Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

 



Math ImageryThe connection between mathematics and art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius bands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.

Jump to one of the galleries

Share this page




Share this


Explore the world of mathematics and art, share an e-postcard, and bookmark this page to see new featured works..

Home > Dejenie A. Lakew :: Hyper Symmetries

Most viewed - Dejenie A. Lakew :: Hyper Symmetries
lakew-2.jpg
Superimposition of Polar Surfaces-2, by Dejenie A. Lakew1263 viewsSuperimpositions of polar surfaces. Equations:
rho = 2cos(3exp sin 3[theta])*exp sin 3[theta]*exp(sin 3(exp sin 3[theta])),
rho = exp(sin 3(exp sin 3[theta]),
rho = -3cos(3exp sin 3[theta])*exp sin 3[theta]*exp(sin 3(exp sin 3[theta]))
with compositions of tilts and turns.
Here the first polar surface is the derivative of the second surface and the third surface is a spatial reflection of the first through the origin with wire frames, but with a larger spatial radius.
lakew-6.jpg
Superimposition of Polar Surfaces-6, by Dejenie A. Lakew1046 viewsSuperimposition of three polar surfaces. Equations:
rho = 2cos(3exp sin 3[theta])*exp sin 3[theta]*exp(sin 3(exp sin 3[theta])),
rho = 3 + 2cos(3exp sin 3[theta])*exp sin 3[theta]*exp(sin 3(exp sin 3[theta]))
rho = 6*(the outer sphere wire-framed) with many compositions of tilts and turns as rigid transformations.
lakew-4.jpg
Superimposition of Polar Surfaces-4, by Dejenie A. Lakew1015 viewsSuperimpositions of polar surfaces. Equations:
rho = 10sin8[theta]
rho = 10cos8[theta] with a number of compositions of tilts and turns.
lakew-1.jpg
Superimposition of Polar Surfaces-1, by Dejenie A. Lakew1006 viewsThe superimposition of two polar surfaces:
rho = 2sin4[theta]
rho = 5/3 cos4[theta] (wire-framed) with some compositions of tilts and turns.
The two polar surfaces are generated in such a way that one is a derivative surface of the other but with different polar radius.
lakew-3.jpg
Superimposition of Polar Surfaces-3, by Dejenie A. Lakew923 viewsSuperimposition of polar surfaces. Equations:
rho = 2cos(3exp sin 3[theta])*exp sin 3[theta]*exp(sin 3(exp sin 3[theta])),
rho = 3 + 2cos(3exp sin 3[theta])*exp sin 3[theta]*exp(sin 3(exp sin 3[theta]))
with several compositions of tilts and turns.
lakew-5.jpg
Superimposition of Polar Surfaces-5, by Dejenie A. Lakew880 viewsSuperimposition of three polar surfaces. Equations:
rho = 2cos(3exp sin 3[theta])*exp sin 3[theta]*exp(sin 3(exp sin 3[theta])),
rho = 3 + 2cos(3exp sin 3[theta])*exp sin 3[theta]*exp(sin 3(exp sin 3[theta]))
rho = -3cos(3exp sin 3[theta])*exp sin 3[theta]*exp(sin 3(exp sin 3[theta]) followed by many compositions of tilts and turns.
6 files on 1 page(s)