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MEASURE RIGIDITY FOR RANDOM DYNAMICS

ON SURFACES AND RELATED SKEW PRODUCTS

AARON BROWN AND FEDERICO RODRIGUEZ HERTZ

1. Introduction

Given an action of a one-parameter group on a manifold with some degree of
hyperbolicity, there are typically many ergodic, invariant measures with positive
entropy. For instance, given an Anosov or Axiom A diffeomorphism of a compact
manifold, the equilibrium states for Hölder-continuous potentials provide measures
with the above properties [BR,Bow]. When passing to hyperbolic actions of larger
groups, the following phenomenon has been demonstrated in many settings: the
only invariant ergodic measures with positive entropy are absolutely continuous
(with respect to the ambient Riemannian volume). For instance, consider the action
of the semi-group N2 on the additive circle generated by

x �→ 2x mod 1 x �→ 3x mod 1.

Rudolph showed for this action that the only invariant, ergodic probability measures
are Lebesgue or have zero-entropy for every one-parameter subgroup [Rud]. In [KS],
Katok and Spatzier generalized the above phenomenon to actions of commuting
toral automorphisms.

Outside of the setting of affine actions, Kalinin, Katok, and Rodriguez Hertz,
have recently demonstrated a version of abelian measure rigidity for nonuniformly
hyperbolic, maximal-rank actions. In [KKRH], the authors consider Zn acting by
C1+α diffeomorphisms on a (n + 1)-dimensional manifold and prove that any Zn-
invariant measure μ is absolutely continuous assuming that at least one element
of Zn has positive entropy with respect to μ and that the Lyapunov exponent
functionals are in general position.

For affine actions of non-abelian groups, a number of results have recently been
obtained by Benoist and Quint in a series of papers [BQ1,BQ2,BQ3]. For instance,
consider a finitely supported measure ν on the group SL(n,Z). Let Γν ⊂ SL(n,Z)
be the (semi-)group generated by the support of ν. We note that Γν acts natu-
rally on the torus Tn. In [BQ1], it is proved that if every finite-index subgroup of
(the group generated by) Γν acts irreducibly on Rn, then every ν-stationary prob-
ability measure on Tn is either finitely supported or is Haar; in particular every
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ν-stationary probability measure is SL(n,Z)-invariant. Similar results was obtained
in [BFLM] through completely different methods. In [BQ1] the authors obtain sim-
ilar stiffness results for groups of translations on quotients of simple Lie groups.
More recently, in a breakthrough paper [EM] Eskin and Mirzakhani consider the
natural action of the upper triangular subgroup P ⊂ SL(2,R) on a stratum of
abelian differentials on a surface. They show that any such measures are in fact
SL(2,R)-invariant and affine in the natural coordinates on the stratum. Further-
more, for certain measures μ on SL(2,R), it is shown that all ergodic μ-stationary
measures are SL(2,R)-invariant and affine.

In this article, we prove a number of measure rigidity results for dynamics on
surfaces. We consider stationary measures for groups acting by diffeomorphisms
on surfaces as well as skew products (or non-independent identically distributed
(i.i.d.) random dynamics) with surface dynamics in the fibers. All measures will
be hyperbolic either by assumption or by entropy considerations. In this setup we
prove for hyperbolic stationary measures the following trichotomy: either the stable
distributions are non-random, the measure is Sinai–Ruelle–Bowen, or the measure
is supported on a finite set and is hence almost-surely invariant.

In the case that ν-almost every (a.e.) diffeomorphism preserves a common
smooth measure m, we show for any non-atomic stationary measure μ that ei-
ther there exists a ν-almost-surely invariant μ-measurable line field (corresponding
to the stable distributions for a.e. random composition) or the measure μ is ν-
almost-surely invariant and coincides with an ergodic component of m.

In the proof of the above results, we study skew products with surface fibers over
a measure-preserving transformation equipped with a decreasing sub-σ-algebra F̂ .
Given an invariant measure μ for the skew product whose fiber-wise conditional
measures are non-atomic, we assume the F̂ -measurability of the “past dynamics”
and the fiber-wise conditional measures and prove the following dichotomy: either
the fiber-wise stable distributions are measurable with respect to a related decreas-
ing sub-σ-algebra, or the measure μ is fiber-wise SRB.

We focus here only on actions on surfaces and measures with non-zero exponents
though we expect the results to hold in more generality. We rely heavily on the
tools from the theory of non-uniformly hyperbolic diffeomorphisms used in [KKRH]
and many ideas developed in [EM] including a modified version (see [EM, Section
16]) of the “exponential drift” arguments from [BQ1].

2. Preliminary definitions and constructions

Let M be a closed (compact, boundaryless) C∞ Riemannian manifold. We write
Diffr(M) for the group of Cr-diffeomorphisms from M to itself equipped with its
natural Cr-topology. Fix r = 2 and consider a subgroup Γ ⊂ Diff2(M). We say a
Borel probability measure μ on M is Γ-invariant if

(2.1) μ(f−1(A)) = μ(A)

for all Borel A ⊂ M and all f ∈ Γ.
We note that for any continuous action by an amenable group on a compact

metric space there always exists at least one invariant measure. However, for actions
by non-amenable groups invariant measures need not exist. For this reason, we
introduce a weaker notion of invariance. Let ν be a Borel probability measure on
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the group Γ. We say a Borel probability measure μ on M is ν-stationary if∫
μ(f−1(A)) dν(f) = μ(A)

for any Borel A ⊂ M . By the compactness of M , it follows that for any probability
ν on Γ there exists a ν-stationary probability μ (e.g. [Kif, Lemma I.2.2].)

We note that if μ is Γ-invariant, then μ is trivially ν-stationary for any measure
ν on Γ. Given a ν-stationary measure μ such that equality (2.1) holds for ν-a.e.
f ∈ Γ, we say that μ is ν-almost surely (a.s.) Γ-invariant.

Given a probability ν on Diff2(M) one defines the random walk on the group of
diffeomorphisms. A path in the random walk induces a sequence of diffeomorphisms
from M to itself. As in the case of a single transformation, we study the asymptotic
ergodic properties of typical sequences of diffeomorphisms of M . We write Σ+ =(
Diff2(M)

)N
for the space of sequences of diffeomorphisms ω = (f0, f1, f2, . . . ) ∈

Σ+. Given a Borel probability measure ν on Diff2(M), we equip Σ+ with the
product measure νN. We remark that Diff2(M) is a Polish space, hence Σ+ is
Polish, and the probability νN is Radon. Let σ : Σ+ → Σ+ be the shift map

σ : (f0, f1, f2, . . . ) �→ (f1, f2, . . . ).

We have that νN is σ-invariant. Given a sequence ω = (f0, f1, f2, . . . ) ∈ Σ+ and
n ≥ 0 we define a cocycle

f0
ω := Id, fω = f1

ω := f0, fn
ω := fn−1 ◦ fn−2 ◦ · · · ◦ f1 ◦ f0.

We interpret (Σ+, ν
N) as a parametrization of all paths in the random walk de-

fined by ν. Following existing literature ([LY3], [LQ]), we denote by X+(M, ν) the
random dynamical system on M defined by the random compositions {fn

ω }ω∈Σ+
.

Given a measure ν on Diff2(M) and a ν-stationary measure μ, we say a subset
A ⊂ M is X+(M, ν)-invariant if for ν-a.e. f and μ-a.e. x ∈ M ,

(1) x ∈ A =⇒ f(x) ∈ A and
(2) x ∈ M �A =⇒ f(x) ∈ M �A.

We say a ν-stationary probability measure μ is ergodic if, for every X+(M, ν)-
invariant set A, we have either μ(A) = 0 or μ(M � A) = 0. We note that for a
fixed ν-stationary measure μ we have an ergodic decomposition of μ into ergodic,
ν-stationary measures [Kif, Proposition I.2.1].

For a fixed ν and a fixed ν-stationary probability μ, one can define the μ-metric
entropy of the random process X+(M, ν), written hμ(X+(M, ν)). We refer to [Kif]
for a definition.

In the case that the support of ν is not bounded in Diff2(M), we assume the
integrability condition∫

log+(|f |C2) + log+(|f−1|C2) dν < ∞,(∗)

where log+(a) = max{log(x), 0} and | · |C2 denotes the C2-norm. The integrability
condition (∗) implies the weaker condition

(2.2)

∫
log+(|f |C1) + log+(|f−1|C1) dν < ∞,

which guarantees Oseledec’s multiplicative ergodic theorem holds. The log-
integrability of the C2-norms is used later to apply tools from Pesin theory.
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Proposition 2.1 (Random Oseledec’s multiplicative theorem). Let ν be the mea-
sure on Diff2(M) satisfying (2.2). Let μ be an ergodic, ν-stationary probability.

Then there are numbers −∞ < λ1 < λ2 < · · · < λ� < ∞, called Lyapunov
exponents such that for νN-a.e. sequence ω ∈ Σ+ and μ-a.e. x ∈ M there is a
filtration

(2.3) {0} = V 0
ω (x) � V 1

ω (x) ⊂ · · · � V �
ω(x) = TM

such that for v ∈ V k
ω (x)� V k−1

ω (x)

lim
n→∞

1

n
‖Dxf

n
ω (v)‖ = λk.

