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CONVEXITY OF THE K-ENERGY ON THE SPACE

OF KÄHLER METRICS AND UNIQUENESS

OF EXTREMAL METRICS

ROBERT J. BERMAN AND BO BERNDTSSON

1. Introduction

Let X be an n-dimensional compact complex manifold equipped with a Kähler
form ω0. In the seminal work of Calabi [15, 16] the problem of finding a canonical
Kähler metric in the corresponding cohomology class [ω0] ∈ H2(X,R) was proposed,
in particular a metric with constant scalar curvature. As later shown by Mabuchi
[41] such metrics are the critical points of a certain functional on the space of Kähler
metrics in [ω0] called the K-energy or the Mabuchi functional, which we will denote
by M, defined as follows. First recall that the space of all Kähler metrics in [ω] may
be identified with the space H(X,ω) of all Kähler potentials, modulo constants, i.e.
the space of all functions u on X such that

ωu := ω + ddcu (ddc :=
i

2π
∂∂̄),

is positive, i.e. defines a Kähler form on X. The space H(X,ω) admits a natural
Riemannian metric g (of non-positive sectional curvature) that we will refer to as
the Mabuchi metric [42], where the squared norm of a tangent vector v ∈ C∞(X)
at u is defined by

(1.1) g|u(v, v) :=

ˆ
X

v2ωn
u .

Now the Mabuchi functional M on the infinite dimensional Riemannian manifold
H(X,ω) is uniquely defined, modulo an additive constant, by the property that its
gradient is the normalized scalar curvature of the corresponding Kähler metric,

(1.2) ∇M|u := −(Rωu
− R̄),

where R̄ denotes the average scalar curvature which, for cohomology reasons, is a
topological invariant. The geometric role of the Mabuchi functional was elucidated
by Donaldson [28] who showed that—from a dual point of view—it can be iden-
tified with the Kempf-Ness “norm-functional” for the natural action of the group
of all Hamiltonian diffeomorphisms on the space of all complex structures on X
compatible with the symplectic form ω0. This interpretation also provides a direct
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link between the Mabuchi functional and the notion of stability in geometric invari-
ant theory (GIT), which in the case when the Kähler class in question is integral,
i.e. equal to the first Chern class of an ample line bundle L → X, has been made
precise in the seminal Yau-Tian-Donaldson conjecture saying that c1(L) contains a
Kähler metric with constant scalar curvature if and only if the polarized manifold
(X,L) is K-stable [31, 56, 60].

1.1. Statement of the main results. As shown by Mabuchi [41, 42] the func-
tional M is convex along geodesics ut in the Riemannian manifold H(X,ω). Unfor-
tunately, given u0 and u1 in H there may be no geodesic ut connecting them (see
[26,40] for recent counterexamples). Still by a result of Chen [18], with complements
due to Blocki [14], there always exists a (unique) weak geodesic ut connecting u0

and u1 defined as follows. First recall that, by an important observation of Semmes
[48] and Donaldson [28], after a complexification of the variable t, the geodesic equa-
tion for ut on X × [0, 1] may be written as the following complex Monge-Ampère
equation on a domain M := X ×D in X × C for the function U(x, t) := ut(x):

(1.3) (π∗ω + ddcU)n+1 = 0,

where π : M → X is the natural projection. As shown in [14, 18] for any smoothly
bounded domain D in C the corresponding boundary value problem on M admits
a unique solution U such that π∗ω + ddcU is a positive current with coefficients
in L∞, satisfying Equation (1.3) almost everywhere. In particular, when D is an
annulus in C, this construction gives rise to the notion of a weak geodesic curve
ut in the extended space H1,1 of all functions u such that ωu is a positive current
with coefficients in L∞. Moreover, even if the original defining property (formula
(1.2)) of the Mabuchi functional requires that ωu be positive and C2-smooth (and
in particular that u be C4-smooth), Chen went on to show [19] that the Mabuchi
functional admits an explicit formula which is well-defined along a weak geodesic
ray ut as above. (This formula was also independently obtained by Tian; see [57].)
Indeed,

(1.4) M(u) = E (u) +

ˆ
X

log(
ωn
u

ωn
0

)ωn
u ,

where the first term E (u) is an explicit energy type expression involving the integral

over X of a mixed Monge-Ampère expression of the form uωj
u ∧ θn−j

j for j ∈ [1, n],
where θj are explicit smooth forms depending on ω0. The second term is the
classical entropy of the measure ωn

u relative to the reference volume form ωn
0 . As a

consequence M is naturally defined and finite on the space H1,1, where the weak
geodesics live. It has been conjectured by Chen that M(φt) is convex along any
weak geodesic as above [19] (this was shown by Chen (for any class [ω]), when
c1(X) ≤ 0). Our main result confirms this conjecture.

Theorem 1.1. For any Kähler class [ω] the Mabuchi functional M is convex along
the weak geodesic ut connecting any two points u0 and u1 in the space H of ω-Kähler
potentials.

We will also show (Theorem 3.3) that M is “weakly subharmonic” (see Section
3 for precise definitions) along any curve uτ satisfying the complex Monge-Ampère
equation (1.3) onX×D, as long as Chen’s regularity property holds; i.e. π∗ω+ddcU
is a positive current with coefficients in L∞. The subharmonicity of the Mabuchi
functional under stronger regularity assumptions on the solution U to Equation
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(1.3) (so called “almost smooth” solutions) has been shown by Chen-Tian [22].
The key point of the proof of Theorem 1.1 is a new local positivity property of the
relative canonical line bundle KM/D along the one-dimensional current

S := (π∗ω + ddcU)n

in the product M = X × D. This can be seen as a generalization of a positivity
property of Monge-Ampère foliations due to Bedford-Burns [2], further developed
by Chen-Tian [22], since S can be realized as an average of the leaves of such a
foliation, when it exists. But it should be stressed that one of the main points
of our approach is that it does not require the existence of any sort of Monge-
Ampère foliation. Our proof uses plurisubharmonic variation of local Bergman
kernels [11, 44]; see Section 1.2 below for a sketch of the proof and Section 3.2 for
comparison with previous results.

We will also give some applications of Theorem 1.1 to Kähler geometry, which
have previously—in their full generality—only been shown using the partial regu-
larity theory of Chen-Tian [22]. Very recently, however, it has been shown by Ross
and Witt Nyström (see [46]) that the partial regularity results do not hold as stated
in [22], so it seems that the earlier proofs are not complete.

We start with the following corollary which follows immediately from the previ-
ous theorem, using the “sub-slope property” of convex functions.

Corollary 1.2. Any Kähler metric with constant scalar curvature minimizes the
corresponding Mabuchi functional. More precisely, the following inequality holds:

(1.5) M(u1)−M(u0) ≥ −d(u1, u0)
√
C(u0),

for any two Kähler potentials u0 and u1 on a Kähler manifold (X,ω), where d is
the distance function corresponding to the Mabuchi metric and C denotes the Calabi
energy, i.e. C(u) :=

´
(Rωu

− R̄)2ωn
u .

The minimizing property above was first shown by Chen in the case when the
first Chern class c1(X) is non-positive and by Donaldson [29, 30] in the case when
the automorphism group of X is discrete and the Kähler class in question is in-
tegral, i.e. when it coincides with the first Chern class of an ample line bundle
L over X. Shortly afterwards, Li [23] extended Donaldson’s method to also cover
the case when the automorphism group is not discrete. (A version of Li’s result
for extremal metrics was later given by Sano and Tipler [47].) The general case
was treated by Chen-Tian in [22], using their partial regularity theory and approx-
imation arguments, and the inequality (1.5) was then obtained by Chen, building
on [22].

In the case of smooth geodesics it is well-known that the Mabuchi functional
M is strictly convex modulo automorphisms, or more precisely modulo the group
Aut0(X) defined as the connected component of the identity in the group of all
biholomorphisms of X (see [42] and [28]). If one could establish the corresponding
strict convexity for weak geodesics—which seems very challenging—then it would
immediately imply the uniqueness modulo Aut0(X) of the critical points of M,
i.e. of cohomologous Kähler metrics with constant scalar curvature. Here we will
show that the conjectural general strict convexity result referred to above is not
needed to establish the uniqueness result in question; it follows from a rather general
argument combining the convexity in Theorem 1.1 with the well-known fact that
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the strict convexity modulo Aut0(X) does hold at the linearized level (in other
words, the Hessian of M at a critical point of M degenerates precisely along the
action of holomorphic vector fields).

Theorem 1.3. Given any two cohomologous Kähler metrics ω0 and ω1 on X with
constant scalar curvature there exists an element g in the connected component
Aut0(X) of the identity in the group of all biholomorphisms of X such that ω0 =
g∗ω1.

In the case when [ω] = c1(X) this result is due to Bando-Mabuchi [1] while
the case [ω] = c1(L) with Aut0(X) trivial was shown by Donaldson [29], using
approximation with so-called balanced metrics attached to high tensor powers of
the line bundle L. After that, the case when the cohomology class [ω] is integral
but the automorphism group is allowed to be non-discrete was treated by Mabuchi
[43]; see also the very recent work of Seyyedali [49]. The general uniqueness result
appears in [22].

Our approach to the uniqueness theorem consists in adding a small strictly con-
vex perturbation to the Mabuchi functional. The perturbed functional is then
strictly convex so it can then have at most one critical point. In case Aut0(X) is
discrete, or equivalently there are no nontrivial holomorphic vector fields on X, it
follows from the implicit function theorem that near any (smooth) critical point
of the Mabuchi functional there is a critical point of such a perturbed functional,
so the Mabuchi functional can also have at most one critical point. In the general
case, when Aut0(X) is nontrivial, critical points of M cannot in general be approx-
imated by critical points of the perturbed functional. (Indeed, if this were possible,
we would get absolute uniqueness instead of uniqueness modulo automorphisms.)
However, we prove that such approximation is possible if we first move the critical
point by a suitable automorphism, and this permits us to prove uniqueness modulo
automorphisms in the general case. This is the principle of the proof, but in order
to avoid technical complications (that arise when there are nontrivial holomorphic
vector fields) we will instead work with “approximately critical points” so in the
end we avoid the actual use of the implicit function theorem.

