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Introduction

This paper is about the representation theory of finite group schemes over a field
k of positive characteristic. A finite group scheme G is an affine group scheme
whose coordinate algebra is a finite dimensional vector space over k. In that case,
the linear dual of the coordinate algebra, called the group algebra of G, is a finite
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dimensional cocommutative Hopf algebra, whose representation theory is equivalent
to that of G. This means that all our results can be restated for finite dimensional
cocommutative Hopf k-algebras, but we adhere to the geometric language.

Examples of finite group schemes include finite groups, restricted enveloping
algebras of finite dimensional p-Lie algebras, and Frobenius kernels of algebraic
groups. The representation theory of finite group schemes over k is often wild, even
in such small cases as the finite group Z/3×Z/3 over a field of characteristic three,
or the 3-dimensional Heisenberg Lie algebra. In constructive terms, this means
that it is not possible to classify the finite dimensional indecomposable modules.
One thus has to find better ways to organize our understanding of the structure of
the module category of G. Developments in stable homotopy theory and algebraic
geometry suggest a natural extension of the process of building modules up to direct
sums. Namely, in addition to (possibly infinite) direct sums and summands, one
allows taking syzygies (both positive and negative), extensions, and tensoring (over
k) with simple G-modules. We say M is built out of N if M can be constructed out
of N using these operations. What follows is one of the main results of this work.

Theorem (Corollary 10.2). Let M and N be non-zero G-modules. One can build
M out of N if (and only if) there is an inclusion π- suppG(M) ⊆ π- suppG(N).

Here π- suppG(M) denotes the π-support of M introduced by Friedlander and
Pevtsova [24] and recalled in Section 1. It is a subset of the space of π-points of
G, and the latter is homeomorphic to ProjH∗(G, k). Recall that H∗(G, k), the
cohomology algebra of G, is a finitely generated graded-commutative k-algebra,
by a result of Friedlander and Suslin [25]. Thus, π- suppG(M) may be seen as an
algebro-geometric portrait of M , and the gist of the theorem is that this is fine
enough to capture at least homological aspects of the G-module M .

The proper context for the result above is StModG, the stable module category of
G, and K(InjG), the homotopy category of complexes of injective G-modules. These
are compactly generated triangulated categories that inherit the tensor product of
G-modules. We deduce Corollary 10.2 from an essentially equivalent statement,
Theorem 10.1, that gives a classification of the tensor ideal localizing subcategories
of StModG. See Corollary 10.6 for a version dealing with K(InjG).

There are many known consequences of such classification results. One is a
proof of the “telescope conjecture” for StModG in Theorem 10.5. Another is a
characterization of when there is a nonzero map in StModG between G-modules M
and N , in terms of the π-support of M and the π-cosupport of N described further
below. This last result is a generalization, to not necessarily finite dimensional
modules, of the fact that when G is unipotent, and M and N are finite dimensional
G-modules, one has

ExtiG(M,N) = 0 for i � 0 ⇐⇒ ExtiG(N,M) = 0 for i � 0 .

See Theorem 10.7 and the remark following that result. Over a general ring R,
even one that is self-injective as the group algebra of a finite group scheme is, there
is no correlation between Ext∗R(M,N) and Ext∗R(N,M), so this symmetry in the
vanishing of Ext is surprising. This phenomenon was first discovered by Avramov
and Buchweitz [1] when R is a (commutative) complete intersection ring, and is
now understood to be related to the classification of localizing subcategories [7].
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When M and N are finite dimensional, M is built out of N only if it is finitely
built out of N , meaning that one needs only finite direct sums in the building
process. Consequently, the results mentioned in the preceding paragraph yield a
classification of the tensor ideal thick subcategories of stmodG and Db(modG),
the stable module category and the bounded derived category, respectively, of fi-
nite dimensional modules. This is because these categories are equivalent to the
subcategories of compact objects of StModG and K(InjG), respectively.

A brief history. The genesis of such results is a classification theorem of Dev-
inatz, Hopkins, and Smith for the stable homotopy category of finite spectra [22].
Classification theorems for other “small” categories followed: see Hopkins [27] and
Neeman [31] for perfect complexes over a commutative Noetherian ring; Thoma-
son [39] for perfect complexes of sheaves over a quasi-compact, quasi-separated
scheme; Benson, Carlson, and Rickard [5] for finite dimensional modules of a finite
group, as well as many more recent developments. Our results cover not only finite
dimensional modules, but also the “big” category of all G-modules, so the closest
precursor is Neeman’s classification [31] for all complexes over a commutative Noe-
therian ring. An analogous statement for group schemes arising from finite groups
is proved in [8]. Theorem 10.1 is new for all other classes of finite group schemes.

Structure of the proof. Arbitrary finite group schemes lack many of the struc-
tural properties of finite groups, as we explain further below. Consequently the
methods we use in this work are fundamentally different from the ones that lead
to the successful resolution of the classification problem for finite groups in [8]. In
fact, our proof of Theorem 10.1 provides another proof for the case of finite groups.
The two new ideas developed and exploited in this work are that of π-cosupport of
a G-module introduced in [11], and a technique of reduction to closed points that
enhances a local to global principle from [7, 8].

For a finite group G, the proof of the classification theorem given in [8] proceeds
by a reduction to the case of elementary abelian groups. This hinges on Chouinard’s
theorem that a G-module is projective if and only if its restriction to all elementary
abelian subgroups of G is projective. Such a reduction is an essential step also in
a second proof of the classification theorem for finite groups described in [11]. For
general finite group schemes there is no straightforward replacement for a detecting
family of subgroups akin to elementary abelian subgroups of finite groups: for
any such family one needs to allow scalar extensions. See Example 3.8 and the
discussion around Corollary 5.5.

The first crucial step in the proof of the classification theorem is to verify that
π-support detects projectivity:

Theorem (Theorem 5.3). Any G-module M with π- suppG(M) = ∅ is projective.

The essence of this detection theorem is that projectivity is detected locally
on π-points of G. Thus the geometric portrait of modules given by π-support is a
faithful invariant on StModG. This result is an ultimate generalization, to arbitrary
finite group schemes and to infinite dimensional modules, of Dade’s lemma [21] that
the projectivity of a finite dimensional module over an elementary abelian group
is detected on cyclic shifted subgroups. The proof of the detection theorem builds
on the work of many authors. For finite groups, Dade’s lemma was generalized to
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infinite dimensional modules by Benson, Carlson, and Rickard [5]. For connected
finite group schemes the analogue of Dade’s lemma is that projectivity can be
detected by restriction to one-parameter subgroups, and this was proved in a series
of papers by Suslin, Friedlander, and Bendel [38], Bendel [2], and Pevtsova [34,35].

There is a flaw in the proof of the detection theorem, Theorem 5.3, given in
[24, Theorem 5.3], as we explain in Remark 5.4. For this reason, Part II of this
paper is devoted to a proof of this result. Much of the argument is already available
in the literature but is spread across various places. The new idea that allowed us to
repair the proof appears in a “subgroup reduction principle,” Theorem 3.7, which
also led to some simplifications of the known arguments.

As a consequence of the π-support detection theorem we prove the following
theorem.

Theorem (Theorem 6.1). For any G-module M there is an equality

π- suppG(M) = suppG(M) .

Here suppG(M) is the support of M defined in [6] using the action of H∗(G, k)
on StModG, recalled in Section 2. This allows us to apply the machinery developed
in [6–8]. The first advantage that we reap from this is the following local to global
principle: for the desired classification it suffices to verify that for each point p in
ProjH∗(G, k) the subcategory of StModG consisting of modules with support in
p is minimal, in that it has no proper tensor ideal localizing subcategories. The
latter statement is equivalent to the category StModG being stratified by H∗(G, k)
as we explain toward the end of Section 2. This is tantamount to proving that when
M,N are G-modules whose support equals {p}, the G-module of homomorphisms
Homk(M,N) is not projective.

When p is a closed point in ProjH∗(G, k), we verify this by using a new invariant
of G-modules called π-cosupport introduced in [11], and recalled in Section 1. Its
relevance to the problem on hand stems from the equality below (see Theorem 1.10),

π- cosuppG(Homk(M,N)) = π- suppG(M) ∩ π- cosuppG(N).

The minimality for a general point p in ProjH∗(G, k) is established by a reduc-
tion to the case of closed points. To this end, in Section 8 we develop a technique
that mimics the construction of generic points for irreducible algebraic varieties in
the classical theory of Zariski and Weil. The results from commutative algebra
that are required for this last step are established in Section 7. The ideas in these
sections are an elaboration of the local to global principle alluded to above.

Applications. One of the many known consequences of Theorem 10.1 is a classi-
fication of the tensor-ideal thick subcategories of stmodG, anticipated in [28], and
of Db(modG). This was mentioned earlier and is the content of Theorem 10.3 and
Corollary 10.6. A few others are described in Section 10. The results in this work
also yield a precise criterion for deciding when there is a nonzero map between
G-modules M and N , at least when G is unipotent; see Theorem 10.7. Further
applications specific to the context of finite group schemes are treated in Section 9.
These include a proof that, akin to supports, the π-cosupport of a G-module coin-
cides with its cosupport in the sense of [9]:
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Theorem (Theorem 9.3). For any G-module M there is an equality

π- cosuppG(M) = cosuppG(M) .

This in turn is used to track support and cosupport under restriction and in-
duction for subgroup schemes; see Proposition 9.5. That the result above is a
consequence of the classification theorem also illustrates a key difference between
the approach developed in this paper and the one in [11] where we give a new proof
of the classification theorem for finite groups. There we prove that π-cosupport
coincides with cosupport, using linear algebra methods and special properties of
finite groups, and deduce the classification theorem from it. In this paper our route
is the opposite: we have to develop a new method to prove classification and then
deduce the equality of cosupports from it. See also Remark 5.6.

The methods developed in this work have led to other new results concerning
the structure of the stable module category of a finite group scheme, including a
classification of its Hom closed colocalizing subcategories [10], and to a type of local
Serre duality theorem for StModG; see [12].

Part I. Recollections

There have been two, rather different, approaches to studying representations of
finite groups and finite group schemes using geometric methods: via the theory of
π-points and via the action of the cohomology ring on the stable category. Both
are critical for our work. In this part we summarize basic constructions and results
in the two approaches.

1. π-support and π-cosupport

In this section we recall the notion of π-points for finite group schemes. The
primary references are the papers of Friedlander and Pevtsova [23, 24]. We begin
by summarizing basic properties of modules over affine group schemes; for details
we refer the reader to Jantzen [30] and Waterhouse [40].

Affine group schemes and their representations. Let k be a field and G a
group scheme over k; this work concerns only affine group schemes. The coordinate
ring of G is denoted k[G]; it is a commutative Hopf algebra over k. One says that G
is finite if k[G] is finite dimensional as a k-vector space. The k-linear dual of k[G]
is then a cocommutative Hopf algebra, called the group algebra of G, and denoted
kG. A finite group scheme G over a field k is connected (or infinitesimal) if its
coordinate ring k[G] is local; it is unipotent if its group algebra kG is local.

Example 1.1 (Finite groups). A finite group G defines a finite group scheme over
any field k: The group algebra kG is a finite dimensional cocommutative Hopf
algebra, and hence its dual is a commutative Hopf algebra and so defines a group
scheme over k; it is also denoted G. A finite group E is elementary abelian if it is
isomorphic to (Z/p)r, for some prime number p. The integer r is then the rank of
E. Over a field k of characteristic p, there are isomorphisms of k-algebras,

k[E] ∼= k×pr

and kE ∼= k[z1, . . . , zr]/(z
p
1 , . . . , z

p
r ).
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Example 1.2 (Frobenius kernels). Let k be a field of positive characteristic p and
f : k → k its Frobenius endomorphism; thus f(λ) = λp. The Frobenius twist of
a commutative k-algebra A is the base change A(1) := k ⊗f A over the Frobenius

map. There is a k-linear algebra map FA : A(1) → A given by FA(λ⊗ a) = λap.
If G is a group scheme over k, then the Frobenius twist k[G](1) is again a Hopf

algebra over k and therefore defines another group scheme G(1) called the Frobenius
twist of G. The algebra map Fk[G] : k[G

(1)] = k[G](1) → k[G] induces the Frobenius

map of group schemes F : G → G(1). The rth Frobenius kernel of G is the group
scheme theoretic kernel of the r-fold iteration of the Frobenius map,

G(r) = Ker(F r : G → G(r)).