Moreover, mi := dimV k
ω (x)− dimV k−1

ω (x) is constant a.s. and

(2.4) lim
n→∞

1

n
log | det(Dxf

n
ξ )| =

�∑
i=1

λimi.

The subspaces V i
ω(x) are invariant in the sense that

DxfωV
k
ω (x) = V k

σ(ω)(fω(x)).

For a proof of the above theorem see, for example, [LQ, Proposition I.3.1]. We
write

Es
ω(x) :=

⋃
λj<0

V j
ω (x)

for the stable Lyapunov subspace for the word ω at the point x.
A stationary measure μ is hyperbolic if no exponent λi is zero.
We note that the random process X+(M, ν) is not invertible. Thus, while stable

Lyapunov subspaces are defined for νN-a.e. ω and μ-a.e. x, there are no well-defined
unstable Lyapunov subspaces for X+(M, ν). However, to state results we will need
a notion of SRB-measures (also called u-measures) for random sequences of diffeo-
morphisms. We will state the precise definition (Definition 6.8) in Section 6.3 after
introducing fiber-wise unstable manifolds for a related skew product construction.
Roughly speaking, a ν-stationary measure μ is SRB if it has absolutely continuous
conditional measures along unstable manifolds. Since we have not yet defined un-
stable manifolds (or subspaces), we postpone the formal definition and give here an
equivalent property. The following is an adaptation of [LY1].

Proposition 2.2 ([LQ, Theorem VI.1.1]). Let M be a compact manifold, and
let ν be a probability on Diff2(M) satisfying (∗). Then an ergodic, ν-stationary
probability μ is an SRB-measure if and only if

hμ(X+(M, ν)) =
∑
λi>0

miλi.

We introduce some terminology for invariant measurable subbundles. Given a
subgroup Γ ⊂ Diff2(M), we have induced the action of Γ on sub-vector-bundles
of the tangent bundle TM via the differential. Consider ν supported on Γ and a
ν-stationary Borel probability μ on M .

(1) We say a μ-measurable subbundle V ⊂ TM is ν-a.s. invariant ifDf(V (x))=
V (f(x)) for ν-a.e. f ∈ Γ and μ-a.e. x ∈ M.
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(2) A (νN × μ)-measurable family of subbundles (ω, x) �→ Vω(x) ⊂ TxM is
X+(Γ, ν)-invariant if for (νN × μ)-a.e. (ω, x)

DxfωVω(x) = Vσ(ω)(fω(x)).

Note that subbundles in the filtration (2.3) are X+(Γ, ν)-invariant.
(3) We say a X+(M, ν)-invariant family of subspaces Vω(x) ⊂ TM is non-

random if there exists a ν-a.s. invariant μ-measurable subbundle V̂ ⊂ TM
with V̂ (x) = Vω(x) for (ν

N × μ)-a.e. (ω, x).

3. Statement of results: groups of surface diffeomorphisms

For all results in this paper, we restrict ourselves to the case that M is a closed
surface. Equip M with a background Riemannian metric.

Let ν̂ be a Borel probability on the group Diff2(M) satisfying the integrability
hypotheses (∗). Let μ̂ be an ergodic ν̂-stationary measure on M . At times, we may
assume hμ̂(X+(M, ν̂)) > 0. By the fiber-wise Margulis-Ruelle inequality [BB] ap-
plied to the associated skew product (see Section 4.1), positivity of entropy implies
that the Oseledec’s filtration (2.3) is non-trivial and the exponents satisfy

−∞ < λ1 < 0 < λ2 < ∞.(3.1)

In particular, the stable Lyapunov subspace Es
ω(x) corresponds to the subspace

V 1
ω (x) in (2.3) and is one-dimensional.
We state our first main theorem.

Theorem 3.1. Let M be a closed surface, and let ν̂ be a Borel probability measure
on Diff2(M) satisfying (∗). Let μ̂ be an ergodic, hyperbolic, ν̂-stationary Borel
probability measure on M . Then either

(1) the stable distribution Es
ω(x) is non-random,

(2) μ̂ is finitely supported, and hence ν̂-a.s. is invariant, or
(3) μ̂ is SRB.

By the above discussion and standard facts about entropy, if hμ̂(X+(M, ν̂)) > 0,
then μ̂ is hyperbolic and has no atoms. We thus obtain as a corollary the following
dichotomy for positive-entropy stationary measures.

Corollary 3.2. Let M be a closed surface. Let ν̂ be a Borel probability measure
on Diff2(M) satisfying (∗), and let μ̂ be an ergodic, ν̂-stationary Borel probability
measure on M with hμ̂(X+(M, ν̂)) > 0. Then either

(1) the stable distribution Es
ω(x) is non-random, or

(2) μ̂ is SRB.

We also immediately obtain from Theorem 3.1 the following corollary.

Corollary 3.3. Let ν̂ be as in Theorem 3.1 with μ̂ an ergodic, hyperbolic, ν̂-
stationary probability measure. Assume that μ̂ has one exponent of each sign and
that there are no ν̂-a.s. invariant, μ̂-measurable line fields on TM . Then either μ̂
is SRB or μ̂ is finitely supported.

We note that in [BQ1], the authors prove an analogous statement. Namely,
for homogeneous actions satisfying certain hypotheses, any non-atomic stationary
measure μ̂ is shown to be absolutely continuous along some unstable (unipotent)
direction. Using the Ratner theory, one concludes that the stationary measure μ̂
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is thus the Haar measure and hence invariant for every element of the action. In
non-homogeneous settings, such as the one considered here and the one considered
in [EM], there is no analogue of the Ratner theory. Thus, in such settings more
structure is needed in order to promote the SRB property to absolute continuity or
almost-sure invariance of the stationary measure μ̂. The next theorem demonstrates
that this promotion is possible assuming the existence of an almost-surely invariant
volume.

Theorem 3.4. Let Γ ⊂ Diff2(M) be a subgroup, and assume Γ preserves a proba-
bility measure m equivalent to the Riemannian volume on M . Let ν̂ be a probability
measure on Diff2(M) with ν̂(Γ) = 1 and satisfying (∗). Let μ̂ be an ergodic, hyper-
bolic, ν̂-stationary Borel probability measure. Then either

(1) μ̂ has finite support,
(2) the stable distribution Es

ω(x) is non-random, or
(3) μ̂ is absolutely continuous and is ν̂-a.s. Γ-invariant.

Furthermore, in conclusion (3), we will have that μ̂ is—up to normalization—the
restriction of m to a positive volume subset.

In particular, in Theorem 3.4 if the stable distribution Es
ω(x) is not non-random,

then we have the following stiffness result.

Corollary 3.5. Let m be a probability measure on M equivalent to the Riemannian
volume. Let ν̂ be a probability measure on Diff2(M) satisfying (∗) and such that m
is ν̂-a.s. invariant. Let μ̂ be an ergodic, hyperbolic, ν̂-stationary Borel probability
measure. Assume there are no μ̂-measurable, ν̂-a.s. invariant line fields on TM .
Then μ̂ is invariant under ν̂-a.e. f ∈ Diff2(M).

4. General skew products

In this section, we reformulate the results stated in Section 3 in terms of results
about related skew product systems. This allows us to convert the dynamical prop-
erties of non-invertible, random dynamics to properties of one-parameter invertible
actions and to exploit tools from the theory of non-uniformly hyperbolic diffeo-
morphisms. A result for a more general skew product system is also introduced.

4.1. Canonical skew product associated to a random dynamical system.
Let M and ν̂ be as in Section 3. Consider the product space Σ+ ×M , and define

the (non-invertible) skew product F̂ : Σ+ ×M → Σ+ ×M by

F̂ : (ω, x) �→ (σ(ω), fω(x)).

We have the following reinterpretation of ν̂-stationary measures.

Proposition 4.1. [Kif, Lemma I.2.3, Theorem I.2.1] For a Borel probability mea-
sure μ̂ on M we have that

(1) μ̂ is ν̂-stationary if and only if ν̂N × μ̂ is F̂ -invariant;
(2) a ν̂-stationary measure μ̂ is ergodic for X+(M, ν̂) if and only if ν̂N × μ̂ is

ergodic for F̂ .

Let Σ := (Diffr(M))Z be the space of bi-infinite sequences and equip Σ with the
product measure ν̂Z. We again write σ : Σ → Σ for the left shift (σ(ξ))i = ξi+1.
Given

ξ = (. . . , f−2, f−1, f0, f1, f2, . . . ) ∈ Σ



MEASURE RIGIDITY FOR RANDOM DYNAMICS ON SURFACES 1061

define fξ := f0, and define the (invertible) skew product F : Σ×M → Σ×M by

(4.1) F : (ξ, x) �→ (σ(ξ), fξ(x)).

We have the following proposition producing the measure whose properties we
will study for the remainder.

Proposition 4.2. Let μ̂ be a ν̂-stationary Borel probability measure. There is a
unique F -invariant Borel probability measure μ on Σ×M whose image under the
canonical projection Σ×M → Σ+ ×M is ν̂N × μ̂.

Furthermore, μ projects to ν̂Z and μ̂, respectively, under the canonical projections
Σ×M → Σ and Σ×M → M and is equal to the weak-∗ limit

(4.2) μ = lim
n→∞

(Fn)∗(ν̂
Z × μ̂).

