Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

One cannot hear the shape of a drum


Authors: Carolyn Gordon, David L. Webb and Scott Wolpert
Journal: Bull. Amer. Math. Soc. 27 (1992), 134-138
MSC (2000): Primary 58G25; Secondary 35R30
DOI: https://doi.org/10.1090/S0273-0979-1992-00289-6
MathSciNet review: 1136137
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use an extension of Sunada's theorem to construct a nonisometric pair of isospectral simply connected domains in the Euclidean plane, thus answering negatively Kac's question, "can one hear the shape of a drum?" In order to construct simply connected examples, we exploit the observation that an orbifold whose underlying space is a simply connected manifold with boundary need not be simply connected as an orbifold.


References [Enhancements On Off] (What's this?)

  • [1] P. Bérard, Transplantation et isospectralité. I, II, Math. Ann. (to appear). MR 1152950 (93a:58168)
  • [2] -, Variétés Riemanniennes isospectrales non isometriques, Sem. Bourbaki, vol. 705, 1988/89.
  • [3] M. Berger, P. Gauduchon, and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math., vol. 194, Springer-Verlag, 1971. MR 0282313 (43:8025)
  • [4] R. Brooks, Constructing isospectral manifolds, Amer. Math. Monthly 95 (1988), 823-839. MR 967343 (89k:58285)
  • [5] -, On manifolds of negative curvature with isospectral potentials, Topology 26 (1987), 63-66. MR 880508 (88d:58122)
  • [6] R. Brooks and R. Tse, Isospectral surfaces of small genus, Nagoya Math. J. 107 (1987), 13-24. MR 909246 (88m:58182)
  • [7] P. Buser, Isospectral Riemann surfaces, Ann. Inst. Fourier (Grenoble) 36 (1986), 167-192. MR 850750 (88d:58123)
  • [8] -, Cayley graphs and planar isospectral domains, Proc. Taniguchi Sympos. Geometry and Analysis on Manifolds 1987, Lecture Notes in Math., vol. 1339, Springer-Verlag, 1988, pp. 64-77. MR 961473 (90a:58177)
  • [9] I. Chavel, Eigenvalues in Riemannian geometry, Academic Press, New York, 1984. MR 768584 (86g:58140)
  • [10] D. DeTurck, Audible and inaudible geometric properties, Rendicotti Sem. della Faculta di Scienze dell' Univ. di Cagliari 58 (1988 supplement): Proc. Conf. on Geometry and Topology, 1-26. MR 1122855 (92i:58197)
  • [11] D. DeTurck and C. Gordon, Isospectral deformations. I, Riemannian structures on two-step nilspaces, Comm. Pure Appl. Math 40 (1987), 367-387. MR 882070 (88m:58186)
  • [12] -, Isospectral deformations. II, Trace formulas, metrics, and potentials, Comm. Pure Appl. Math. 42 (1989), 1067-1095. MR 1029118 (91e:58197)
  • [13] C. Gordon, When you can't hear the shape of a manifold, Math. Intelligencer 11 (1989), 39-47. MR 1007037 (90k:58237)
  • [14] C. Gordon and E. Wilson, Isospectral deformations of compact solvmanifolds, J. Differential Geom. 19 (1984), 241-256. MR 739790 (85j:58143)
  • [15] A. Ikeda, On lens spaces which are isospectral but not isometric, Ann. Sci. École Norm. Sup. (4) 13 (1980), 303-315. MR 597742 (83a:58091)
  • [16] M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73 (1966), 1-23. MR 0201237 (34:1121)
  • [17] J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 542. MR 0162204 (28:5403)
  • [18] G. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487. MR 705527 (84m:57009)
  • [19] T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. (2) 121 (1985), 169-186. MR 782558 (86h:58141)
  • [20] W. P. Thurston, The geometry and topology of 3-manifolds, mimeographed lecture notes, Princeton Univ., 1976-79.
  • [21] H. Urakawa, Bounded domains which are isospectral but not congruent, Ann. Sci. École Norm. Sup. (4) 15 (1982), 441-456. MR 690649 (84g:58106)
  • [22] M. F. Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math. (2) 112 (1980), 21-32. MR 584073 (82b:58102)
  • [23] H. Weyl, Über die Asymptotische Verteilung der Eigenwerte, Nachr. Konigl. Ges. Wiss. Göttingen (1911), 110-117.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 58G25, 35R30

Retrieve articles in all journals with MSC (2000): 58G25, 35R30


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1992-00289-6
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society