GLOBAL EXISTENCE OF SOLUTIONS TO A HYPERBOLIC-PARABOLIC SYSTEM

MEI ZHANG AND CHANGJIANG ZHU

(Communicated by Walter Craig)

ABSTRACT. In this paper, we investigate the global existence of solutions to a hyperbolic-parabolic model of chemotaxis arising in the theory of reinforced random walks. To get L^2-estimates of solutions, we construct a nonnegative convex entropy of the corresponding hyperbolic system. The higher energy estimates are obtained by the energy method and a priori assumptions.

1. INTRODUCTION AND MAIN RESULT

In this paper, we consider the following system:

$$\begin{cases}
 u_t - u_x = 0, \\
 v_t - (uv)_x = v_{xx},
\end{cases}$$

with boundary conditions

$$u(0,t) = u(1,t) = 0, \quad t \geq 0,$$

and initial data

$$u(x,0) = u_0(x), \quad v(x,0) = v_0(x) > 0, \quad x \in [0,1].$$

Here the compatibility conditions on u_0, v_0 assume that $(u_0(0), v_0(0)) = (0,0)$, which will be used in Section 3.

Motivated by biological considerations and numerical computations carried out by Othmer and Stevens in [6] and Levine and Sleeman in [3], the system (1.1) comes from:

$$\begin{cases}
 \frac{\partial p}{\partial t} = D \frac{\partial}{\partial x} \left(p \frac{\partial}{\partial x} \left(\ln \frac{p}{\Phi(w)} \right) \right), \quad x \in (0,l), \quad t > 0, \\
 \frac{\partial w}{\partial t} = R(p,w),
\end{cases}$$

where $p(x,t)$ is the particle density of a particular species, $w(x,t)$ is the concentration of the “active agent”, and D and B are positive constants.
In fact, as in [7], let
\(\Phi(w) = w^{-\alpha}, \quad R(p, w) = \lambda pw - \mu w, \)
where \(\alpha \) and \(\lambda, \mu \) are positive constants.

Then the system (1.4) is transformed into the following form:
\begin{align}
\begin{cases}
p_t &= Dp_{xx} + D\alpha \left(\frac{pw}{w} \right)_x, \\
w_t &= \lambda pw - \mu w.
\end{cases}
\end{align}

Furthermore, set
\begin{equation}
q = (\ln w)_x = \frac{w_x}{w}.
\end{equation}

Then the system (1.6) can be rewritten as:
\begin{align}
\begin{cases}
p_t &= Dp_{xx} + D\alpha (pq)_x, \\
q_t &= \lambda p_x.
\end{cases}
\end{align}

Let
\begin{equation}
\tau = At, \quad \xi = lx, \quad p = Bv, \quad q = c_1 u,
\end{equation}
where \(A, l \) and \(c_1 \) are positive constants to be determined below.

Then the system (1.8) becomes
\begin{align}
\begin{cases}
u_\tau &= \frac{\lambda B}{Ac_1} v_\xi, \\
v_\tau &= \frac{Dl^2}{A} v_\xi + \frac{Dalc_1}{A} (uv)_\xi.
\end{cases}
\end{align}

Choosing
\begin{align}
\begin{cases}
\frac{\lambda B}{Ac_1} = 1, \\
\frac{Dl^2}{A} = 1, \\
\frac{Dalc_1}{A} = 1,
\end{cases}
\end{align}
i.e.,
\begin{equation}
A = B\alpha \lambda > 0, \quad l = \sqrt{\frac{B\alpha \lambda}{D}} > 0, \quad c_1 = \sqrt{\frac{B\lambda}{\alpha D}} > 0,
\end{equation}
then it is easy to verify that \(u, v \) satisfy
\begin{align}
\begin{cases}
u_\tau &= v_\xi, \\
v_\tau &= v_\xi + (uv)_\xi.
\end{cases}
\end{align}

If we replace \((\xi, \tau)\) by \((x, t)\), then (1.12) can be rewritten as (1.1).