See, for example, [LQ, Proposition I.1.2] for a proof of the proposition in this
setting. Let {μξ}ξ ∈ Σ be a family of conditional measures of μ relative to the
partition into fibers of Σ × M → Σ. By a slight abuse of notation, consider μξ

as a measure on M for each ξ. It follows that for ν̂Z-a.e. ξ ∈ Σ and η ∈ Σ with
ηi = ξi for all i < 0 that μη = μξ.

Write π : Σ ×M → Σ for the canonical projection. We write hμ(F | π) for the
conditional metric entropy of (F, μ) conditioned on the sub-σ-algebra generated by
π−1.

Proposition 4.3 ([Kif, Theorem II.1.4], [LQ, Theorem I.2.3]). We have the equality
of entropies hμ̂(X+(M, ν̂)) = hμ(F | π).

4.2. General skew products. We give a generalization of the setup introduced
in Section 4.1. Let (Ω,BΩ, ν) be a Polish probability space; that is, Ω has the
topology of a complete separable metric space, ν is a Borel probability measure,
and BΩ is the ν-completion of the Borel σ-algebra. Let θ : (Ω,BΩ, ν) → (Ω,BΩ, ν)
be an invertible, ergodic, measure-preserving transformation. Let M be a closed
C∞ manifold. Fix a background C∞ Riemannian metric on M , and write ‖ · ‖ for
the norm on the tangent bundle TM and d(·, ·) for the induced distance on M .
We note that compactness of M guarantees all metrics are equivalent, whence all
dynamical object structures defined below are independent of the choice of metric.

We consider a ν-measurable mapping Ω � ξ �→ fξ ∈ Diff2(M). Define1 a cocycle
F : Ω× Z → Diffr(M) over θ, written F : (ξ, n) �→ fn

ξ , by

(1) f0
ξ := Id, f1

ξ := fξ,

(2) fn
ξ := fθn−1(ξ) ◦ · · · ◦ fθ(ξ) ◦ fξ for n > 0, and

(3) fn
ξ := (fθn(ξ))

−1 ◦ · · · ◦ (fθ−1(ξ))
−1 = (f

|n|
θn(ξ))

−1 for n < 0.

As above, we will always assume the following integrability condition:∫
log+(|fξ|C2) + log+(|f−1

ξ |C2) dν(ξ) < ∞.(IC)

Write X := Ω×M with canonical projection π : X → Ω. For ξ ∈ Ω, we write

Mξ := {ξ} ×M = π−1(ξ)

1Writing the cocycle as fn
ξ is standard in the literature but is somewhat ambiguous. We

write (fξ)
−1 to indicate the diffeomorphism that is the inverse of fξ : M → M . The symbol f−1

ξ

indicates (fθ−1(ξ))
−1.



1062 A. BROWN AND F. RODRIGUEZ HERTZ

for the fiber of X over ξ. On X, we define the skew product F : X → X F : (ξ, x) �→
(θ(ξ), fξ(x)).

Note thatX = Ω×M has a natural Borel structure. The main object of study for
the remainder will be F -invariant Borel probability measures on X with marginal
ν.

Definition 4.4. A probability measure μ on X is called F -invariant if it is F -
invariant and satisfies

π∗μ = ν.

Such a measure μ is said to be ergodic if it is F -ergodic.

Let {μξ}ξ∈Ω denote the family of conditional probability measures with respect
to the partition induced by the projection π : X → Ω. Using the canonical identifi-
cation of fibers Mξ = {ξ} ×M in X with M , by an abuse of notation we consider
the map ξ �→ μξ as a measurable map from Ω to the space of Borel probabilities on
M .

4.2.1. Fiber-wise Lyapunov exponents. We define TX to be the fiber-wise tangent
bundle

TX := Ω× TM

and DF : TX → TX to be the fiber-wise differential

DF : (ξ, (x, v)) �→ (θ(ξ), (fξ(x), Dxfξv)).

Let μ be an ergodic, F -invariant probability. We have that DF defines a linear
cocycle over the (invertible) measure-preserving system F : (X,μ) → (X,μ). By
the integrability condition (IC), we can apply Oseledec’s theorem to DF to obtain
a μ-measurable splitting

(4.3) T(ξ,x)X := {ξ} × TxM =
⊕
j

Ej(ξ, x)

and numbers λj
μ so that for μ-a.e. (ξ, x), and every v ∈ Ej(ξ, x)� {0},

lim
n→±∞

1

n
log ‖DFn(v)‖ = lim

n→±∞

1

n
log ‖Dxf

n
ξ v‖ = λj

μ.

It follows from standard arguments that if the fiber-wise exponents of DF are
all positive (or negative), then the fiber-wise conditional measure μξ are purely
atomic.

4.3. Reformulation of Theorem 3.1. Let M and ν̂ be as in Section 3, and let μ̂
be an ergodic, hyperbolic, ν̂-stationary measure. Let F : Σ ×M → Σ×M denote
the canonical skew product, and let μ be the measure given by Proposition 4.2. We
have a μ-measurable splitting of Σ× TM into measurable bundles

{ξ} × TxM = Es(ξ, x)⊕ Eu(ξ, x).

Note that, a priori, one of the bundles Es(ξ, x) or Eu(ξ, x) might be trivial; however,
by Remark 4.9 below, Theorem 3.1 follows trivially in these cases.

For σ ∈ {s, u} and (ξ, x) ∈ Σ × M we write Eσ
ξ (x) ⊂ TM for the subspace

with Eσ(ξ, x) = {ξ} × Eσ
ξ (x). Projectivizing the tangent bundle TM , we obtain a

measurable function

(ξ, x) �→ Eσ
ξ (x).
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For ξ = (. . . , ξ−2, ξ−1, ξ0, ξ1, ξ2, . . . ) ∈ Σ write Σ−
loc(ξ) and Σ+

loc(ξ) for the local
stable and unstable sets

Σ−
loc(ξ) := {η ∈ Σ | ηi = ξi for all i ≥ 0},

Σ+
loc(ξ) := {η ∈ Σ | ηi = ξi for all i < 0}.

Write F̂ for (the completion of) the Borel sub-σ-algebra of Σ containing sets

that are a.s. saturated by local unstable sets: C ∈ F̂ if and only if C = Ĉ mod ν̂Z

where Ĉ is Borel in Σ with
Ĉ =

⋃
ξ∈Ĉ

Σ+
loc(ξ).

Similarly, we define Ĝ to be the sub-σ-algebra of Σ whose atoms are local stable
sets. Writing BM for the Borel σ-algebra on M we define sub-σ-algebras on F and
G on X to be, respectively, the μ-completions of the σ-algebras F̂ ⊗BM and Ĝ⊗BM .

We note that, by construction, the assignments Ω → Diff2(M) given by ξ �→ fξ
and ξ �→ f−1

ξ are, respectively, Ĝ- and F̂ -measurable. Furthermore, observing that

the stable line fields Es
ξ (x) depend only on the value of fn

ξ for n ≥ 0, we have the
following straightforward but crucial observation.

Proposition 4.5. The map (ξ, x) �→ Es
ξ (x) is G-measurable, and the map (ξ, x) �→

Eu
ξ (x) is F-measurable.

We have the following claim, which follows from the explicit construction of μ
in (4.2).

Proposition 4.6. The intersection F ∩ G is equivalent modulo μ to the σ-algebra
{∅,Σ} ⊗ BM .

Proof. Let A ∈ F ∩G. Since A ∈ G, we have that A � Â where Â is a Borel subset

of Σ×M such that for any (ξ, y) ∈ Â and η ∈ Σ−
loc(ξ),

(η, y) ∈ Â.

We write {μF
(ξ,x)} and {μΣ

(ξ,x)}, respectively, for families of conditional probabil-

ities given by the partition of Σ×M into atoms of F and the partition {Σ× {x} |
x ∈ M} of Σ×M . It follows from the construction of μ given by (4.2) that μF

(ξ,x)

may be taken to be the form

dμF
(ξ,x)(η, y) = dν̂N(η0, η1, . . . )δx(y)δ(ξ−1)(η−1)δ(ξ−2)(η−2) · · ·(4.4)

for every (ξ, x) ∈ X.

Since A ∈ F , we have Â ∈ F . Thus, for μ-a.e. (ξ, x) ∈ Â,

μF
(ξ,x)(Â) = 1.

Furthermore, it follows from (4.4) and the form of Â that if

μF
(ξ,x)(Â) = 1,

then
μF
(ξ′,x)(Â) = 1

for any ξ′ ∈ Σ. It follows that

μΣ
(ξ,x)Â = 1

for a.e. (ξ, x) ∈ Â. In particular, Â � Σ× Ã for some set Ã ∈ BM . �
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We remark that if ξ projects to ω under the natural projection Σ → Σ+, then the
subspace Es

ξ (x) and the subspace Es
ω(x) given by Proposition 2.1 coincide almost

surely. It then follows from Proposition 4.6 that the bundle Es
ω(x) in Theorem 3.1

is non-random if and only if the bundle Es
ξ (x) is F-measurable. Thus, Theorem 3.1

follows from the following 2 results.