The Frobenius kernel of G is connected if the k-algebra k[G] is finitely generated.
Let Ga denote the additive group over k. For the rth Frobenius kernel Ga(r)

there are isomorphisms of k-algebras,

k[Ga(r)] ∼= k[t]/(tp
r

) and kGa(r)
∼= k[u0, . . . , ur−1]/(u

p
0, . . . , u

p
r−1).

Example 1.3 (Quasi-elementary group schemes). Following Bendel [2], a group
scheme is said to be quasi-elementary if it is isomorphic to Ga(r) × (Z/p)s. Thus a
quasi-elementary group scheme is unipotent abelian, and its group algebra structure
is the same as that of an elementary abelian p-group of rank r + s. Note that any
connected quasi-elementary group scheme is isomorphic to Ga(r), for some r.

A module over an affine group scheme G over k is calledG-module; it is equivalent
to a comodule over the Hopf algebra k[G]. The term “module” will mean “left
module,” unless stated otherwise. We write ModG for the category of G-modules
andmodG for its full subcategory consisting of finite dimensionalG-modules. When
G is finite, we identify G-modules with modules over the group algebra kG; this is
justified by [30, I.8.6].

Induction. For each subgroup scheme H of G restriction is a functor

resGH : ModG −→ ModH.

We often write (−)↓H instead of resGH . This has a right adjoint called induction1

indGH : ModH −→ ModG

as described in [30, I.3.3]. If the quotient G/H is affine, then indGH is exact. This
holds, for example, when H is finite; see [30, I.5.13].

Extending the base field. Let G be a group scheme over k. If K is a field
extension of k, we write K[G] for K ⊗k k[G], which is a commutative Hopf algebra
over K. This defines a group scheme over K denoted GK . If G is a finite group
scheme, then there is a natural isomorphism KGK

∼= K ⊗k kG and we simplify
notation by writing KG. For a G-module M , we set

MK := K ⊗k M .

1Warning: In representation theory of finite groups, induction is commonly used for the left
adjoint. We stick with the convention in [30], pointing out that for group schemes the left adjoint
does not always exist and when it does, it is not necessarily isomorphic to the right adjoint.
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The induction functor commutes with the extension of scalars (see [30, I.3.5]); that
is, there is a canonical isomorphism,

indGK

HK
(MK) ∼= (indGH M)K .

The assignment M �→ MK defines a functor from ModG to ModGK which is left
adjoint to the restriction functor ModGK → ModG.

For G a finite group scheme and a G-module M we set

MK := Homk(K,M),

again viewed as a GK-module. This is right adjoint to restriction. It is essential
for the group scheme to be finite to make sense of this definition; see Remark 5.6.

π-points. Let G be a finite group scheme over k. A π-point of G, defined over a
field extension K of k, is a morphism of K-algebras

α : K[t]/(tp) −→ KG

that factors through the group algebra of a unipotent abelian subgroup scheme C
of GK , and such that KG is flat when viewed as a left (equivalently, as a right)
module over K[t]/(tp) via α. It should be emphasized that C need not be defined
over k; see Example 3.8. Restriction along α defines a functor

α∗ : ModGK −→ ModK[t]/(tp),

and the functor KG⊗K[t]/(tp) − provides a left adjoint

α∗ : ModK[t]/(tp) −→ ModGK .

Definition 1.4. A pair of π-points α : K[t]/(tp) → KG and β : L[t]/(tp) → LG
are equivalent, denoted α ∼ β, if they satisfy the following condition: For any finite
dimensional kG-module M , the module α∗(MK) is projective if and only if β∗(ML)
is projective (see [24, Section 2] for a discussion of the equivalence relation).

Remark 1.5. For ease of reference, we list some basic properties of π-points.
(1) Let α : K[t]/(tp) → KG be a π-point and L a
field extension of K. Then L⊗K α : L[t]/(tp) → LG is a π-point, and it is easy

to verify that α ∼ L⊗K α.
(2) Every π-point is equivalent to one that factors through some quasi-elementary

subgroup scheme. This is proved in [23, Proposition 4.2].
(3) Every π-point of a subgroup scheme H of G is naturally a π-point of G.
(4) A π-point α of G defined over L naturally gives rise to a π-point of GK

defined over a field containing K and L.

For quasi-elementary group schemes, one has a concrete description of π-points
and the equivalence relation between them.

Example 1.6. Let E be a quasi-elementary group scheme defined over k of positive
characteristic p. For any field extension K of k, the group algebra KE is isomorphic
to the K-algebra K[z1, . . . , zn]/(z

p
1 , . . . , z

p
n); see Example 1.3. Since E is unipotent

abelian, a π-point defined over K is nothing but a flat map of K-algebras,

α : K[t]/(tp) −→ K[z1, . . . , zn]/(z
p
1 , . . . , z

p
n).
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What is more, flatness of α is equivalent to the condition that α(t) has a linear
part; see [23, Proposition 2.2]. The same result also yields that π-points

α, β : K[t]/(tp) −→ K[z1, . . . , zn]/(z
p
1 , . . . , z

p
n)

are equivalent if and only if α(t) and β(t) have proportional linear parts.

π-points and cohomology. Let G be a finite group scheme over k. The coho-
mology of G with coefficients in a G-module M is denoted H∗(G,M). It can be
identified with Ext∗G(k,M), with the trivial action of G on k. Recall that H∗(G, k)
is a k-algebra that is graded-commutative (because kG is a Hopf algebra) and
finitely generated, by a theorem of Friedlander-Suslin [25, Theorem 1.1].

Let ProjH∗(G, k) denote the set of homogeneous prime ideals H∗(G, k) that are
properly contained in the maximal ideal of positive degree elements.

Given a π-point α : K[t]/(tp) → KG we write H∗(α) for the composition of
homomorphisms of k-algebras.

H∗(G, k) = Ext∗G(k, k)
K⊗k−−−−−−→ Ext∗GK

(K,K) −→ Ext∗K[t]/(tp)(K,K),

where the one on the right is induced by restriction. Evidently, the radical of the
ideal KerH∗(α) is a prime ideal in H∗(G, k) different from H�1(G, k) and so defines
a point in ProjH∗(G, k).

Remark 1.7. Fix a point p in ProjH∗(G, k). There exists a field K and a π-point

αp : K[t]/(tp) −→ KG

such that
√
KerH∗(αp) = p. In fact, there is such a K that is a finite extension of

the degree zero part of the homogenous residue field at p; see [24, Theorem 4.2]. It
should be emphasized that αp is not uniquely defined.

In this way, one gets a bijection between the set of equivalence classes of π-points
of G and ProjH∗(G, k); see [24, Theorem 3.6]. In the sequel, we identify a prime
in ProjH∗(G, k) and the corresponding equivalence class of π-points.

The following definitions of π-support and π-cosupport of a G-module M are
from [24] and [11], respectively.

Definition 1.8. Let G be a finite group scheme and M be a G-module. The
π-support of M is the subset of ProjH∗(G, k) defined by

π- suppG(M) := {p ∈ ProjH∗(G, k) | α∗
p(K ⊗k M) is not projective}.

The π-cosupport of M is the subset of ProjH∗(G, k) defined by

π- cosuppG(M) := {p ∈ ProjH∗(G, k) | α∗
p(Homk(K,M)) is not projective}.

Here αp : K[t]/(tp) → KG denotes a representative of the equivalence class of π-
points corresponding to p; see Remark 1.7. Both π- supp and π- cosupp are well
defined on the equivalence classes of π-points; see [11, Theorem 3.1].

The following observation will be useful; see Corollary 9.4 for a better statement.

Lemma 1.9. Let m be a closed point of ProjH∗(G, k) and M a G-module. Then
m is in π- suppG(M) if and only if it is in π- cosuppG(M).
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Proof. The key observation is that as m is a closed point, there is a corresponding
π-point αm : K[t]/(tp) → KG with K a finite extension of k; see Remark 1.7. It
then remains to note that the natural evaluation map is an isomorphism,

Homk(K, k)⊗k M
∼=−−→ Homk(K,M),

so that K ⊗k M and Homk(K,M) are isomorphic as GK-modules. �

The next result plays a key role in what follows. The formula for the support of
tensor products is [24, Proposition 5.2]. The proof of the formula for the cosupport
of function objects is similar and is given in [11, Theorem 4.4]. We sketch it here
for the reader’s convenience.

Theorem 1.10. Let M and N be G-modules. Then there are equalities

(1) π- suppG(M ⊗k N) = π- suppG(M) ∩ π- suppG(N),
(2) π- cosuppG(Homk(M,N)) = π- suppG(M) ∩ π- cosuppG(N).

Proof. Remark 1.5(2) implies that we can assume that G is a quasi-elementary
group scheme. Hence, kG is isomorphic to k[t1, . . . , tr]/(t

p
1, . . . t

p
r) as an algebra.

Let α : K[t]/(tp) → KG be a π-point of G. Extending scalars and using the
isomorphism α∗(Homk(M,N)K) ∼= α∗(HomK(MK , NK)), we may assume that α
is defined over k. To prove equality (2), we need to show that α∗(Homk(M,N)) is
projective if and only if α∗(M) or α∗(N) is projective.

Let σ : kG → kG be the antipode of kG, let Δ: kG → kG ⊗ kG be its comulti-
plication, and set I = Ker(kG → k), the augmentation ideal of kG. Identifying t
with its image in kG under α, one has

(1⊗ σ)Δ(t) = t⊗ 1− 1⊗ t+ w with w ∈ I ⊗ I;

see [30, I.2.4]. Given a module over kG⊗ kG, we consider two k[t]/(tp)-structures
on it: One where t acts via multiplication with (1 ⊗ σ)Δ(t) and another where
it acts via multiplication with t ⊗ 1 − 1 ⊗ t. We claim that these two k[t]/(tp)-
modules are both projective or both not projective. This follows from a repeated
use of [23, Proposition 2.2] because w can be represented as a sum of products of
nilpotent elements of kG⊗ kG, where each nilpotent element x satisfies xp = 0.

We may thus assume that t acts on Hom(M,N) via t⊗ 1− 1⊗ t. There is then
an isomorphism of k[t]/(tp)-modules,

α∗(Homk(M,N)) ∼= Homk(α
∗(M), α∗(N)) ,

where the action of k[t]/(tp) on the right hand side is the one obtained by viewing
it as a Hopf algebra with comultiplication defined by t �→ t⊗1+1⊗ t and antipode
t �→ −t. It remains to observe that for any k[t]/(tp)-modules U, V , the module
Homk(U, V ) is projective if and only if one of U or V is projective. �

2. Support and cosupport via cohomology

This section provides a quick summary of the techniques developed in [6,9], with
a focus on modules over finite group schemes. Throughout G will be a finite group
scheme over a field k.
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The stable module category. The stable module category of G is denoted
StModG. Its objects are all (possibly infinite dimensional) G-modules. The set
of morphisms between G-modules M and N is by definition

HomG(M,N) :=
HomG(M,N)

PHomG(M,N)
,

where PHomG(M,N) consists of allG-maps betweenM andN which factor through
a projective G-module. Since G-modules are precisely modules over the group alge-
bra kG and the latter is a Frobenius algebra [30, Lemma I.8.7], the stable module
category is triangulated, with suspension equal to Ω−1(−), the inverse of the syzygy
functor. The tensor product M ⊗k N of G-modules, with the usual diagonal G-
action, is inherited by StModG making it a tensor triangulated category. This
category is compactly generated, and the subcategory of compact objects is equiv-
alent to stmodG, the stable module category of finite dimensional G-modules. For
details, readers might consult Carlson [19, Section 5] and Happel [26, Chapter 1].

A subcategory of StModG is said to be thick if it is a triangulated subcategory
that is closed under direct summands. Note that any triangulated subcategory is
closed under finite direct sums. A triangulated subcategory that is closed under
all set-indexed direct sums is said to be localizing. A localizing subcategory is also
thick. We say that a subcategory is a tensor ideal if it is closed under M ⊗k − for
any G-module M .

We write Hom∗
G(M,N) for the graded abelian group with HomG(M,Ω−iN) the

component in degree i. Composition of morphisms endows Hom∗
G(M,M) with a

structure of a graded ring and Hom∗
G(M,N) with the structure of a graded left-

Hom∗
G(N,N) and right-Hom∗

G(M,M) bimodule. There is a natural map

Ext∗G(M,N) −→ Hom∗
G(M,N)

of graded abelian groups; it is a homomorphism of graded rings for M = N . Com-
posing this with the homomorphism

−⊗k M : H∗(G, k) −→ Ext∗G(M,M)

yields a homomorphism of graded rings

φM : H∗(G, k) −→ Hom∗
G(M,M) .