The system (1.4) describes the model of chemotaxis in biology. Othmer and Stevens [6] have developed a number of mathematical models of chemotaxis to illustrate aggregation leading (numerically) to nonconstant steady-states, blow-up resulting in the formation of singularities and collapse or the formation of a spatially uniform steady state. The models developed in [6] have been studied in depth by Levine and Sleeman [3]. They gave some heuristic understanding of some of these phenomena and investigated the properties of solutions of a system of chemotaxis

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Throughout this paper, we denote positive constants by C. The character “C” may differ in different places.

In this paper, we will study the global existence of solutions to the initial boundary value problem (1.1)-(1.3) in $L^\infty([0, \infty), H^2([0, 1]))$. To get L^2-estimates of solutions, we construct a nonnegative convex entropy of the corresponding hyperbolic system. The higher energy estimates are obtained by the energy method and a priori assumptions.

The corresponding hyperbolic system of (1.1) is

\begin{equation}
\begin{cases}
 u_t - v_x = 0, \\
 v_t - (uv)_x = 0.
\end{cases}
\end{equation}

The eigenvalues of (1.13) are:

\begin{equation}
\lambda_1 = -\frac{1}{2} u - \frac{1}{2} \sqrt{u^2 + 4v}, \quad \lambda_2 = -\frac{1}{2} u + \frac{1}{2} \sqrt{u^2 + 4v}.
\end{equation}

Therefore, the system (1.13) is strictly hyperbolic when $v > 0$.

Remark 1.1. By the boundary conditions (1.2) and (1.1)$_1$, we have

\begin{equation}
u_t(0, t) = u_t(1, t) = v_x(0, t) = v_x(1, t) = 0.
\end{equation}

Notation. Throughout this paper, we denote positive constants by C. Moreover, the character “C” may differ in different places. $L^p = L^p([0, 1])$ $(1 \leq p \leq \infty)$ denotes the usual Lebesgue space with the norm

$$
||f||_{L^p} = \left(\int_0^1 |f(x)|^p dx \right)^{\frac{1}{p}}, \quad 1 \leq p < \infty,
$$

$$
|f|_\infty = \sup_{[0, 1]} |f(x)|.
$$

$H^l([0, 1])$ $(l \geq 0)$ denotes the usual lth-order Sobolev space with the norm

$$
||f||_l = \left(\sum_{j=0}^l ||\partial_x^j f||^2 \right)^{\frac{1}{2}},
$$

where $|| \cdot || = || \cdot ||_0 = || \cdot ||_{L^2}$. For simplicity, $||f(\cdot, t)||_{L^p}$ and $||f(\cdot, t)||_l$ are denoted by $||f(t)||_{L^p}$ and $||f(t)||_l$ respectively.

We will prove the following global existence theorem.

Theorem 1.2. Let $u_0, \ v_0 \in H^2([0, 1])$ and let $||u_0||_2^2 + ||v_0 - 1||_2^2$ be sufficiently small. Then there exists a unique global solution $(u(x, t), v(x, t))$ of (1.1)-(1.3) satisfying

\begin{enumerate}
 \item[(i)] $u, \ v \in L^\infty([0, \infty), H^2([0, 1])), \ v_x \in L^2([0, \infty), H^2([0, 1]));$
 \item[(ii)] $||u(t)||_2^2 + ||v(t) - 1||_2^2 + \int_0^t ||v_x(\tau)||_2^2 d\tau \leq C (||u_0||_2^2 + ||v_0 - 1||_2^2).$
\end{enumerate}
2. L^2-ENERGY ESTIMATES

In this section, we give L^2-energy estimates of the initial boundary value problem (1.1), (1.2) and (1.3) by a nonnegative convex entropy of the system of hyperbolic conservation laws (1.13). To do this, we first give the following relation on the entropy-entropy flux pair $(\eta(u, v), q(u, v))$ of (1.13) (see [8]):

\begin{equation}
\begin{aligned}
&\eta_u = -q_v, \\
&q_v = -\eta_u - u\eta_v.
\end{aligned}
\end{equation}

Eliminating q from (2.1), we have

\begin{equation}
\eta_{uu} + u\eta_{uv} - v\eta_{vv} = 0.
\end{equation}

Next, we seek the entropy of (1.13) with the following form:

\begin{equation}
\eta(u, v) = \frac{1}{2}u^2 + a(v),
\end{equation}

where $a(v)$ is a nonnegative convex function.