More specifically, we will consider the setting of Kähler metrics with constant
α-twisted scalar curvature, defined with respect to a given “twisting form” α, i.e.
a smooth closed non-negative (1, 1)-form on X (see Section 3.1.1), as well as Cal-
abi’s extremal metrics (Section 4.1). As shown in [35] the twisted setting appears
naturally in the case when X is realized as the base of a fibration whose fibers are
equipped with constant scalar curvature metrics (then the role of the twisting form
α is played by the corresponding Weil-Peterson metric on the base X describing
the variation of the complex structures of the fibers); see also [52] for the relation
to the Kähler-Ricci flow on varieties of positive Kodaira dimension and [53] for the
relation to the algebro-geometric slope stability of Ross-Thomas. Let us finally
point out that Theorem 1.1 can also be extended to Tian-Zhu’s modified K-energy
functional [59], whose critical points are Kähler-Ricci solitons (details will appear
elsewhere).

1.2. A sketch of the proof of Theorem 1.1. Let us sketch the proof of The-
orem 1.1 in the special case when ωut

is continuous and strictly positive. The
starting point is the following essentially well-known formula for the second order
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variation of the Mabuchi functional:

(1.6) dtd
c
tM(ut) =

ˆ
X

T, T := ddcΨ ∧ (π∗ω + ddcU)n, Ψt := log(ωn
ut
).

Here Ψ denotes the local weight of the metric on the relative canonical line bundle
KM/D → M induced by the metrics ωut

on TX, and
´
X

denotes the fiber-wise
integral, i.e. the natural map pushing forward a form on M := X ×D to a form on
the base D. (This formula follows from (1.4), using that ddc commutes with push-
forwards.) The proof proceeds by showing that the integrand T in formula (1.6) is
a non-negative top form on M and in particular its push-forward to D is also non-
negative, as desired. First observe that we can locally write π∗ω + ddcU = ddcΦ
for a local plurisubharmonic function Φ(t, z) = φt(z), defined on the unit-ball in
Cn. Accordingly, ωn

ut
may be written as (ddcφt)

n locally on X and by well-known
convergence results for Bergman kernels going back to Hörmander, Bouche [13],
and Tian [55], and the form T can thus be locally realized as the weak limit, as
k → ∞, of the forms Tk defined by

Tk := ddc logBkφt
∧ (ddcΦ)n,

where Bkφ := Kkφe
−kφ is the Bergman function (density of states function) for the

Hilbert space of all holomorphic functions on the unit-ball equipped with the stan-
dard L2-norm weighted by the factor e−kφ. Finally, by the results on the plurisub-
harmonic variation of Bergman kernels in [11] the function logKkφt

is plurisubhar-
monic on X ×D and hence

(1.7) ddc logBkφt
= ddc logKkφt

− kddcΦ ≥ 0− kddcΦ.

Since the latter form vanishes when wedged with (ddcΦ)n (by the geodesic equa-
tion), this shows that Tk ≥ 0. Hence letting k → ∞ shows that T ≥ 0, which
concludes the proof of Theorem 1.1 under the simplifying assumption that ωut

is
continuous and strictly positive. The proof in the general case involves a truncation
procedure (to compensate for the lack of strict positivity of the measures ωn

ut
) and

a generalization of the Bergman kernel asymptotics used above to the case when
the curvature form ddcφ is merely in L∞

loc.
An intriguing aspect of our proof is that it relies on the individual positivity prop-

erties of the two currents ddc logKkφt
and −kddcΦ appearing in the decomposition

(1.7) and these two currents diverge in the “semi-classical” limit k → ∞ (contrary
to their sum which converges to ddcΨ). Hence, our decomposition argument does
not seem to have any direct analog for the current ddcΨ itself.

Finally, we also thank the referees for a careful reading of the first version of the
paper and their suggestions which led to several improvements.

2. Weak geodesics and Bergman kernel asymptotics

2.1. Preliminaries. We start by introducing the notation for (quasi-)psh functions
(where psh stands for plurisubharmonic) and metrics on line bundles that we will
use. Let (X,ω0) be a compact complex manifold of dimension n equipped with a
fixed Kähler form ω0, i.e. a smooth real positive closed (1, 1)-form on X. Denote by
PSH(X,ω0) the space of all ω0-psh functions u on X; i.e. u ∈ L1(X), u is upper
semicontinuous (usc), and

ωu := ω0 +
i

2π
∂∂̄u := ω0 + ddcu ≥ 0
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holds in the sense of currents. We will write H(X,ω0) for the interior of
PSH(X,ω0) ∩ C∞(X), i.e. the space of all Kähler potentials (with respect to ω0).
In the integral case, i.e. when [ω] = c1(L) for a holomorphic line bundle L → X,
the space PSH(X,ω0) may be identified with the space HL of (singular) Hermitian
metrics on L with a positive curvature current. We will use additive notation for
metrics on L; i.e. we identify a Hermitian metric ‖·‖ on L with its “weight” φ.
Given a covering (Ui, si) of X with local trivializing sections si of L|Ui

the object
φ is defined by the collection of open functions φ|Ui

defined by

‖si‖2 = e−φ|Ui .

The (normalized) curvature ω of the metric ‖·‖ is the globally well-defined (1, 1)-
current defined by the following local expression:

ω = ddcφ.

The identification between HL and PSH(X,ω0) referred to above is obtained by
fixing φ0 and identifying φ with the function u := φ− φ0, so that ddcφ = ωu.

2.1.1. Weak geodesics and the space H1,1. As recalled in the Introduction of the
paper equipping the space H(X,ω0) with the Mabuchi’s Riemannian metric a curve
ut in H(X,ω0) is a geodesic iff it satisfies a complex Monge-Ampère equation. More
precisely, writing t = log |τ | for τ ∈ C so that ut may be identified with an S1-
invariant function U on M := X ×D, where D denotes the corresponding annulus
in C, the π∗ω-psh function U (with π denoting the natural projection from M to
X) satisfies

(2.1) (π∗ω + ddcU)n+1 = 0,

where U thus coincides at the boundary ∂M with the function determined by u0

and u1. As shown in [14, 18] the previous boundary value problem always admits
(for any bounded domain D in C) a weak solution in the sense that π∗ω + ddcU
is a positive current with bounded coefficients, up to the boundary. We say that
such functions have C1,1

C
-regularity. In particular, any given two points u0 and u1

in PSH(X,ω0) are connected by a (unique) weak geodesic ut as above, defining a
curve in the space H1,1 ⊂ PSH(X,ω0) of all u such that ω + ddcu is a positive
current with components in L∞

loc.

2.2. Bergman kernel asymptotics. Given a (possibly non-compact) complex
manifold Y with a line bundle L → Y equipped with a (bounded) metric φ we

denote by Kkφ the section of (kL + KY ) ⊗ (kL+KY ) → Y determined by the
restriction to the diagonal of the Bergman kernel of the space H0(Y, kL +KY ) of
all global holomorphic sections of kL +KY (viewed as holomorphic n-forms on Y
with values in kL) equipped with the standard L2-norm determined by the metric
φ (assumed to be finite),

(2.2) Kkφ(x) = sup
s∈H0(Y,kL+KY )

s ∧ s̄(x)´
Y
s ∧ s̄e−kφ

.

In particular, contracting the corresponding metrics on kL gives a measure on Y
that, after a scaling, we write as

(2.3) βk :=
n!

kn
Kkφe

−kφ.
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By well-known Bergman kernel asymptotics (due to Bouche [13] and Tian [55],
independently) in the case when Y = X the convergence βk → (ddcφ)n holds as
k → ∞, uniformly on X, if φ is C2-smooth and strictly positively curved, i.e.
ddcφ > 0. However, in our setting φ will only have a Laplacian in L∞

loc (and not be
strictly positively curved), i.e. φ will be in H1,1 and hence the convergence cannot
be uniform in general. Moreover, unless the given class [ω] on X is integral, there
will be no line bundle L over X, and then we will have to let Y be a small coordinate
ball, identified with the unit-ball in Cn, taking L as the trivial line bundle. In the
next theorem we show that a sufficiently strong version of the convergence still
holds in this setting.

Theorem 2.1. Let L → Y be a line bundle over a (possibly non-compact) complex
manifold Y and assume that L extends to a holomorphic line bundle over a compact
complex manifold X equipped with a (singular) metric φ such that the curvature
current ddcφ is non-negative with components in L∞

loc (i.e. φ is in H1,1). Denote
by βk the Bergman measure on Y defined with respect to the restricted metric on
Y. Then, given a smooth volume form dV on a compact subdomain E of Y there
exists a constant C such that

(2.4) βk ≤ CdV

on E, where the constant C only depends on E and an upper bound on the sup-norm
of ddcφ on E. Moreover, βk(x) → (ddcφ)n in total variation norm on E.

Proof. Step one: upper bounds. We will start by showing the uniform upper bound
(2.4) together with the following point-wise upper bound:

(2.5) lim sup
k→∞

βk(x) ≤ (ddcφ)n(x)

at almost any point x of Y (recall that by assumption the right-hand side above has
a density which is well-defined almost everywhere on X, so this statement indeed
makes sense). The proof will be completely local. Given any point x0 ∈ X and
local holomorphic coordinates z centered at x0 we take a local trivializing section
s of L such that φ is represented by a function φ(z) satisfying φ(0) = 0. Any given
holomorphic section of L may, locally, be written as f(z)s for a local holomorphic
function f. In particular, the function log |f |2 is subharmonic, and hence by the
sub-mean inequality for subharmonic functions we have

log |f |2(0) ≤
ˆ

log |f |2dσr,

where dσr denotes the invariant probability measure on the sphere |z| = r. Writing
log |f |2 = log(|f |2e−kφ) + kφ in the right hand side above and applying Jensen’s
inequality gives

|f |2(0) exp(−
ˆ

kφdσr) ≤
ˆ

|f |2e−kφdσr.

