Most viewed  Simulated Snowflakes 
"Snowflake Model 8," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)1536 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 1," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)1503 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 4," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)1218 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 2," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)1140 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 13," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)1061 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 3," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)1029 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 6," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)995 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 12," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)939 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 11," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)835 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 9," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)815 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 5," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)793 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 7," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)707 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath


"Snowflake Model 10," by David Griffeath (University of WisconsinMadison) and Janko Gravner (University of California, Davis)689 viewsIn nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusionlimited attachment of micronscale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm.  David Griffeath