Substituting (2.3) into (2.2), we have

\begin{equation}
1 - va''(v) = 0,
\end{equation}

which implies

\begin{equation}
a(v) = v\ln v - v + k_1v + k_2,
\end{equation}

where k_1, k_2 are arbitrary constants.

It is easy to get the flux corresponding to the entropy $\eta(u, v)$ defined by (2.3) and (2.4), namely

\begin{equation}
q(u, v) = -uv \ln v - k_1uv + k_3,
\end{equation}

where k_3 is an arbitrary constant.

In particular, if we take $k_1 = k_3 = 0, k_2 = 1$, we will get an entropy-entropy flux pair of (1.13):

\begin{equation}
\begin{aligned}
&\eta(u, v) = \frac{1}{2}u^2 + v\ln v - v + 1, \\
&q(u, v) = -uv \ln v.
\end{aligned}
\end{equation}

In the next analysis, we devote ourselves to the estimates of the solution $(u(x, t), v(x, t))$ of (1.1), (1.2) and (1.3) under the a priori assumptions:

\begin{equation}
|u| \leq \varepsilon, \quad |v - 1| \leq \frac{1}{2}, \quad |u_x| \leq \varepsilon, \quad |v_x| \leq \varepsilon,
\end{equation}

where $0 < \varepsilon << 1$.

Lemma 2.1. The entropy $\eta(u, v)$ defined by (2.6) satisfies for $|v - 1| \leq \frac{1}{2}$,

\begin{equation}
\frac{1}{2}u^2 + \frac{1}{3}(v - 1)^2 \leq \eta(u, v) \leq \frac{1}{2}u^2 + (v - 1)^2.
\end{equation}

Proof. Let

\begin{equation}
a_0(v) = v\ln v - v + 1.
\end{equation}

Then

\begin{equation}
a_0(1) = a'_0(1) = 0, \quad \frac{2}{3} \leq a''_0(v) = \frac{1}{v} \leq 2,
\end{equation}

\[\text{License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use}\]
which implies
\[
\frac{1}{3}(v-1)^2 \leq a_0(v) = \frac{1}{2}a_0''(\xi)(v-1)^2 \leq (v-1)^2,
\]
where ξ is between 1 and v. \qed

From (2.6), (2.9) and (2.10), (2.8) follows. This proves Lemma 2.1.

Lemma 2.2 (L^2-energy estimates). Under the assumptions of Theorem 1.2 and the a priori assumptions (2.7), we have
\[
\int_0^1 \left(\frac{1}{2}u^2 + \frac{1}{3}(v-1)^2 \right) dx + \frac{2}{3} \int_0^t \int_0^1 v_x^2dxdt \leq \int_0^1 \left(\frac{1}{2}u_0^2(x) + (v_0(x) - 1)^2 \right) dx.
\]

Proof. Multiplying (1.1) by $\nabla \eta$ and integrating it, we have by the boundary conditions (1.2) and (1.15),
\[
\int_0^1 \eta(x,t)dx + \int_0^t \int_0^1 \frac{v_x^2}{v}dxds = \int_0^1 \eta(x,0)dx,
\]
i.e.,
\[
\int_0^1 \left(\frac{1}{2}u^2 + v \ln v - v + 1 \right) dx + \int_0^t \int_0^1 \frac{v_x^2}{v}dxds = \int_0^1 \left(\frac{1}{2}u_0^2 + v_0 \ln v_0 - v_0 + 1 \right) dx.
\]
This proves Lemma 2.2 by Lemma 2.1 and the a priori assumptions (2.7). \qed

3. **Higher energy estimates**

In this section, we will establish higher energy estimates.