Accordingly, multiplying both sides with r2n−1, integrating over r ∈ [0, Rk−1/2],
and performing the change of variables r 
→ rk1/2 gives

|f |2(0)
(ˆ

|z|≤Rk−1/2

|f |2e−kφdV

)−1

≤ CR,k :=

(ˆ R

0

e−r2aφ(rk
−1/2)r2n−1dr

)−1

,

(2.6)
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where

aφ(r) =
1

r2

ˆ
|z|=r

φdσr.

We claim that

(2.7) (i) |aφ(r)| ≤ C, (ii) lim
r→0

aφ(r) = aφ(0) =
1

n
(Δφ)(0),

where C only depends on an upper bound on Δφ on B(r) := {|z| ≤ r} and where
(ii) holds if 0 is a Lesbegue point for Δφ. (Recall that 0 is a Lesbegue point for an
L1-function h if

h(0) = lim
r→0

1

V (B(r))

ˆ
|z|≤r

hdV,

where V denotes the volume of the ball B(r).) Accepting this claim for the moment
we can first set R = 1 and deduce from (i) that βk(x) is uniformly bounded on any
compact subset E. Moreover, to get the precise point-wise bound (2.5) we assume
that x is a Lesbegue point for the components of the current (ddcφ)(x), i.e. that
0 is a Lesbegue point for the L∞

loc-functions representing the distributional partial

deriviatives ∂2φ
∂zi∂z̄j

. The complement of the set of all such points x is a null set for

Lesbegue measure (as follows from Lebesgue’s theorem).
Letting k → ∞ and applying the dominated convergence theorem for R fixed

gives, by computing the Gaussian integral,

lim
R→∞

lim
k→∞

CR,k =

(ˆ ∞

0

e−r2aφ(0)r2n−1dr

)−1

=
(aφ(0))

n

πn
.

Now recall that aφ(0) =
1
n (Δφ)(0), so what we need to do is to replace the Lapla-

cian, i.e. the trace of ddcφ, by the determinant of the same form. For this we
note that we can make an arbitrary linear change of variables in the coordinates z
without changing the Bergman kernel estimate, if the determinant of the change of
variables equals 1. First we change coordinates so that the Hessian of φ is diagonal
at the origin. Then we apply a diagonal change of coordinates zj → μjzj with
determinant one. By the arithmetic-geometric mean inequality, the infimum

inf
μj

(1/n)
∑

λjμj

over all positive μj with product 1 equals (Πλj)
1/n, so taking the infimum over all

such changes of coordinates we get that

lim sup
k→∞

βk ≤ det(φj,k̄).

This concludes the proof of Step one up to the proofs of (i) and (ii) in (2.7) to
which we next turn.

First note that in order to establish (ii) it will be enough to show that the limit
aφ(0) exists and only depends on (Δφ)(0). Indeed, we can then replace φ(z) with
φ0(z) = |z|2 and note that, by symmetry, aφ0

(0) = 1 = 1
n (Δφ0)(0). Denote by g(z)

the standard spherical symmetric fundamental solution for the corresponding local

Euclidean Laplacian Δ :=
∑

i
∂2

∂zi∂z̄i
satisfying

(2.8) g(1) = 0,
∂

∂r
g(r) = cn

1

r2n−1
.
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Using Green’s formula and integration by parts gives

(2.9) cnaφ(R) = R−2

ˆ
|z|≤R

(Δφ)gdV = R−2

ˆ R

0

Aφ(r)
∂

∂r
g(r)dr,

where

Aφ(r) :=

ˆ
|z|≤r

ΔφdV.

In particular, since Δφ ≤ C on B(r) =: Br this proves (i) in (2.7). Moreover, if 0
is a Lesbegue point for Δφ, then we get Aφ(r) = V (B1)r

2n(Δφ)(0) + o(r2n) and
hence, using formula 2.9,

cnaφ(R) = V (B1)(Δφ)(0)R−2

ˆ R

0

r(1 + o(1))dr → 1

2
V (B1)(Δφ)(0),

as R → ∞. This shows that the limit aφ(0) exists and only depends on (Δφ)(0),
which proves (ii) in (2.7).

Step two: convergence in total variation norm. First note that by the uniform
and point-wise bounds on βk established in the previous steps it will in order to
prove the convergence in total variation norm be enough to show that, for any
compact subdomain E of Y ,

(2.10) lim inf
k→∞

ˆ
E

βk ≥
ˆ
E

(ddcφ)n.

Indeed, writing βk = fkdV and (ddcφ)n = fdV we get

‖βk − (ddcφ)n‖ =

ˆ
|fk − f |dV =

ˆ
(f − fk)dV + 2

ˆ
(f − fk)−,

with (f − fk)− = −min(f − fk, 0). The limsup of the first integral is less than or
equal to zero by (2.10), and the limsup of the second integral is less than or equal
to zero by Fatou’s lemma (cf. Lemma 2.2 in [4]).

Next we note that it will be enough to consider the case when Y is compact.
Indeed, by assumption (L, φ) extends to a compact complex manifold X (with the
same hypothesis on φ as on Y ), and it follows immediately from the definition of
Bergman measures that

βk ≥ βk,X ,

where the right-hand side is the Bergman measure defined with respect to (X,L, φ).
Hence, once we have established that the bound (2.10) holds for βk,X , it will au-
tomatically hold for βk. Moreover, in the compact case of X it will be enough to
establish the bound (2.10) for E = X. Indeed, as pointed out above it implies the
convergence in total variation norm on X which in turn implies the lower bound
(2.10) on E for βk,X and hence the same lower bound on E for βk.

Finally, to prove the lower bound (2.10) for X compact we can exploit that
H0(X, kL + KX) is finite dimensional. Indeed, by the Hilbert-Samuel formula,
dimH0(X, kL + KX) = kn

´
c1(L)

n/n! + o(kn). Moreover, by basic properties of

Bergman kernels for finite dimensional Hilbert spaces
´
X
βk,X = n!

kn dimH0(X, kL+
KX) and hence

lim
k→∞

ˆ
X

βk,X =

ˆ
X

(ddcφ)n,

which, as pointed out above, concludes the proof of the general convergence. �
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For our purposes it will be enough to consider the case when Y is a Euclidean
ball in Cn.

Corollary 2.2. Let φ be a plurisubharmonic function defined on the neighborhood
of B1 such that Δφ ∈ L∞

loc and denote by βk the Bergman measure for the Hilbert
space of all holomorphic functions f on B1 equipped with the weighted L2-norm´
B1

|f |2e−kφdV, where dV denotes the Lebesgue measure. Then βk ≤ CEdV for

any given compactly included subdomain E of B1 and, after perhaps passing to a
subsequence,

lim
k→∞

βk(x) = (ddcφ)n(x)

for almost any x in B1.

Proof. Taking L to be the trivial holomorphic line bundle on Y := B1 it will
be enough to show the extension property required by the previous theorem. By
assumption φ is in H1,1(B1+ε), and up to changing φ by a harmless additive con-
stant we may assume that φ ≥ δ > 0 on B1+δ. Hence for C sufficiently large
ψC := max{φ,C log |z|2} coincides with φ on a neighborhood of the closed unit-
ball B1 and with C log |z|2 outside B1+ε/2. Moreover, the same property holds
when the max is replaced by a suitable regularized max ensuring that ψC is also
in H1,1(B1+ε). Finally, for C a given positive integer we note that any function
coinciding with C log |z|2 on the complement of a given ball BR centered at 0 in
C

n extends, in the standard way, to define a metric on the mth tensor power
O(m) → Pn of the hyperplane line bundle on complex projective space, which is
smooth and of non-negative curvature on the complement of BR. This gives the
required extension and concludes the proof since L1-convergence implies almost
everywhere convergence, after passing to a subsequence. (This reduction of a prob-
lem for local plurisubharmonic functions to a problem for global metrics on a line
bundle was probably first used by Siu in [51].) �

3. Convexity of the Mabuchi functional along weak geodesics

In this section we will prove our main result, stated as Theorem 1.1 in the
Introduction, using the convergence results for local Bergman kernels proved in the
previous section. We start by introducing some notation. If ω is a Kähler form on
X, then it induces a metric ψω on the anti-canonical line bundle −KX := ΛnTX
for which we will use the suggestive notation

ψω = − log(ωn);

i.e. given local holomorphic coordinates ψω is represented by − log(ωn/idz1∧dz̄1∧
· · · ). More generally, given a measure μ, absolutely continuous with respect to
the Lebesgue measure, we write ψμ for the corresponding metric on −KX which
symbolically means that

μ = e−ψμ .

By definition Ric ω is the curvature form of the metric ψω, i.e. Ric ω = ddcψω.
The Mabuchi functional M [41] is, with our normalization, the functional on H :=
H(X,ω) implicitly defined by

(3.1) dM|u = −nRic(ωu) ∧ ωn−1
u + R̄ωn

u , R̄ :=
nc1(X) · [ω]n−1

[ω]n
,
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where dF|u denotes the differential at φ of a given functional F on the H, i.e. the
measure defined by the following property: for any v ∈ C∞(X)〈

dF|u, v
〉
=

d

dt |t=0
F(ut),

where ut is any smooth curve in H such that d
dt |t=0

ut = v (assuming that the

measure dF|u exists). Given a curve ut in H we will identify it with a function U
on X ×D, for D an annulus in C (compare Section 2).

The starting point of the proof of Theorem 1.1 is the explicit formula for the
Mabuchi functional in [19], which has an “energy part” and an “entropy part.”
As there are many different notations (and normalizations) for the energy type
functionals in question, we start by introducing our notation. Given a metric φ as
above we will write

(3.2) E(u) :=
ˆ
X

n∑
j=0

uωn−j
u ∧ ωj

0.

Similarly, given a closed (1, 1)-form (or current) T we set

(3.3) ET (u) :=

ˆ
X

u
n−1∑
j=0

ωn−j−1
u ∧ ωj

0 ∧ T.

A standard computation shows that the corresponding differentials are given by

(3.4) dE|u = (n+ 1)ωn
u , dET

|φ = nωn−1
u ∧ T.

