Math ImageryThe connection between mathematics and art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius bands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.



Most viewed
snowflake-3.jpg
"Snowflake Model 3," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)1814 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath
NeuralNet.jpg
"NeuralNet," by Mike Field (University of Houston)1813 views"NeuralNet" is is part of the generating tile of a planar repeating pattern of type pgg. Repeating patterns of this type have no reflection symmetries but do have many glide reflection symmetries as well as translational symmetries and two-fold centers of rotation. The absence of reflectional symmetries often leads to very fluid and dynamic patterns. The coloring reflects the density of the invariant measure. --- Mike Field
Two_Squares.jpg
"Two Squares (2006)," by Edmund Harriss (University of Leicester)1812 viewsPrinted on Canvas 36" x 36". This is based on the Ammann-Beenker Tiling. Along with Ammann Squares this work explores the extension of the work of Raymond Brownell (www.raymondbrownell.com) to more complicated geometry. The Ammann-Beenker tiling is the eight-fold sibling of the more famous, five-fold Penrose rhomb tiling. It was discovered independently by R. Ammann and F. Beenker. Like the Penrose tiling, the Ammann-Beenker can be constructed by two particular methods. The first method is uses the substitution rule, and the second method is to construct the tiling as a planar slice of a four dimensional lattice (in much the same way that a computer draws a line using the pixels of its screen) and then project this to the plane.
See more information at www.mathematicians.org.uk/eoh/Art/Ammann_Text.pdf.

--- Edmund Harriss
8-torus~1.jpg
8-torus.jpg1805 views"The 8-Crossing Torus Knot T(4,3)," by Dror Bar-Natan (University of Toronto, Canada)

This is an example of a torus knot. A torus is a surface best described as a doughnut. A torus knot can be thought of as looping around and through the torus. The symbol T(4,3) means that the string making the knot loops through the hole of the torus 4 times, making 3 revolutions. This knot is drawn with TubePlot.

--- Dror Bar-Natan
CIRCLE1~0.jpg
Circle 11791 viewsComputers make it possible for me to "see" the beauty of mathematics. This image and all of the Circle Pictures are made by iterating systems of Mobius Transformations.
P-357.jpg
"P-357" Acrylic on canvas1786 viewsThere are 11 petal forms in center of this painting. The grid or plaid in the background follows a number sequence of 3 while there are 22 circles interlocking around the edge of the painting. There are also soft concentric circles which radiate from the center of the painting.
bi-pentagon.jpg
"2 Circles in a bi-pentagon pattern," by Bradford Hansen-Smith1782 viewsThe symbol of the circle is used as metaphor for nothing and for everything, and endless parts in-between. Folding circles appears to have little history: Somewhere in the history of origami lies the circle, unrecognized and discarded in favor of the square; Buckminster Fuller also folded the circle, with informational intent. Fuller is the inspiration for my own exploration into geometry and provided the seed for folding and joining circles-9" paper plates.

-- Bradford Hansen-Smith, Wholemovement
symmetry2.jpg
symmetry2.jpg1750 views"Symmetry Energy Image II," by Rob Scharein (Centre for Experimental and Constructive Mathematics, Simon Fraser University, B.C., Canada)

This example illustrates the SE rendering mode in KnotPlot, which visualizes the symmetric energy distribution. KnotPlot is a program to visualize and manipulate mathematical knots in three and four dimensions, and the website includes a wealth of resources and pictures. This picture is a direct screen capture from KnotPlot, rendered entirely in OpenGL, an environment for portable, interactive graphics applications.

--- Rob Scharein
SA_1188475827~0.jpg
"SA_1188475827," by Nathan Selikoff1735 viewsAnother strange attractor, this one existing in three dimensions, comes to life with rich fiery colors that enhance the eastern Asian feel of the swirling lines. See more images at www.nathanselikoff.com/.
ashley.jpg
ashley.jpg1730 views"Ashley Knot," by by Rob Scharein (Centre for Experimental and Constructive
Mathematics, Simon Fraser University, B.C., Canada)

This example illustrates the SE rendering mode in KnotPlot, which visualizes the symmetric energy distribution. KnotPlot is a program to visualize and manipulate mathematical knots in three and four dimensions, and the website includes a wealth of resources and pictures. This picture is a direct screen capture from KnotPlot, rendered entirely in OpenGL, an environment for portable, interactive graphics applications.

--- Rob Scharein
voirol1.jpg
"Sa'odat (Happiness)," by Nathan Voirol (2007)1719 viewsHand-made ceramic tile, 15" diameter. "Islamic star pattern based on a tessellation of 18 and 12 pointed stars in a hexagonal repeat. My primary artistic interest is in designing repeatable patterns--I particularly enjoy creating geometric star and floral designs, which stem from my fascination with Islamic art." --- Nathan Voirol, CAD Drafter / Freelance Artist, Santa Barbara, CA
imaggard.jpg
"Imaginary Garden," by Anne M. Burns (Long Island University, NY)1713 views"Mathscapes" are created using a variety of mathematical formulas. The clouds and plant life are generated using fractal methods. The mountains are created using trigonometric sums with randomly generated coefficients; then, using 3-D transformation, they are projected onto the computer screen. Value and color are functions of the dot product of the normal to the surface with a specified light vector. See the Gallery of Mathscapes and find citations for my articles on modeling trees, plants and mountains, and on "blending and dithering" at http://myweb.cwpost.liu.edu/aburns/gallery/gallery.htm. --- Anne M. Burns (Long Island University, Brookville, NY)
symmetry3.jpg
symmetry3.jpg1712 views"Symmetry Energy Image III," by Rob Scharein (Centre for Experimental and Constructive Mathematics, Simon Fraser University, B.C., Canada)

This example illustrates the SE rendering mode in KnotPlot, which visualizes the symmetric energy distribution. KnotPlot is a program to visualize and manipulate mathematical knots in three and four dimensions, and the website includes a wealth of resources and pictures. This picture is a direct screen capture from KnotPlot, rendered entirely in OpenGL, an environment for portable, interactive graphics applications.

--- Rob Scharein
Yeganeh-Bird-in-Flight.jpg
"A Bird in Flight (2015)," by Hamid Naderi Yeganeh 1708 viewsThis image is like a bird in flight. It shows 500 line segments. For each i=1,2,3,...,500 the endpoints of the i-th line segment are: ((3/2)(sin((2πi/500)+(π/3)))^7, (1/4)(cos(6πi/500))^2) and
((1/5)sin((6πi/500)+(π/5)), (-2/3)(sin((2πi/500)-(π/3)))^2). ---
Hamid Naderi Yeganeh
TILE7.jpg
"Tile 7," by Anne M. Burns, Long Island University, Brookville, NY1697 viewsHere is a fractal tiles created with Geometer's Sketchpad. I start with a single "tile" designed using Geometer's Sketchpad. Then, using Flash Actionscript I place that "tile" in the center of the screen and surround it with 12 copies of the tile that are half the size of the original, then surround those with 36 "tiles" half the size of the second set of "tiles"; the process is continued until the tiles are too small to see. Thus we obtain a "fractal" tiling. See more fractal tiles at http://myweb.cwpost.liu.edu/aburns/. --- Anne M. Burns
667 files on 45 page(s) 9


American Mathematical Society