Lemma 3.1. Under the assumptions of Theorem 1.2 and the a priori assumptions (2.7), we have
\[
\int_0^1 \left(u_x^2 + \frac{2}{3}v_x^2 \right) dx + \frac{4}{3} \int_0^t \int_0^1 v_{xx}^2dxds \leq C \left(||u_0||_1^2 + ||v_0 - 1||_1^2 \right),
\]
where C is a positive constant.

Proof. Differentiating (1.1) with respect to x, we have
\[
\begin{align*}
\left\{ \begin{array}{l}
 u_{xt} - v_{xx} = 0, \\
 v_{xt} - (uv)_{xx} = v_{xxx}.
\end{array} \right.
\end{align*}
\]
For any smooth function $g_1(v)$, take (3.2)$_1 \times u_x + (3.2)$_2 $g_1(v)v_x$, and integrate it to get
\[
\frac{1}{2} \frac{d}{dt} \int_0^1 u_x^2 dx + \frac{1}{2} \frac{d}{dt} \int_0^1 g_1(v)v_x^2 dx \\
= \int_0^1 u_x v_{xx} dx + \frac{1}{2} \int_0^1 g_1'(v)v_x^2v_t dx + \int_0^1 g_1(v)uw_xv_{xx} dx \\
+ 2 \int_0^1 g_1(v)u_xv_x^2 dx + \int_0^1 g_1(v)u_{xx}v_x^2 dx + \int_0^1 g_1(v)v_{xxx}v_x dx.
\]
\[
(3.3)
\]
Next, we estimate the terms in the right side of (3.3) as follows:

\[
\frac{1}{2} \int_0^1 g_1'(v) v_x^2 v_x dx = \frac{1}{2} \int_0^1 g_1'(v) v_x^2 (uv)_x dx + \frac{1}{2} \int_0^1 g_1'(v) v_x^2 v_{xx} dx \\
= \frac{1}{6} \int_0^1 g_1''(v) v_x^4 dx + \frac{1}{6} (g_1'(v) v_x^2)_{0}^1 \\
\]

(3.4)

\[
\int_0^1 g_1(v) u v_x v_{xx} dx = -\frac{1}{2} \int_0^1 (g_1(v) u v_x^2 v_x + \frac{1}{2} (g_1(v) u v_x^2)_{0}^1 \\
= \frac{1}{2} \int_0^1 g_1(v) u v_x^2 v_x dx - \frac{1}{2} \int_0^1 g_1(v) u v_x^2 v_{xx} dx \\
\]

(3.5)

\[
\int_0^1 g_1(v) v v_x u_x dx = \int_0^1 (g_1(v) v v_x)_x u_x dx + (g_1(v) v v_x u_x)_{0}^1 \\
= \int_0^1 g_1(v) v v_x v_x dx - \int_0^1 g_1(v) v v_x u_x dx \\
\]

(3.6)

and

\[
\int_0^1 g_1(v) v_x v_{xx} dx = \int_0^1 (g_1(v) v_x v_{xx} dx + (g_1(v) v_x v_{xx})_{0}^1 \\
= \frac{1}{3} \int_0^1 g_1''(v) v_x^4 dx - \int_0^1 g_1(v) v_x^2 v_{xx} dx \\
\]

(3.7)

Substituting (3.4)-(3.7) into (3.3) and using the boundary conditions (1.2) and (1.15), we obtain

\[
\frac{1}{2} \frac{d}{dt} \int_0^1 \left(u_x^2 + g_1(v) v_x^2 \right) dx + \int_0^1 g_1'(v) v_x^2 v_{xx} dx \\
= \frac{1}{6} \int_0^1 g_1''(v) v_x^4 dx - \int_0^1 (g_1(v) v - 1) u_x v_{xx} dx - \frac{1}{2} \int_0^1 (g_1'(v) v - g_1(v)) u_x v_x^2 dx. \\
\]

