Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

 



Math ImageryThe connection between mathematics and art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius bands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.

Jump to one of the galleries

Share this page

|



Share this

|

Explore the world of mathematics and art, share an e-postcard, and bookmark this page to see new featured works..

Home > Carlo Séquin :: Mathematical Images
Click to view full size image

"Knot divided" (snow sculpture), by Carlo Sequin (University of California, Bekeley), Stan Wagon (Team Captain), John Sullivan, Dan Schwalbe, and Rich Seeley

Can a DIVIDED KNOT be NOT DIVIDED? When carving this sculpture out of a 10x10x12 foot block of hard compacted snow, we started with the simplest possible knot: the overhand knot, also known as the trefoil knot. We then split lengthwise the whole ribbon forming the three big loops. But there is a twist that may lead to surprises: The original knotted strand was actually a triply twisted Moebius band! Thus the question: Does our cut separate the structure into two pieces, or does it form a single, highly knotted twisted strand? Read more about this snow sculpture. --- Carlo Sequin

Ikara69-epostcard.jpg Birds24-epostcard.jpg result-epostcard.jpg Poincare_FishDish-epostcard.jpg Lizard_Tetrus-epostcard.jpg