Theorem 4.7. Let ν̂ and μ̂ be as in Theorem 3.1. Let F : Σ × M → Σ × M
be the canonical skew product, and let μ be as in Proposition 4.2. Assume the
fiber-wise conditional measures μξ are non-atomic. Then either (ξ, x) �→ Es

ξ (x) is
F-measurable or μ is fiber-wise SRB.

Recall that a measure is non-atomic if there is no point with positive mass. By
the ergodicity of μ under the dynamics of F it follows that either μξ is non-atomic
a.s. or there is a N ∈ N such that μξ is supported on exactly N points a.s. We
consider the case that μξ is finitely supported separately.

Theorem 4.8. Let ν̂ and μ̂ be as in Theorem 3.1. Assume the fiber-wise con-
ditional measures μξ are finitely supported ν̂Z-a.s. Then either (ξ, x) �→ Es

ξ (x) is
F-measurable or the measure μ̂ is finitely supported and ν̂-a.s. invariant.

Remark 4.9. In the proof of Theorem 3.1 below, we may assume that μ̂ has one
exponent of each sign. Indeed if μ̂ has only negative exponents, then the measur-
ability of (ξ, x) �→ Es

ξ (x) is trivial. Furthermore, if μ̂ has only positive exponents,
then a standard argument shows that μ̂ is finitely supported and ν̂-a.s. invariant.
Indeed, if all exponents are positive, then the measures μξ are finitely supported
for a.e. ξ. That μ̂ is ν̂-a.s. invariant follows, for instance, from the invariance prin-
ciple in [AV], the F̂ -measurability of the measure μξ, and an argument similar to
Proposition 4.6 above.

4.4. Statement of results: general skew products. We introduce a generaliza-
tion of Theorem 4.7, the proof of which consumes Sections 7–10. Let θ : (Ω,BΩ, ν) →
(Ω,BΩ, ν) be as in Section 4.2. Let M be a closed C∞ surface, and let F be a
cocycle generated by a ν-measurable map ξ �→ fξ satisfying the integrability hy-
pothesis (IC). Fix μ an ergodic, F -invariant, hyperbolic, Borel probability measure
on X = Ω×M . For the general setting we will further assume the measures μξ are
non-atomic ν-a.s. It follows that from the hyperbolicity and non-atomicity of the
fiber-wise measures μξ that the fiber-wise derivative DF has two exponents λs and
λu, one of each sign.

We say a sub-σ-algebra F̂ ⊂ BΩ is decreasing (for θ) if

θ(F̂) = {θ(A) | A ∈ F̂} ⊂ F̂ .

(Note that F̂ is decreasing under the forwards dynamics if the partition into atoms

is an increasing partition in the sense of [LY1]. Alternatively, F̂ is decreasing if the

map θ−1 : Ω → Ω is F̂ -measurable.) As a primary example, the sub-σ-algebra of Σ
generated by local unstable sets is decreasing (for σ : Σ → Σ).

Let F̂ be a decreasing sub-σ-algebra, and write F for the μ-completion of F̂⊗BM

where BM is the Borel algebra on M . As in the previous section, to compare stable
distributions in different fibers over Ω write Es

ξ (x) ⊂ TxM for the subspace with

Es(ξ, x) = {ξ} × Es
ξ (x). We then consider (ξ, x) �→ Es

ξ (x) as a measurable map
from X to the projectivization of TM .
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With the above setup, we now state the following result which generalizes The-
orem 4.7.

Theorem 4.10. Assume μ is hyperbolic and the conditional measures {μξ} are
non-atomic a.s. Further assume

(1) ξ �→ f−1
ξ is F̂-measurable, and

(2) ξ �→ μξ is F̂-measurable.

Then either (ξ, x) �→ Es
ξ (x) is F-measurable or μ is fiber-wise SRB. (See Defini-

tion 6.7.)

Note that the hypothesis that ξ �→ f−1
ξ is F̂ -measurable combined with the fact

that F̂ is decreasing implies ξ �→ f−1
θ−j(ξ) is F̂-measurable for all j ≥ 0. It follows

that ξ �→ fn
ξ is F̂ -measurable for all n ≤ 0. It then follows that F is a decreasing

sub-σ-algebra of BX .
We recall that in the case that F is the canonical skew product for a random

dynamical system and F̂ is the sub-σ-algebra generated by local unstable sets,
writing ξ = (. . . , f−1, f0, f1, . . . ) the F̂ -measurability of ξ �→ f−1

ξ = (f−1)
−1 follows

from construction. The F̂-measurability of ξ �→ μξ follows from the construction
of the measure μ given by (4.2) in Proposition 4.2. Theorem 4.7 then follows
immediately from Theorem 4.10.

5. Some applications

We present a number of applications of our main theorems.

5.1. Groups of measure-preserving diffeomorphisms. Fix M a closed sur-
face. Let μ be a Borel probability measure on M . Let Diff2

μ(M) denote the group

of C2, μ-preserving diffeomorphisms of M . Given f ∈ Diff2
μ(M) write λi(f, μ, x) for

the ith Lyapunov exponents of f with respect to the measure μ at the point x. If f is
ergodic (for μ) we write λi(f, μ) for the μ-almost surely constant value of λi(f, μ, x).

A diffeomorphism f ∈ Diff2
μ(M) is hyperbolic (relative to μ) if λi(f, μ, x) �= 0 for

almost every x and every i.
Note that if f ∈ Diff2

μ(M) is hyperbolic and μ contains no atoms, then (f, μ)
has one exponent of each sign λs(f, μ, x) < 0 < λu(f, μ, x). For such f , we write
TxM = Es

f (x)⊕Eu
f (x) for the μ-measurable Oseledec’s splitting induced by (f, μ).

Theorem 5.1. Let μ be a Borel probability measure on M with no atoms. Suppose
Diff2

μ(M) contains an ergodic, hyperbolic element f . Write Γ = Diff2
μ(M).

(a) If the union Eu
f ∪ Es

f is not Γ-invariant and neither Es
f nor Eu

f is Γ-
invariant, then μ is absolutely continuous.

(b) If the union Eu
f ∪ Es

f is not Γ-invariant and Eu
f is Γ-invariant, then μ is

an SRB measure for f .
(c) If the union Eu

f ∪ Es
f is not Γ-invariant and Es

f is Γ-invariant, then μ is

an SRB measure for f−1.

In the case that λs(f, μ) �= −λu(f, μ) we can give more precise results using the
following lemma.

Lemma 5.2. Let μ be non-atomic, and let f ∈ Diff2
μ(M) be ergodic and hyperbolic.

Suppose λs(f, μ) �= −λu(f, μ). Then any g ∈ Diff2
μ(M) that preserves the union

Eu
f ∪ Es

f preserves the individual distributions Es
f and Eu

f .
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Proof. Suppose g ∈ Diff2
μ(M) preserves the union Eu

f ∪Es
f almost surely but

(5.1) Dxg(E
s
f (x)) = Eu

f (g(x))

for a positive measure set of x. Let PTM denote the projectivized tangent bundle.
Let ν = tδg + (1− t)δf and Σ = {f, g}Z. On Σ× PTM consider the measure

dη(ξ, x, E) = dνZ(ξ) dμ(x) d(.5δEu
f (x) + .5δEs

f (x)
)(E).

Write DF for the derivative skew product DF : Σ× TM → Σ× TM and PDF for
the projectivized derivative skew product PDF : Σ × PTM → Σ × PTM . Then η
is PDF -invariant and is ergodic by (5.1). Let Φ: Σ× PTM → R be

Φ(ξ, x, E) = log ‖Dxfξ�E‖.

Then for μ-a.e. x and v ∈ Es
f (x) ∪ Eu

f (x) with v �= 0 we have

lim
n→∞

1

n
log ‖Dxf

n
ξ (v)‖ = lim

n→∞

1

n

n−1∑
j=1

Φ(PDF j(ξ, x, [v])) =

∫
Φ dη

= (1− t) (.5λu(f, μ)+.5λs(f, μ))+.5t

∫ ∑
E∈{Eu

f (x),Es
f (x)}

log ‖Dxg�E‖ dμ(x).

As the C1 norm of g is bounded, for t > 0 sufficiently small, either all fiber-wise
exponents of DF are negative or all fiber-wise exponents of DF are positive. This
contradicts that μ is non-atomic. �

From the above lemma we have the following theorem.

Theorem 5.3. Let μ be the Borel probability measure on M with no atoms. Suppose
Diff2

μ(M) contains an ergodic, hyperbolic element f with λs(f, μ) �= −λu(f, μ).

Then with Γ = Diff2
μ(M) either

(a) both Eu
f and Es

f are Γ-invariant or

(b) exactly one Eu
f and Es

f is Γ-invariant in which case μ is SRB for f or f−1.

Note that the hypothesis that λs(f, μ) �= −λu(f, μ) implies that μ is not abso-
lutely continuous.

5.2. Smooth stabilizers of measures invariant by Anosov maps. As a con-
sequence of the results in the previous section, we obtain a strengthening of the
result from [Bro].

Let f : T2 → T2 be Anosov. Then there is a hyperbolic A ∈ GL(2,Z) such that

any lift f̃ : R2 → R2 of f is of the form f(x) = Ax+ η(x) where η : R2 → R2 is Z2

is periodic. Given B ∈ GL(2,Z) let LB : T2 → T2 be the induced map. Then there
is a (non-unique) homeomorphism h : T2 → T2 with h ◦ f = LA ◦ h.