Choosing

\[
g_1(v) = \frac{1}{v} > 0, \]

we have

\[
\frac{1}{2} \frac{d}{dt} \int_0^1 \left(u_x^2 + \frac{v_x^2}{v} \right) dx + \int_0^1 \frac{v_x^2}{v} dx = \frac{1}{3} \int_0^1 \frac{v_x^4}{v^3} dx + \int_0^1 \frac{u_x v_x^2}{v} dx. \\
\]
From the \textit{a priori} assumptions (2.7), we have
\[
\frac{1}{2} \frac{d}{dt} \int_0^1 \left(u_x^2 + \frac{v_x^2}{v} \right) dx + \int_0^1 \frac{v_x^2}{v} \, dx \leq \frac{4}{3} \varepsilon^2 \int_0^1 \frac{v_x^2}{v} \, dx + \varepsilon \int_0^1 \frac{v_x^2}{v} \, dx
\]
(3.11)
\[
= \left(\frac{4}{3} \varepsilon^2 + \varepsilon \right) \int_0^1 \frac{v_x^2}{v} \, dx.
\]
Integrating (3.11) in t over $[0, t]$, we can obtain
\[
\int_0^1 \left(u_x^2 + \frac{v_x^2}{v} \right) dx + 2 \int_0^t \int_0^1 \frac{v_x^2}{v} \, dx \, ds
\]
(3.12)
\[
\leq \int_0^1 \left(u_{0x}^2 + \frac{v_{0x}^2}{v_0} \right) dx + 2 \left(\frac{4}{3} \varepsilon^2 + \varepsilon \right) \int_0^t \int_0^1 \frac{v_x^2}{v} \, dx \, ds,
\]
which implies (3.1) by (2.11) and the \textit{a priori} assumptions (2.7).
\square

The proof of Lemma 3.1 is completed.

Lemma 3.2. Under the assumptions of Theorem 1.2 and the \textit{a priori} assumptions (2.7), we have
\[
\int_0^1 \left(u_{xx}^2 + \frac{2}{3} v_{xx}^2 \right) dx + \frac{1}{3} \int_0^t \int_0^1 u_{xxx}^2 \, dx \, ds \leq C \left(\|u_0\|_2^2 + \|v_0 - 1\|_2^2 \right),
\]
(3.13)
where C is a positive constant.

Before proving Lemma 3.2, we give the following result.

Proposition 3.3. The smooth function $v(x, t)$ obtained by Theorem 1.2 satisfies the following properties:
\[
\left| \int_0^1 \frac{1}{v^2} v_x^3 \, dx \right| \leq \int_0^1 \frac{1}{v_x} v_x^2 \, dx + C \int_0^1 \frac{1}{v_x} v_x^2 \, dx,
\]
(3.14)
where C is a positive constant.

Proof. From the Gagliardo-Nirenberg-Moser inequality, we have
\[
\|v_{xx}(t)\|_{L^3}^3 \leq C \|v_x(t)\|_{L^6}^2 \|v_{xxx}(t)\|_{L^2}^2,
\]
(3.15)
where C is a positive constant.

(3.15) and Young’s inequality show that
\[
\|v_{xx}(t)\|_{L^3}^3 \leq C \|v_x(t)\|_{L^6}^6 + \frac{2}{3} \|v_{xxx}(t)\|_{L^2}^2.
\]
(3.16)
Therefore, we have from the \textit{a priori} assumptions (2.7),
\[
\left| \int_0^1 \frac{1}{v^2} v_x^3 \, dx \right| \leq C \|v_x(t)\|_{L^6}^6 + \frac{2}{3} \|v_{xxx}(t)\|_{L^2}^2
\]
\[
\leq C \|v_x\|_{L^\infty}^4 \int_0^1 \frac{v_x^2}{v} \, dx + \int_0^1 \frac{1}{v_x} v_x^2 \, dx
\]
(3.17)
\[
\leq C \int_0^1 \frac{v_x^2}{v} \, dx + \int_0^1 \frac{1}{v_x} v_x^2 \, dx.
\]
This proves Proposition 3.3. \square
Proof of Lemma 3.2. Differentiating (3.2) with respect to x, we have

\begin{equation}
\left\{ \begin{array}{l}
u_{xxt} - v_{xxx} = 0, \\
v_{xxt} - (uv)_{xxx} = v_{xxxx}.
\end{array} \right.
\end{equation}

