL x lo^N/x fl log/N/x dx

>N\\logjN/L'\L'—^wdx

(43)

L x log N/x

NU logjN/L'i-\og2N/x\LL)

= N
k ( log, N \
U^N/L'^N-^-^)

Substituting this for the last term in (42) while evaluating the first and combining

terms, we get
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(44)

jLQk_x{N/x)dx

\k+\ /k \ /log,N-l\)
[ iogjN + ¡UlogiN/L'yog3Nlog4N\-^rY

3

Since   1/log L - 1 /log2 L' > 1/log N, we get from (40), and (44) that

k+l

n
3

ß^p-n ^

(45) + ̂  iog3 * iog4 N n **,W'\^2rjr)

N 1      kXl

logN ' log2 JV  H  lo8/^

Since

log4 A^/r = .ogs N + log (l - ^ > log5 N(l - -^),

we see that the sum of the last two terms is positive.  The desired lower bound follows.

The Upper Bound for  Qk{N).  We may suppose A^ > efc_2(ll),  for otherwise

Qk{N) = 0.
We begin by establishing the following inequality:

efc(Ao<   Z ôfc_1(iogpiog2p)+   z Qk-i{N/p)
M<pHL L<p<L'

(46)

+     Z     Qk-x{N/p) = Zj + Z2 + Z3,
L'<p<N/N0

where M = efc_2(ll),  a lower bound for the largest prime factor of elements of

Qk_l,L =N/{logN- log2 N) and L' = min{N¡log3N,N/N0}, where A^ is the smallest

element in   Q_k_x-  To see that (46) holds, consider n £ Q.fc(A),  factor  n = pq

where p  is the largest prime factor, then  n  is counted by the appropriate sum de-

pending on the range into which p   falls.  We see that in the first sum since  q =

P\P2 ' ' " Pk-i   with Pk-1 < loS P/a  and Pi < log P/+1/".   1 < i < * - 1,

q < log p log2 p • • • logA;_ j p < log p log2 p.   The last two sums follow from the

fact that pq = n <N and thus q < N/p.

For the remainder of the proof we suppose that l! = N/log3 N, for otherwise

the last sum in (46) is zero and the range on the middle sum is shortened. In either

case the inductive assumption applies to each  Qk_x{N/p)  of the middle sum.

To estimate   St we note that there are at most 7r(Z,) summands in which each is at
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most  Qk__ j(log L log2 L)  using the estimate  7r(x) < 2x/log x   and the inductive esti-

mate for Qk_,   we obtain

IN 1 k~'

<47) <ioíat • ^ñoTÑ^N+k-1^ n log/-A

<i¿v-ioiF^^+fc-1)ni0^-

We next consider   S3.  There are at most  7r(A/22)  summands each of size at

most  Qk_.{N/L') = Qk_l{log3N).  Henceweconclu.de

2/v log^A^ fc+2

^ 2TIo^v72y • lo^ÄT (1°g-3 A^ + k - 1) H   HN

(48)

<loïot4^ï0ÎA^+1Ar + ̂ 1)n   H"

We now turn our attention to   S2   which yields the main term.   By use of the

inductive hypothesis, the choice  L = N/log N,  the estimate  log-flog x log2 x) <

(log/+1 x)(l + 2/log2 x),  for / > 3,  and the lemma we deduce

Z2 = l<El, p-^^kN/P + *- 1) n **,Nir

<A(logt+1A+.-l)(l+r^J   n  W^jJL^

(49)      <^0ogfc+1^ + fc-i)fi+i^77"j   ni0«/^

\ CL dx fL' ¿ / i \

' \h xlogxlogTV/x + J L Wx) ~ *} ̂ \xlogxlog7V/xj ^

+
djx) - x

x log x log N/x]

The last terms in the braces have been evaluated earlier in formulae (18) and (22),

where in those formulae slightly different values of L and L' were used.  The   1/log x

can be taken outside the integral as   1/log L  and the rest integrated exactly to yield
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Z2<N{logk+iN + k-l)(l+l-^jAk   ft   log,-

I    1 \L'      1°&3N 1        1
W0g27H   + 2lo?^V + Yío^Ñl

N

(50)
N k

ioi^0og,+1W+2)n  log3W

. j u+_l_y /Yi+21og27VVi logs ^
ft       **!*)   \X+~^N-)\~^T¡)

+ =^-r.+ 1_V
n0g3Ay|2 log AT     2 log Af

Recalling that Z,' = A/log3 AT or, equivalently  log3 N> NQ> 22,  we deduce

that logs N> I. Hence we see that the quantity in the braces is less than  1.

It follows from (50), (48) and (47) that

N Qk{m<^{iogk+lN + k-i)i\ iog04 + mo^ + i¿v|
(51) ox. )

<ïofÀ7-(1°g*+iA' + *)n log,-TV,

which is the desired upper bound.

The Number of Distinct Subsums of  2^1/z; a Lower Bound.   Let   Q(N) =

\Jk=i(lk{N) and  Q{N) = 2°¡Qk(N), where we have taken a = 3/2  in defining

Qk{N).  Since for any A" only finitely many  Qk{N)  are nonzero, there is no difficulty

with the sum.

In order to relate the problem of distinct values of subsums of  2^1/z  to the

previous problem we first prove the following theorem.

Theorem.   // 5(A) denotes the number of distinct values of 2^efc/fe as the

ek  assume all the  2N  possible combinations with  ek = 0, 1,  then  S{N)>2Q^NY

Before proving the theorem we point out some immediate consequences of this

theorem in combination with the previous theorem's lower bounds for  Qk{N).

Corollary 1.   For N>2,

5(A) > 2*(iV> > eteK<+H>
Corollary 2.   For log3 N> 2,
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sw,c(^(,0fejV+ia+_i_)).