Let μ be a fully supported, ergodic, f -invariant measure. Let K ⊂ R2 be the
set K = {v : h∗μ is Tv-invariant} ⊂ R2 where Tv : T

2 → T2 is the translation by v.
Then K descends to a closed LA-invariant subgroup of T2 and so either is discrete
or is all of R2. The latter case can happen only if the measure μ is the measure
of maximal entropy for f . It follows that the group (A − I)−1K either is discrete

or is all of R2. Let K̂ be the smallest subgroup of R2 that is invariant under the
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centralizer CGL(2,Z)(A) of A in GL(2,Z) and contains (A − I)−1K. Note that K̂

descends to a subgroup of T2. Then K̂ either is R2 or is discrete. Let TK̂ denote
the corresponding group of translations on T2. Then TK̂ is finite if μ is not the
measure of maximal entropy.

Recall that the centralizer of A is of the form CGL(2,Z)(A) = 〈±M〉 for some
M ∈ GL(2,Z).

Theorem 5.4. Let f : T2 → T2 be a C2 Anosov diffeomorphism, and let μ be a
fully supported, ergodic, f -invariant measure. If μ is not absolutely continuous,
then for every g ∈ Diff2

μ(M) there is a B ∈ CGL(2,Z)(A) and v ∈ (A− I)−1(K) with

h ◦ g ◦ h−1(x) = LB(x) + v;

in particular, Diff2
μ(T

2) is isomorphic to a subgroup of

CGL(2,Z)(A)� TK̂ .

Moreover, if μ is not the measure of maximal entropy (for f), then TK̂ is finite,

whence Diff2
μ(T

2) is virtually Z.

Recall that a group is virtually Z if it contains a finite-index subgroup isomorphic
to Z. Theorem 5.4 follows exactly from the argument in [Bro] with only minor
modifications coming from Theorem 5.1.

Proof. Recall that if f is Anosov, then the measurable distributions Es
f and Eu

f

appearing in Oseledec’s splitting coincide with continuous transverse distributions.
Consider first g ∈ Diff2

μ(M) such that Dg does not interchange Es
f and Eu

g

on a set of full measure (and hence at every point). Then, if μ is not absolutely
continuous, by Theorem 5.1 at least one of the (continuous) distributions Es

f or Eu
f

is preserved (on a set of full measure and hence everywhere) by g. Then, as the
integral foliations to Es

f and Eu
f are unique, it follows that either the stable or the

unstable foliation of f is preserved by every such g.
It is then shown in [Bro] that g necessarily preserves both the stable and the

unstable foliations for f and hence preserves the corresponding tangent line fields
Es

f and Eu
f . If there exists g ∈ Diff2

μ(M) such that g interchanges Es
f and Eu

f , then
we may restrict to an index-2 subgroup preserving Es

f and Eu
f and the corresponding

foliations.
The remainder of the proof of Theorem 5.4 and a more detailed description of

the structure of Diff2
μ(T

2) proceeds exactly as in [Bro] and will not be repeated
here. �

5.3. Perturbations of algebraic systems. Let A,B ∈ GL(2,Z) be hyperbolic
matrices. Write Es

A and Eu
A, respectively, for the stable and unstable eigenspaces of

A. We say that {A,B} satisfy a joint cone condition if there are disjoint open cones
Cs and Cu, containing {Es

A, E
s
B} and {Eu

A, E
u
B}, respectively, with A−1Cs ⊂ Cs,

B−1Cs ⊂ Cs, ACu ⊂ Cu, and BCu ⊂ Cu and a number κ > 1 such that if v ∈ Cu,
then ‖Bv‖ > κ‖v‖ and ‖Av‖ > κ‖v‖, and if w ∈ Cs, then ‖B−1w‖ > κ‖w‖ and
‖A−1w‖ > κ‖w‖.

Given A ∈ GL(2,Z) let LA : T2 → T2 be the induced diffeomorphism.
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Proposition 5.5. Suppose that A and B do not commute and satisfy a joint cone
condition. Then for sufficiently small C2 perturbations f of LA and g of LB, for
ν = pδf +(1− p)δg with p ∈ (0, 1) the only ergodic, ν-stationary measures are SRB
or finitely supported.

Moreover, for every such f and a generic g, the only ν-stationary measure is
SRB.

Note that in the setting of the above proposition, stationary measures with the
SRB property are unique. The proof of the proposition will be given in Section 13.3.

Theorem 5.6. Let Γ ⊂ SL(2,Z) be an infinite subgroup that is not virtually Z.
Let S = {A1, . . . , An} be a finite set generating Γ. Consider 0 < pk < 1 with∑n

k=1 pk = 1, and let ν0 =
∑

pkδLAk
. Then there is an open set U ⊂ Diff2(T2)

with ν0(U) = 1 such that for every probability ν on U sufficiently close to ν0, any
ergodic, ν-stationary measure either is atomic or is hyperbolic with one exponent
of each sign and is SRB.

The proof of the theorem will be given in Section 13.3.
Let m denote the Lebesgue area on T2. If we restrict the above to the setting

of area-preserving perturbations, we obtain the following nonlinear counterpart to
[BQ1]. Note in particular that we obtain stiffness of all stationary measures.

Theorem 5.7. Let Γ ⊂ SL(2,Z) be an infinite subgroup that is not virtually Z.
Let S = {A1, . . . , An} be a finite set generating Γ. Consider 0 < pk < 1 with∑n

k=1 pk = 1, and let ν0 =
∑

pkδLAk
. Then there is an open set U ⊂ Diff2

m(T2)

with ν0(U) = 1 such that for every probability ν on U sufficiently close to ν0,
any ergodic, ν-stationary measure is hyperbolic with one exponent of each sign and
either coincides with m or is atomic.

In particular, every ν-stationary measure is preserved by every g ∈ Diff2
m(T2) in

the support of ν.

The theorem follows from Theorem 5.6 and (the proof of) Theorem 3.4. In
the proof of Theorem 5.6, it is shown that for all ν sufficiently close to ν0, every
ergodic ν-stationary measure μ has a positive exponent. That μ also has a negative
exponent follows from (2.4). Moreover, for such ν, a positive ν-measure set of

f ∈ Diff2
m(T2) is Anosov, whence m is ergodic for such f and hence ergodic for ν.

Finally, we consider stationary measures for perturbations of rotations. Let
R1, . . . , R� be � rotations in R3 generating a dense subgroup of SO(3,R). We
identify each Ri with a diffeomorphism of S2 ⊂ R3. Let m denote the unique
SO(3,R) invariant measure on S2.

Theorem 5.8. For k ∈ N sufficiently large, for each 1 ≤ i ≤ � there is a neigh-

borhood Ri ∈ Ui ⊂ Diffk
m(S2) such that given any gi ∈ Ui and ν = 1

�

∑�
i=1 δgi , any

ergodic ν-stationary measure on S2 either is finitely supported or coincides with m.

Proof. In [DK] it is shown that either the diffeomorphisms gi are simultaneously
smoothly conjugated to Ri or every ν-stationary measure is hyperbolic. In the first
case, the only stationary measures for the corresponding Ri is m and thus using
the conjugacy and that each gi preserves m, the only ν-stationary measure is m.

In the latter case, it is also shown in [DK, Corollary 4] that the stable line field
is not non-random. The result in this case follows from Theorem 3.4 and, as is also
shown in [DK], shows that m is ergodic for the perturbed system. �
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5.4. Other applications. From Theorem 3.4, we immediately obtain the main
results of [BQ1,BFLM] for measures ν on SL(2,Z) acting on T2 that satisfy a log-
integrability condition

∫
log ‖A‖ dν(A) < ∞. In [BQ1] the measure ν is assumed

finitely supported. In [BFLM] a stronger integrability hypothesis is needed. Using
the methods of this paper, the results of [BQ1] are expected to hold under a log-
integrability hypothesis.

Consider a flat surface S with Veech group Γ ⊂ SL(2,R). As was pointed
out to the authors by J. Athreya, Theorem 3.4 implies that if the Veech group is
infinite and non-elementary, then for any finitely supported measure ν generating
Γ, all ergodic ν-stationary measures μ on S either are finitely supported or are
the invariant area. There are technicalities in applying Theorem 3.4 directly as
the action is non-differentiable at the cone points. This mild difficulty will not be
addressed here.

6. Background and notation

In this section, we continue to work in the setting introduced in Sections 4.2
and 4.4. We outline extensions of a number of standard facts from the theory of
non-uniformly hyperbolic diffeomorphisms to the setting of the fiber-wise dynamics
for skew products. As previously remarked, Theorem 3.1 holds trivially if the fiber-
wise exponents are all of the same sign. Moreover, the hypotheses of Theorem 4.10
rule out that all exponents are of the same sign. We thus assume for the remainder
that we have one Lyapunov exponent of each sign λs < 0 < λu. For the remainder,
fix 0 < ε0 < min{1, λu/200,−λs/200}.

6.1. Fiber-wise non-uniformly hyperbolic dynamics. We present a number
of extensions of the theory of non-uniformly hyperbolic diffeomorphisms to the
fiber-wise dynamics of skew products.