Similarly, the second order variations are given by

(3.5) dτd
c
τE(uτ ) =

ˆ
X

(π∗ω + ddcU)n+1, dτd
c
τET (φτ ) =

ˆ
X

(π∗ω + ddcU)n ∧ π∗T,

where
´
X

denotes the fiber-wise integral, i.e. the push-forward map induced by
the natural projection π from X ×D to X. Finally, we recall that the entropy of a
measure μ relative to a reference measure μ0 is defined as follows if μ is absolutely
continuous with respect to μ0:

(3.6) Hμ0
(μ) :=

ˆ
X

log

(
dμ

dμ0

)
dμ.

There is a well-known interpretation of the entropy functional as a Legendre trans-
form that we will have to use at several occasions later on; see [39].

Proposition 3.1. If μ0 and μ are probability measures on X such that μ is abso-
lutely continuous with respect to μ0, then

Hμ0
(μ) = sup

f

(ˆ
X

fdμ− log

ˆ
X

efdμ0

)
,

where the supremum is taken over all continuous functions on X.

Proof. First note that Jensen’s inequality gives

exp

ˆ
X

(f − log(dμ/dμ0))dμ ≤
ˆ
X

efdμ0.

Taking logarithms and rearranging this gives the ≥ direction of the inequality.
The other direction follows by approximating log(dμ/dμ0) by continuous functions
f . �
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For future use we record two immediate consequences of this: The entropy is a
convex function of the measure μ for the natural affine structure on the space of
probability measures. Second, as the supremum of a set of continuous functions,
the entropy is lower semicontinuous with respect to the weak*-topology.

Now we can state the explicit formula in [19], written in our notation, for the
Mabuchi functional M implicitly defined (up to an additive constant) by formula
(3.1).

Proposition 3.2. Given a Kähler metric ω0 on X with volume form μ0 := ωn
0

of total mass [ω]n the following formula holds for the Mabuchi functional on the
corresponding space H of all Kähler potentials:

(3.7) M(u) =

(
R̄

n+ 1
E(u)− ERicω0(u)

)
+Hμ0

(ωn
u), R̄ :=

nc1(X) · [ω0]
n−1

[ω0]n
.

Proof. For completeness and as a way to check our normalizations we recall the
proof. A direct calculation gives

d

dt
Hμ0

(ωn
ut
) = 0+

ˆ
log

ωn
ut

ωn
0

dωn
ut

dt
= −n

ˆ
X

dut

dt
Ricωut

∧ωn−1
ut

+n

ˆ
X

dut

dt
Ricω0∧ωn−1

ut

(using, in the first equality, that ωn
0 has the same mass as ωn

ut
and, in the second

equality, one integration by parts). Hence, since dET
|u = nT ∧ωn−1

u (formula (3.4)),

we get d(Hμ0
− ERicω0)|u = −nRicωu ∧ ωn−1

u , which coincides with the first term
in the defining expression for dM|u (formula (3.1)). Finally, since dE|u = (n+1)ωn

u

(formula (3.4)), this shows that the differential of the functional defined by the
right hand side in formula (3.7) has the desired property. �

Following Chen [19] we now extend the functional M from H to the space H1,1

of all u such that ω + ddcu is a positive current with L∞-coefficients, using the
formula in the previous proposition. Theorem 1.1 claims that this functional is
convex along weak geodesics.

It is not a priori clear that the functional is continuous along weak geodesics.
(We thank Sebastien Boucksom and Mihai Păun for pointing this out to us.) It
does follow from pluripotential theory that the energy parts of the formula are
continuous since the potential varies continuously from fiber to fiber. The entropy
part, however, is only known to be lower semicontinuous. Therefore, we will first
state the basic result concerning distributional derivatives and show the required
continuity in our setting afterwards. In the theorem below we say that a function v
of one complex variable is weakly subharmonic if i∂∂̄v ≥ 0 in the sense of currents.
Similarly, we say that a function of one real variable is weakly convex if its second
derivative in the sense of distributions is non-negative.

Theorem 3.3. Let uτ be a family of functions in PSH(X,ω) such that ω + ddcU
is a locally bounded current, π∗ω + ddcU ≥ 0 and (π∗ω + ddcU)n+1 = 0 on X ×D.
Then the Mabuchi functional M(uτ ) is weakly subharmonic with respect to τ ∈ D.
In particular, M(ut) is weakly convex along the weak geodesic ut connecting any
two given points in H(X,ω).

Proof. Let Ψ = Ψ(τ, x) = ψτ (x) be a locally bounded singular metric on the
relative canonical line bundle KM/D, and denote by fΨ(τ ) the following function
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on D attached to Ψ:

fΨ(τ ) :=

(
R̄

n+ 1
E(uτ )− ERicω0(uτ )

)
+

ˆ
X

log(
eψτ

ωn
0

)ωn
uτ

(the definition is made so that fΨ(τ ) = M(uτ ) if Ψ is the (unbounded) metric
defined by ωn

uτ
). Then we claim that

(3.8) ddcfΨ(τ ) =

ˆ
X

T, T := ddc(Ψ ∧ (π∗ω0 + ddcU)
n
),

where T is defined as an (n + 1, n + 1) current (distribution), which a priori may
not be of order zero. More precisely, for a local smooth test function v supported
on a local coordinate neighborhood V ⊂ M the current T is locally defined by

〈T, v〉 =
ˆ

ΨV (π∗ω0 + ddcU)
n ∧ ddcv,

where ΨV is a local function representing the metric Ψ on KM/D (given a local
trivialization of KM/D). To prove formula (3.8) take a sequence Ψj of uniformly
bounded smooth metrics such that Ψj → Ψ almost everywhere on X for every τ
(which may be constructed using local convolution and a partition of the unity).
Then a direct calculation (using formula (3.5)) gives

(3.9) ddcfΨj (τ ) = ηj :=

ˆ
X

Tj , Tj := ddc(Ψj ∧ (π∗ω0 + ddcU)
n
).

By the dominated convergence theorem ηj → η :=
´
X
T weakly onD (in the sense of

distributions). Moreover, by the dominated convergence theorem fΨj (τ ) → fΨ(τ )
point-wise on D, in a dominated manner and hence, since the linear operator ddc is
continuous under such convergence, the desired formula (3.8) follows from formula
(3.9).

We want to apply these considerations to Ψ = log(ω0 + ddcXU)n, but we cannot
do so immediately since this metric is not locally bounded. For this reason we next
introduce a truncation in the following way. For a fixed positive number A, we
define

ΨA := max{log (ω0 + ddcXuτ )
n , χ−A},

where χ denotes a suitable fixed continuous metric on KM/D, to be constructed
below. We claim that the current

TA := ddcΨA ∧ (π∗ω0 + ddcU)n

satisfies TA ≥ 0, i.e. is defined by a positive measure, if χ is chosen to be continuous
and such that

ddcχ ≥ −k0(π
∗ω0 + ddcU)

for some positive integer k0. As explained above this will imply that

fΨA(τ ) :=

(
R̄

n+ 1
E(uτ )− ERicω0(uτ )

)
+

ˆ
X

log(max

{
ωn
u

ωn
0

,
χ−A

ωn
0

}
)ωn

uτ

is subharmonic for any A > 0. Letting A → ∞ and invoking the dominated
convergence theorem we get fΨA(τ ) → M(uτ ) which will conclude the proof of the
theorem.
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To construct χ we first let χ0 be an arbitrary smooth metric on KX . Then we
set χ := π∗χ0 − k0U where k0 is sufficiently large to ensure that ddcχ0 + k0ω0 ≥ 0.
Then

ddcχ = π∗ddcχ0 − k0(π
∗ω0 + ddcU) + k0π

∗ω0 ≥ −k0(π
∗ω0 + ddcU),

so χ fulfills our requirement.
Now, the claim that TA ≥ 0 is a local statement. Accordingly, we locally write

π∗ω0 + ddcU = ddcΦ

for a local psh function Φ on M and write φτ = Φ(·, τ ). Our proof proceeds by a
local approximation argument involving the local Bergman measures βkφτ

(that we
identify with their density with respect to a volume form cndz∧dz̄ ) for the Hilbert
space of all holomorphic functions on the unit-ball in Euclidean Cn equipped with
the weight kφτ ; see Section 2.2. More precisely, consider the following local current:

TA,k := ddcΨA,k ∧ (ddcΦ)n, ΨA,k := max{log βk, χ−A}.
By Theorem 2.1 and the dominated convergence theorem

lim
k→∞

Tk,A = TA

in the local weak topology of currents. Thus, to prove that TA ≥ 0 it will be enough
to prove that the locally defined (n+ 1, n + 1)-current Tk,A is a positive measure.
To fix ideas we first observe that the following current is positive:

Tk := ddcΨk ∧ (ddcΦ)n, Ψk := log(βk)

(which formally corresponds to the case A = ∞). Indeed, by the results on the
plurisubharmonic variation of Bergman kernels in [11] ddc logKkφt

≥ 0 on X ×D
and hence

(3.10) ddc log βk ≥ −kddcΦ.

As a consequence,

Tk := ddc log βk ∧ (ddcΦ)n ≥ −k(ddcΦ) ∧ (ddcΦ)n = 0,

using the geodesic equation (2.1) in the last equality. Moving to the case when
A �= ∞ we note that, by construction, ΨA,k is the max of two local functions whose
curvature forms are bounded from below by −kddcΦ (for k ≥ k0), and hence ΨA,k

also satisfies

(3.11) ddcΨA,k ≥ −kddcΦ.

Now arguing precisely as above (and using the inequality (3.11)) we see that Tk,A ≥
0. Moreover, by Corollary 2.2

eΨA,k := max{ n!
kn

Kkφt
e−kφt , e−(χ−A)} → max{(ddcφ)n, e−(χ−A)},

as k → ∞ point-wise almost everywhere on X and for every τ in a dominated
fashion (after passing to a subsequence with respect to k). Hence, invoking the
dominated convergence theorem gives the following local weak convergence:

lim
k→∞

Tk,A = TA.

In particular, this shows that TA ≥ 0, and as explained above this concludes the
proof of the theorem. �
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Before going on to prove the continuity of the Mabuchi functional we point out
that the previous proof simplifies somewhat in case the cohomology class of ω is
integral. Then we can write

ω0 + ddcuτ = ddcφτ ,

where φτ is for each τ the weight of a metric on a positive line bundle L. We can
then consider the Bergman kernels for the spaces H0(X,KX + kL), induced by the
metrics kφτ (instead of the local Bergman kernels that we used in the proof for the
general case), and their Bergman measures

βkτ = Kkφτ
e−kφτk−n.

