Mathematics of Computation

Volume 22, Number 102 April, 1968

Published by the American Mathematical Society PROVIDENCE, RHODE ISLAND

Editorial Committee

- EUGENE ISAACSON, Chairman, New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012 Assistant to the Chairman: CHARLOTTE W. JOHN
- C. W. CLENSHAW, Mathematics Division, National Physics Laboratory, Teddington, Middlesex, England
- Avron Douglis, Department of Mathematics, University of Maryland, College Park, Maryland 20740
- WALTER GAUTSCHI, Computer Sciences Department, Purdue University, Lafayette, Indiana 47907
- GENE H. GOLUB, Computer Science Department, Stanford University, Stanford, California 94305
- A. S. HOUSEHOLDER, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- HEINZ O. KREISS, Computer Science Department, University of Uppsala, Uppsala, Sturegatan 4, Sweden
- PETER D. LAX, New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012
- Y. L. LUKE, Midwest Research Institute, Kansas City, Missouri 64110
- JAMES M. ORTEGA, Computer Science Center, University of Maryland, College Park, Maryland 20740
- HARRY POLACHEK, Research Division, U. S. Atomic Energy Commission, Washington, D. C. 20545
- DANIEL SHANKS, Naval Ship Research and Development Center, Washington, D. C. 20007
- J. W. WRENCH, JR., Naval Ship Research and Development Center, Washington, D. C. 20007

Information for Subscribers

The journal is published quarterly in one volume per year, with issues numbered serially since Volume 1, Number 1. The subscription price is 16.00. All back volumes are available. For Volumes 1-22 (1943-1968), prices are 20.00 per volume and 6.00 per issue.

Unpublished Mathematical Tables

The editorial office of the journal maintains a repository of Unpublished Mathematical Tables (UMT). When a table is deposited in the UMT repository a brief summary of its contents is published in the section *Reviews and Descriptions of Tables and Books*. Upon request, the chairman of the editorial committee will supply copies of any table for a nominal cost.

Subscriptions, address changes, business communications and payments should be sent to:

AMERICAN MATHEMATICAL SOCIETY P. O. Box 6248 Providence, Rhode Island 02904

Mathematics of Computation

TABLE OF CONTENTS

April 1968

Construction of Gauss-Christoffel Quadrature Formulas	
Walter Gautschi	251
Extensions of Symmetric Integration Formulas A. H. STROUD	271
A Fast Fourier Transform Algorithm Using Base 8 Iterations	
G. D. Bergland	275
Evaluation of Orthogonal Polynomials and Relationship to Evaluating	
Multiple Integrals P. M. HIRSCH	280
An Error Analysis for Numerical Multiple Integration. II.	
Robert E. Barnhill	286
Numerical Integration Over a Sphere CHRISTOPHER A. FEUCHTER	293
An Improved Method for the Numerical Solution of the Suspension Bridge	
Deflection Equations	298
Computation of Eigenvalues of Singular Sturm-Liouville Systems	
D. O. BANKS & G. J. KUROWSKI	304
Convergence Rates of ADI Methods with Smooth Initial Error	
ROBERT E. LYNCH & JOHN R. RICE	311
The Stability of Difference Approximations to a Self-Adjoint Parabolic	
Equation, Under Derivative Boundary Conditions	996
Consistency Conditions for Difference Schemes with Singular Coefficients	<u> </u>
Consistency Conditions for Difference Schemes with Singular Coefficients	217
Differentiation Formulas for Analytic Functions I. N. LYNESS	352
Becursion Formulae for Hypergeometric Functions	363
On Solving Systems of Equations Using Interval Arithmetic	000
ELDON R. HANSEN	374
Natural Sorting Over Permutation Spaces . R. M. BAER & P. BROCK	385
An Evaluation of Golomb's Constant W. C. MITCHELL	411
T'ECHNICAL NOTES AND SHORT PAPERS	
Explicit Gap Series at Cusps of $\Gamma(p)$ A. O. L. ATKIN	416
A Report on Prime Numbers of the Forms $M = (6a + 1)2^{2m-1} - 1$ and	
$M' = (6a - 1)2^{2m} - 1$ H. C. Williams & C. R. Zarnke	420
Distribution of the Figures 0 and 1 in the Various Orders of Binary Repre-	
sentations of k th Powers of Integers W. Gross & R. VACCA	423
Explicit Inverses and Condition Numbers of Certain Circulants	
S. Charmonman & R. S. Julius	428
Error Bounds in Gaussian Integration of Functions of Low-Order Con-	
tinuity Philip Rabinowitz	431
An Explicit Sixth-Order Runge-Kutta Formula H. A. LUTHER	434
A Note on a Maximum Principle for the DuFort-Frankel Difference	497
The Evaluation of a Class of Functions Defined by an Interval	401
D R HIMMED	440
D. D. HUNTER	110