It is clear from the construction that Hom∗
G(M,N) is a graded bimodule over

H∗(G, k) with left action induced by φN and right action induced by φM , and that
the actions differ by the usual sign. Said otherwise, H∗(G, k) acts on StModG, in
the sense of [9, Section 3].

The spectrum of the cohomology ring. We write SpecH∗(G, k) for the set of
homogenous prime ideals in H∗(G, k). It has one more point than ProjH∗(G, k),
namely, the maximal ideal consisting of elements of positive degree. A subset V
of SpecH∗(G, k) is specialization closed if whenever p is in V so is any prime q

containing p. Thus V is specialization closed if and only if it is a union of Zariski
closed subsets, where a subset is Zariski closed if it is of the form

V(I) := {p ∈ SpecH∗(G, k) | p ⊆ I}
for some ideal I in H∗(G, k). In the sequel, given p ∈ SpecH∗(G, k) and a graded
H∗(G, k)-module N , we write Np for the homogeneous localization of N at q.
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Local cohomology. Let V be a specialization closed subset of SpecH∗(G, k). A
G-module M is called V-torsion if Hom∗

G(C,M)q = 0 for any finite dimensional
G-module C and q ∈ V . We write (StModG)V for the full subcategory of V-torsion
modules. This is a localizing subcategory and the inclusion (StModG)V ⊆ StModG
admits a right adjoint, denoted ΓV . Thus, for each M in StModG one gets a
functorial exact triangle

ΓVM −→ M −→ LVM −→,

and this provides a localization functor LV that annihilates precisely the V-torsion
modules. For details, see [6, Section 4].

A noteworthy special case pertains to a point p in ProjH∗(G, k) and the subset

Z(p) := {q ∈ SpecH∗(G, k) | q ⊆ p}.

This is evidently a specialization closed subset. The corresponding localization
functor LZ(p) models localization at p, that is to say, for any G-module M and finite
dimensional G-module C, the morphism M → LZ(p)M induces an isomorphism

Hom∗
G(C,M)p

∼=−→ Hom∗
G(C,LZ(p)M)

of graded H∗(G, k)-modules; see [6, Theorem 4.7]. For this reason, we usually write
Mp in lieu of LZ(p)M . When the natural map M → Mp is an isomorphism, we say
M is p-local, and that M is p-torsion if it is V(p)-torsion.

We write Γp for the exact functor on StModG defined on objects by

ΓpM := ΓV(p)(Mp) = (ΓV(p)M)p .

The equality is a special case of a general phenomenon: the functors ΓV and LW
commute for any specialization closed subsets V and W ; see [6, Proposition 6.1].
This property will be used often and without further comment.

Support and cosupport. We introduce the support of a G-module M to be the
following subset of ProjH∗(G, k):

suppG(M) := {p ∈ ProjH∗(G, k) | ΓpM is not projective}.

As in [9, Section 4], the cosupport of M is the set

cosuppG(M) := {p ∈ ProjH∗(G, k) | Homk(Γpk,M) is not projective}.

Note that we are ignoring the closed point of SpecH∗(G, k). It turns out that
the support and the cosupport of M coincide with its π-support and π-cosupport
introduced in Section 1; see Theorems 6.1 and 9.3.

Stratification. Let (T,⊗,1) be a compactly generated tensor triangulated cate-
gory and R a graded-commutative Noetherian ring acting on T via homomorphisms
of rings R → End∗(X), for each X in T; see [6, Section 8] for details. For each p

in SpecR, one can construct a functor Γp : T → T as above and use it to define
support and cosupport for objects in T. The subcategory

ΓpT := {X ∈ T | X ∼= ΓpX}
consists of all objects X in T such that Hom∗

T(C,X) is p-local and p-torsion for
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each compact object C, and has the following alternative description:

ΓpT = {X ∈ T | suppR(X) ⊆ {p}};

see [6, Corollary 5.9]. The subcategory ΓpT of T is tensor ideal and localizing.
We say that ΓpT is minimal if it is non-zero and contains no proper non-zero

tensor ideal localizing subcategories. Following [7, Section 7] we say T is stratified
by R if for each p the subcategory ΓpT is either zero or minimal. When this property
holds, the tensor ideal localizing subcategories of T are parameterized by subsets of
SpecR; see [8, Theorem 3.8]. The import of this statement is that the classification
problem we have set out to solve can be tackled one prime at a time.

Last, we recall from [9, Section 7] the behavior of support under change of rings
and categories.

Change of rings and categories. In this paragraph, (T, R) denotes a pair con-
sisting of a compactly generated triangulated category T endowed with an action
of a graded-commutative Noetherian ring R. A functor (F, φ) : (T, R) → (U, S) be-
tween such pairs consists of an exact functor F : T → U that preserves set-indexed
products and coproducts, and a homomorphism f : R → S of rings such that, for
each X ∈ T, the following diagram is commutative:

R S

End∗T(X) End∗U(FX).

f

F

The result below is extracted from [9, Corollary 7.8].

Proposition 2.1. Let (F, f) : (T, R) → (U, S) be a functor between compactly gen-
erated triangulated categories with ring actions. Let E be a left adjoint of F , let G
be a right adjoint of F , and let φ : SpecS → SpecR be the map that assigns f−1(p)
to p. Then for X in T and Y in U there are inclusions:

(1) φ(suppS(FX)) ⊆ suppR(X) and suppR(EY ) ⊆ φ(suppS(Y )),
(2) φ(cosuppS(FX)) ⊆ cosuppR(X) and cosuppR(GY ) ⊆ φ(cosuppS(Y )).

Each inclusion is an equality if the corresponding functor is faithful on objects. �

Part II. Detecting projectivity with π-support

Let G be a finite group scheme over a field of positive characteristic. This part is
dedicated to a proof of Theorem 5.3 that asserts that π-support detects projectivity
of G-modules, by which we mean that a G-module M is projective if (and only if)
π- suppG(M) = ∅. This result was claimed in [24], but the argument there has
a flaw (see Remark 5.4) which we repair here. Most of the different pieces of our
proof are already available in the literature; we collect them here for the sake of
both completeness and comprehensibility.

The essential new ingredient is a “subgroup reduction principle,” Theorem 3.7
which allows us to extend the detection theorem from the case of a connected finite
group scheme to an arbitrary one. Theorem 3.7 relies on a remarkable result of
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Suslin (see also [2] for the special case of a unipotent finite group scheme) on detec-
tion of nilpotents in the cohomology ring H∗(G,Λ) for a G-algebra Λ, generalizing
work of Quillen and Venkov for finite groups.

The first step in our proof of the detection theorem is to settle the case of
a connected unipotent finite group scheme. This is achieved in Section 4. The
argument essentially follows the one of Bendel [2] but is simpler, for two reasons:
because of the connectedness assumption and because we employ the subgroup
reduction principle that allows one to apply induction on dimk k[G] in certain cases.

The subgroup reduction principle cannot be used for general connected finite
groups schemes; see Example 3.8. To tackle that case, we import a result from [34]
which readily implies that π-support detects projectivity for Frobenius kernels of
connected reductive groups; in fact, it would suffice to treat GLn(r), but the proof is
no different in general. A connected group scheme can be realized as a subgroup of
a Frobenius kernel, and so we deduce the desired property for the former from that
for the latter using a descent theorem. This is done in Section 5 and essentially
repeats the argument in [35]. This also takes care of group schemes that are a
direct product of their identity component with an elementary abelian p-group.
After all, the statement of the theorem does not mention the coalgebra part of the
structure, and in this case the algebra structure is identical to that of a suitably
chosen connected finite group scheme.

Armed with these results, we tackle the general case, also in Section 5, but not
without yet another invocation of the subgroup reduction principle, Theorem 3.7.

3. A subgroup reduction principle

In this section we establish basic results, including the general subgroup reduc-
tion principle alluded to above, Theorem 3.7, that will be used repeatedly in proving
that π-support detects projectivity. Throughout, G will be a finite group scheme
over a field k of positive characteristic.

Lemma 3.1. Let G be a finite group scheme with the property that for any G-
module M with π- suppG(M) = ∅ one has Hi(G,M) = 0 for i � 0. Then π-
support detects projectivity of G-modules.

Proof. Let M be a G-module with π- suppG(M) = ∅. Then, for any simple G-
module S, Theorem 1.10 yields

π- suppG(Homk(S, k)⊗k M) = π- suppG(Homk(S, k)) ∩ π- suppG(M) = ∅ .

Thus, for i � 0 the hypothesis on G gives the second equality below,

ExtiG(S,M) ∼= Hi(G,Homk(S, k)⊗k M) = 0 ,

where the isomorphism holds since all simple G-modules are finite dimensional. It
follows that M is projective, as desired. �

The following observation will be of some use in what follows.

Remark 3.2. If G and G′ are unipotent abelian group schemes such that their group
algebras are isomorphic, then π-support detects projectivity of G-modules if and
only if it detects projectivity of G′-modules.
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Indeed, this is because projectivity of a G-module M does not involve the co-
multiplication on kG, and when G is unipotent, abelian π-points are just flat ho-
momorphism of K-algebras K[t]/(tp) → KG, for some field extension K/k, and
again have nothing to do with the comultiplication on KG.

To establish that π-support detects projectivity we need a version of Dade’s
lemma proved by Benson, Carlson, and Rickard in [4, Lemma 4.1]. For our purposes
we restate the result in terms of π-support as can be found in [11, Theorem 5.4].

Theorem 3.3. If E is a quasi-elementary group scheme, then π-support detects
projectivity of E-modules.

Proof. The group algebra kE of a quasi-elementary group scheme is isomorphic to
the group algebra of an elementary abelian finite group as seen in Example 1.3. In
view of Remark 3.2, the result follows from [11, Theorem 5.4]. �

The next result, which is a corollary of Suslin’s theorem on detection of nilpotence
in cohomology [37, Theorem 5.1], is critical to what follows.

Theorem 3.4. Let G be a finite group scheme over a field k and Λ a unital asso-
ciative G-algebra. If π- suppG(Λ) = ∅, then any element in H�1(G,Λ) is nilpotent.

Proof. For any extension field K of k and any quasi-elementary subgroup scheme
E of GK , the hypothesis of the theorem yields

π- suppE(ΛK)↓E = ∅ .

Theorem 3.3 then yields that (ΛK)↓E is projective, so H�1(E ,ΛK) = 0. This
implies that for any element z ∈ H�1(G,Λ) the restriction of zK to H∗(E , (ΛK)↓E)
is trivial. Therefore, z is nilpotent, by [37, Theorem 5.1]. �

The next result has been proved in a larger context by Burke [17, Theorem]. For
finite group schemes a simpler argument is available and is given below.

Lemma 3.5. Let G be a finite group scheme and M a G-module. If each element
in Ext�1

G (M,M) is nilpotent, then M is projective.

Proof. The k-algebra H∗(G, k) is finitely generated so Noether normalization pro-
vides homogeneous algebraically independent elements z1, . . . , zr in H�1(G, k) such
that the extension k[z1, . . . , zr] ⊆ H∗(G, k) is finite; see [16, Theorem 1.5.17]. By
assumption, the image of any zi under the composition

k[z1, . . . , zr] −→ H∗(G, k) −→ Ext∗G(M,M)

is nilpotent. By taking powers of the generators z1, . . . , zr, if necessary, one may
assume that these images are zero.

Represent each zi by a homomorphism Ω|zi|(k) → k of G-modules, and let Lzi

denote its kernel; this is the Carlson module [18] associated with zi. Vanishing of
z1 in Ext∗G(M,M) implies that for some integer n, the G-modules Lz1 ⊗k M and
ΩM ⊕ ΩnM are isomorphic up to projective summands; this is proved in [3, 5.9]
for finite groups, and the argument carries over to finite group schemes. Setting
Lz := Lzr ⊗k · · · ⊗k Lz1 , an iteration yields that the G-modules

Lz ⊗k M and
2r⊕
i=1

ΩniM
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are isomorphic up to projective summands. However, since H∗(G, k) is finite as a
module over k[z1, . . . , zr], one gets the second equality below

π- suppG(Lz) =
r⋂

i=1

π- suppG(Lzi) = ∅.

The first one is by Theorem 1.10. As the G-module Lz is finitely generated, by
construction, it follows that Lz, and hence also Lz ⊗k M , is projective; see, for

example, [23, Theorem 5.6]. Thus
⊕2r

i=1 Ω
niM is projective, and hence so is M . �

The next result is well-known; for a proof see, for example, [11, Lemma 4.2].