We define

ΨA = max{log(ddcφn
τ ), χ−A}

and

ΨA,k = max{log(βkτ ), χ−A}
and use these metrics on the relative canonical bundle KM/D to define functions

fΨA(τ ) and fΨA,k(τ ) as in the very beginning of the proof. We then get that point-
wise fΨA,k tends to fΨA(τ ) as k → ∞ and that fΨA(τ ) tends to M(τ ) as A → ∞.
Moreover, fΨA,k(τ ) is subharmonic by the same argument as before, and it follows
that M is at least weakly subharmonic. We will have use for this remark in the
proof of the continuity.

Theorem 3.4. M is continuous along weak geodesics and therefore convex in the
point-wise sense.

Proof. Here we assume that the function U defines a weak geodesic, so we may
assume that it depends only on t := Re τ . We first consider the case when the class
is integral. The functionals fΨA,k(τ ) are then clearly continuous with respect to τ
since by the continuity of the metric φτ , the Bergman kernels depend continuously
on τ . Hence fΨA,k are convex in the ordinary point-wise sense. These functions
converge point-wise to fΨA as k → ∞, so these functions are also convex. Finally,
as A → ∞, we get that the Mabuchi functional is also convex. As a convex
function, M is thus continuous on the open interval and upper semicontinuous on
the closed interval. By the lower semicontinuity of the entropy, M is always lower
semicontinuous, so we conclude that M is in fact continuous on the closed interval.

We will now sketch how this argument can be adapted to the general case. Then
we define ΨA as in the proof of Theorem 3.3. It is enough to prove that the
corresponding function fΨA is convex (in the point-wise sense) since then we can
take the limit as A → −∞ and get that M is convex, and we conclude as in the
integral case that M is continuous on the closed interval.

Let κε(s) be a sequence of strictly convex functions with κ′
ε ≥ 1 on the real line

tending to s as ε → 0; e.g. we may take κε(s) = s + εes. We define fΨA
ε just like

fΨA , but replace the factor

log(
eψA

ωn
0

)

in the entropy term by

κε(log(
eψA

ωn
0

)).
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It is enough to prove that these functions are convex for all ε > 0, and we already
know by the same argument as in the proof of Theorem 3.3 that they are weakly
convex. We let ξ2j be a partition of unity subordinate to a covering of coordinate
patches over which L is trivial and consider the local entropy functions

Hj =

ˆ
X

ξ2jκε(log(
eψAτ

ωn
0

)).

We define H
(k)
j in a similar way, replacing ΨA by its kth approximation by local

Bergman kernels. Taking the ddc of H
(k)
j , using the plurisubharmonic variation of

Bergman kernels, and using the strict convexity of κε, a direct estimate shows that

ddcH
(k)
j ≥ −Cε,

so H
(k)
j + Cεt

2 is convex since our local Bergman kernels depend continuously on

t. (Here we have no control of the size of Cε, but this does not matter.) Letting
k → ∞ we find that Hj+Cεt

2 is also convex. We can then sum over j and conclude
that ˆ

X

κε(log(
eψAτ

ωn
0

)) + Cεt
2

is convex and in particular continuous. Therefore, fΨA
ε is also continuous and thus

convex in the point-wise sense, since we already know that it is weakly convex.
(Notice that the size of Cε plays no role here.) This completes the proof. �

3.1. Proof of Corollary 1.2. Fix u0 and u1 in H, and denote by ut the cor-
responding weak geodesic. By the “sub-slope inequality” for the convex function
f(t) := M(ut), i.e. f(1)− f(0) ≥ f ′(0), we have

M(u1)−M(u0) ≥ f ′(0) ≥
ˆ
X

(−Rωu0
+ R̄)

dut

dt |t=0
ωn
u0
,

where the lower bound for f ′(0) is obtained by direct differentiations as in the proof
of Proposition 3.2 (see Lemma 3.5 below). In particular, if ωu0

has constant scalar
curvature, then it minimizes the Mabuchi functional. More generally, applying the
Cauchy-Schwartz inequality to the right-hand side of the inequality above and using
that d(u0, u1)

2 =
´
(u̇t|t=0)

2ωn
u0

(see [18]) concludes the proof.

Lemma 3.5. Given u0, u1 ∈ H, let ut be the corresponding weak geodesic curve.
Then

lim
t→0+

M(ut)−M(u0)

t
≥
ˆ
X

(−Rωu0
+ R̄)

dut

dt |t+=0
ωn
u0
.

Proof. This is shown by refining the argument in the proof of Proposition 3.2. We
will first handle the entropy part, i.e. show that

lim
t→0+

(1/t)(Hμ0
(ωn

ut
)−Hμ0

(ωn
u0
)) ≥

−n

ˆ
X

dut

dt
|t=0Ricωu0

∧ ωn−1
u0

+ n

ˆ
X

dut

dt
|t=0Ricω0 ∧ ωn−1

u0
.

Here we use the fact that the entropy is convex with respect to the affine structure
on the space of probability measures (cf. Proposition 3.1), so that

Hμ0
(ν1)−Hμ0

(ν0) ≥ (d/ds)|s=0Hμ0
(νs)
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if νs = sν1 + (1− s)ν0. Moreover, since log(νs/μ0)νs is convex in s, it follows from
monotone convergence that

(d/ds)|s=0Hμ0
(νs) =

ˆ
log(ν0/μ0)(dν1 − dν0).

From this we get, choosing ν1 = ωn
ut

and ν0 = ωn
u0
, that

1

t

(
Hμ0

(ωn
ut
)−Hμ0

(ωn
u0
)
)
≥
ˆ

log(ωn
u0
/μ0)

1

t

(
ωn
ut

− ωn
u0

)
.

Expand ωn
ut

−ωn
u0

= ddc(u−ut)∧ (ωn−1
u0

+ · · ·+ωn−1
ut

) and use integration by parts

to let the ddc-operator instead act on the smooth function log
ωn

u0

μ0
. Then letting

t → 0 we get the desired inequality for the entropy part of M(ut). The calculation
for the derivative of the “energy part” of M follows immediately from the relations
(3.4). �

3.1.1. The twisted setting. Later on we will also consider “twisted” versions of the
Mabuchi functional. These are obtained simply as the sum of M and another
convex functional F . We will consider two main cases. The first is to let μ be a
strictly positive smooth volume form on X and put

F(u) = Fμ(u) :=

ˆ
X

udμ− cμE(u),

with cμ chosen so that Fμ(1) = 0. Clearly Fμ is convex along weak geodesics since
its derivative is

(d/dt)Fμ(ut) =

ˆ
X

u′
tdμ− (d/dt)E(ut).

The first term here is increasing since u′
t is increasing, and the second term is

constant since the energy is linear along weak geodesics. The next choice is to let
α be a strictly positive (1, 1)-form on X and let

F = Fα := Eα − cαE ,

the constant cα again chosen so that F vanishes on constants. By formula (3.5)
Fα is again convex along (sub)geodesics, since it is clearly continuous. (The strict
convexity seems to be a more subtle issue that for simplicity we do not discuss
here.) The critical points of Mα := M + Fα are said to have constant α-twisted
scalar curvature; i.e. they satisfy an equation,

Rω − trω(α) = constantα;

see [35,53]. Just as before it follows that any metric with constant α-twisted scalar
curvature minimizes Mα. As a consequence, the α-twisted Mabuchi functional
is bounded from below in any Kähler class containing a metric with constant α-
twisted scalar curvature. As shown in [53] this leads to geometric obstructions for
the existence of such metrics.

3.2. A positivity property for solutions to homogeneous Monge-Ampère
equation and its relation to foliations. The proof of Theorem 3.3 yields the
following positivity result of independent interest, for sufficiently regular solutions
to the local homogeneous Monge-Ampère equation on a product domain (in the
proof of Theorem 3.3 the role of the current S below is played by (ddcΦ)n).
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Theorem 3.6. Let Φ be a plurisubharmonic function on M := X × D where X
and D are domains in Cn and C, respectively, and assume that the positive current
ddcΦ has components in L∞

loc and satisfies (ddcΦ)n+1 = 0. Then the singular metric
induced by the fiber-wise currents ωτ := ddcφτ on the relative canonical line bundle
KM/D → M has non-negative curvature along any positive current S in M of
bidimension (1, 1) with the property that Φ is harmonic along S, i.e. 〈ddcΦ, S〉 = 0.
More precisely, for any positive number A

i∂∂̄ logA det(
∂2φτ

∂zi∂z̄j
) ∧ S ≥ 0,

in terms of the truncated logarithm defined by logA t := max{log t,−A}.

In particular, if Φ happens to admit a Monge-Ampère foliation, then the positiv-
ity result above holds along the leaves of the foliation. This observation is closely
related to a previous local result of Bedford-Burns (see Proposition 4.1 in [2]) and
Chen-Tian who considered the case when Φ corresponds to a global bona fide geo-
desic ut in the space of Kähler potentials on a Kähler manifold (X,ω) (see Corollary
4.2.11 in [22]). Then, by a classical result of Bedford-Kalka (which only demands
that Φ be C3-smooth), there is a foliation of M := X ×D in one-dimensional com-
plex curves Lα (the leaves) such that the local potential Φ is harmonic along any
leaf Lα. Moreover, the leaves are transverse to the slice X × {0} (and hence the
latter space can be used as the parameter space for the set of leaves). In this setting
the results of Bedford-Burns and Chen-Tian referred to above may be formulated
as the following special case of the previous theorem.

Proposition 3.7. Consider the relative canonical line bundle KM/A with the smooth
metric induced by the volume forms (ddcφt)

n. Then its restriction to any leaf Lα

has non-negative curvature.

Interestingly, in the presence of a foliation as above the closed positive current
S := (ddcΦ)n on M of dimension (1, 1), appearing in the proof of Theorem 3.3, can
be written as an average of the integration currents [Lα] defined by the leaves of
the foliation,

S =

ˆ
α∈X

[Lα]μ,

where μ := (ddcφ0)
n.