Some Integrals of the Arctangent Function M. L. GLASSER	445
Simplified Calculation of $Ei(x)$ for Positive Arguments, and a Short	
Table of $Shi(x)$ ROBERT F. TOOPER & JOHN MARK	448
Chebyshev Approximations for the Fresnel Integrals W. J. CODY	450
Approximations for the $x \exp x^2$ erfc x Function K. B. OLDHAM	454
Reviews and Descriptions of Tables and Books	455
BAILEY 35, RALSTON & WILF 36, BECKETT & HURT 37, ZUKHOVITSKIY &	
Avdeyeva 38, Walsh 39, Berger & Danson 40, Tompa 41, Dorn &	
GREENBERG 42, DAVIS & RABINOWITZ 43, DEKANOSIDZE 44, CONCUS 45,	
Mitrinović 46, Yudin & Gol'shtein 47, Simonnard 48, Hale &	
LASALLE 49, MICHAUD 50, RICHTMYER & MORTON 51, NBS COM-	
PUTATION LABORATORY 52, WYNDRUM & MITCHELL 53, ZHURINA &	
KARMAZINA 54, KERR 55, WALL 56, FOSTER 57, GOLDEN & LEICHUS 58,	
Edie, Herman & Rothery 59, Chretien & Deser 60	
TABLE ERRATA	472
Abramowitz & Stegun 421, Erdélyi, Magnus, Oberhettinger &	
Т RICOMI 422	
Corrigenda	474
Jones, Lal & Blundon, Barrodale	
Note	475
Index of Government-Sponsored Computer Projects	

Information for Contributors

Manuscripts should be typewritten double-spaced in the format used by the journal. For journal abbreviations, see *Mathematical Reviews*, v. 28, Index. An author should submit the original and one copy of the manuscript and retain one copy. The author may suggest an appropriate editor for his paper. It is recommended that the author acquaint himself with the pertinent material contained in "Information for Contributors to Mathematics of Computation" and "Manual for Authors," both of which are available upon request from the American Mathematical Society. All contributions intended for publication and all books for review should be addressed to Eugene Isaacson, Chairman, Editorial Committee, Mathematical Sciences, 251 Mercer Street, New York, New York 10012. Institutions sponsoring research reported in the journal are assessed page charges.

Microcard Edition

Volumes 1–14 (1943–1960) are available on Microcards at \$39.00 for the complete set and may be purchased from Microcard Editions, Inc., 901 26th Street N. W., Washington, D. C. 20037.

NOTE

Index of Government-Sponsored Computer Projects

The NBS Center for Computer Sciences and Technology (U. S. Department of Commerce) has just completed the compilation of an automated index of Government-sponsored R & D projects in the computer sciences. The index, which covers almost 2500 projects, was prepared with the assistance of the Defense Documentation Center.

As stored on computer tape, the index will be available for such representative machine searches as the listing of all projects for which a particular investigator has responsibility, or the determination of the amount of money spent by a certain agency on all projects in the computer sciences. Also, the index offers a large corpus for experiments in machine indexing.

In the form of a computer printout, it is available for study at the Computer Center's Technical Information Exchange at the Gaithersburg (Md.) laboratories of the National Bureau of Standards. The printout comprises two different listings. One of these is sequenced by 20 subject categories, drawn up by the Center staff especially for the field of computer sciences and technology; the other is by sponsoring organization, further arranged by performing organization.

World's most versatile electronic calculator

WANG 300 Series has models to fit every need.

+173205080

There is nothing comparable anywhere. Write or call:

Dept. 00, 836 North St., Tewksbury, Mass. 01876 Tel.: (617) 851-7311

In Malay Oldina Wal			
in major cities, lei:	(317) 631-0909	(505) 255-9042	(702) 322-4692
(201) 241-0250 (216) 333-6611	(319) 365-2966	(512) 454-4324	(702) 735-5802
(203) 666-9433 (301) 588-3711	(402) 341-6463	(513) 531-2729	(713) 668-0275
(205) 245-6057 (301) 821-8212	(404) 457-6441	(514) 482-0737	(714) 234-5651
(206) 622-2466 (303) 364-7361	(405) 842-7882	(518) 463-8877	(716) 381-5440
(212) 682-5921 (305) 841-3691	(412) 366-1906	(601) 234-7631	(717) 397-3212
(213) 278-3232 (312) 456-1542	(415) 454-4140	(612) 881-5324	(816) 421-0890
(214) 361-4351 (313) 278-4744	(416) 364-0327	(614) 488-9753	(817) 834-1433
(215) 642-4321 (314) 727-0256	(504) 729-6858	(617) 851-7311	(919) 288-1695
			1 1

