The connection between mathematics and
art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius bands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.

Share this page

Jump to one of the galleries

Share this

Explore the world of mathematics and art, share an e-postcard, and bookmark this page to see new featured works..

Click on the thumbnails to see larger image and share.

"Snowflake Model 1," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 2," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 3," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 4," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 5," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 6," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 7," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 8," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 9," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 10," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 11," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 12," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath

"Snowflake Model 13," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and other local conditions. How such a seemingly random process produces snowflakes that are at once geometrically simple and incredibly intricate has captivated scientists since the early 1600s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basic shapes and the fine details and markings of the full range of observed forms. Our model is driven by diffusion-limited attachment of micron-scale blocks of ice; read about the underlying mathematics at http://psoup.math.wisc.edu/Snowfakes.htm. --- David Griffeath