Lemma 3.6. Let M and N be G-modules.

(1) If M or N is projective, then so is Homk(M,N).
(2) M is projective if and only if Endk(M) is projective. �

We can now establish the following subgroup reduction principle.

Theorem 3.7. Let G be a finite group scheme over k with the property that every π-
point for G is equivalent to a π-point that factors through an embedding HK ↪→ GK

where H is a proper subgroup scheme of G and K/k is a field extension. If π-
support detects projectivity for all proper subgroup schemes of G, then it detects
projectivity for G.

We emphasize that H is already defined over k.

Proof. Let M be a G-module with π- suppG(M) = ∅. Let H be a proper subgroup
scheme of G. Any π-point of H is a π-point of G so π- suppH(M↓H) = ∅, and
hence M↓H is projective, by hypothesis. Therefore Endk(M)↓H is also projective,
by Lemma 3.6. Since any π-point of G factors through a proper subgroup scheme,
again by hypothesis, one gets that π- suppG(Endk(M)) = ∅. By Theorem 3.4,
any element in H∗(G,Endk(M)) = Ext∗G(M,M) of positive degree is nilpotent.
Lemma 3.5 then implies that M is projective, as desired. �

The hypothesis of Theorem 3.7 is quite restrictive, as the next example shows.

Example 3.8. Let k be a field of characteristic at least 3 and g the three-dimen-
sional Heisenberg Lie algebra over k, that is to say, the Lie algebra of 3 × 3
strictly upper triangular matrices, with zero p-power operation. It has generators
〈x1, x2, x12〉 subject to relations

[x1, x12] = 0 = [x2, x12] and [x1, x2] = x12 .

Then u(g), the restricted enveloping algebra of g, is a cocommutative Hopf algebra,
and hence its dual defines a group scheme over k. Its support variety is P2 with
coordinate algebra k[y1, y2, y12]. Let K = k(y1, y2, y12) be the field of fractions, and
let α : K[t]/(tp) → K ⊗k u(g) be a “generic” π-point given by

αK(t) = y1x1 + y2x2 + y12x12 .

Specializing α to points [a1, a2, a12] ∈ P2 we get all π-points of u(g) defined over k.
Therefore α cannot factor through any proper Lie subalgebra of g defined over k.

For contexts where Theorem 3.7 does apply see Theorems 4.1 and 5.3.
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4. Connected unipotent group schemes

In this section we prove that π-support detects projectivity for modules over
connected unipotent finite group schemes. Our strategy mimics the one used in [2],
with one difference: it does not use the analogue of Serre’s cohomological criterion
for a quasi-elementary group scheme as developed in [38]. This is because Theo-
rem 3.7 allows us to invoke [38, Theorem 1.6] in the step where Bendel’s proof uses
Serre’s criterion, significantly simplifying the argument.

Theorem 4.1. If G is a connected unipotent finite group scheme over a field k,
then π-support detects projectivity.

Proof. If G ∼= Ga(r), then a π-point for G is precisely a flat map of K-algebras
K[t]/(tp) → KG, with K a field extension of k. The desired result follows from
Theorem 3.3, given the description of the group algebra of Ga(r) in Example 1.2.

In the remainder of the proof we may thus assume G is not isomorphic to Ga(r).
The proof proceeds by induction on dimk k[G]. The base case, where this dimension
is one, is trivial. Assume that the theorem holds for all proper subgroup schemes
of G. We consider two cases, depending on the rank of HomGr/k(G,Ga(1)), the
k-vector space of morphisms from G to Ga(1).

Case 1. Suppose dimk HomGr/k(G,Ga(1)) = 1. Let φ : G → Ga(1) be a generator

of HomGr/k(G,Ga(1)), and x a generator of H2(Ga(1), k). By [38, Theorem 1.6],
either G ∼= Ga(r) or φ∗(x) ∈ H∗(G, k) is nilpotent. Since we have ruled out the
former case, we may assume φ∗(x) is nilpotent.

Let α : K[t]/(tp) → KG be a π-point; by Remark 1.5(2) we can assume it factors
through a quasi-elementary subgroup scheme of GK . We claim that α is equivalent
to a π-point that factors through (Kerφ)K , so that the desired statement follows
from Theorem 3.7.

Indeed, consider the composition

K[t]/(tp)
α−−→ KG

φK−−−→ KGa(1)

and the induced map in cohomology,

H∗(Ga(1),K)
φ∗
K−−−→ H∗(G,K)

α∗
−−−→ Ext∗K[t]/(tp)(K,K).

Since φ∗(x) ∈ H2(G, k) is nilpotent, (φK ◦ α)∗(xK) = 0.
The group scheme GK is connected, since G is, so the quasi-elementary subgroup

scheme that α factors through must be isomorphic to Ga(r). Restrict φK to Ga(r)

and consider the composition

K[t]/(tp)
α−−→ KGa(r) −→ KGa(1).

It follows from the discussion in the preceding paragraph that the induced map in
cohomology is again trivial. Observe that HomGr/k(Ga(r),Ga(1)) is one-dimensional
and generated by the obvious surjection

Ga(r) −→ Ga(r)/Ga(r−1)
∼= Ga(1).

Thus, if KGa(r) = K[u0, . . . , ur−1]/(u
p
i ), this surjection maps each ui to 0 for

0 ≤ i ≤ r − 2 and ur−1 to the generator of KGa(1).
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Returning to α, we may suppose α(t) ∈ KGa(r) has a nonzero term with ur−1,
else it clearly factors through (Kerφ)K , as desired. The term involved cannot be
linear, else the composition φK ◦α would be an isomorphism and the induced map
in cohomology would not be trivial, which it is. Thus, the terms involving ur−1

must be at least quadratic, so α is equivalent to a π-point with those terms removed;
see Example 1.6. That new π-point then factors through (Kerφ)K , as claimed.

Case 2. Suppose dimk HomGr/k(G,Ga(1)) ≥ 2. Let φ, ψ : G → Ga(1) be linearly
independent morphisms. Fix an algebraically closed non-trivial field extension K
of k. Note that φK , ψK : GK → Ga(1),K remain linearly independent, and hence for

any pair of elements λ, μ ∈ K not both zero, λ1/pφK + μ1/pψK = 0. This implies
that for any non-zero element x in H2(Ga(1),K), the element

(λ1/pφK + μ1/pψK)∗(x) = λφ∗
K(x) + μψ∗

K(x)

in H2(G,K) is non-zero; this follows by the semilinearity of the Bockstein map,
which also explains 1/p in the exponents (see the proof of [11, Theorem 5.3] for
more details on this formula).

Let M be a G-module with π- suppG(M) = ∅. The induction hypothesis implies
that MK is projective when restricted to the kernel of λ1/pφK + μ1/pψK . Thus
λφ∗

K(x) + μψ∗
K(x) induces a periodicity isomorphism

H1(G,MK) = H1(G,M)K −→ H3(G,M)K = H3(G,MK) .

As this is so for any pair λ, μ not both zero, the analogue of the Kronecker quiver
lemma [4, Lemma 4.1] implies that

H1(G,M)K = H1(G,MK) = 0.

Since G is unipotent, this implies that M is projective, as desired. �

5. Finite group schemes

In this section we prove that π-support detects projectivity for any finite group
scheme. It uses the following result that can be essentially found in [35]. However,
the pivotal identity (5.1) in the proof was only justified later in [37].

Theorem 5.1. Let G ↪→ G′ be an embedding of connected finite group schemes
over k. If π-support detects projectivity for G′, then it detects projectivity for G.

Proof. Let M be a G-module such that π- suppG(M) = ∅. By Lemma 3.1 and

Frobenius reciprocity, it suffices to show that π- suppG′(indG
′

G M) = ∅.
Consequently, we need to show that for any π-point α : K[t]/(tp) → KG′, the

restriction α∗((indG
′

G M)K) is free. By Remark 1.5, we may assume that α factors
through some quasi-elementary subgroup scheme E ′ ≤ G′

K defined over K. Since
induction commutes with extension of scalars and we are only going to work with
one π-point at a time, we may extend scalars and assume that k = K.

Let E = E ′ ∩G ≤ G′ (this can be the trivial group scheme). Let Λ = Endk(M).
Since E is quasi-elementary, the assumption on M together with Theorem 3.3 imply
that M↓E is free. Hence, Lemma 3.6(2) implies that Λ↓E is free.

Consider the adjunction isomorphism

HomE(ind
G′

G Λ,Λ) ∼= HomE′(indG
′

G Λ, indE
′

E Λ) ,



282 D. BENSON, S. B. IYENGAR, H. KRAUSE, AND J. PEVTSOVA

and let

θ : indG
′

G Λ −→ indE
′

E Λ

be the homomorphism of E ′-modules which corresponds to the standard evaluation

map εΛ : indG
′

G Λ −→ Λ (see [30, 3.4]) considered as a map of E-modules. By
[37, pages 216–217], the map θ is surjective and the ideal I = Ker θ is nilpotent.

Indeed, it is shown in [37] that

(5.1) indE
′

E Λ ∼= k[E ′/E ]⊗k[G′/G] ind
G′

G Λ

with the map θ induced by the extension of scalars from k[G′/G] to k[E ′/E ]. Hence,
the surjectivity follows from the fact that E ′/E → G′/G is a closed embedding, see
[37, Theorem 5.3], and the nilpotency of I follows from the fact that k[G′/G] is a
local Artinian ring.

Consequently, we have an exact sequence of E ′-modules,

0 −→ I −→ indG
′

G Λ
θ−−→ indE

′

E Λ −→ 0,

where I is a nilpotent ideal and indE
′

E Λ is projective since Λ is projective as an
E-module. The exact sequence in cohomology now implies that any positive degree

element inH∗(k[t]/(tp), indG
′

G Λ) is nilpotent, where the action of t is via the π-point
α : k[t]/(tp) → kE ′ → kG′.

Note that the linear action of k on indG
′

G M factors as follows:

k ⊗k indG
′

G M �� indG
′

G Λ⊗k indG
′

G M �� indG
′

G (Λ⊗k M) �� indG
′

G M.

So the Yoneda action of H∗(k[t]/(tp), k) on H∗(k[t]/(tp), indG
′

G M) factors through

the action of H∗(k[t]/(tp), indG
′

G Λ). We conclude that H�1(k[t]/(tp), k) acts nilpo-
tently. On the other hand, the action of a generator in degree 2 for p > 2 (or

degree 1 for p = 2) induces the periodicity isomorphism on H∗(k[t]/(tp), indG
′

G M).

Hence, H�1(k[t]/(tp), indG
′

G M) = 0, and therefore the equivalence class of α is not

in π- suppG′(indG
′

G M). Since α was any π-point, the statement follows. �

We also require the following detection criterion; see [34, Theorem 1.6].

Theorem 5.2. Let G be a connected reductive algebraic group over k, and let G(r)

be its rth Frobenius kernel. If M is a G(r)-module such that for any field extension
K/k and any embedding of group schemes Ga(r),K ↪→ G(r),K , the restriction of MK

to Ga,K is projective, then M is projective as a G(r)-module. �

We come now to the central result of the first part of this article.

Theorem 5.3. Let G be a finite group scheme over k. A G-module M is projective
if and only if π- suppG(M) = ∅.

Proof. Assume M is projective, and let α : K[t]/(tp) → KG be a π-point of G. The
GK-module MK is then projective, and hence so is the K[t]/(tp)-module α∗(MK),
for α is flat when viewed as a map of algebras. Thus π- suppG(M) = ∅.

The proof of the converse builds up in a number of steps.
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Frobenius kernels. Suppose G := G(r), the rth Frobenius kernel of a connected
reductive group G over k. Let M be a G-module with π- suppG(M) = ∅. For any
field extension K/k and embedding φ : Ga(r),K ↪→ G(r),K of group schemes over K,
one then has π- suppG(r),K

(MK) = ∅, and hence it follows that

π- suppGa(r),K
(φ∗(MK)) = ∅ .

Theorem 3.3 then implies that φ∗(MK) is projective as a Ga(r),K-module. It re-
mains to apply Theorem 5.2.

Connected finite group schemes. This case is immediate from the preceding
one and Theorem 5.1 since any connected finite group scheme can be embedded
into GLn(r) for some positive integers n, r; see [40, 3.4].

