Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Tao's resolution of the Erdős discrepancy problem


Author: K. Soundararajan
Journal: Bull. Amer. Math. Soc. 55 (2018), 81-92
MSC (2010): Primary 14K38, 11B75, 11N64, 11Z05
DOI: https://doi.org/10.1090/bull/1598
Published electronically: September 11, 2017
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This article gives a simplified account of some of the ideas behind Tao's resolution of the Erdős discrepancy problem.


References [Enhancements On Off] (What's this?)

  • [1] Peter Borwein, Stephen K. K. Choi, and Michael Coons, Completely multiplicative functions taking values in $ \{-1,1\}$, Trans. Amer. Math. Soc. 362 (2010), no. 12, 6279-6291. MR 2678974, https://doi.org/10.1090/S0002-9947-2010-05235-3
  • [2] P. D. T. A. Elliott, On the correlation of multiplicative functions, Notas Soc. Mat. Chile 11 (1992), no. 1, 1-11. MR 1292619
  • [3] Paul Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291-300. MR 0098702
  • [4] Paul Erdős, Some of my favourite unsolved problems, A tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, 1990, pp. 467-478. MR 1117038
  • [5] P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L'Enseignement Mathématique [Monographs of L'Enseignement Mathématique], vol. 28, Université de Genève, L'Enseignement Mathématique, Geneva, 1980. MR 592420
  • [6] N. Frantzikinakis and B. Host.
    The logarithmic Sarnak conjecture for ergodic weights.
    arXiv:1708.00677, 2017.
  • [7] W. Timothy Gowers, Erdős and arithmetic progressions, Erdős Centennial, Bolyai Soc. Math. Stud., vol. 25, János Bolyai Math. Soc., Budapest, 2013, pp. 265-287. MR 3203599, https://doi.org/10.1007/978-3-642-39286-3_8
  • [8] Andrew Granville and Kannan Soundararajan, Pretentious multiplicative functions and an inequality for the zeta-function, Anatomy of Integers, CRM Proc. Lecture Notes, vol. 46, Amer. Math. Soc., Providence, RI, 2008, pp. 191-197. MR 2437976
  • [9] G. Halász, On the distribution of additive and the mean values of multiplicative arithmetic functions, Studia Sci. Math. Hungar. 6 (1971), 211-233. MR 0319930
  • [10] O. Klurman.
    Correlations of multiplicative functions and applications.
    Compositio Math., 153 (2017), 1622-1657.
  • [11] O. Klurman and A. Mangerel.
    Rigidity theorems for multiplicative functions.
    arXiv:1707.07817, 2017.
  • [12] Boris Konev and Alexei Lisitsa, A SAT attack on the Erdős discrepancy conjecture, Theory and Applications of Satisfiability Testing--SAT 2014, Lecture Notes in Comput. Sci., vol. 8561, Springer, Cham, 2014, pp. 219-226. MR 3252248, https://doi.org/10.1007/978-3-319-09284-3_17
  • [13] A. R. D. Mathias, On a conjecture of Erdős and Čudakov, Combinatorics, Geometry and Probability (Cambridge, 1993) Cambridge Univ. Press, Cambridge, 1997, pp. 487-488. MR 1476466
  • [14] Kaisa Matomäki and Maksym Radziwiłł, Multiplicative functions in short intervals, Ann. of Math. (2) 183 (2016), no. 3, 1015-1056. MR 3488742, https://doi.org/10.4007/annals.2016.183.3.6
  • [15] Kaisa Matomäki, Maksym Radziwiłł, and Terence Tao, An averaged form of Chowla's conjecture, Algebra Number Theory 9 (2015), no. 9, 2167-2196. MR 3435814, https://doi.org/10.2140/ant.2015.9.2167
  • [16] Kaisa Matomäki, Maksym Radziwiłł, and Terence Tao, Sign patterns of the Liouville and Möbius functions, Forum Math. Sigma 4 (2016), e14, 44. MR 3513734, https://doi.org/10.1017/fms.2016.6
  • [17] Jiří Matoušek and Joel Spencer, Discrepancy in arithmetic progressions, J. Amer. Math. Soc. 9 (1996), no. 1, 195-204. MR 1311824, https://doi.org/10.1090/S0894-0347-96-00175-0
  • [18] A. M. Odlyzko and H. J. J. te Riele, Disproof of the Mertens conjecture, J. Reine Angew. Math. 357 (1985), 138-160. MR 783538, https://doi.org/10.1515/crll.1985.357.138
  • [19] Polymath5. The Erdős discrepancy problem. Website at http://michaelnielsen.org/polymath1, 2012.
  • [20] K. F. Roth, Remark concerning integer sequences, Acta Arith. 9 (1964), 257-260. MR 0168545
  • [21] P. Sarnak,
    Three lectures on the Möbius function: randomness and dynamics,
    https://www.math.ias.edu/files/wam/2011/PSMobius.pdf, 2011.
  • [22] Peter Sarnak, Möbius randomness and dynamics, Not. S. Afr. Math. Soc. 43 (2012), no. 2, 89-97. MR 3014544
  • [23] K. Soundararajan,
    The Liouville function in short intervals [after Matomäki and Radziwiłł].
    Seminaire Bourbaki, arXiv:16016.08021, 2016.
  • [24] Terence Tao, The Erdős discrepancy problem, Discrete Anal. , posted on (2016), Paper No. 1, 29. MR 3533300, https://doi.org/10.19086/da.609
  • [25] Terence Tao, The logarithmically averaged Chowla and Elliott conjectures for two-point correlations, Forum Math. Pi 4 (2016), e8, 36. MR 3569059, https://doi.org/10.1017/fmp.2016.6
  • [26] T. Tao and J. Teräväinen,
    The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures,
    arXiv:1708.02610, 2017.
  • [27] Aurel Wintner, The Theory of Measure in Arithmetical Semi-Groups, publisher unknown, Baltimore, Md., 1944. MR 0015083
  • [28] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hungar. 18 (1967), 411-467 (German). MR 0223318, https://doi.org/10.1007/BF02280301

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 14K38, 11B75, 11N64, 11Z05

Retrieve articles in all journals with MSC (2010): 14K38, 11B75, 11N64, 11Z05


Additional Information

K. Soundararajan
Affiliation: Department of Mathematics Stanford University 450 Serra Mall, Bldg. 380 Stanford, California 94305-2125
Email: ksound@math.stanford.edu

DOI: https://doi.org/10.1090/bull/1598
Received by editor(s): June 15, 2017
Published electronically: September 11, 2017
Additional Notes: The author is partially supported by the NSF, and a Simons Investigator grant from the Simons Foundation.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society