(3.18)

For any smooth function $g_2(v)$, taking (3.18)$_1 \times u_{xx} + (3.18)_2 \times g_2(v)v_{xx}$, and integrating it, we have

\begin{equation}
\frac{1}{2} \frac{d}{dt} \int_0^1 (u_{xx}^2 + g_2(v)v_{xx}^2) \, dx = \int_0^1 u_{xx}v_{xxx} \, dx + \frac{1}{2} \int_0^1 g_2'(v)v_{x}^2 \, dx \\
+ \int_0^1 g_2(v)v_{xx}(uv)_{xxx} \, dx + \int_0^1 g_2(v)v_{xxx}v_{xxxx} \, dx.
\end{equation}

(3.19)

Next, we estimate the terms in the right side of (3.19) as follows:

\begin{equation}
\frac{1}{2} \int_0^1 g_2'(v)v_{x}^2 \, dx = \frac{1}{2} \int_0^1 g_2'(v)[(uv)_x + v_{xx}]v_{xx}^2 \, dx
\end{equation}

(3.20)

\begin{equation}
\int_0^1 g_2(v)v_{xx}(uv)_{xxx} \, dx = - \int_0^1 (uv)_{xx}(g_2(v)v_{xx}) \, dx + (uv)_{xxx}g_2(v)v_{xx} \bigg|_0^1
\end{equation}

(3.21)

\begin{equation}
\int_0^1 g_2(v)v_{xxx}v_{xxxx} \, dx = - \int_0^1 (g_2(v)v_{xxx})_xv_{xxx} \, dx + (g_2(v)v_{xxx}v_{xxxx}) \bigg|_0^1
\end{equation}

(3.22)
Substituting (3.20)-(3.22) into (3.19), we obtain by the boundary conditions (1.2) and (1.15),

(3.23) $$\frac{1}{2} \frac{d}{dt} \int_0^1 \left(u^2_{xx} + v^2_{xx} \right) dx + \int_0^1 g_2(v) v^2_{xx} dx$$

$$= \int_0^1 u_{xx} v_{xxx} dx - \int_0^1 v g_2(v) u_{xx} v_{xxx} dx + \frac{1}{2} \int_0^1 g'_2(v) u v_x v^2_{xx} dx$$

$$+ \frac{1}{2} \int_0^1 g'_2(v) u v_x v^2_{xx} dx + \frac{1}{2} \int_0^1 g'_2(v) v^3_{xx} dx - \int_0^1 u g_2(v) v_{xxx} v_{xx} dx$$

$$- 2 \int_0^1 g_2(v) u_x v_x v_{xxx} dx - \int_0^1 u g'_2(v) v_x v^2_{xx} dx - 2 \int_0^1 g'_2(v) u v^2_x v_x dx$$

$$+ \int_0^1 g'_2(v) v^2_x u_x dx + \int_0^1 v g''_2(v) u^2_x u_x dx + \int_0^1 v g'_2(v) v^2_x u_x dx$$

$$+ \int_0^1 v g'_2(v) u v_x v_{xxx} u_x dx - \int_0^1 g'_2(v) v_x v_{xxx} u_x dx$$

$$+(g_2(v) v_x (v u_{xx} + v_{xxx}))|_0^1.$$

If choosing $g_2(v) = \frac{1}{v}$, then we get

$$\frac{1}{2} \frac{d}{dt} \int_0^1 \left(u^2_{xx} + \frac{1}{v^2} v^2_{xx} \right) dx + \int_0^1 \frac{1}{v} v^2_{xx} dx$$

$$= \frac{1}{2} \int_0^1 \frac{u}{v^2} v_x v^2_{xx} dx - \frac{1}{2} \int_0^1 \frac{1}{v^2} u_x v^2_{xx} dx - \frac{1}{2} \int_0^1 \frac{1}{v^2} v^3_{xx} dx$$

$$- \int_0^1 \frac{u}{v} v_{xx} v_{xxx} dx - 3 \int_0^1 \frac{1}{v} u_x v_x v_{xxx} dx + 3 \int_0^1 \frac{1}{v} v^2_x u_x v_x dx$$

$$- \int_0^1 \frac{u}{v} u_x v^2_{xx} dx + \int_0^1 \frac{1}{v^2} u v_x v_{xxx} dx + \left(\frac{v_{xx}}{v} (v u_{xx} + v_{xxx}) \right)|_0^1.$$