G ∼= G◦×(Z/p)r where G◦ is the connected component at the identity. Let
M be a G-module with π- suppG(M) = ∅. Let E = (Ga(1))

×r, and observe that
the k-algebras kG and k(G◦ × E) are isomorphic, and hence so are H∗(G,M) and
H∗(G◦×E ,M). Moreover, (Z/p)r and E are both unipotent abelian group schemes,
so the maximal unipotent abelian subgroup schemes of G and G◦×E , and hence also
their π-points, are in bijection. In summary, π- suppG◦×E(M) = π- suppG(M) = ∅.
Since we have verified already that π-support detects projectivity for connected
finite group schemes, and G◦ × E is one such, one gets the equality below,

Hi(G,M) ∼= Hi(G◦ × E ,M) = 0 for i ≥ 1.

It remains to recall Lemma 3.1 to deduce that M is projective as a G-module.

General finite group schemes. Extending scalars, if needed, we may assume
that k is algebraically closed. The proof is by induction on dimk k[G]. The base
case is trivial. Suppose the theorem holds for all proper subgroup schemes of G.
Let G = G◦

� π0(G) where G◦ is the connected component at the identity and
π0(G) is the (finite) group of connected components. If the product is direct and
π0(G) is elementary abelian, then we have already verified that the desired result
holds for G. We may thus assume that this is not the case; this implies that for
any elementary abelian subgroup E < π0(G), the subgroup scheme (G◦)E ×E is a
proper subgroup scheme of G.

If follows from the Quillen stratification for the space of equivalence classes of π-
points [24, 4.12] that any π-point for G is equivalent to one of the form α : K[t]/tp →
KG that factors through ((G◦)E ×E)K < (G◦

� π0(G))K , where E < π0(G) is an
elementary abelian subgroup. Thus, the hypotheses of Theorem 3.7 holds, and we
can conclude that M is projective, as needed. �

Remark 5.4. The implication that when the π-support of a G-module M is empty,
it is projective is the content of [24, Theorem 5.3]. However, the proof given in
[24] is incorrect. The problem occurs in the third paragraph of the proof where
what is asserted translates as follows: the π-support of Endk(M) is contained in
the π-support of M . This is not so; see [11, Example 6.4]. What is true is that the
π-cosupport of Endk(M) is contained in the π-support ofM , by Theorem 1.10. This
is why it is useful to consider cosupports even if one is interested only in supports.
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Chouinard [20, Corollary 1.1] proved that a module M over a finite group G is
projective if its restriction to every elementary abelian subgroup of G is projective.
This result is fundamental to the development of the theory of support varieties for
finite groups. For finite group schemes Theorem 5.3 yields the following analogue
of Chouinard’s theorem. There are two critical differences: one has to allow for
field extensions, and there are infinitely many subgroup schemes involved.

Corollary 5.5. Let G be a finite group scheme over k. A G-module M is projective
if for every field extension K/k and quasi-elementary subgroup scheme E of GK ,
the E-module (MK)↓E is projective.

Proof. As noted in Remark 1.5, every π-point factors through some E as above,
so if (MK)↓E is projective for each such E , it follows that π- suppG(M) = ∅, and
hence that M is projective, by Theorem 5.3. �

Remark 5.6. All the steps in the proof of Theorem 5.3 except for the one dealing
with Frobenius kernels, Theorem 5.2, work equally well for π-cosupport: namely,
they can be used with little change to show that if π- cosuppM = ∅, then M is
projective. Explicitly, the following changes need to be made:

(1) Theorem 3.7: Simply replace π-support with π-cosupport.
(2) Theorem 4.1: In the proof of Case 2, use [11, Lemma 5.1] which is an

analogue for cosupports of the Kronecker quiver lemma.
(3) Theorem 5.1: The proof carries over almost verbatim. One replaces the

extension MK with coextension MK and uses repeatedly that coextension
commutes with induction for finite group schemes [11, Lemma 2.2].

The trouble with establishing the analogue of Theorem 5.2 for cosupports can be
pinpointed to the fact that the induction functor ind: ModH → ModG does not
commute with coextension of scalars for general affine group schemes. Even worse,
when G is not finite and K/k is of infinite degree, given a G-module M there is no
natural action of GK on MK .

In Part IV we prove that π-cosupport detects projectivity, taking an entirely
different approach. This uses the support detection theorem in an essential way.

Part III. Minimal localizing subcategories

Let G be a finite group scheme over a field k. From now on we consider the stable
module category StModG whose construction and basic properties were recalled in
Section 2. For each p in ProjH∗(G, k), we focus on the subcategory Γp(StModG)
consisting of modules with support in {p}. These are precisely the modules whose
cohomology is p-local and p-torsion.

This part of the paper is dedicated to proving that Γp(StModG) is minimal,
meaning that it contains no proper non-zero tensor ideal localizing subcategories.
As noted in Section 2, this is the crux of the classification of the tensor ideal
localizing subcategories of StModG.

For closed points in ProjH∗(G, k) the desired minimality is verified in Section 6.
The general case is settled in Section 8, by reduction to a closed point. The key
idea here is to construct good generic points for projective varieties. The necessary
commutative algebra is developed in Section 7.



STRATIFICATION 285

6. Support equals π-support

Henceforth it becomes necessary to have at our disposal the methods developed
in [6,7] and recalled in Section 2. We begin by establishing that the π-support of a
G-module coincides with its support. Using this, we track the behavior of supports
under extensions of scalars and verify that for a closed point p the tensor ideal
localizing subcategory Γp(StModG) is minimal.

Theorem 6.1. Let G be a finite group scheme defined over k. Viewed as subsets
of ProjH∗(G, k) one has π- suppG(M) = suppG(M) for any G-module M .

Proof. From [24, Proposition 6.6] one gets that π- suppG(Γpk) = {p}. Given this,
the tensor product formula (Theorem 1.10) and the detection of projectivity (The-
orem 5.3), the calculation is purely formal; see the proof of [11, Theorem 6.1]. �

The preceding result reconciles two rather different points of view of support
and so makes available a panoply of new tools for studying representations of finite
group schemes. The next result, required in Section 8, well illustrates this point.

Proposition 6.2. Let G be a finite group scheme over k, let K/k be an extension
of fields, and let ρ : ProjH∗(GK ,K) → ProjH∗(G, k) be the induced map,

(1) suppGK
(MK) = ρ−1(suppG(M)) for any G-module M ;

(2) suppG(N↓G) = ρ(suppGK
(N)) for any GK-module N .

Proof. The equality in (1) is clear for π-supports; now recall Theorem 6.1.
We deduce the equality in (2) by applying twice Proposition 2.1. The action

of H∗(GK ,K) on StModGK induces an action also of H∗(G, k) via restriction
of scalars along the homomorphism K ⊗k − : H∗(G, k) → H∗(GK ,K). Applying
Proposition 2.1 to the functor (id,K ⊗k −) on StModGK yields an equality

suppH∗(G,k)(N) = ρ(suppGK
(N)) .

Next observe that the restriction functor (−)↓G is compatible with the actions of
H∗(G, k). Also, (−)↓G is exact, preserves set-indexed coproducts and products, and
is faithful on objects. Everything is obvious, except the last property. So suppose
N is a GK-module such that N↓G is projective. Then, for any simple G-module S
and integer i ≥ 1 one has

ExtiGK
(K ⊗k S,N) ∼= ExtiG(S,N↓G) = 0.

Since any simple GK-module is a direct summand of K ⊗k S, for some choice of S,
it follows that N is projective, as desired.

Now we apply Proposition 2.1 to the functor

((−)↓G, idH∗(G,k)) : StModGK −→ StModG

and obtain the equality

suppG(N↓G) = suppH∗(G,k)(N) .

In conjunction with the one above, this gives (2). �
We can now begin to address the main task of this part of the paper.

Proposition 6.3. When m is a closed point of ProjH∗(G, k), the tensor ideal
localizing subcategory Γm(StModG) of StModG is minimal.
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Proof. It suffices to verify that the G-module Homk(M,N) is not projective for any
non-zero modules M,N in Γm(StModG); see [8, Lemma 3.9].

A crucial observation is that since m is a closed point, it is in π- suppG(M) if
and only if it is in π- cosuppG(M) for any G-module M ; see Lemma 1.9. This will
be used (twice) without comment in what follows. For any non-zero modules M,N
in Γm(StModG) Theorem 1.10 yields

π- cosuppG(Homk(M,N)) = π- suppG(M) ∩ π- cosuppG(N) = {m} .

Thus, m is also in the support of Homk(M,N). It remains to recall Theorem 5.3. �

7. Generic points in graded-commutative algebras

A standard technique in classical algebraic geometry is to ensure that irreducible
varieties have generic points by enlarging their field of definition. For affine varieties
this amounts to the following: Given a prime ideal p in an algebra A finitely
generated over a field k, there is an extension of fields K/k such that in the ring
B := A⊗k K there is a maximal ideal m lying over p, that is to say, m ∩A = p. In
Section 8 we need a more precise version of this result, namely that there is such
a K where m is cut out from B/pB, the fiber over p, by a complete intersection in
B; also, we have to deal with projective varieties. This is what is achieved in this
section; see Theorem 7.7. The statement and its proof require some care, for in our
context the desired property holds only outside a hypersurface.

Let B be a graded-commutative ring: a graded abelian group B = {Bi}i∈Z with
an associative product satisfying a · b = (−1)|a||b|b · a for all elements a, b in B,
where | | denotes degree. We consider only homogenous elements of graded objects.

Definition 7.1. Let N be a graded B-module. Mimicking [16, Definition 1.1.1],
we say that a sequence b := b1, . . . , bn of elements in B is a weak N-sequence if bi
is not a zero divisor on N/(b1, . . . , bi−1)N , for i = 1, . . . , n. We drop the adjective
“weak” if, in addition, bN = N holds.

Lemma 7.2. Let A → B be a homomorphism of graded-commutative rings and
b := b1, . . . , bn a weak B-sequence. If the A-module B/(b1, . . . , bi)B is flat for each
i = 1, . . . , n, then b is a weak (M ⊗A B)-sequence for each graded A-module M .

Proof. Set b�i := b1, . . . , bi for i = 0, . . . , n. For i = 1, . . . , n, since bi is not a zero
divisor on B/(b�i−1), one gets the following exact sequence of of graded B-modules:

0 −→ B

(b�i−1)B

bi−−→ B

(b�i−1)B
−→ B

(b�i)B
−→ 0.

Since B/(b�i) is flat as an A-module, applying M⊗A− to the exact sequence above
and noting that M ⊗A B/(b�i−1) is naturally isomorphic to (M ⊗A B)/(b�i−1),
one gets the following exact sequence:

0 −→ M ⊗A B

(b�i−1)(M ⊗A B)

bi−−→ M ⊗A B

(b�i−1)(M ⊗A B)
−→ M ⊗A B

(b�i)(M ⊗A B)
−→ 0.

This is the desired conclusion. �
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A model for localization. To prepare for the next step, we recall some basic
properties of the kernel of a diagonal map. Let k be a field and k[x] a polynomial
ring over k in indeterminates x := x0, . . . , xn of the same degree. Let t := t1, . . . , tn
be indeterminates over k and k(t) the corresponding field of rational functions, and
consider the homomorphism of k-algebras,

μ : k(t)[x] � k

(
x1

x0
, . . . ,

xn

x0

)
[x0] where μ(ti) =

xi

x0
for each i.

The range of μ is viewed as a subring of the field of rational functions in x.

Lemma 7.3. The ideal Ker(μ) is generated by x1 − x0t1, . . . , xn − x0tn, and the
latter is a k(t)[x]-sequence.

Proof. It is clear that the kernel of μ is generated by the given elements. That
these elements form a k(t)[x]-sequence can readily be verified by, for example, an
induction on n. Another way is to note that they are n elements in a polynomial ring
and the Krull dimension of k(t)[x]/Ker(μ) is one; see [16, Theorem 2.1.2(c)]. �

Let now A be a graded-commutative k-algebra, and a := a0, . . . , an an alge-
braically independent set over k, with each ai of the same degree. Observe that the
following subset of A is multiplicatively closed,

(7.1) Ua := {f(a0, . . . , an) | f a non-zero homogeneous polynomial}.
The algebraic independence of a is equivalent to the condition that 0 is not in Ua.
For example, Ua is the multiplicatively closed subset ∪i�0ka

i. For any A-module
M one has the localization at Ua, namely equivalence classes of fractions

U−1
a M :=

{[m
f

]
| m ∈ M and f ∈ Ua

}
.

The result below provides a concrete realization of this localization.

Lemma 7.4. Let t := t1, . . . , tn be indeterminates over k and k(t) the corre-
sponding field of rational functions. Set B := A ⊗k k(t) and bi := ai − a0ti, for
i = 1, . . . , n. The following statements hold:

(1) The canonical map A → B/(b) of k-algebras induces an isomorphism

U−1
a A

∼=−−→ U−1
a0

(B/(b)) .