New

BMD

Biomedical Computer Programs

Edited by W. J. Dixon

Many problems in medical research require extensive analyses of large amounts of recorded data. The use of computers in order to assist in these research needs has become commonplace, although medical researchers may not have been specifically trained in their use. The series of special computer programs known as the BMD was developed at the School of Medicine of the University of California, Los Angeles. These programs, provided for the commonly required tasks of data processing and statistical analysis, are presented in "package" form so that desired computation may be effected with simple coded instructions and so that a wide variety of problems may be handled by each program. *Number 2 in the University of California Publications in Automatic Computation*.

Paper, \$6.00

RECENTLY PUBLISHED

Proceeding of the Fifth Berkeley Symposium on Mathematical Statistics and Probability

Edited by Lucien M. Le Cam and Jerzy Neyman

Berkeley Symposia on Mathematical Statistics and Probability have been held every five years to review significant contemporary research. The Symposia are organized by the Statistical Laboratory, University of California, Berkeley, ordinarily in consultation with advisory committees representing the America Mathematical Society, the Institute of Mathematical Statistics, and other interested groups and institutions. The first two volumes of the present Proceedings provide the widest available coverage of current research in both probability theory and mathematical statistics. As in the earlier Proceedings, Volumes III and IV concern two broad fields of application. Volume V, concerned with weather modification, represents a novelty occasioned by the growing importance of the subject and by many unexplored problems, both substantive and theoretical-statistical.

VOLUME I: Theory of Statistics		\$20.00
VOLUME II: Probability Theory	(sold only as a set)	Part 1, \$14.00 Part 2, \$15.00
VOLUME III: Physical Sciences and Engi	neering	\$10.00
VOLUME IV: Biology and Problems of Heat	alth	\$28.50
VOLUME V: Weather Modification Experim	nents	\$14.00

S.

from California UNIVERSITY OF CALIFORNIA PRESS Berkeley 94720

computer science_____ 5 texts from prentice-hall

COMPUTERS AND COMMUNICATIONS— TOWARD A COMPUTER UTILITY, Fred Gruenberger, Informatics, Inc. This new text brings together the thinking of the pioneers and leaders who have shaped the Time Sharing Communication Computer Utility concept—the state of the art in both its larger terms and its specific application. Assuming general familiarity with data processing, the text focuses on the unique technological and philosophical aspects of the new developments. March 1968, approx. 224 pp., \$10.50

INTRODUCTION TO STATISTICAL DATA PROCESSING, T. D. Sterling and S. V. Pollack, Washington University. Designed to deal with the new concepts and usages in data processing, this new text is oriented toward the student in the empirical descriptive fields. It provides him with necessary background in instrumentation and logical concepts, automatic collection of data, display, and the newest calculational methods.

July 1968, approx. 608 pp., \$11.95

COMPUTER SOLUTION OF LINEAR ALGE-BRAIC SYSTEMS, George Forsythe, Stanford University, and Cleve B. Moler, The University of Michigan. This text has a three-fold purpose: it introduces students to the analytic and computational tools involved in matrix problems, presents a good program for solving linear equations systems, and investigates the fundamental concepts of error involved. 1967, 160 pp., \$6.95

PROGRAMMING IN BASIC, THE TIME-SHARING LANGUAGE, Mario Farina, General Electric Company. A 25-lesson introduction to the BASIC programming language as it is used on teletype timesharing computer systems, this new text is ideally suited for the solution of scientific or business problems of moderate size and complexity. The volume includes many illustrative examples, numerous exercises with answers to selected problems, a summarizing appendix, and a comprehensive index.

