Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

 



Math ImageryThe connection between mathematics and art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius bands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.

Jump to one of the galleries

Share this page




Share this


Explore the world of mathematics and art, share an e-postcard, and bookmark this page to see new featured works..

Home > Carlo Séquin :: Mathematical Images
Click to view full size image

"The Regular Hendecachoron," computer model by Carlo Sequin, University of California, Berkeley.

This hendecachoron (a literal translation of "11-cell" into Greek) is a regular, self-dual, 4-dimensional polytope composed from eleven non-orientable, self-intersecting hemi-icosahedra. This object also has 11 vertices (shown as spheres), 55 edges (shown as thin cylindrical beams), and 55 triangular faces (shown as cut-out frames). Different colors indicate triangles belonging to different cells. This intriguing object of high combinatorial symmetry was discovered in 1976 by Branko Grünbaum and later rediscovered and analyzed from a group theoretic point of view by geometer H.S.M. Coxeter. Freeman Dyson, the renowned physicist, was also much intrigued by this shape and remarked in an essay: "Plato would have been delighted to know about it." The hendecachoron has 660 combinatorial automorphisms, but these can only show themselves as observable geometric symmetries in 10-dimensional space or higher. In this image, the model of the hendecachoron is shown with a background of a deep space photo of our universe, to raise the capricious question, whether this 10-dimensional object might serve as a building block for the 10-dimensional universe that some string-theorists have been postulating.

A more detailed description and visualization of the 11-Cell, describing its construction in bottom-up as well as in top down ways, can be found in a paper by Sequin and Lanier: “Hyperseeing the Regular Hendecachoron”. There are additional images and VRML models for interactive inspection here. --- Carlo Sequin

result-epostcard.jpg Poincare_FishDish-epostcard.jpg Lizard_Tetrus-epostcard.jpg H512h-epostcard.jpg Sequin-epostcard.jpg