6.1.1. Subexponential estimates. We have the following standard results that follow
from the integrability hypothesis (IC) and tempering kernel arguments (cf. [BP,
Lemma 3.5.7]).

Lemma 6.1. There is a subset Ω0 ⊂ Ω with ν(Ω0) = 1 and a measurable function
D : Ω0 → [1,∞) such that for ν-a.e. ξ ∈ Ω0 and n ∈ Z.

(1) |fξ|C1 ≤ D(ξ),

(2) |f−1
ξ |C1 ≤ D(ξ),

(3) Lip(Dfξ) ≤ D(ξ) and Lip(Df−1
ξ ) ≤ D(ξ),

(4) D(θn(ξ)) ≤ e|n|ε0D(ξ) for all n ∈ Z.

Here Lip(Dfξ) denotes the Lipschitz constant of the map x �→ Dxfξ for fixed ξ.

Lemma 6.2. There is a measurable function L : X → [1,∞) such that for μ-a.e.
(ξ, x) ∈ X and n ∈ Z:

(1) For v ∈ Es
ξ (x),

L(ξ, x)−1 exp(nλs − |n| 12ε0)‖v‖ ≤ ‖Dfn
ξ v‖ ≤ L(ξ, x) exp(nλs + |n| 12ε0)‖v‖.

(2) For v ∈ Eu
ξ (x),

L(ξ, x)−1 exp(nλu − |n| 12ε0)‖v‖ ≤ ‖Dfn
ξ v‖ ≤ L(ξ, x) exp(nλu + |n| 12ε0)‖v‖.
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(3) ∠
(
Es

θn(ξ)(Dfn
ξ (x)), E

u
θn(ξ)(Dfn

ξ (x))
)
>

1

L(ξ, x)
exp(−|n|ε0).

Furthermore for n ∈ Z

L(Fn(ξ, x)) ≤ L(ξ, x)eε0|n|.

Here ∠ denotes the Riemannian angle between two subspaces.

6.1.2. Lyapunov charts. We introduce families of two-sided Lyapunov charts. The
construction depends on the construction of a Lyapunov norm which we present in
Section 9.2. We note that in Section 11.2.1, in the case that Ω = (Diff2(M))Z we will
need one-sided charts that depend only on the future itinerary of ξ ∈ (Diff2(M))Z.
Given v ∈ R2 decompose v = v1 + v2 according to the standard basis and write
|v|i = |vi| and |v| = max{|v|i}. Write R2(r) for the ball of radius r centered at 0.

From standard constructions (see [LY1, Appendix], [LQ, VI.3]) for every 0 <
ε1 < ε0, there is a measurable function � : Ω ×M → [1,∞) and a full measure set
Λ ⊂ Ω×M such that

(1) for (ξ, x) ∈ Λ there is a neighborhood U(ξ,x) ⊂ M of x and a C∞ diffeo-

morphism φ(ξ, x) : U(ξ,x) → R2(�(ξ, x)−1) with
(a) φ(ξ, x)(x) = 0;
(b) Dφ(ξ, x)Es

ξ(x) = R× {0};
(c) Dφ(ξ, x)Eu

ξ (x) = {0} × R;

(2) writing

f̃(ξ, x) = φ(F (ξ, x)) ◦ fξ ◦ φ(ξ, x)−1, f̃−1(ξ, x) = φ(F−1(ξ, x)) ◦ f−1
ξ ◦ φ(ξ, x)−1,

where we have defined
(a) f̃(ξ, x)(0) = 0;

(b) D0f̃(ξ, x) =

(
α 0
0 β

)
where eλ

s−ε1 ≤ α ≤ eλ
s+ε1 and eλ

u−ε1 ≤ β ≤

eλ
u+ε1 ;

writing Lip(·) for the Lipschitz constant of a map on its domain

(c) Lip(f̃(ξ, x)−D0f̃(ξ, x)) < ε1;

(d) Lip(Df̃(ξ, x)) < �(ξ, x);

(3) properties similar to (2a)–(2d) hold for f̃−1(ξ, x);
(4) there is a uniform k0 with k−1

0 ≤ Lip(φ(ξ, x)) ≤ �(ξ, x);

(5) �(Fn(ξ, x)) ≤ �(ξ, x)e|n|ε1 for all n ∈ Z.

Let

λ0 = max{λu,−λs}+ 2ε1.

Then, the domains of f̃(ω, x) and f̃−1(ω, x) contain the ball in R2 of norm �(ξ, x)−1

e−λ0−ε1 . Note also that the domain of φ(ξ, x) contains a ball of radius �(ξ, x)−2

centered at x.
Write Rs = R×{0} and Ru = {0}×R. Recall that g : D ⊂ R → R is k-Lipschitz

if |g(x)− g(y)| ≤ k|x− y| for x, y ∈ D. We have the following observation.

Lemma 6.3. Let D ⊂ Rs(e−λ0−ε1�(ξ, x)−1). Let g : D → Ru(e−λ0−ε1�(ξ, x)−1) be
a 1-Lipschitz function. Then

f̃−1(ξ, x)(graph(g))
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is the graph of a 1-Lipschitz function

ĝ : D̂ → Ru(e−λ0−ε1�(F−1(ξ, x))−1)

for some D̂ ⊂ Rs
(
�(F−1(ξ, x))−1

)
.

6.1.3. Stable manifold theorem. Relative to the charts φ(ξ, x) above, one may ap-
ply either the Perron-Irwin method or the Hadamard graph transform method to
construct stable manifolds. The existence of stable manifolds for diffeomorphisms
of manifolds with non-zero exponents is due to Pesin [Pes]. In the case of random
dynamical systems, given the family of charts above, the statements and proofs
hold with minor modifications (see, for example, [LQ]). See Section 11.2.1 for some
details in the construction of stable manifolds relative to one-sided charts.

Theorem 6.4 (Local stable manifold theorem).
(1) For (ξ, x) ∈ Λ there is a C1,1 function

hs(ξ, x) : Rs(�(ξ, x)−1) → Ru(�(ξ, x)−1))

with

(1) hs(ξ, x)(0) = 0;
(2) D0h

s(ξ, x) = 0;
(3) ‖Dhs(ξ, x)‖ ≤ 1/3;

(4) f̃(ξ, x)(graph(hs(ξ, x))) ⊂ graph(hs(F (ξ, x))) ⊂ R2(�(F (ξ, x))−1); in par-

ticular, graph(hs(ξ, x)) is in the domain of f̃(ξ, x).

Setting

V s(ξ, x) := φ(ξ, x)−1 (graph (hs(ξ, x)))

we have

(5) fξ(V
s(ξ, x)) ⊂ V s(F (ξ, x))

(6) for z, y ∈ V s(ξ, x) and n ≥ 0

d(fn
ξ (z), f

n
ξ (y)) ≤ �(ξ, x)k0 exp((λ

s + 2ε1)n)d(y, z).

We define V s(ξ, x) ⊂ M to be the local stable manifold at x for ξ relative to the
above charts. We similarly construct local unstable manifolds V u(ξ, x). Similar
to 6.4 above, for z, y ∈ V u(ξ, x) and n ≥ 0

d(f−n
ξ (z), f−n

ξ (y)) ≤ �(ξ, x)k0 exp((−λu + 2ε1)n)d(y, z).

We remark that the family of local stable manifolds {V s(ξ, x)} forms a measurable
family of embedded submanifolds.

We define the global stable and unstable manifolds at x for ξ by

W s
ξ (x) := {y ∈ M | lim sup

n→∞
1
n log d(fn

ξ (x), f
n
ξ (y)) < 0},(6.1)

Wu
ξ (x) := {y ∈ M | lim sup

n→−∞
1
n log d(fn

ξ (x), f
n
ξ (y)) < 0}.(6.2)

For μ-a.e. (ξ, x) we have the nested union W s
ξ (x) =

⋃
n≥0(f

n
ξ )

−1(V s(Fn(ξ, x))). It

follows for such (ξ, x) that W s
ξ (x) is a C1,1-injectively immersed curve tangent to

Es
ξ (x). We write

W s(ξ, x) := {ξ} ×W s
ξ (x), Wu(ξ, x) := {ξ} ×Wu

ξ (x)

for the associated fiber-wise stable and unstable manifolds in X = Ω×M .
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The above family of charts and construction of local stable and unstable manifold
depends on fn

ξ for all n ∈ Z. However, from (6.2) it is clear thatWu
ξ (x) depends only

on fn
ξ for all n ≤ 0. This fact will be used heavily in the sequel. In Section 11.2.1

we will use one-side charts to construct local stable manifolds that depend only on
fn
ξ for all n ≥ 0.

6.2. Affine parameters. Since each stable manifold W s
ξ (x) is a curve, it has a

natural parametrization via the Riemannian arc length. We define an alterna-
tive parametrization, defined on almost every stable manifold, that conjugates the
non-linear dynamics fn

ξ �W s
ξ(x)

and the linear dynamics Dfn
ξ �Es

ξ (x)
. We sketch the

construction and refer the reader to [KK, Section 3.1] for additional details.