January 1968, 176 pp., paperbound \$4.75

MATRIX THEORY, Joel N. Franklin, California Institute of Technology. This new text emphasizes those branches of matrix theory which are required for the solution of engineering and scientific problems by digital computers. Every topic in the thoroughly class-tested volume is explicitly related to applications or problems which stimulate and maintain the interest of science or engineering students. April 1968, 336 pp., \$10.75

for approval copies, write: box 903

BLAISDELL PUBLISHING COMPANY-NUMERICAL ANALYSIS AND COMPUTER SCIENCE This series has been designed to give clear and up-to-date presentations of the major topics in computer science and numerical analysis. The books are written in such a way that they will serve equally well in the classroom as texts for courses in advanced computer science and advanced numerical analysis or in scientific or computation laboratories as reference works. Each book has been prepared by an expert in the field who has had experience both with the theoretical and the practical aspects of the problem described. NUMERICAL INTEGRATION Philip J. Davis and Philip Rabinowitz STATISTICAL COMPUTATIONS ON A DIGITAL COMPUTER William I. Hemmerle NUMERICAL METHODS FOR TWO-POINT BOUNDARY-VALUE PROBLEMS Herbert B. Keller **OF ADDITIONAL INTEREST** PERTURBATION METHODS IN APPLIED MATHEMATICS Iulian D. Cole 275 Wyman Street, Waltham, Massachusetts 02154

Teaching/Research Position

U. S. Coast Guard Academy New London, Connecticut

Associate Professor/Professor of Mathematics. Starting salary: \$11,500—\$15,500 for a 10-month year. Dependent on qualifications.

Summer Employment in research possible at 20% of annual pay scale.

Applicant should have a Ph.D. in mathematics or in a related field, plus teaching and research experience with a preferred background in systems analysis.

Contact:

Capt. E. P. Rivard, Head Dept. of Mathematics U. S. Coast Guard Academy New London, Connecticut 06320

Proceedings of Symposia in Applied Mathematics

Volume 19

Mathematical Aspects of Computer Science

Edited by J. T. SCHWARTZ

232 pages; List Price \$6.80; Member's Price \$5.10

This volume consists of papers presented at the Symposium on Mathematical Aspects of Computer Science, held in April 1966 in New York City. The following are the topics included: automatic theorem proving; assigning meaning to programs; correctness of a compiler for arithmetic expressions; context-free languages and Turing machine computations; computer analysis of natural languages; the use of computers in the theory of numbers; a machine calculation of a spectral sequence; numerical hydrodynamics of the atmosphere; the calculation of zeros of polynomials and analytic functions; linearly unrecognizable patterns; mathematical theory of automata. Please send orders to: American Mathematical Society, P.O. Box 6248, Providence, R. I. 02904.

NEWEST ADDITION TO "LECTURES IN ADVANCED MATHEMATICS SERIES"

A concise yet comprehensive treatment of the fundamental notions of abstract computer science. The text assumes a modest knowledge of mathematical logic and basic programming.

Through a constructive theory of mathematical models, the subject is developed with central topics: Algebraic structure of formal and

programming languages; structure and capabilities of computers; computer experimentation; alogrithmic proof theory, and unsolvable problems. The book includes both challenging exercises and a bibliography for independent study.

90 pp., \$5.00

By Erwin Engeler, University of Minnesota

opportunities on the research frontier

A leading manufacturer of pharmaceuticals and chemicals is launching a major expansion of research and development programs, providing rare and exciting opportunities in a newly formed Advanced Technology Department for four highly qualified

Senior Scientists

An intensive one year collaborative study to map out a long range multidisciplinary research plan in advanced technology has just been completed. The basic thrust of this program will combine physical science and engineering to explore unique applications in heretofore unrelated fields. Phase one staffing requirements for this new group are among the most challenging in our entire organization:

 Ph.D. in physical chemistry or chemical engineering-experienced in membrane technology, electrostatics and coating techniques.

2) Ph.D. in mathematics, electrical engineering, chemical engineering or

physical chemistry-experienced in application of spectral techniques and computer control to process dynamics.

3) Ph.D. in physics-experienced in optics and spectroscopy, with knowledge of holography, lasers, and microwaves.

4) Ph.D. in physical chemistry- experienced in application of infrared, ultraviolet, and Raman spectroscopy and with a knowledge of multiple scanning, computerized interferometry.

Hoffmann-La Roche Inc., has achieved an enviable record of growth and diversification by developing a research environment conducive to original ideas and speculative thinking. Candidates selected for this new program will have access to an outstanding staff in chemical, biological, medical, physical chemical, and bio-physical research departments and to leading scientists throughout the world. Senior Scientists are encouraged to publish as well as to establish and to maintain contacts with universities, research institutes, and government laboratories.

Please direct resume to R. M. Callan, Personnel Manager-Research, Dept. MC4

WRITE TODAY FOR FREE CATALOG:

DUOPAGE

Mathematics books

Send for 32-page catalog listing out-of-print mathematics books available in many languages.

Catalog also includes information on how you can now obtain the other hard-to-get books you need.