(2) b is a weak U−1
a0

(M ⊗k k(t))-sequence for any graded A-module M .

Proof. We first verify the statements when A = k[x], a polynomial ring over k in
indeterminates x := x0, . . . , xn of the same degree, and ai = xi for each i. Then
B = k(t)[x], the polynomial ring over the same indeterminates, but over the field
k(t), and U−1

x0
k(t)[x] can be naturally identified with k(t)[x, x−1

0 ].
Consider the commutative diagram of morphisms of graded k-algebras

k[x]

��

�� k(t)[x] �� k(t)[x, x−1
0 ]

U−1
x0

μ
����

U−1
x k[x]

∼= �� k(x1, . . . , xn)[x
±1
0 ]

where μ(ti) =
xi

x0
.
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The unlabeled arrows are all canonical inclusions and the isomorphism is obvious.
It follows from Lemma 7.3 that Ker(U−1

x0
μ) is the ideal generated by {xi−x0ti}ni=1.

This justifies the assertion in (1).
As to (2), since x1 − x0t1, . . . , xn − x0tn is a k(t)[x]-sequence, by Lemma 7.3,

it is also a weak k(t)[x, x−1
0 ]-sequence. Moreover, arguing as above one gets that

there is an isomorphism of graded rings

k(t)[x, x−1
0 ]

(x1 − x0t1, . . . , xi − x0ti)
∼= k(x1, . . . , xi, ti+1, . . . , tn)[x, x

−1
0 ]

for each 1 ≤ i ≤ n. In particular, these are all flat as modules over k[x, x−1
0 ],

for they are obtained by localization followed by an extension of scalars. Thus
Lemma 7.2 applied to the morphism k[x, x−1

0 ] → k(t)[x, x−1
0 ] yields (2).

This completes the proof of the result when A = k[x].
The desired statements for a general A follow readily by base change. Indeed,

consider the morphism of graded k-algebras k[x] → A given by the assignment
xi �→ ai, for each i. It is easy to see then that B ∼= k(t)[x]⊗k[x]A, so that applying
−⊗k[x] A to the isomorphism

U−1
x k[x]

∼=−−→ k(x1, . . . , xn)[x
±1
0 ]

gives the isomorphism in (1). As to (2), viewing a graded A-module M as a module
over k[x] via restriction of scalars and applying the already established result for
k[x] gives the desired conclusion. �

Let k be a field and A = {Ai}�0 a finitely generated graded-commutative k-
algebra with A0 = k. As usual ProjA denotes the collection of homogeneous prime
ideals in A not containing A�1. Given a point p in ProjA, we write k(p) for the
localization of A/p at the set of nonzero homogenous elements of A/p. Note that
k(p) is a graded field and its component in degree zero is the field of functions at p.

Definition 7.5. Let A be a domain and setQ := k((0)), the graded field of fractions
of A. We say that elements a := a0, . . . , an in A give a Noether normalization of A
if the ai all have the same positive degree, are algebraically independent over k, and
A is a finitely generated module over the subalgebra k[a]. Noether normalizations
exist; see, for example, [16, Theorem 1.5.17], noting that, in the language of op. cit.,
a sequence a0, . . . , an is a system of parameters for A if and only if so is the sequence
ae00 , . . . , aenn , for any positive integers e0, . . . , en.

Observe that if a is a Noether normalization ofA, then the set {a1/a0, . . . , an/a0}
is a transcendence basis for the extension of fields k ⊆ Q0.

The result below, though not needed in the sequel, serves to explain why in
constructing generic points it suffices to enlarge the field of definition to function
fields of Noether normalizations.

Lemma 7.6. The inclusion A → Q induces an isomorphism U−1
a A

∼=−→ Q.

Proof. By the universal property of localizations, it suffices to verify that U−1
a A

is a graded field. Recall that Ua is the set of homogenous elements in k[a] \ {0}.
By definition, A is finitely generated as a module over k[a], so U−1

a A is finitely
generated as a module over U−1

a k[a]. The latter is a graded field, and hence so is
the former, as it is a domain. �
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Fix a point p in ProjA and elements a := a0, . . . , an in A whose residue classes
modulo p give a Noether normalization of A/p; see Definition 7.5. Let K := k(t),
the field of rational functions in indeterminates t := t1, . . . , tn over k. Set

B := A⊗k K and bi := ai − a0ti for i = 1, . . . , n.

Thus B is a K-algebra. The next result is probably well-known but we were unable
to find an adequate reference. Recall that a point m in ProjB is closed if it is
maximal with respect to inclusion; equivalently, the Krull dimension of B/m is one.

Theorem 7.7. Set m :=
√
(p, b1, . . . , bn)B. The following statements hold:

(1) m is prime ideal in B and defines a closed point in ProjB.
(2) m ∩A = p.
(3) b1, . . . , bn is a weak U−1

a0
B-sequence.

Proof. Note that the set a is algebraically independent over k, since it has that
property modulo p. Thus (3) is a special case of Lemma 7.4(2).

As to (1) and (2), replacing A by A/p, we can assume A is a domain with Noether

normalization a := a0, . . . , an and p = (0). Set b := b1, . . . , bn, so thatm =
√
bB. In

what follows, it will be helpful to keep in mind the following commutative diagram
of homomorphisms of graded rings:

(7.2) A

��

α �� B/bB

β

��

�� �� B/m

��

U−1
a A

∼= �� U−1
a0

(B/bB)
γ

�� �� U−1
a0

(B/m)

The map α is the composition A → B → B/bB while β is localization at Ua0
. The

isomorphism is by Lemma 7.4. Since A is a domain, the vertical map on the left is
one-to-one, and hence so is the map α. This proves that bB∩A = (0), but we need
more. In what follows, SpecB is the collection of homogeneous prime ideals of B:

(1) Since m =
√
bB, the desired result follows from statements below:

(i) ht(q) = n for any q ∈ SpecB minimal over bB.
(ii) a0 ∈ q for any q ∈ SpecB minimal over bB.
(iii) bB has exactly one prime ideal minimal over it.

(i) Since bB is generated by n elements, ht(q) ≤ n for each q minimal over bB, by
the Krull height theorem [16, Theorem A.1.]. On the other hand, by construction, B
is finitely generated as a module over its subalgebraK[a]. Notice that b is contained
in K[a], so it follows that B/bB is a finitely generated module over K[a]/(b). Since
a is algebraically independent, K[a]/(b) is isomorphic to k(a1/a0, . . . , an/a0)[a0]
(see Lemma 7.3) and hence of Krull dimension one. It follows that dim(B/bB) ≤ 1,
and therefore that ht(q) ≥ n, because B is a catenary ring. This completes the
proof of (i).

(ii) Suppose a0 is in some q ∈ SpecB minimal over bB. Then q contains the ideal
(a0, . . . , an), because b ⊆ q. Recall that B is finitely generated as a module over its
subalgebraK[a]. Thus, B/aB is finitely generated as a module overK[a]/(a) ∼= K,
and hence the Krull dimension of B/aB is zero. Said otherwise, the radical of a
equals B�1, the (unique) homogeneous maximal ideal of B. This justifies the first
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equality below,

ht(q) ≥ ht(a) = dimB = n+ 1.

The inequality holds because q ⊇ a. As to the second equality: B is a domain that
is a finitely generated module over K[a], which is of Krull dimension n + 1. The
resulting inequality ht(q) ≥ n+1 contradicts the conclusion of (i). This settles (ii).

(iii) The elements in Spec (U−1
a0

B) minimal over bU−1
a0

B are in bijection with the

elements of SpecB minimal over bB and not containing a0. Since U−1
a0

(B/bB) is a
domain, by (7.2), and a0 is not in any minimal prime of bB, it follows that bB has
only one prime ideal minimal over it, as asserted in (iii).

At this point, we have completed the proof of (1).
(2) We have to verify that m∩A = (0). Since U−1

a0
(B/bB) is a domain, by (7.2),

the ideal bU−1
a0

B is prime. By (1), the ideal m is the unique prime minimal over
bB, so it follows that

bU−1
a0

B = mU−1
a0

B.

Therefore, the map γ in (7.2) is also an isomorphism. Consequently, the composed
map A → B/bB → B/m is one-to-one, which is the desired result. �

In an earlier version of this work, we had claimed that the ideal (p, b0, . . . , bn) in
Theorem 7.7 is itself prime. This need not be the case; the flaw in our argument
was pointed out to us by Amnon Neeman.

8. Passage to closed points

As usual let G be a finite group scheme over a field k of positive characteristic. In
this section we prove that for any point p in ProjH∗(G, k) the category Γp(StModG)
consisting of the p-local and p-torsion G-modules is minimal. The main step in this
proof is a concrete model for localization at multiplicatively closed subsets of the
form Ua; see (7.1). With an eye toward future applications, we establish a more
general statement than needed for the present purpose.

We begin by recalling the construction of Koszul objects from [6, Definition 5.10].

Koszul objects. Each element a in Hd(G, k) defines a morphism k → Ω−dk in
StModG; we write k//a for its mapping cone. This is nothing but a shift of the
Carlson module, La, that came up in Lemma 3.5. We have opted to stick to k//a
for this is what is used in [6, 7] which are the main references for this section.

It follows from the construction that, in StModG, there is an exact triangle

Ωdk
a−−→ k

qa−−→ Ωd(k//a) −→ .

Given a sequence of elements a := a1, . . . , an in H∗(G, k), consider the G-module

k//a := (k//a1)⊗k · · · ⊗k (k//an) .

It comes equipped with a morphism in StModG,

(8.1) qa := qa1
⊗k · · · ⊗k qan

: k −→ Ωd(k//a),

where d = |a1|+ · · ·+ |an|. For any G-module M , set

M//a := M ⊗k (k//a) .
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In the sequel, we need the following computation:

(8.2) suppG(M//a) = suppG(M) ∩ V(a) .
This is a special case of [7, Lemma 2.6].

Remark 8.1. We say that an element a in Hd(G, k) is invertible on a G-module M

if the canonical map M
a−→ Ω−dM in StModG is an isomorphism. This is equivalent

to the condition that M//a = 0. A subset U of H∗(G, k) is said to be invertible on
M if each element in it has that property.

Fix a multiplicatively closed subset U of H∗(G, k), and set

Z(U) := {p ∈ SpecH∗(G, k) | p ∩ U = ∅}.
This subset is specialization closed. The associated localization functor LZ(U),
whose construction was recalled in Section 2, is characterized by the property that
for any G-modules M and N , with M finite dimensional, the induced morphism

Hom∗
G(M,N) −→ Hom∗

G(M,LZ(U)N)

of graded H∗(G, k)-modules is localization at U ; see, for example, [29, Theo-
rem 3.3.7]. In particular, the set U is invertible on LZ(U)N . For this reason,

in what follows we use the more suggestive notation U−1N instead of LZ(U)N .

Notation 8.2. Let a := a0, . . . , an be elements in H∗(G, k), of the same positive
degree, that are algebraically independent over k. Let K be the field of rational
functions in indeterminates t := t1, . . . , tn. Since there is a canonical isomorphism

H∗(GK ,K) ∼= H∗(G, k)⊗k K

as K-algebras, we view H∗(G, k) as a subring of H∗(GK ,K), and consider elements

bi := ai − a0ti for i = 1, . . . , n

in H∗(GK ,K). Set d = n|a0|. Composing the canonical map k → K↓G with
restriction to G of K → Ωd(K//b) in StModGK from (8.1), one gets a morphism

(8.3) f : k −→ Ωd(K//b)↓G
in StModG. Let Ua be the multiplicatively closed set defined in Equation (7.1).

Theorem 8.3. With f the map defined in (8.3), the following statements hold:

(1) The morphism U−1
a f is an isomorphism.

(2) The set Ua is invertible on U−1
a0

Ωd(K//b)↓G.
(3) For any kG-module M , the natural map Ω|a0|M

a0−→ M becomes an isomor-
phism when localized at Ua0

.

Consequently, in StModG there are isomorphisms

U−1
a k

U−1
a f

∼= �� U−1
a Ωd(K//b)↓G U−1

a0
Ωd(K//b)↓G

∼=��
∼= �� U−1

a0
(K//b)↓G .

The proof takes a little preparation. Given a G-module M , we write LocG(M)
for the smallest localizing subcategory of StModG that contains M , and Loc⊗G(M)
for the smallest tensor ideal localizing subcategory of StModG containing M .