Proposition 6.5. For almost every (ξ, x) and any y ∈ W s
ξ (x), there is a C1,1

diffeomorphism
Hs

(ξ,y) : W
s
ξ (x) → TyW

s
ξ (x)

such that

(1) restricted to W s
ξ (x) the parametrization intertwines the nonlinear dynamics

fξ with the differential Dyfξ,

Dyfξ ◦Hs
(ξ,y) = Hs

F (ξ,y) ◦ fξ�W s
ξ,r(x)

;

(2) Hs
(ξ,y)(y) = 0 and DyH

s
(ξ,y) = Id;

(3) if z ∈ W s
ξ (x), then the change of coordinates

Hs
(ξ,y) ◦

(
Hs

(ξ,z)

)−1

: TzW
s
ξ (x) → TyW

s
ξ (x)

is an affine map with derivative

Dv

(
Hs

(ξ,y) ◦
(
Hs

(ξ,z)

)−1
)

= ρ(ξ,y)(z)

for any v ∈ TzW
s
ξ (x) where ρ(ξ,y)(z) is defined below.

We take (ξ, x) to be in the full measure F -invariant set such that for any y, z ∈
W s

ξ (x) there is some k ≥ 0 with fk
ξ (z) and fk

ξ (y) contained in V s(F k(ξ, x)), and

we sketch the construction of Hs
(ξ,y). First consider any y, z ∈ V s(ξ, x) and define

J(ξ, z) := ‖Dzfξv‖ · ‖v‖−1

for any non-zero v ∈ TzW
s
ξ (x) where ‖ · ‖ denotes the Riemannian norm on M . We

define

(6.3) ρ(ξ,y)(z) :=

∞∏
k=0

J(F k(ξ, z))

J(F k(ξ, y))
.

Following [KK, Section 3.1], the right-hand side of (6.3) converges uniformly in z
to a Lipschitz function. The only modifications needed in our setting are the sub-
exponential growth of ‖Dfξ‖ and the Lipschitz constant of Dfξ along orbits given
by Lemma 6.1, as well the sub-exponential growth in n of the Lipschitz variation
of the tangent spaces TzV

s(Fn(ξ, x)) in z. The growth of the Lipschitz constant of
TzV

s(Fn(ξ, x)) follows from the proof of the stable manifold theorem (for example
in [LQ]) or by an argument similar to [LY1, Lemma 4.2.2]. We may extend the
definition of ρ(ξ,y)(z) to any z, y ∈ W s

ξ (x) using that fk
ξ (z) and fk

ξ (y) are contained

in V s(F k(ξ, x)) for some k ≥ 0.



MEASURE RIGIDITY FOR RANDOM DYNAMICS ON SURFACES 1073

We now define the affine parameter Hs
(ξ,y) : W

s
ξ (x) → TyW

s
ξ (x) as follows. We

define Hs
(ξ,y) to be orientation-preserving and

‖Hs
(ξ,y)(z)‖ :=

∫ z

y

ρ(ξ,y)(t) dt,

where
∫ z

y
ψ(t) dt is the integral of the function ψ, along the curve from y to z in

W s
ξ (x), with respect to the Riemannian arc-length on W s

ξ (x).

It follows from computations in [KK, Lemma 3.2, Lemma 3.3] that the mapHs
(ξ,y)

constructed above satisfies the properties above. We similarly construct unstable
affine parameters Hu

(ξ,x) with analogous properties.

Remark 6.6. The unstable line fields Eu
ξ (x), unstable manifolds, and corresponding

affine parameters are constructed using only the dynamics of fn
ξ for n ≤ 0. Recall

that we assume ξ �→ f−1
ξ is F̂ -measurable and that θ(F̂) ⊂ F̂ . It follows that

ξ �→ fn
ξ is F̂ -measurable for all n ≤ 0. Thus, the line fields (ξ, x) �→ Eu

ξ (x), the

unstable manifolds (ξ, x) �→ Wu
ξ (x), and the corresponding affine parameters Hu

(ξ,x)

are F-measurable.

6.2.1. Parametrization of stable and unstable manifolds. We use the affine param-
eters Hs and the background Riemannian norm on M to parametrize local stable
manifolds. For (ξ, x) ∈ X such that affine parameters are defined, write

W s
ξ,r(x) := (Hs

x)
−1
(
{v ∈ Es

ξ (x) | ‖v‖ < r}
)

for the local stable manifold in M and

W s
r (ξ, x) := {ξ} ×W s

ξ,r(x)

for the corresponding fiber-wise local stable manifold. We use similar notation for
local unstable manifolds.

We fix, once and for all, a family vσ(ξ,x) ∈ Eσ
ξ (x) ⊂ TxM such that

(1) (ξ, x) �→ vs(ξ,x) is μ-measurable;

(2) (ξ, x) �→ vu(ξ,x) is F-measurable;

(3) ‖vs(ξ,x)‖ = ‖vu(ξ,x)‖ = 1.

The family {vs(ξ,x)} and {vu(ξ,x)} induce, respectively, μ- and F-measurable trivial-

izations of the stable and unstable bundles. Recall that the affine parameters on
unstable manifolds are constant along atoms of F . We then obtain, respectively,
μ- and F-measurable maps (ξ, x) �→ Is

(ξ,x) and (ξ, x) �→ Iu
(ξ,x) from X to the space

of C1-embeddings of R into M given by

(6.4) Is
(ξ,x) : t �→ (Hs

(ξ,x))
−1(tvs(ξ,x)), Iu

(ξ,x) : t �→ (Hu
(ξ,x))

−1(tvu(ξ,x)).

6.3. Families of conditional measures. The family of fiber-wise unstable man-
ifolds {Wu(ξ, x)}(ξ,x)∈X forms a partition of a full measure subset of X. However,
such a partition is generally non-measurable. To define conditional measures we
consider a measurable partition P of X such that for μ-a.e. (ξ, x) ∈ X there is an
r > 0 such that Wu

r (ξ, x) ⊂ P(ξ, x) ⊂ Wu(ξ, x). Such a partition is said to be u-
subordinate. Let {μ̃P

(ξ,x)}(ξ,x)∈X denote a family of conditional probability measures

with respect to such a partition P.
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Definition 6.7. An F -invariant measure μ is fiber-wise SRB if for any u-
subordinate measurable partition P with corresponding family of conditional mea-
sures {μ̃P

(ξ,x)}(ξ,x)∈X , the measure μ̃P
(ξ,x) is absolutely continuous with respect to a

Riemannian volume on Wu(ξ, x) for a.e. (ξ, x).

In the setting introduced in Section 3 we have the following.

Definition 6.8. Let M be a closed manifold, let ν̂ be a Borel measure on Diff2(M),
and let μ̂ be a ν̂-stationary probability measure. We say μ̂ is SRB if the measure μ
given by Proposition 4.2 is fiber-wise SRB for the associated canonical skew product
(4.1).

Remark 6.9. In fact, it follows from the proof of Proposition 2.2 (see also [BL] for
a related statement for general skew products) that μ is fiber-wise SRB if and only
if the conditional measures {μ̃P

(ξ,x)}(ξ,x)∈X are equivalent to Riemannian volume on

Wu(x, ξ) restricted to P(ξ, x). Furthermore, with respect to the affine parameters
introduced in Section 6.2, the conditional measures coincide up to normalization
with the Haar measure. See [LY1, Corollary 6.1.4].

Following a standard procedure, by fixing a normalization, for a.e. (ξ, x) we
define a locally finite, infinite measure μu

(ξ,x) on the curve Wu(ξ, x) that restricts to

{μ̃P
(ξ,x)}(ξ,x)∈X , up to normalization, for any u-subordinate partition P of X. We

choose the normalization μu
(ξ,x)(W

u
1 (ξ, x)) = 1. Such a measure will be locally finite

in the internal topology of Wu(p) induced, for instance, by the affine parameters.
We remark that the fiber entropy vanishes if and only if the measures μu

(ξ,x) and

μs
(ξ,x) have support {(ξ, x)} for almost every (ξ, x) ∈ X.

6.4. Relationships between entropy, exponents, and dimension. Given(ξ, x)
∈ X we define the following pointwise dimensions:

(1) dimu(μ, (ξ, x)) := lim
r→0

log
(
μu
(ξ,x) (W

u
r (ξ, x))

)
log r

,

(2) dims(μ, (ξ, x)) := lim
r→0

log
(
μs
(ξ,x) (W

s
r (x) ξ)

)
log r

,

(3) dim(μ, (ξ, x)) := lim
r→0

log(μξ{y ∈ M : d(x, y) < r})
log r

.

We note that dim(μ, (ξ, x)) is the pointwise dimension of conditional measure μξ

at the point x. In the case that μ is obtained from a stationary measure μ̂ from
Proposition 4.2, this need not coincide with the pointwise dimension of μ̂ at x. We
have that dimu(μ, (ξ, x)) and dims(μ, (ξ, x)) are well defined and are furthermore

constant a.e. by the ergodicity of μ. Write dims/u(μ) for these constants. Note
that dim(μ, (ξ, x)) may not be defined if there are zero exponents.

We have the following proposition. Recall we write π : X → Ω for the natural
projection and hμ(F | π) for the conditional metric entropy of (F, μ) conditioned
on the sub-σ-algebra generated by π−1.
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Proposition 6.10. In our setting,

(1) hμ(F | π) = λu dimu(μ) = −λs dims(μ);
(2) dim(μ, (ξ, x)) = dimu(μ) + dims(μ) for μ-a.e. (ξ, x).

