
The Integral of the nth Power of the Voigt Function

By Alex Reichel*

Abstract. A series expansion is given for the computation of the integral over (— », x )

of the îith power of the Voigt function for use in spectral line calculations with Doppler

broadening. A nine significant figure table is presented for n up to 25 and for a wide range

of values of the second parameter on a microfiche card in this issue.

Introduction. In studies of the transport of particles or photons in the neighbor-

hood of Doppler-broadened spectral lines, a function of fundamental interest is the

Voigt profile

1_  [+xexp[-ix-y)2/At]dy
Uoix, t) -

(Airt) '   •'-to 1 + y

Often, integrals of functionals of Ua(x, t) have to be evaluated for a wide range of

parameters. As examples we have the "curves of growth"

/+4»
[1 - exp[-aUo(x,t)]\dx ,

—oo

and a host of more elaborate integrals which appear as kernels of integral equations.

Generally, numerical quadrature is difficult, and often inaccurate due to the oc-

currence of steep and shifting plateaux in the integrands. Various authors have

conceived the possibility of expanding the integrals in series involving integrals of

powers of the Voigt function,

Xn(t) = /+X {Uoix,t)}ndx.

Several attempts have been made to obtain reasonable approximations to XnOf),

the earliest being that of Shapiro, given by Gurevich and Pomeranchouk [1]. Im-

provements to this approximation have been given by Keane and McKay [2] and

by McKay [3]. A short table of Xn(i) has been given by Cook and Elliott [4], using

numerical quadrature.

This paper shows that Xn(t) can be computed accurately from a series expansion

which is rapidly convergent for values of t > > 1 and n > 2, the values of xi(0 and

X2(0 being known. For values of t << 1, a range of no interest in fields the author

has studied, the series is still convergent but some difficulty may be experienced

with cancellation of significant figures. A table is given for values of n up to 25 and

for a selection of values of t which reflect the wide parameter range required to cover

the various contexts in which the functions occur. This table appears in the micro-
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fiche section of this issue. Many workers in optics and astrophysics use the Voigt

function in the form

tt(„  ,A_lf      exa[-y ]dy
H(ß' u> - T J      t-A~AT2 '

T    -»  Ou — y)   + a

aArr    °V a ' 4aV

which is normalised to An-

Thus

/      [Hia, u) \ndu = xn( —.;) •
J-«¡ a    ir \Aa '

1. Series Expansion. The function Xn(0 may be calculated from the formula

(1.1) Xnit) = 2iirt/n)1/2[soH + n £ ArBn,r\

which is derived in Section 2.

Here,

(1.2) So = UoiO, t)=~ elil erfc ~ = ¿ un ,
¿\/t Zy/t       n=o

where u0 = A A-At, ui = —l/2t, un = un-2/2tn. The coefficient AT is given by

2r — 1
(1.3) Ar = -7—±Ar_i

2rn

with A i = l/2n.

Also

(1.4) Bn.r  =   g (?'  "   ^SA-l.r-k .

Here,

(1.5) Bi,r=Sr,

where

(1.6) Sr = -/2^~YA2t (1 ~ Sr-l] '       T = h 2' 3' ' ' ' '

2. Derivation. The form

/oi\ TT i    ,\      cxp [1/At - x2/At]  f™ v,2/,i.,22,        i,,
(2.1) i/o (•*-*> i) = —il-k-i—7¡- /        exp [(a; /16i v ) — v ]dv

V¡ Jißvt

has been given previously by Reichel [5]. Whence,

(2.2) xnit) = <hrT f       ■■■■ j       e~hdji \   " exp [- On,'At - a/10t2)x2]dx ,
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where

71 71

(2.3) a = X, Viví2 ;      b = £ y i ■
1 1

Thus,

(2.4) x»(<) = ~Ç I"      ■•••/"     e~hin/At - a/10t2)-1/2dy¡.

The integral (2.4) converges over the singularity at the corner of the hyperspace.

An expansion in power series gives

*"w=Hi ?^2 C. " " Cexp r (? *')]* «

, + i. fB'i///A , ks (Tzi/v.y ,
2 \     4*n     / ~l~ 222! V     4in     /   ~r

To evaluate (2.5) term by term we require the multinomial theorem, viz :

(ai + 0.2 +-+ an)R =     _]    "

(2.5)

X

R. _        Tn   sn   t n   q

, r\s\t\ ■ ■ ■ q\
¡ oti a2 Ü3   ■ ■ ■ a

where r + s + t +  ■ ■ ■ + q = R. The total number of terms of all possible com-

binations aira2sas' ■ ■ ■ a„" such that r + s + t +  ■ ■ ■ + q = R is

Cía1)-
The first term in the series (2.5) is

-  /        exp    - £ ¿y,2 \diji = W        exp [-y2]dy \  ,
(O p\ »/2s/( l/2s/< L 1 J s/l/2s/( j

.77 /2   —71 /At ry  n
= t    e       Ao  ,

where So = £/o(0, .).