Lemma 8.4. Let g : M → N be a morphism in StModG. If M,N are in LocG(k)
and Hom∗

G(k, g) is an isomorphism, then so is g.
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Proof. Let C be the cone of g in StModG; the hypotheses is that Hom∗
G(k, C) = 0.

Since C is also in LocG(k), it follows that it is zero in StModG, and hence that g
is an isomorphism. �

The result below is well-known and is recalled here for convenience.

Lemma 8.5. For any element a in H∗(G, k) of positive degree and G-module M ,
the natural map Ext∗G(k,M) → Hom∗

G(k,M) induces an isomorphism

U−1
a Ext∗G(k,M)

∼=−−→ U−1
a Hom∗

G(k,M).

Proof. The main point is that there is an exact sequence

0 −→ PHomG(k,M) −→ Ext∗G(k,M) −→ Hom∗
G(k,M) −→ C −→ 0

of graded H∗(G, k)-modules, where C is concentrated in negative degrees; see, for
example, [13, Section 2]. For degree reasons, it is clear that PHomG(k,M) and C
are torsion with respect toH�1(G, k), and so are annihilated when a is inverted. �

The next result concerns weak sequences; see Definition 7.1.

Lemma 8.6. When b := b1, . . . , bn is a weak U−1
a H∗(G,M)-sequence for some

element a in H∗(G, k), the natural map M → ΩdM//b, where d =
∑n

i=1 |bi|, induces
an isomorphism of graded H∗(G, k)-modules

U−1
a

H∗(G,M)

bH∗(G,M)

∼=−−→ U−1
a H∗(G,ΩdM//b).

Proof. It suffices to verify the claim for n = 1; the general case follows by iteration.

The exact triangle ΩdM
b−→ M → ΩdM//b → induces an exact sequence

0 −→ H∗(G,M)

bH∗(G,M)
−→ H∗(G,ΩdM//b) −→ Σd+1(0 : b) −→ 0

of graded H∗(G, k)-modules. Here (0 : b) denotes the elements of H∗(G,M) an-
nihilated by b. Localizing the sequence above at a gives the desired isomorphism,
since b is not a zero divisor on U−1

a H∗(G,M). �

Proof of Theorem 8.3. By construction, in StModG there is an exact triangle

Ω|a0|M −→ M −→ Ω|a0|(M//a0) −→ .

Since suppG(M//a0) ⊆ V(a0), by Equation (8.2), one has U−1
a0

(M//a0) = 0. Thus,
(3) is immediate from the exact triangle above.

As to (1) and (2), set W := Ωd(K//b). Since K↓G is a direct sum of copies of k,
it follows that W↓G is in LocG(k). Thus, in view of Lemma 8.4, it suffices to prove
that the morphism f : k → W↓G induces an isomorphism

U−1
a Hom∗

G(k, k) −→ U−1
a0

Hom∗
G(k,W↓G)

of graded H∗(G, k)-modules. Note that this map is isomorphic to

U−1
a H∗(G, k) −→ U−1

a0
H∗(G,W↓G)

by Lemma 8.5, since the degree of elements in a is positive.
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As H∗(GK ,K) ∼= H∗(G, k)⊗k K it follows from Lemma 7.4(2) that b is a weak
U−1
a0

H∗(GK ,K)-sequence. Thus Lemma 8.6 gives the first isomorphism below,

U−1
a0

H∗(GK ,K)

bH∗(GK ,K)

∼=−−→ U−1
a0

H∗(GK ,W )
∼=−−→ U−1

a0
H∗(G,W↓G).

The second isomorphism is a standard adjunction. It remains to compose this with
the isomorphism in Lemma 7.4(1). �
Notation 8.7. Fix a point p ∈ ProjH∗(G, k), and let a0, . . . , an be elements in
H∗(G, k) that give a Noether normalization of H∗(G, k)/p; see Definition 7.5.

Let K be the field of rational functions in indeterminates t1, . . . , tn. Consider
the ideal in H∗(GK ,K) given by

q := (p, b1, . . . , bn) where bi = ai − a0ti .

Then m :=
√
q is a closed point in ProjH∗(GK ,K) lying over p, by Theorem 7.7.

Choose a finite set p ⊆ p that generates the ideal p, let q := p ∪ b, and set

k//p := k//p and K//q := K//q .

The G-module k//p depends on the choice of p; however, the thick subcategory of
stmod kG generated by it is independent of the choice; this can be proved along
the lines of [29, Corollary 5.11]. The next result holds for any choice of p and the
corresponding q.

Theorem 8.8. The G-module (K//q)↓G is p-local and p-torsion, and f ⊗k k//p,
with f as in (8.3), induces an isomorphism (k//p)p ∼= (K//q)↓G. Thus in StModG
there is a commutative diagram

k//p

f⊗kk//p

���
��

��
��

�

����
��
��
��

(k//p)p ∼=
�� (K//q)↓G

where the map pointing left is localization. In particular, there is an equality

Γp(StModG) = Loc⊗G((K//q)↓G) .
Proof. Since suppGK

(K//q) equals {m}, by Equation (8.2), it follows from the con-
struction of m and Proposition 6.2 that suppG(K//q)↓G equals {p}. Said otherwise,
(K//q)↓G is p-local and p-torsion, as claimed.

Set W := (K//b)↓G. Observe that the restriction functor (−)↓G is compatible
with the construction of Koszul objects with respect to elements of H∗(G, k). This
gives a natural isomorphism

W//p ∼= (K//q)↓G .

Since we already know that the module on the right is p-local, so is the one on the
left. This justifies the last isomorphism below,

(k//p)p ∼= (kp)//p ∼= (Wp)//p ∼= (W//p)p ∼= W//p.

The second is the one induced by the isomorphism in Theorem 8.3, since Ua is not
contained in p. The other isomorphisms are standard. The concatenation of the
isomorphisms is the one in the statement of the theorem.
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By [6, Corollary 8.3] one has Γpk ⊗k N ∼= N for any p-local and p-torsion G-
module N . This justifies the first equality below.

Γp(StModG) = Loc⊗G(Γpk) = Loc⊗G((k//p)p) .

For the second one see, for example, [7, Lemma 3.8]. Thus, the already established
part of the theorem gives the desired equality. �

Lemma 8.9. Let K/k be an extension of fields and M a G-module. If a GK-module
N is in Loc⊗GK

(MK), then N↓G is in Loc⊗G(M).

Proof. Let S(G) denote a direct sum of a representative set of simple G-modules.
Then Loc⊗G(M) = LocG(S(G) ⊗k M). Note that S(GK) is a direct summand of
S(G)K . Now suppose that

N ∈ Loc⊗GK
(MK) = LocGK

(S(G)K ⊗K MK) .

Since there is an isomorphism of G-modules

(S(G)K ⊗K MK)↓G ∼= S(G)⊗k (MK)↓G ,

one gets the following:

N↓G ∈ LocG(S(G)⊗k (MK)↓G) = Loc⊗G((MK)↓G) = Loc⊗G(M) ,

where the last equality uses that (MK)↓G equals a direct sum of copies of M . �

Theorem 8.10. Let G be a finite group scheme over k. The tensor triangulated
category Γp(StModG) is minimal for each point p in ProjH∗(G, k).

Proof. Given the description of Γp(StModG) in Theorem 8.8, it suffices to verify

that if p is in the support of a G-module M , then (K//q)↓G is in Loc⊗G(M). Let
K/k be the extension of fields and m the closed point of ProjH∗(GK ,K) lying over
p constructed in 8.7. Then suppGK

(MK) contains m, by Proposition 6.2. By (8.2),

suppGK
(K//q) = V(q) = {m} so Proposition 6.3 implies K//q is in Loc⊗GK

(MK). It

follows from Lemma 8.9 that (K//q)↓G is in Loc⊗G(M). �

Part IV. Applications

The final part of this paper is devoted to applications of the results proved in
the preceding part. We proceed in several steps and derive global results about the
module category of a finite group scheme from local properties.

As before, G denotes a finite group scheme over a field k of positive characteristic.

9. Cosupport equals π-cosupport

In this section we show that π-cosupport of any G-module coincides with its
cosupport introduced in Section 2. The link between them is provided by a naturally
defined G-module, α∗(K)↓G = (KG⊗K[t]/(tp)K)↓G, that is the subject of the result
below. For its proof we recall [30, I.8.14] that given any subgroup scheme H of G
there is a functor

coindGH : ModH −→ ModG

that is left adjoint to the restriction functor (−)↓H from ModG to ModH.
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Lemma 9.1. Fix a point p in ProjH∗(G, k). If α : K[t]/(tp) → KG is a π-point
corresponding to p, then suppG(α∗(K)↓G) = {p} holds.

Proof. We proceed in several steps. Suppose first that K = k and that G is unipo-
tent. Since α∗(k) is a finite dimensional k-vector space suppG(α∗(k)) coincides with
the set of prime ideals in ProjH∗(G, k) containing the annihilator of the H∗(G, k)-
module Ext∗G(α∗(k), α∗(k)); see [6, Theorem 5.5]. This annihilator coincides with
that of Ext∗G(α∗(k), k), since G is unipotent, where H∗(G, k) acts via the canonical
map H∗(G, k) → Ext∗G(α∗(k), α∗(k)). Adjunction yields an isomorphism,

Ext∗G(α∗(k), k) ∼= Ext∗k[t]/(tp)(k, k),

and we see that the action of H∗(G, k) factors through the canonical map

H∗(α) : H∗(G, k) −→ H∗(k[t]/(tp), k)

that is induced by restriction via α. Thus the annihilator of Ext∗G(α∗(k), α∗(k))
has the same radical as KerH∗(α), which is p. It follows that suppG(α∗(k)) = {p}.

Now let α be arbitrary. We may assume that it factors as

K[t]/(tp)
β−−→ KU −→ KG,

where U is a quasi-elementary subgroup scheme of GK ; see Remark 1.5(2). Note
that β defines a π-point of U ; call it m. The first part of this proof yields an equality

suppU (β∗(K)) = {m} .
Let f : H∗(GK ,K) → H∗(U,K) be the restriction map and φ the map it induces on
Proj. Note that φ(m) is the π-point of GK corresponding to α. Therefore, applying
Proposition 2.1 to the pair

((−)↓U , f) : StModGK → StModU ,

one gets the inclusion below,

suppGK
(α∗(K)) = suppGK

(coindGK

U (β∗(K))) ⊆ φ(suppU (β∗K)) = {φ(m)}.

Since Ext∗GK
(α∗(K),K) is non-zero, by adjointness, α∗(K) is not projective. Thus

its support equals {φ(m)}. It remains to apply Proposition 6.2(2). �

Lemma 9.2. Let α : K[t]/(tp) → KG be a π-point corresponding to a point p in
ProjH∗(G, k), and M a G-module. The following conditions are equivalent:

(1) p is in π- cosuppG(M);
(2) Homk(α∗(K)↓G,M) is not projective;
(3) HomG(α∗(K)↓G,M) = 0.

Proof. The equivalence of (1) and (3) follows from the definition of π-cosupport
and the following standard adjunction isomorphisms:

HomK[t]/(tp)(K,α∗(MK)) ∼= HomGK
(α∗(K),MK) ∼= HomG(α∗(K)↓G,M),

(1) ⇐⇒ (2) Let S be the direct sum of a representative set of simple kG-modules.
Since π- suppG(S) equals ProjH

∗(G, k), Theorem 1.10 yields an equality

π- cosuppG(M) = π- cosuppG(Homk(S,M)) .
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This justifies the first of the following equivalences:

p ∈ π- cosuppG(M) ⇐⇒ p ∈ π- cosuppG(Homk(S,M))

⇐⇒ HomG(α∗(K)↓G,Homk(S,M)) = 0

⇐⇒ HomG(α∗(K)↓G ⊗k S,M) = 0

⇐⇒ HomG(S,Homk(α∗(K)↓G,M)) = 0

⇐⇒ Homk(α∗(K)↓G,M) is not projective.

The second one is (1) ⇐⇒ (3) applied to Homk(S,M); the third and the fourth are
standard adjunctions, and the last one is clear. �
Theorem 9.3. Let G be a finite group scheme over a field k. Viewed as subsets of
ProjH∗(G, k) one has π- cosuppG(M) = cosuppG(M) for any G-module M .

Proof. The first of the following equivalences is Lemma 9.2:

p ∈ π- cosuppG(M) ⇐⇒ Homk(α∗(K)↓G,M) is not projective

⇐⇒ Homk(Γpk,M) is not projective

⇐⇒ p ∈ cosuppG(M).