Corollary 3. For k>3 and logk+iN>k + I,

It may be noted that these corollaries improve the results on lower bounds for

5(A) obtained in [2] in two ways.  The first is that the constant   1/e  in the bound in

[2] is replaced by the larger log 2(log3 N + 12/11 + 1/2 log A) in Corollary 2 and by

log 2  in Corollary 3.  The second is the validity of the formula for a given  k is ex-

tended to much smaller values of N.

Combining Corollaries 2 and 3 above with Theorem 3 of [2] we obtain

Corollary 4.   For log2rN > 1  and r > 2, choose t such that et{l)>

2r - t - 1. Let k = 2r - t - 1.  77ze«  k > r {equality only for r - 2, 3) and

ÍNlos.2kXl \ ¡NlogrN  r \
i^Z n '%*) < m < X£r n log, n).

Proof of Corollary A.  From the definition of k we see that if log2r Nl> 1

then  logk+l N> et{l)> k;  hence Corollary 3 gives the lower bound for r > 3.  For

r = k = 2  it is easy to see that  log4N> I   implies  log3N> 2,  hence Corollary 2

gives the lower bound.  The upper bound is from Theorem 3 of [2].  The comment

about equality of k  and  r is a trivial calculation.   In fact,for  r = A,  k = 5,  while

for  r = 5,  k = 7.  The corollary is proved.

Proof of the Theorem.   The idea of the proof is simple.  We show that for each

sequence  n., n2, n3, • ■ ■ , nk  of distinct elements of  QfN)  we get a distinct value

for   2 l/n¡.  Since  «,-<Af and there are  2°-(N^   such sequences, the lower bound

follows, if we can show the values are all distinct.  Thus the theorem will be established

if we prove the following lemma.

Lemma.   Let «,, n2, ■ ■ ■ , nk  and mv m2, • ■ ■ , m¡  be two sequences of

elements of QfN); the elements in each of these sequences being distinct from other

elements of that sequence.   Then   S l/n¡ = 2 l/m¡  if and only if k = I and, after

possibly renumbering,  n¡ = m¡,  i = 1, 2, • • • , k.

Proof of the Lemma. We prove the "only if'.  The "if half is trivial.

Let P be the largest prime factor of the product of the  n¡  and  m¡.  Let

nv n2, ■ ■ • , nk>   and  mv m2, • • •, mt<  be all those  ni  and  m¡  in increasing order

which have P asa factor.  The proof is by induction on the size of P.

If P = 2, n¡, m¡G {1,2}   and clearly the distinctness of different sums is true.

Similarly for P = 3  when  n¡,m¡e {1, 2, 3}.

We now suppose that P > 5   and that for sequences which have only prime

factors less than P,  distinct sequences yield distinct values.
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Define  a/b,  a reduced fraction, by

k'     i       ''     i(52) a-= y -L-V-L.

We may assume a/6 > 0,  since otherwise we may interchange the  m¡  and  n¡

and proceed.

Let  «,- = iV-  and  m,- = Pm,;  thus

(53) i K? «; ~ ? »»#/
We next show that

(54) k'=f    and    n\ = m\,      i = 1, 2, • • • , k'.

If a = 0  then the claim follows by induction since the n'¡  and  m\ have largest

prime factor less than P.

We thus consider the case a =£ 0  and derive a contradiction.

Since the  n¿  and  m,-  are in   Q(N)  and P was the largest prime factor if we

choose  ß  to be the largest prime such that  e3^'2 <P, then we know from the def-

inition of  QfN)  that no prime factor of any  n'¡  or m\  exceeds  Q.   Since all the  n¡

and  m¡  are squarefree.we see that d = ÍIp<qP = e&^' is a common multiple for

the  n't  and  m\.  Thus

(55) yi-fi = -
t»i     i mi    d

for some positive integer c.  Since the largest prime factor of the n\  and m\ is at

most  Q  and the  nj.  and  m\  are in   Q/A). we see that  ß log ß log2 Q ■ ■ ■ log,. Q >

n¡, m¡  where  r is chosen so that  e2 > log, Q > 2.  Thus c/d < 2Ö21// < 2 log ß +

1.  Hence  c < 3g? log ß.  It follows that

(56) c < 3d log Q < 3e*(Ö) log q < e3««?)/2 < R

(Kote:   For  ß = 2, 3  a different argument is needed to show that c<P since

3 log ß > ed(ß^2.  A trivial calculation suffices.)

Since  0 < c < P it follows that Pfc.   Since a/ft = l\P ■ eld  and  (a, b) = 1,

we see that P-fa  and /"|è.

But by hypothesis  2 1/«,- = 2 1/m,-,  thus

a _ v^ _1_y^_J_._ v _J_y _î_í.

where we may take  s = é9^"1^,  since all the  n¡,  i > k', and all the  m¡,  i > I',

have prime factors less than P.   We deduce that P\s; but a/b = r/s  and  {a, b) = 1

and P\b, thus P|s,  a contradiction.  Thus a/b = 0, and as noted before the equalities

of (54) follow.   But (54) implies n, = m,  for  i = 1,2, ■ ■ ■ , k' = I'.  Thus
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k x I ,

Z -= z -
i=k'+l ni        i=k+\mi

and all prime factors are less than P.   By induction  k = I  and  «,- = m¡  for  i = k' +

l,k' +2, • • • , k.

The lemma is established.

Conclusion of the Proof of the Theorem.   Frpm the lemma we see that every

distinct subset of  Q{N)  yields a distinct value for   2^efc//c  by setting  ek = 1   for

members of the subset and  efc = 0  otherwise.  Thus 5(A) > 2®^N\  as claimed.

The theorem is established.
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