As a typical example of higher-order terms we consider the fourth term

(2-7) „/„ifj!, ./"      ■-/"     exp [-£ „/](£ l/,/)W..
2 -3'(4r,) n Jißvt 'i/v«        L       i       J \ i /

In (£.J l/iji2Y there are:

n terms of the type 1/yi1,

nOn — 1) terms of the type S/y/yf,

nOn — l)(n — 2)/3! terms of type G/yry/Uk1-

The integral (2.7) then reduces to

1AAJL [f/2e-n/4l{nSQn~1S3 + 3n(n - l)So"~2S2Si + nOn - l)(n - 2)S0"~3Si3}]
2 -3!n

where, in general,
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Note that the

l/4(    fx, r 2t. ,
„   _ c       /       exp [—v ]dv

At A/2vt     (4to2)"

are related to the incomplete gamma function. Also, for t > 1/2, 0 < Sr < 1, all r.

Thus xnit) has the rather formidable series expansion:

x„(0 = 2ÍATt/n)1,2\ S0n + 7TT, SJ'-'Si + ~- {Son~lS2 + On - l)S0"-2Si2!
L ¿-ii 2 2\n

+ ^h {So'-'S, + 3(n - l)S0n-2S2Si + (n - l)0n - 2)S„"-3S13}
2 -3!n

+ 143'?'J {-So"_1S4 + AOn - l)Son-2S,Si + 3(n - 1)S0"-2S22
2 -4!n

(2.8) + 6(n - l)(n - 2)S0n_8S2S12 + (n - l)(n - 2)(n - 3)S„"-4S14}

+ 1'35"°'74'9 {So'-'Ss + 5(n - l)So"-2S4Si + 10(n - 1)S0"-2S3S2
2 -5!n

+ 10(n - l)(n - 2)So""3S3Si2 + 15(n. - l)(n - 2)S0"~3S22S,

+ 10(n - l)(n - 2)(n - 3)S0n~4S2S13

+ (n - l)(n - 2)(n - 3)(n - 4)Son_BS16} +

Further terms are readily obtained. By writing down the series for n = 1, 2, 3, • • •

and comparing terms, the recurrence relation (1.4) is easily established and Eq.

(1.1) follows.
Values of Xn(0 for n = 1, 2 can be written down exactly:

/+«
Lro(.r, t)dx = ir,

-00

(2.10) »(0 = /_+J Uo'A, t)dx = f UoiO, t/2) .

The second of these two formulae provides a useful check on the series (1.1) whose

convergence is slowest for the smallest values of n and t. Details of the computation

are given in Section 3.

3. Computation. The computation was designed for an overall accuracy of more

than nine significant figures by terminating the series after the term less than

iAiBn.i) X 10~12. The order of the binomial matrix required in Eq. (1.4) is equal to

the number of terms of the series necessary to give the required accuracy. This

matrix is readily generated, using the Pascal triangle, after first generating a square

matrix of zeros.

For n = 2, the series is slowly convergent, requiring over 200 terms. These 200

terms give nine significant figure accuracy only when t > 104, and only four signif-

icant figure accuracy from t ï£ 1. Accordingly, the values for n = 2 are computed

from Eq. (2.10) using the subroutine (1.2). It is convenient to compute X2(0 after
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the computation for higher values of n is complete, since the series coefficients for

n = 2 are required in any case.

The next most difficult case, for n = 3 and t = 1, requires just under 200 terms.

This fixes the dimensions of the binomial matrix used in the calculations. The

number of terms can be dramatically reduced if less accuracy is specified or if

working with higher values of t. For n > 2 and t > 10, eight significant figures are

obtained in less than 100 terms, and six significant figures in less than 50 terms.

For n > 25, the first six terms of the series, Eq. (2.8), may be used with the

following accuracy specifications : for

1 < t < 10,     four figures,

10 < t < 25,     five figures,

25 < t < 100,   six figures,

100 < t < 150,   seven figures,

150 < t < 1000, eight figures,

t > 1000, nine figures.

The main programme may still be used for n > 25 if machine space is available. If

one is only interested in values of n > 25, the binomial matrix need only be (30, 30)

say for all t _ 1; (15, 15) say for t > 50, and (10, 10) say for all t > 1000. The
computation must still commence at n = 2.
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