The second one holds because α∗(K)↓G and Γpk generate the same tensor ideal
localizing subcategory of StModG. This is a consequence of Theorem 8.10 be-
cause suppG(α∗(K)↓G) = {p} by Lemma 9.1. The final equivalence is simply the
definition of cosupport. �

Here is a first consequence of this result. We have been unable to verify the state-
ment about maximal elements directly, except for closed points in the π-support
and π-cosupport; see Lemma 1.9.

Corollary 9.4. For any G-module M the maximal elements, with respect to inclu-
sion, in π- cosuppG(M) and π- suppG(M) coincide. In particular, M is projective
if and only if π- cosuppG(M) = ∅.

Proof. Given Theorems 6.1 and 9.3, this is a translation of [9, Theorem 4.5]. �
The next result describes support and cosupport for a subgroup scheme H of G;

this complements Proposition 6.2.
Recall that induction and coinduction are related as follows:

(9.1) indGH(M) ∼= coindGH(M ⊗k μ) ,

with μ the character of H dual to (δG)↓Hδ−1
H , where δG is a linear character of G

called the modular function; see [30, Proposition I.8.17].

Proposition 9.5. Let H be subgroup scheme of a finite group scheme G over k
and ρ : ProjH∗(H, k) → ProjH∗(G, k) the map induced by restriction.

(1) For any G-module N the following equalities hold:

suppH(N↓H) = ρ−1(suppG(N)) and cosuppH(N↓H) = ρ−1(cosuppG(N)).

(2) For any H-module M the following inclusions hold:

suppG(ind
G
H M) ⊆ ρ(suppH(M)) and cosuppG(ind

G
H M) ⊆ ρ(cosuppH(M)).

These become equalities when G is a finite group or H is unipotent.
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Proof. (1) Since any π-point of H induces a π-point of G, the stated equalities
are clear when one replaces support and cosupport by π-support and π-cosupport,
respectively. It remains to recall Theorems 6.1 and 9.3.

(2) Since ind is right adjoint to restriction, the inclusion of cosupports is a
consequence of Proposition 2.1 applied to the functor

((−)↓H , f) : (StModG,H∗(G, k)) −→ (StModH,H∗(H, k)) ,

where f : H∗(G, k) → H∗(H, k) is the homomorphism of k-algebras induced by
restriction. By the same token, as coinduction is left adjoint to restriction one gets

suppG(coind
G
H M) ⊆ ρ(suppH(M)) .

By Equation (9.1), there is a one-dimensional representation μ of H such that

suppG(ind
G
H M) = suppG(coind

G
H(M ⊗k μ)) .

This yields the inclusion below,

suppG(ind
G
H M) ⊆ ρ(suppH(M⊗kμ)) = ρ(suppH(M)∩suppH(μ)) = ρ(suppH(M)).

The first equality is by Theorem 1.10 while the second one holds because the support
of any one-dimensional representation μ is ProjH∗(G, k), as follows, for example,
because Homk(μ, μ) is isomorphic to k.

Concerning the equalities, the key point is that under the additional hypotheses,
indGH(−), which is right adjoint to (−)↓H , is faithful on objects. �
Example 9.6. One of many differences between finite groups and connected group
schemes is that Proposition 9.5(2) may fail for the latter, because induction is not
faithful on objects in general.

For example, let G = SLn and B be its standard Borel subgroup. Take G = G(r),
H = B(r), and λ = ρ(pr − 1) where ρ is the half sum of all positive roots for the
root system of G. Let kλ be the one-dimensional representation of H given by
the character λ. Then indGH kλ is the Steinberg module for G; in particular, it is
projective. Hence, ind : stmodH → stmodG is not faithful on objects, and both
inclusions of Proposition 9.5(2) are strict for M = kλ.

10. Stratification

In this section we establish for a finite group scheme the classification of tensor
ideal localizing subcategories of its stable module category and draw some conse-
quences. The development follows closely the one in [8, Sections 10 and 11]. For
this reason, in the remainder of the paper, we work exclusively with supports as
defined in Section 2, secure in the knowledge afforded by Theorem 6.1 that the
discussion could just as well be phrased in the language of π-points.

Theorem 10.1. Let G be a finite group scheme over a field k. Then the stable mod-
ule category StModG is stratified as a tensor triangulated category by the natural
action of the cohomology ring H∗(G, k). Therefore the assignment

(10.1) C �−→
⋃

M∈C

suppG(M)

induces a bijection between the tensor ideal localizing subcategories of StModG and
the subsets of ProjH∗(G, k).
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Proof. The first part of the assertion is precisely the statement of Theorem 8.10.
The second part of the assertion is a formal consequence of the first; see [8, The-
orem 3.8]. The inverse map sends a subset V of ProjH∗(G, k) to the tensor ideal
localizing subcategory consisting of all G-modules M such that suppG(M) ⊆ V . �

The result below contains the first theorem from the Introduction.

Corollary 10.2. Let M and N be non-zero G-modules. One can build M out of
N if (and only if) there is an inclusion π- suppG(M) ⊆ π- suppG(N).

Proof. The canonical functor ModG → StModG that assigns a module to itself
respects tensor products and takes short exact sequences to exact triangles. It
follows that M is built out of N in ModG if and only if M is in the tensor ideal
localizing subcategory of StModG generated by N ; see also [8, Proposition 2.1].
The desired result is thus a direct consequence of Theorem 10.1. �

Thick subcategories. As a corollary of Theorem 10.1 we deduce a classification of
the tensor ideal thick subcategories of stmodG, stated already in [24, Theorem 6.3].
The crucial input in the proof in op. cit. is [24, Theorem 5.3], which is flawed (see
Remark 5.4), but the argument can be salvaged by referring to Theorem 5.3 instead.
We give an alternative proof, mimicking [8, Theorem 11.4].

Theorem 10.3. Let G be a finite group scheme over a field k. The assignment
(10.1) induces a bijection between tensor ideal thick subcategories of stmodG and
specialization closed subsets of ProjH∗(G, k).

Proof. To begin with, if M is a finite dimensional G-module, then suppG(M) is
a Zariski closed subset of ProjH∗(G, k); conversely, each Zariski closed subset of
ProjH∗(G, k) is of this form. Indeed, given the identification of π-support and
cohomological support, the forward implication statement follows from [24, Propo-
sition 3.4] while the converse is [24, Proposition 3.7]. Consequently, if C is a tensor
ideal thick subcategory of stmodG, then suppG(C) is a specialization closed subset
of ProjH∗(G, k), and every specialization closed subset of ProjH∗(G, k) is of this
form. It remains to verify that the assignment C �→ suppG(C) is one-to-one.

This can be proved as follows: StModG is a compactly generated triangulated
category, and the full subcategory of its compact objects identifies with stmodG.
Thus, if C is a tensor ideal thick subcategory of stmodG and C′ the tensor ideal
localizing subcategory of StModG that it generates, then C′ ∩ stmodG = C; see
[33, Section 5]. Since suppG(C

′) = suppG(C), Theorem 10.1 gives the desired
result. �

Localizing subcategories closed under products. The following result de-
scribes the localizing subcategories of StModG that are closed under products.

Theorem 10.4. A tensor ideal localizing subcategory of StModG is closed under
products if and only if the complement of its support in ProjH∗(G, k) is specializa-
tion closed.

Proof. For the case that kG is the group algebra of a finite group, see [8, The-
orem 11.8]. The argument applies verbatim to finite group schemes; the main
ingredient is the stratification of StModG, Theorem 10.1. �
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The telescope conjecture. A localizing subcategory of a compactly generated
triangulated category T is smashing if it arises as the kernel of a localization functor
T → T that preserves coproducts. The telescope conjecture, due to Bousfield and
Ravenel [15, 36], in its general form is the assertion that every smashing localizing
subcategory of T is generated by objects that are compact in T; see [32]. The
following result confirms this conjecture for StModG, at least for all smashing sub-
categories that are tensor ideal. Note that when the trivial kG-module k generates
stmodG as a thick subcategory (for example, when G is unipotent) each localizing
subcategory is tensor ideal.

Theorem 10.5. Let C be a tensor ideal localizing subcategory of StModG. The
following conditions are equivalent:

(1) The localizing subcategory C is smashing.
(2) The localizing subcategory C is generated by objects compact in StModG.
(3) The support of C is a specialization closed subset of ProjH∗(G, k).

Proof. If G is a finite group, this result is [8, Theorem 11.12] and is deduced from
the special case of Theorem 10.1 for finite groups. The proof carries over verbatim
to group schemes. �
The homotopy category of injectives. Let K(InjG) denote the triangulated
category whose objects are the complexes of injective G-modules and whose mor-
phisms are the homotopy classes of degree preserving maps of complexes. As a
triangulated category K(InjG) is compactly generated, and the compact objects
are equivalent to Db(modG), via the functor K(InjG) → D(ModG). The tensor
product of modules extends to complexes and defines a tensor product on K(InjG).
This category was investigated in detail by Benson and Krause [14] in case G is
a finite group; the more general case of a finite group scheme is analogous. Tak-
ing Tate resolutions gives an equivalence of triangulated categories from the stable
module category StModG to the full subcategory Kac(InjG) of K(InjG) consisting
of acyclic complexes. This equivalence preserves the tensor product. The Verdier
quotient of K(InjG) by Kac(InjG) is equivalent, as a triangulated category, to the
unbounded derived category D(ModG). There are left and right adjoints, forming
a recollement

StModG
∼−→ Kac(InjG)

−⊗ktk←−−−−−−−−−−−−−−−−→←−−−−−−−−
Homk(tk,−)

K(InjG)

−⊗kpk←−−−−−−−−−−−−−−−−→←−−−−−−−−
Homk(pk,−)

D(ModG),

where pk and tk are a projective resolution and a Tate resolution of k, respectively.
The cohomology ring H∗(G, k) acts on K(InjG) and, as in [6, 9], the theory of

supports and cosupports for StModG extends in a natural way to K(InjG). It asso-
ciates to each X in K(InjG) subsets suppG(X) and cosuppG(X) of SpecH∗(G, k).
The Tate resolution of a G-module M is tk ⊗k M , so there are equalities

suppG(M) = suppG(tk ⊗k M) and cosuppG(M) = cosuppG(tk ⊗k M),

where one views ProjH∗(G, k) as a subset of SpecH∗(G, k). Thus Theorem 10.1
has the following consequence.

Corollary 10.6. The homotopy category K(InjG) is stratified as a tensor trian-
gulated category by the natural action of the cohomology ring H∗(G, k). Therefore
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the assignment C �→
⋃

X∈C suppG(X) induces a bijection between the tensor ideal
localizing subcategories of K(InjG) and the subsets of SpecH∗(G, k). It restricts to
a bijection between the tensor ideal thick subcategories of Db(modG) and special-
ization closed subsets of SpecH∗(G, k). �

With this result on hand, one can readily establish analogues of Theorems 10.4
and 10.5 for K(InjG). We leave the formulation of the statements and the proofs
to the interested reader; see also [8, Sections 10 and 11].

To wrap up this discussion, we record a proof of the following result mentioned
in the Introduction.

Theorem 10.7. If G is unipotent and M,N are G-modules, then ExtiG(M,N) = 0
for some i ≥ 1 if and only if π- suppG M∩π- cosuppG N = ∅; when these conditions
hold, ExtiG(M,N) = 0 for all i ≥ 1.

Proof. Let L = Homk(M,N). Then Theorem 1.10(2) and Corollary 9.4 imply that
π- suppG M ∩ π- cosuppG N = ∅ if and only if π- cosuppG L = ∅ if and only if L is
projective. If L is projective, then ExtiG(M,N) ∼= ExtiG(k, L) = 0 for i > 0.

It remains to show that if ExtiG(k, L) = 0 for some i > 0, then L is projective.
Indeed, since G is unipotent, k is the only simple G-module. Hence, the condition
ExtiG(k, L) = 0 implies that ExtiG(N,L) = 0 for any finite dimensional G-module
N since it has a finite filtration with all subquotients isomorphic to k. Therefore,
Ext1G(N,Ω1−iL) ∼= ExtiG(N,L) = 0 for any finite dimensional G-module N . We
conclude that Ω1−iL is projective and hence that L is projective. �

It is immediate from definitions that π- suppG(M) = π- cosuppG(M) for any
finite dimensional G-module M . Thus, the result above implies that when M and
N are finite dimensional, one has

ExtiG(M,N) = 0 for i � 0 ⇐⇒ ExtiG(N,M) = 0 for i � 0 .

This can be verified directly, using the results from [24] pertaining only to finite
dimensional G-modules.
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