Another special case of Theorem 3.4, concerning the case when the current S is
assumed to be a smooth complex curve (but not necessarily a leaf of a foliation) and
Φ is C2-smooth has previously appeared in connection to the problem of construct-
ing low regularity (i.e. not C2) solutions to complex Monge-Ampère equations (see
Lemma in [3] and Proposition 2.2 in [26]).

4. Uniqueness results

In this section we shall show how the convexity of the K-energy implies unique-
ness of metrics, up to automorphisms, of metrics of constant scalar curvature and
more generally extremal metrics. Recall thatH(X,ω) denotes the space of (smooth)
potentials of Kähler metrics on X that are cohomologous to a fixed reference met-
ric ω > 0 (see the Introduction). The tangent space of H is the space of smooth
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functions on X, and we can identify the space of Kähler metrics cohomologous to
ω with H modulo constants. We will use the twisted Mabuchi functionals from
Section 3.1.1 and start with some preparations.

Let μ > 0 be a smooth volume form on X that for simplicity we normalize so
that ˆ

X

dμ =

ˆ
X

ωn.

We have then defined the function

Fμ(u) =

ˆ
X

udμ− E(u) := Iμ(u)− E(u)

in Section 3.1.1. The basic idea is to use the twisted Mabuchi functionals

Ms := M+ sFμ,

for 0 < s << 1. The main difficulty in the proof is that although we know that M
is convex along generalized geodesics, we do not know when it is linear along the
geodesics. (Conjecturally this holds only for geodesics that come from the flow of
a holomorphic vector field.) Therefore, we perturb M by adding sFμ which gives
us a strictly convex functional. In case there are no nontrivial holomorphic vector
fields on X, one can prove by the implicit function theorem that near each critical
point of M there is a critical point of Ms. By strict convexity, there can be at most
one critical point of Ms, and it follows that there is at most one critical point of
M too. In case there are holomorphic vector fields it of course no longer holds that
there are critical points of Ms near each critical point of M—if it did, we would
get absolute uniqueness and not just uniqueness up to automorphisms. However,
it turns out that each critical point of M can be moved by an element in Aut0(X)
to a new critical point, which can be approximated by critical points of Ms, and
this gives uniqueness up to automorphisms. The proof of this latter fact requires
a rather sophisticated version of the implicit function theorem, so to simplify we
shall instead work with “almost critical points,” which avoids the use of the implicit
function theorem.

With our normalization, Fμ vanishes on constants so it descends to a functional
on the space of Kähler forms in [ω]. We have already seen that Fμ is convex; next
we shall prove that it is strictly convex in a certain sense. Since E is linear, this
amounts to proving the strict convexity of Iμ.

Proposition 4.1. Iμ is strictly convex along C1,1-subgeodesics in the sense that
if ut is a C1,1-subgeodesic and f(t) := Iμ(ut) is affine, then ωt = ddcut + ω is
constant. More precisely, if ωt = ddcut + ω ≤ Cω and μ ≥ Aωn, then

f ′(1)− f ′(0) ≥ δA/(Cn+1)d(ω0, ω1)
2,

where δ > 0 only depends on μ, ω, and X, and d(ω0, ω1) is the Mabuchi distance.

Proof. Assume first that ut is a smooth subgeodesic and ωt > 0 for all t. Then

f ′′(t) =

ˆ
X

üttdμ ≥
ˆ
X

|∂̄u̇t|2ωt
dμ,

since ut is a subgeodesic. Assume ωt ≤ Cω for all t. Then

|∂̄u̇t|2ωt
≥ C−1|∂̄u̇t|2ω.
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Since ω and μ are fixed and u̇t is a function, we have thatˆ
X

|∂̄u̇t|2ωdμ ≥ δ

ˆ
X

|u̇t − at|2dμ,

where at is the average of u̇t with respect to μ and δ only depends on μ, ω, and X.
Hence

f ′′(t) ≥ δ/C

ˆ
X

|u̇t − at|2dμ.

Clearly it follows that u̇t = at if f is affine. If ut is only of class C1,1, we can write
ut as a decreasing limit of subgeodesics that converge uniformly in C1 and are such
that the constant C can be kept fixed. It then follows that f(t) also converges in
C1, and we get that ˆ 1

0

dt

ˆ
X

|u̇t − at|2dμ = 0,

so u̇t = at again. Hence ωt is independent of t.
For the second statement we notice that we also have proved that

f ′(1)− f ′(0) ≥ (δ/C)

ˆ 1

0

dt

ˆ
X

|u̇t − at|2dμ.

But ˆ
X

|u̇t − at|2dμ ≥ AC−n

ˆ
X

|u̇t − at|2ωn
t ≥ AC−n

ˆ
X

|u̇t − bt|2ωn
t ,

where bt is the average of u̇t with respect to ωn
t . Sinceˆ 1

0

dt

ˆ
X

|u̇t − bt|2ωn
t = d(ω1, ω0)

2,

we have also proved the second statement. �

We will also need a lemma on how Fμ depends on μ.

Lemma 4.2. Let μ and ν be two smooth volume forms with total mass equal to the
mass of ωn. Then

|Fμ(u)−Fν(u)| ≤ Cμ,ν

for all u in H.

Proof. By Yau’s solution of the Calabi conjecture, we can write

μ = ωn
μ , ν = ωn

ν ,

with ωμ and ων in [ω]. (Of course, the proof does not really depend on the solution
of the Calabi conjecture, since we could have used only volume forms that are given
as powers of Kähler forms in the proof.) Then ωμ − ων = ddcv for some function v
on X. Hence

Fμ(u)−Fν(u) =

ˆ
X

u(ωn
μ − ωn

ν ) =

ˆ
X

u(ddcv ∧
∑

ωn−k−1
μ ∧ ωk

ν ).

Integration by parts gives

Fμ(u)−Fν(u) =

ˆ
X

v(ddcu∧
∑

ωn−k−1
μ ∧ωk

ν ) =

ˆ
X

v(ωu −ω)∧
∑

ωn−k−1
μ ∧ωk

ν ,

which is clearly bounded by a constant depending only on the sup-norm of v and
the volume of [ω]. �
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Next we discuss briefly the Hessian of M on the space of smooth Kähler poten-
tials. Denote F = dM, the differential of the Mabuchi functional. It is a 1-form on
H whose action on an element v of the tangent space of H, i.e. a smooth function,
is given by

F (u).v = −
ˆ
X

v(Rωu
− R̂ωu

)ωn
u .

The Mabuchi metric induces a connection D on the tangent bundle of H, which in
turn induces a (dual) connection on the space of 1-forms that we also denote by D.
If v is a vector at a point u, we can then apply Dv to the 1-form F and get a new
1-form DvF . By definition, if w is another vector at u, then

DvF.w = HM(v, w)

is the Hessian of M at u, which is a symmetric bilinear form. It was proved by
Mabuchi [42] and Donaldson [28] that this equals

HM(v, w) = Re

ˆ
X

(D∗
uDuv)wωn

u ,

where Du is a certain elliptic operator of second order. Du is defined by Duw = ∂̄Vw

where Vw is the (1, 0) vector field defined by

V �ωu = i∂̄w

(the complex gradient of w). D∗
u is the adjoint operator, so D∗

uDu is a self-adjoint
elliptic operator of order 4. By definition,

Duw = 0

if and only if Vw is holomorphic, so D∗
uDuw = 0 if and only if Vw is a holomorphic

vector field. It is also clear that if w is real valued, ReD∗
uDuw = 0 implies that Vw

is holomorphic, sinceˆ
X

〈∂̄Vw, ∂̄Vw〉ωn
u =

ˆ
X

(ReD∗
uDuw)wωn

u .

Moreover, since the highest order term in the fourth order elliptic operator D∗
uDu

is real, it follows that ReD∗
uDu is also elliptic.

Proposition 4.3. Let ν be a smooth volume form on X that defines a 1-form Gν

on the tangent space of H(X,ω) at u by

Gν .w =

ˆ
X

wdν,

for w smooth and real valued. Then there is a vector v at u such that

DvF |u = Gν

if and only if Gν .w = 0 for all real valued w such that the complex gradient of w is
holomorphic.

Proof. We have

DvF |u.w = HM(v, w) = Re

ˆ
X

(D∗
uDuv)wωn

u .

Hence

DvF |u = Gν
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means that
Re (D∗

uDuv)ω
n
u = ν.

Since ReD∗
uDu is a self-adjoint elliptic operator, this equation is solvable if and

only if ν annihilates the kernel of ReD∗
uDu, i.e. the space of (real valued) functions

whose complex gradients are holomorphic. �

We are now ready for the uniqueness, and we start with the case when there are
no nontrivial holomorphic vector fields on X.

Theorem 4.4. Assume ωu0
and ωu1

are metrics of constant scalar curvature on
X and that X has no nontrivial holomorphic vector fields. Then ωu0

= ωu1
.

Proof. By hypothesis u0 and u1 are both critical points of M, so F (u0) = F (u1) =
0. Let μ be a strictly positive volume form normalized as in the beginning of this
section. The differential of Fμ at u0 is G(u0) = Gν , where ν = μ − ωn

u0
. Since

by our normalization this measure annihilates constants, which are now the only
functions with a holomorphic complex gradient, Proposition 4.3 implies that we
can solve

Dv0F |u0
= −G(u0).

Consider the functional
Ms := M+ sFμ,

and its differential
Fs(u) = F (u) + sG(u).

If ws is a smooth curve of continuous functions, we have

(d/ds)|0Fs(u0 + sv0).ws = Dv0F |u0
.w0 + F (u0).Dv0ws +G(u0).w0 = 0,

since F (u0) = 0 and Dv0F |u0
= −G(u0). Hence Fs(u0 + sv0) · ws = O(s2).

