Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

 



Math ImageryThe connection between mathematics and art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius bands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.

Jump to one of the galleries

Share this page




Share this


Explore the world of mathematics and art, share an e-postcard, and bookmark this page to see new featured works..

Home > Crocheted Lorenz Manifolds

Most viewed - Crocheted Lorenz Manifolds
hinke-crochet-white~0.jpg
"Crocheted Lorenz manifold, white background," by Hinke Osinga, in collaboration with Bernd Krauskopf, Department of Engineering Mathematics, University of Bristol (www.enm.bris.ac.uk/staff/hinke/crochet/)1871 viewsDr. Hinke Osinga and Professor Bernd Krauskopf (Engineering Mathematics, University of Bristol) have turned the famous Lorenz equations into a beautiful real-life object, by crocheting computer-generated instructions of the Lorenz manifold: all crochet stitches together define the surface of initial conditions that under influence of the vector field generated by the Lorenz equations end up at the origin; all other initial conditions go to the butterfly attractor that has chaotic dynamics.

The white background in the photograph brings out the rotational symmetry of the Lorenz manifold and gives an idea of the structure of the mesh.

For more information, the crochet pattern and mounting instructions, see: http://www.enm.bris.ac.uk/staff/hinke/crochet/.
hinke-crochet-detail.jpg
"Crocheted Lorenz manifold, detail," by Hinke Osinga, in collaboration with Bernd Krauskopf, Department of Engineering Mathematics, University of Bristol (www.enm.bris.ac.uk/staff/hinke/crochet/)1646 viewsDr. Hinke Osinga and Professor Bernd Krauskopf (Engineering Mathematics, University of Bristol) have turned the famous Lorenz equations into a beautiful real-life object, by crocheting computer-generated instructions of the Lorenz manifold: all crochet stitches together define the surface of initial conditions that under influence of the vector field generated by the Lorenz equations end up at the origin; all other initial conditions go to the butterfly attractor that has chaotic dynamics.

The photograph shows a particularly nice detail of the intriguing geometry of the Lorenz manifold. The wire running through the crocheted work illustrates one of the paths on the surface that end at the origin.

For more information, the crochet pattern and mounting instructions, see: http://www.enm.bris.ac.uk/staff/hinke/crochet/.
hinke-crochet-black.jpg
"Crocheted Lorenz manifold, black background," by Hinke Osinga, in collaboration with Bernd Krauskopf, Department of Engineering Mathematics, University of Bristol (www.enm.bris.ac.uk/staff/hinke/crochet/)1148 viewsDr. Hinke Osinga and Professor Bernd Krauskopf (Engineering Mathematics, University of Bristol) have turned the famous Lorenz equations into a beautiful real-life object, by crocheting computer-generated instructions of the Lorenz manifold: all crochet stitches together define the surface of initial conditions that under influence of the vector field generated by the Lorenz equations end up at the origin; all other initial conditions go to the butterfly attractor that has chaotic dynamics.

The black background in the photograph brings out the separating properties of the Lorenz manifold: points on one side of the surface can never cross to the other side, even though they will visit both left and right wings of the butterfly attractor in a seemingly unpredictable manner.

For more information, the crochet pattern and mounting instructions, see: http://www.enm.bris.ac.uk/staff/hinke/crochet/.
3 files on 1 page(s)