From (3.2) and the boundary conditions (1.2) and (1.15), we have

$$v_{xxx}|_0^1 = -((uv)_{xx})|_0^1 = -(uv_{xx})|_0^1 - 2(u_x v_x)|_0^1 - (u_{xx} v)|_0^1 = -(u_{xx} v)|_0^1.$$

Thus

(3.25) $$\left(\frac{v_{xx}}{v} (v u_{xx} + v_{xxx}) \right)|_0^1 = 0.$$

By (3.24), (3.25), (3.14) and using the Cauchy-Schwarz inequality, we have

$$\frac{1}{2} \frac{d}{dt} \int_0^1 \left(u^2_{xx} + \frac{1}{v^2} v^2_{xx} \right) dx + \int_0^1 \frac{1}{v} v^2_{xx} dx$$

$$\leq \frac{3}{4} \int_0^1 \frac{1}{v} v^2_{xx} dx + C \int_0^1 \frac{1}{v} (v^2_x + v^2_{xx}) dx.$$

Integrating (3.26) in t over $[0, t]$ and using Lemmas 2.2 and 3.1, and the a priori assumptions (2.7), we get (3.13).

This proves Lemma 3.2. \qed
4. The proof of Theorem 1.2

The global existence in Theorem 1.2 follows from a local existence theorem (see \cite{2, 5}) and the a priori estimate (1.16) obtained by (2.11), (3.1) and (3.13).

Now, we have to show that the a priori assumptions (2.7) can be closed since, under the a priori assumptions (2.7), we have proved that (1.16) holds.

In fact, by Sobolev’s embedding theorem $W^{1,1}(\mathbb{R}) \hookrightarrow L^{\infty}(\mathbb{R})$ and Hölder’s inequality, we have

\[
|v(x, t) - 1| \leq C \int_0^1 |v(x, t) - 1| \, dx + C \int_0^1 \left| \frac{\partial}{\partial x} (v(x, t) - 1) \right| \, dx \\
\leq C \left(\int_0^1 (v(x, t) - 1)^2 \, dx \right)^{\frac{1}{2}} + C \left(\int_0^1 u_x^2(x, t) \, dx \right)^{\frac{1}{2}} \\
\leq C \left(\|u_0\|_1^2 + \|v_0 - 1\|_1^2 \right)^{\frac{1}{2}},
\]

which implies

\[
|v(x, t) - 1| \leq C \left(\|u_0\|_2^2 + \|v_0 - 1\|_2^2 \right)^{\frac{1}{2}}.
\]

Similarly, we have

\[
|u(x, t)|, \ |u_x(x, t)|, \ |v_x(x, t)| \leq C \left(\|u_0\|_2^2 + \|v_0 - 1\|_2^2 \right)^{\frac{1}{2}}.
\]

By (4.1) and (4.2), it is easy to see that the a priori assumptions (2.7) hold provided $\|u_0\|_2^2 + \|v_0 - 1\|_2^2$ is sufficiently small. Therefore, the a priori assumptions (2.7) are always true provided $\|u_0\|_2^2 + \|v_0 - 1\|_2^2$ is sufficiently small.

Acknowledgement

The research was supported by the Program for New Century Excellent Talents in University #NCET-04-0745, the Key Project of the National Natural Science Foundation of China #10431060. Special thanks go to the anonymous referee for his/her helpful comments on the draft version of this manuscript.

References

Laboratory of Nonlinear Analysis, Department of Mathematics, Central China Normal University, Wuhan 430079, People’s Republic of China

Laboratory of Nonlinear Analysis, Department of Mathematics, Central China Normal University, Wuhan 430079, People’s Republic of China

E-mail address: cjzhu@mail.ccnu.edu.cn