We can now do the same construction for the other critical point u1 and obtain
another function v1 with similar properties. Then connect for 0 < s << 1 the
smooth points u0 + sv0 and u1 + sv1 by a C1,1-geodesic us

t . We need to relate F
and Fs, the formal derivatives of M and Ms, to the actual one sided derivatives
along the geodesics at the end points. It is not a priori clear that they coincide since
the formal derivatives are the derivatives in H, the space of smooth potentials, and
the weak geodesic has less regularity. However, it follows from Lemma 3.5 that

(d/dt)|+t=0M(us
t ) ≥ F (us

0) · (d/dt)|t=0u
s
t ,

and also that we have the converse inequality at the other end point. Since Fs is
differentiable one time on the closed geodesic, the same inequalities hold for Ms as
well.

Since M(us
t ) is convex and E(us

t ) is linear in t, we get that

0 ≤ s((d/dt)|1 − (d/dt)|0))Iμ(us
t ) ≤ ((d/dt)|1 − (d/dt)|0))Ms(u

s
t ) =

Fs(u
s
1) · (d/dt)|t=1u

s
t − Fs(u

s
0) · (d/dt)|t=0u

s
t ≤ O(s2).

Dividing by s we get that

((d/dt)|1 − (d/dt)|0))Iμ(us
t ) ≤ C ′s,

so by Proposition 4.1, d(ωus
0
, ωus

1
)2 ≤ C ′′s. Here we have also used the fact that

the constant C in Proposition 4.1 can be taken independent of s, i.e. that the
L∞-bound on ωus

t
can be taken uniform in s; see [7]. Hence d(ωu0

, ωu1
) = 0 which

implies that ωu0
= ωu1

by a result of Chen; see [18]. �
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Notice that there are two main points of the argument. Apart from the convexity
along weak geodesics we also use that M is strictly convex on H (modulo constants)
in the formal sense that its Hessian is strictly positive if there are no nontrivial
holomorphic vector fields. This means that the derivative of F = dM is invertible
which allows us to solve Dv0F |u0

= −G(u0). The same principle is illustrated in the
next result which concerns uniqueness of metrics of constant α-twisted curvature
(cf. Section 3.1.1).

Theorem 4.5. Let α be a Kähler form on X. Then there is at most one metric
ω0 in a given Kähler class [ω] with constant α-twisted curvature.

Proof. Recall that ω0 is a critical point of the twisted Mabuchi functional Mα =
M + Eα − c(α)E (cf. Section 3.1.1). One can check that the Hessian of Eα (at a
smooth point) is strictly positive, and we also have that the Hessian of E is zero
since E is linear along geodesics. If we put Fα = dMα, it follows that we can solve
Dv0Fα|u0

= −G(u0) as in the proof of the previous theorem, and again we conclude
by the convexity of Mα. �

We finally turn to the case of metrics of constant scalar curvature when there
are non-zero holomorphic vector fields on X. The argument is then essentially the
same, with the additional difficulty that we cannot solve the equation

Dv0F |u0
= −G(u0)

in general. Therefore, we shall make a preliminary modification of u0 by applying
an automorphism in Aut0(X), so that after the modification G(u0) annihilates all
functions with a holomorphic complex gradient. In fact, we shall only consider a
subgroup of Aut0(X).

Given ω0 in H(X,ω), following Mabuchi [42], we let

gω0
:= {V ∈ H0(X,T 1,0(X));V �ω0 = ∂̄h,where h ∈ C∞(X,R)}.

(Here V �ω is the contraction of the form ω with the vector field V .) The condition
that V �ω0 = ∂̄h is equivalent to Re (V )�ω0 = dh/2 if h is real valued. Thus gω0

is the subspace of the Lie algebra of all holomorphic vector fields on X whose real
parts are Hamiltonian with respect to ω0, hence a Lie algebra. Let Γω0

= exp(gω0
)

be the corresponding connected Lie group.
For g ∈ Γω0

we let ωg = g∗(ω0) = (g−1)∗(ω0), and we let Sω0
= {ωg; g ∈ Γω0

}.

Lemma 4.6. If g ∈ Γω0
, then Sω0

= Sωg
.

Proof. It is readily verified that Γωg
= gΓω0

g−1. Hence, if σ ∈ Γωg
, σ = gτg−1

with τ in Γω0
and

σ∗(ωg) = (gτ )∗ω0

lies in Sω0
. �

Any element, ω, in Sω0
can be written ω = (expV )∗ω0 for some V in gω0

. We
can also write it as (exp iImV )∗ω0 since the real part of V is Hamiltonian. Thus
Sω0

is a union of rays (exp itImV )∗ω0 = ωt. By Proposition 3.5 in Mabuchi [42],
these rays are geodesics, so that they can be written

ωt = i∂∂̄ut + ω,

where ut is a geodesic in H(X,ω). In particular, Fμ(ωt) is strictly convex.
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Proposition 4.7. Fix ω0 = ωu0
in H. Then Fμ has a minimum and hence a

critical point, ωu, on Sω0
. This implies that G(u) = dFμ|u annihilates all real

functions whose complex gradients with respect to ωu are holomorphic.

Proof. If μ = ωn
u0
, then u0 is a critical point of Fμ. Since Fμ is strictly convex

along each ray in Sω0
as just described, it follows that Fμ is proper on each ray if

μ = ωn
u0
. Since Sω0

is of finite dimension, it follows that Fμ is proper on Sω0
in

this case. By Lemma 4.2 this implies that Fμ is proper on Sω0
for any choice of μ,

and so must have a minimum, say ωu.
Let h now be a real valued function such that the vector field V defined by

V �ωu = ∂̄h

is holomorphic. Then V lies in gωu
. Thus (exp itImV )∗ωu lies in Sωu

which equals
Sωo

by the lemma. Hence f(t) := F((exp itImV )∗ωu) has a minimum for t = 0.
But, if we write (exp itImV )∗ωu = i∂∂̄ut + ω, we have that

−∂∂̄u̇ = −∂∂̄
dut

dt
|0 = ∂∂̄h,

so −u̇ = h up to a constant. Hence 0 = f ′(0) = −G(u) · h, which gives the last
claim. �

By Proposition 4.3 this implies that we can find a v0 that solves

Dv0F |u0
= −G(u0).

We now apply this when u0 is a critical point of M. Notice that M is invariant
under the action of Aut0(X), since it is linear along the flow of holomorphic vector
fields and is bounded from below; cf. Corollary 1.2. Hence the point we get after
applying the automorphism is still a critical point of M. If u1 is another critical
point, we can apply the same argument to u1. The proof of Theorem 4.4 then applies
without change, and we see that after applying these automorphisms ωu0

= ωu1
.

Therefore, we have proved the following.

Theorem 4.8. Assume that ωu0
and ωu1

are metrics of constant scalar curvature.
Then there is an automorphism g in Aut0(X) such that

g∗(ωu1
) = ωu0

.

Notice that it follows from the proof that g can be taken in Γωu0
.

4.1. Calabi’s extremal metrics. The extremal Kähler metrics (in a given Kähler
class) introduced by Calabi [16], generalizing constant scalar curvature metrics,
are defined as the critical points of the L2-norm of the scalar curvature, i.e. the
functional ω 
→

´
X
R2

ωω
n on the space of Kähler metrics in a fixed Kähler class. As

shown by Calabi, this equivalently means that the gradient of Rω is a holomorphic
vector field, or more precisely that the (1, 0) field V with real part equal to the
gradient of Rω is holomorphic. We shall now generalize Theorem 4.8 to extremal
Kähler metrics. This builds on the fundamental work in [32, 37, 50], which for
completeness we develop from scratch in a form suitable in this context.

The holomorphic vector field V will in general depend on the extremal metric.
The first step in the proof, following [37], is to prove that one can obtain a unique
“extremal vector field” by fixing a compact subgroup K of Aut0(X) and requiring
that the flow of ImV lie in K. Once this is done, we, following [32,50], modify the
Mabuchi functional to obtain another functional MV , defined on HV , the space
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of Kähler metrics invariant under ImV , by adding a term EV , depending on V .
The extremal metrics corresponding to the now fixed field V are now critical points
of MV on HV . The energy functional EV is linear, so MV is also convex along
geodesics in HV . Given all this, the proof of the uniqueness of extremal metrics
follows the same lines as before.

We start with a few preparations. Let ω be any Kähler form on X. Recall that
if h is a complex valued function on X we define a vector field of type (1, 0) by

V �ω = i∂̄h.

We have here changed the notation from the previous paragraph by multiplying
with i in the right-hand side, and we denote V = ∇ωh. Choosing local coordinates
so that ω = i

∑
dzi ∧ dz̄i at a given point, we have

V =
∑ ∂h

∂z̄i

∂

∂zi

there. A direct computation shows that

2ImV �ω = dcImh+ dRe h.

(Contrary to our earlier conventions we here write dc for i(∂̄−∂).) Therefore, we see
that the Lie derivative of ω along ImV , LV ω = dImV �ω = (1/2)ddcImh vanishes
if and only if Imh is a constant and in that case Reh/2 is a Hamiltonian of ImV .
Then the real part of V is the real gradient of h/2, so with h = Rω we see that ω is
extremal if and only if the complex gradient of Rω is holomorphic. We normalize
by choosing h so that ˆ

X

hωn = 0.

Then h is uniquely determined by V and ω, and we write h = hV
ω . Note that

with this normalization, ω is invariant under the flow of ImV if and only if hV
ω is

real valued. Denote by H(X) the space of holomorphic vector fields that arise as
complex gradients. Note that hV+W

ω = hV
ω + hW

ω and we also have the following.

Lemma 4.9. If ωu = ω0 + i∂∂̄u and V ∈ H(X), then

hV
ωu

= hV
ω0

+ V (u).

In the proof of this we shall use a technical lemma that will reappear later several
times.

Lemma 4.10. If u and v are functions on X,

n

ˆ
X

v i∂∂̄u ∧ ωn−1 = −
ˆ
X

∇ωv(u)ω
n.

Proof. This follows from integration by parts, and it is noted that ∇ωv(u) =
〈∂u, ∂v̄〉ω. �

To prove Lemma 4.9 we first note that i∂̄(hV
ω0

+ V (u)) = V �ωu, so hV
ωu

=

hV
ω0

+ V (u) + c(u), where c(u) is constant on X. Moreover,

0 = (d/dt)

ˆ
X

hV
ωtu

ωn
tu =

ˆ
X

(V (u) + ċ(tu))ωn
tu + n

ˆ
X

hV
ωtu

i∂∂̄u ∧ ωn−1
tu .