MICRO PHOTO DIVISION 1700 SHAW AVE. CLEVELAND, OHIO 44112

Chebyshev Approximations for the Fresnel Integrals W. J. CODY	450
Approximations for the $x \exp x^2$ erfc x Function K. B. OLDHAM	454
REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS	455
BAILEY 35, RALSTON & WILF 36, BECKETT & HURT 37, ZUKHOVITSKIY &	
AVDEYEVA 38, WALSH 39, BERGER & DANSON 40, TOMPA 41, DORN &	
GREENBERG 42, DAVIS & RABINOWITZ 43, DEKANOSIDZE 44, CONCUS 45,	
MITRINOVIĆ 46, YUDIN & GOL'SHTEIN 47, SIMONNARD 48, HALE &	
LASALLE 49, MICHAUD 50, RICHTMYER & MORTON 51, NBS COM-	
PUTATION LABORATORY 52, WYNDRUM & MITCHELL 53, ZHURINA &	
KARMAZINA 54, KERR 55, WALL 56, FOSTER 57, GOLDEN & LEICHUS 58,	
Edie, Herman & Rothery 59, Chretien & Deser 60	
TABLE ERRATA	472
Abramowitz & Stegun 421, Erdélyi, Magnus, Oberhettinger &	
TRICOMI 422	
CORRIGENDA	474
Jones, Lal & Blundon, Barrodale	
Note	475
Index of Government-Sponsored Computer Projects	

The editorial committee would welcome readers' comments about this microfiche feature. Please send comments to Professor Eugene Isaacson, MATHEMATICS OF COMPUTATION, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012.

Mathematics of Computation

TABLE OF CONTENTS

APRIL 1968

Construction of Gauss-Christoffel Quadrature Formulas	
Walter Gautschi	251
Extensions of Symmetric Integration Formulas A. H. STROUD	271
A Fast Fourier Transform Algorithm Using Base 8 Iterations	
G. D. Bergland	275
Evaluation of Orthogonal Polynomials and Relationship to Evaluating	
Multiple Integrals P. M. HIRSCH	280
An Error Analysis for Numerical Multiple Integration. II.	1
Robert E. Barnhill	286
Numerical Integration Over a Sphere CHRISTOPHER A. FEUCHTER	293
An Improved Method for the Numerical Solution of the Suspension Bridge	-00
Deflection Equations	298
Computation of Eigenvalues of Singular Sturm-Liouville Systems	200
D O BANKS & G J KUROWSKI	304
Convergence Rates of ADI Methods with Smooth Initial Error	001
ROPERT E LYNCH & LOUN R BLOT	211
The Stability of Difference Approximations to a Solf Adjoint Parabolic	011
Equation Under Derivative Boundary Conditions	
C M CAMPERT & D KEAST	226
Consistency Conditions for Difference Schemes with Singular Coefficients	000
Dentations for Difference Schemes with Singular Coefficients	917
Differentiation Formulas for Analytic Functions	041
Differentiation Formulas for Human apartic Functions J. N. LYNESS	004
On Solving Systems of Fountions Ling Interval Arithmetic	303
The solving systems of Equations Using Interval Antimetic	974
Notural Sorting Over Dermutation Spaces D. M. D. TANSEN	3/4
An Evaluation of Colomb's Constant	380
TECHNICIA NORTH AND STORE DEPEND	411
Emiliait Can Series of Change of P()	110
Explicit Gap Series at Cusps of $\Gamma(p)$ A. O. L. ATKIN	410
A Report on Prime Numbers of the Forms $M = (6a + 1)2^{2m-1} - 1$ and	
$M' = (ba - 1)2^{am} - 1 \dots H. C. WILLIAMS & C. R. ZARNKE$	420
Distribution of the Figures 0 and 1 in the Various Orders of Binary Repre-	100
sentations of kth Powers of Integers W. GROSS & R. VACCA	423
Explicit Inverses and Condition Numbers of Certain Circulants	100
S. CHARMONMAN & R. S. JULIUS	428
Error Bounds in Gaussian Integration of Functions of Low-Order Con-	
tinuity PHILIP RABINOWITZ	431
An Explicit Sixth-Order Runge-Kutta Formula H. A. LUTHER	434
A Note on a Maximum Principle for the DuFort-Frankel Difference	
Equation	437
The Evaluation of a Class of Functions Defined by an Integral	
D. B. HUNTER	440
Some Integrals of the Arctangent Function M. L. GLASSER	445
Simplified Calculation of $Ei(x)$ for Positive Arguments, and a Short	
Table of $Shi(x)$ ROBERT F. TOOPER & JOHN MARK	448