By the technical Lemma 4.10, ċ(tu) = 0, so c(u) = 0 since c(0) = 0.
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We next, following [37], define a bilinear form on H(X) by

〈V,W 〉ω =

ˆ
X

hV
ω hW

ω ωn.

Proposition 4.11. 〈 , 〉ω only depends on the cohomology class [ω].

Proof. We take a curve of metrics ωt = ω + i∂∂̄ut in [ω] and differentiate,

(d/dt)

ˆ
X

hV
ωt

hW
ωt
ωn
t =

ˆ
X

(
V (u̇)hW

ωt
+W (u̇)hV

ωt

)
ωn
t + n

ˆ
X

hV
ωt

hW
ωt
i∂∂̄u̇ ∧ ωn−1

t .

By the technical lemma, this expression vanishes which proves the proposition. �

Since the cohomology class is fixed in our discussion, we can thus consider the
form as fixed and write 〈 , 〉ω = 〈 , 〉.

Let now K be a compact subgroup of Aut0(X) and denote by HK(X) the sub-
space of H(X) consisting of holomorphic vector fields V such that the flow of ImV
lies in K.

Proposition 4.12. For any compact subgroup K of Aut0(X) the restriction of 〈 , 〉
to HK(X) is real valued and positive definite, in particular non-degenerate.

Proof. Taking averages of an arbitrary Kähler form in our class, we can represent
our form by a K-invariant Kähler form ω. Then hV

ω is real valued if V lies in HK .
Both claims of the proposition follow directly from this. �

For a holomorphic vector field V in H(X) we put

C∞
V = {u ∈ C∞(X;R); Im (V )u = 0}

and denote by Aut0(X,V ) the subgroup of Aut0(X) of automorphisms commuting
with the flow of V .

Proposition 4.13. Let V be a vector field in H(X) and ω0 a Kähler form invariant
under the flow of ImV . Then a real valued function u lies in C∞

V if and only if the
vector fields Im∇ω0

u and ImV commute. If, moreover, ∇ω0
u is holomorphic, then

W lies in the Lie algebra of Aut0(X,V ).

Proof. For v real valued, let Wv = 2Im∇ω0
v be the vector field determined by the

Hamiltonian v and the symplectic form ω0, Wv�ω0 = dv. Then

[Wu, ImV ] = W{u,hV
ω0

}

(where { , } is the Poisson bracket). Since for any u and v, {u, v} = Wvu, we see
that {u, hV

ω0
} = 2ImV u, so ImV u = 0 if and only if Wu and ImV commute. If

we also assume that ∇ω0
u is holomorphic, then Im∇ω0

u and ImV commute if and
only if ∇ω0

u and V commute, which means that ∇ω0
u lies in the Lie algebra of

Aut0(X,V ) . �

Finally, given a field V in H(X) we define an associated energy functional EV
by letting

dEV |ω.u̇ :=

ˆ
X

u̇ hV
ω ωn.

The next proposition shows that this indeed defines a function on the subspace
HV of H consisting of Kähler metrics invariant under ImV , and also computes its
second derivative along a curve.
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Proposition 4.14. Let ωu = ω0 + i∂∂̄u where u ∈ C∞
V depends smoothly on two

real parameters s and t. Assume that ω0 is invariant under ImV . Then

(d/ds)

ˆ
X

u̇th
V
ωu

ωn
u =

ˆ
X

(üst − (∂u̇t, ∂u̇s)ωu
)hV

ωu
ωn
u ,

where ( , )ωu
= Re 〈 , 〉ωu

is the real scalar product defined by ωu.

Proof. A direct computation using the technical lemma shows that

(d/ds)

ˆ
X

u̇th
V
ωu

ωn
u =

ˆ
X

(üst − 〈∂u̇t, ∂u̇s〉ωu
)hV

ωu
ωn
u .

If u lies in C∞
V , then hV

ωu
= hV

ωu
+ V (u) is real valued for all s and t. Hence the

proposition follows by taking real parts. �

Since this expression is symmetric in s and t, it follows thatˆ 1

0

dt

ˆ
X

u̇th
V
ωu

ωn
u

is independent of the choice of path between u0 = 0 and u1, so EV is a well
defined function. Note also that dEV · u̇t vanishes if u̇t is a constant, so EV (u)
descends to a function on the space of Kähler forms in [ω]. In addition, we see from
Proposition 4.13 that

(d/dt)2EV (u) =
ˆ
X

(ütt − |∂̄u̇t|2ωu
)hV

ωu
ωn
u .

This formula extends to curves in C1,1
C

, if we define hV
ωu

= hV
ω0

+ V (u), simply by

approximation. Thus we see that EV is linear along a C1,1
C

-geodesic in HV . For any
pair of metrics in HV the weak geodesic between them will remain in HV , so EV is
linear along the connecting geodesic. From this we also conclude that the Hessian
of EV at ω0 restricted to C∞

V vanishes.
We are now ready for the proof of the uniqueness of extremal metrics. Following

[37] we shall first see that the holomorphic vector field that arises as the complex
gradient of the scalar curvature Rω of an extremal metric is uniquely determined
by the given Kähler class, modulo Aut0(X).

Proposition 4.15. Let K be a maximal compact subgroup of Aut0(X), and let ω0

be an extremal metric in [ω]. Let V0 be the associated vector field V0 = ∇ω0
Rω0

.
Then

1. There is an element g in Aut0(X) such that after replacing ω0 by g∗ω0 the
flow of ImV0 lies in K,
and

2. If ω1 is another extremal metric in the same cohomology class, with as-
sociated vector field V1 such that the flow of ImV1 also lies in K, then
V0 = V1.

Hence, given K, we may speak of “the” extremal vector field.

Proof. Since V0 is the complex gradient of a real valued function Rω0
, the flow of

ImV0 is an isometry as we have seen. Hence the flow of ImV0 lies in some maximal
compact group K0. By a fundamental theorem of Iwasawa [38], the two groups K
and K0 are conjugate under some automorphism g. This proves 1.
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Let V0 now be the holomorphic vector field associated to ω0. Then V0 lies in
HK(X). Let W be an arbitrary field in HK . Then

−〈V0,W 〉 =
ˆ
X

(Rω0
− R̂ω0

)hW
ω0
ωn
0 .

By definition, this is nothing but the negative of the Futaki invariant of W [36],
which is well-known not to depend on the choice of Kähler metric. In particular, it
also equals −〈V1,W 〉, so since the bilinear form is non-degenerate on HK , it follows
that V0 = V1. �

The main theorem of this section generalizes Theorem 4.7.

Theorem 4.16. Given any two extremal Kähler metrics ω0 and ω1 in a given
cohomology class, there exists an element g ∈ Aut0(X) such that ω0 = g∗ω1.

Following [32,50] we modify the Mabuchi functional to obtain another functional
which has our extremal metrics as critical points. By Proposition 4.13 we may
assume that the vector fields associated to ω0 and ω1 are the same field V . Then
both ω0 and ω1 are invariant under ImV and hence invariant under the closure
of the one parameter subgroup of Aut0(X) generated by ImV , which we call T .
Let MV := M + EV , where EV is the previously introduced energy functional
associated to the extremal field V . MV is defined on the subspace HV of H of
Kähler potentials invariant under ImV . Then both ω0 and ω1 are critical points of
MV on HV . We now let μ be a smooth T -invariant volume form, normalized as
before and consider, following the proof of Theorem 4.7, the functionals

MV + sFμ,

where s is a small positive number, and let FV (u, s) := d(MV + sFμ)|u. We shall
prove that if ω0 = ω + i∂∂̄u0, then there exists a smooth function v0 such that
FV (u0 + sv0, s) = O(s2), and as before this amounts to solving the equation

Dv0dMV |u0 = −dFμ|ω0
= −(μ− ωn

0 ).

Moreover, we look for v0 such that ImV (v0) = 0. We proceed as in the proof
of Theorem 4.7, but this time we first replace ω0 by g∗ω0 where g ∈ Aut0(X,V )
is chosen to give the minimum of Fμ on the orbit Aut0(X,V )ω0; i.e. we use
the subgroup Aut0(X,V ) instead of the full group Aut0(X). Notice that MV is
invariant under the action of Aut0(X,V ) by the same reason as before: It is linear
along the flow of vector fields that commute with V and is bounded from below on
HV (this can be proved in the same way that we proved Corollary 1.2). Therefore,
g∗ω0 =: ω′

0 is still critical for MV .
Then dFμ|ω′

0
annihilates all real valued functions whose complex gradients lie

in the Lie algebra of Aut0(X,V ); cf. the proof of Proposition 4.6. By Propo-
sition 4.11 it follows that dFμ annihilates all functions in C∞

V with holomorphic
complex gradients. But, if h is a general real valued function with a holomorphic
complex gradient, and AvT (h) denotes the average of h over T , then (since μ− ωn

0

is T -invariant) ˆ
X

h(μ− ωn
0 ) =

ˆ
X

AvT (h)(μ− ωn
0 ) = 0,

since AvT (h) is annihilated by ImV . Hence μ − ωn
0 annihilates all real functions

with a holomorphic complex gradient, which by Proposition 4.3 means that we can
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solve

−Dv0dM|u0
= μ− ωn

0 .

Replacing v0 by its average over T we can also find a solution that is T -invariant, i.e.
annihilated by ImV . Finally, we recall that by our formula for the second derivative
of EV , the Hessian of EV restricted to C∞

V vanishes, so we have also solved

−Dv0dMV |u0
= μ− ωn

0 .

The proof is then completed in the same way as before: After applying an element
of Aut0(X,V ) to ω1 we may solve in the same way

−Dv1dMV |u1
= μ− ωn

1 .

We then let us
0 = u0 + sv0 and us

1 = u1 + sv1 and connect with a geodesic us
t . By

uniqueness the geodesics lie in HV so EV (us
t ) is linear in t. It then follows again

from Proposition 4.1 that the square of the distance between ωus
0
and ωus

1
is of

order s, and hence ω0 = ω1.
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Mathématique [Monographs of L’Enseignement Mathématique], vol. 33, L’Enseignement
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