Conclusion (1) follows from a generalization to the case of skew products of
the Ledrappier-Young entropy formula [LY2]. This generalization appears in [LX]
in the case of i.i.d. random dynamics; modifications for the case of general skew
products are outlined in [QQX]. Conclusion (2) follows from the results of [QQX]
generalizing to the random setting the dimension formula for hyperbolic measures
proven in [BPS].

In our setting, we then have the following equivalent characterizations of the
fiber-wise Sinai–Ruelle–Bowen (SRB) property.

Lemma 6.11. The following are equivalent:

(1) μ is fiber-wise SRB;
(2) hμ(F | π) = λu;
(3) the measures μu

(ξ,x) are equivalent to Riemannian arc-length on Wu
ξ (x) al-

most everywhere;
(4) dimu(μ) = 1.

6.5. The family μ(ξ,x). Using the affine parameters Hu
(ξ,x) : W

u
ξ (x) → Eu

ξ (x) and

the trivialization (6.4), we define a family of locally finite Borel measures on R by

(6.5) μ(ξ,x) := (Iu
(ξ,x))

−1
∗ μu

(ξ,x).

We equip the space of locally finite Borel measures on R with its standard Borel
structure (dual to compactly supported continuous functions). We thus obtain a
measurable function from X to the locally finite Borel measures on R. Since the
family of measures (ξ, x) �→ μu

(ξ,x) and parametrizations Iu are F-measurable, it

follows that

(ξ, x) �→ μ(ξ,x)

is F-measurable.
The family {μ(ξ,x)}(ξ,x)∈X will be our primary focus in the sequel. In particular,

the SRB property of μ will follow by showing that for μ-a.e. p, the measure μ(ξ,x)

is the Lebesgue (Haar) measure on R (normalized on [−1, 1]).

7. Main proposition and proof of Theorem 4.10

7.1. Main proposition. The major technical result in the proof of Theorem 4.10
is the following key proposition, whose proof occupies Sections 9 and 10. Given two
locally finite measures η1 and η2 on R we write η1 � η2 if there is some c > 0 with
η1 = cη2.

Proposition 7.1. Assume in Theorem 4.10 that (ξ, x) �→Es
ξ (x) is not F-measurable.

Then there exists M > 0 such that for every sufficiently small ε > 0 there exists a
measurable set Gε ⊂ X with

μ(Gε) > 0
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such that for any (ξ, x) ∈ Gε there is an affine map

ψ : R → R

with

(1)
1

M
≤ |Dψ| ≤ M ;

(2)
ε

M
≤ |ψ(0)| ≤ Mε;

(3) ψ∗μ(ξ,x) � μ(ξ,x).

Furthermore, writing

G := {(ξ, x) ∈ X | (ξ, x) ∈ G1/N for infinitely many N}
we have μ(G) > 0.

Remark 7.2. Given the space of locally finite Borel measures on R, the set of
measures satisfying (1)–(3) of Proposition 7.1 for fixed ε and M is closed. By
restricting to measurable sets on which (ξ, x) �→ μ(ξ,x) is continuous, for any fixed

M defining Gε to be the set of (ξ, x) such that μ(ξ,x) satisfies (1)–(3) above it follows
that Gε is measurable. Thus, the proof of Proposition 7.1 reduces to showing that
Gε and G have a positive measure for some M .

7.2. Proof of Theorem 4.10. Theorem 4.10 follows from Proposition 7.1 by stan-
dard arguments. We sketch these below and refer to [KK] for more details.

Lemma 7.3. Under the hypotheses of Proposition 7.1, for a.e. (ξ, x) ∈ X, μ(ξ,x) is

invariant under the group of translations. In particular, for a.e. (ξ, x) ∈ X, μ(ξ,x)

is the Lebesgue measure on R normalized on [−1, 1].

Proof. Let Aff(R) denote the group of invertible affine transformations of R. For
(ξ, x) ∈ X, let A(ξ, x) ⊂ Aff(R) be the group of affine transformations ψ : R → R

with
ψ∗μ(ξ,x) � μ(ξ,x).

We have that A(ξ, x) is a closed subgroup of the Lie group Aff(R). (See the proof of
[KK, Lemma 3.10].) By Proposition 7.1, for (ξ, x) ∈ G, the group A(ξ, x) contains
elements of the form t �→ λjt+ vj with vj �= 0, |vj | → 0 as j → ∞, and λj ∈ R such
that |λj | is uniformly bounded away from 0 and ∞. Then, for (ξ, x) ∈ G, A(ξ, x)
contains at least one map of the form

t �→ λt

for some accumulation point λ of {λj} ⊂ R. We may thus find a subsequence of

{t �→ λ−1λjt+ vj}
converging to the identity in A(ξ, x). It follows that A(ξ, x) is not discrete. In
particular, for every (ξ, x) ∈ G the groupA(ξ, x) contains a one-parameter subgroup
of Aff(R).

For (ξ, x) ∈ X denote by C(ξ,x) : R → R the linear map

C(ξ,x) = (Iu
F (ξ,x))

−1 ◦ F ◦ Iu
(ξ,x),

where Iu
(ξ,x) denotes the parametrization (6.4). As (C(ξ,x))∗μ(ξ,x) � μF (ξ,x) we have

that
A(F (ξ, x)) = C(ξ,x)A(ξ, x)C−1

(ξ,x).
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Let A0(ξ, x) ⊂ A(ξ, x) denote the identity component of A(ξ, x). Then A0(F (ξ, x))
is isomorphic to A0(ξ, x) for a.e. (ξ, x) ∈ X. Since μ(G) > 0, it follows by ergodicity
that A0(ξ, x) contains a one-parameter subgroup for a.e. (ξ, x) ∈ X.

The one-parameter subgroups of Aff(R) either are pure translations or are con-
jugate to scaling. We show that A(ξ, x) contains the group of translations for
a.e. (ξ, x) ∈ X. Suppose for purposes of contradiction that A0(ξ, x) were conju-
gate to scaling for a positive measure set of (ξ, x) ∈ X. By ergodicity, it follows
that A0(ξ, x) is conjugate to scaling for a.e. (ξ, x) ∈ X. For such (ξ, x), there are
t0 ∈ R, γ ∈ R+ with

A0(ξ, x) = {t �→ t0 + γs(t− t0) | s ∈ R}.

In particular, for such (ξ, x) the action of A0(ξ, x) on R contains a unique fixed
point t0(ξ, x).

For (ξ, x) ∈ G the fixed point t0(ξ, x) is non-zero since, as observed above, there
are ψ ∈ A(ξ, x) arbitrarily close to the identity with ψ(0) �= 0. Furthermore, writing
ψ : t �→ t0(ξ, x) + γs(t− t0(ξ, x)) we have

C(ξ,x) ◦ ψ ◦ C−1
(ξ,x) : t �→ ±‖DF �Eu(ξ,x)‖t0(ξ, x) + γs

(
t−±‖DF �Eu(ξ,x)‖t0(ξ, x)

)
,

where the sign depends on whether C(ξ,x) : R → R preserves orientation. It follows
for (ξ, x) ∈ G that |t0(Fn(ξ, x))| = ‖DFn�Eu(ξ,x)‖ |t0(ξ, x)| becomes arbitrarily
large, contradicting Poincaré recurrence.

Therefore, for almost every (ξ, x) ∈ X, the group A(ξ, x) contains the group
of translations. We finish the proof by showing that for such (ξ, x), the measure
μ(ξ,x) is invariant under the group of translations. For s ∈ R define Ts : R → R by

Ts : t �→ t+ s and define c(ξ,x) : R → R by c(ξ,x)(s) = μ(ξ,x)([−s− 1,−s+1]). Then

d(Ts)∗μ(ξ,x)

dμ(ξ,x)

= c(ξ,x)(s).

As the group A(ξ, x) contains all translations, the measure μ(ξ,x) has no atoms and
we have that c(ξ,x) : R → R is continuous.

Note that

C(ξ,x) ◦ Ts ◦ C−1
(ξ,x) = T±‖DF�Eu(ξ,x)‖s

and for n ∈ Z

(7.1) c(ξ,x)(s) = cFn(ξ,x)

(
±‖DFn�Eu(ξ,x)‖s

)
,

where the signs depend on whether DF or DFn preserves the orientation on un-
stable subspaces. Define the set

Br,ε := {(ξ, x) ∈ X : |c(ξ,x)(s)− 1| < ε for all |s| < r}.

For each ε > 0 pick r so that μ(Br,ε) > 0. Applying (7.1), by ergodicity almost every
point visits Br,ε infinitely often as n → −∞ contradicting (7.1) unless |c(ξ,x)(s)−
1| < ε for all s and a.e. (ξ, x) ∈ X. Taking ε → 0 shows that c(ξ,x)(s) = 1 for all
s ∈ R and a.e. (ξ, x) ∈ X completing the proof of the lemma. �

Theorem 4.10 now follows as an immediate corollary of Proposition 7.1 and
Lemma 7.3.
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8. Suspension flow

As in the proof of [BQ1] and [EM, Sections 15 and 16], to prove Proposition 7.1 we
introduce a suspension flow. On the product space R×X consider the identification

(t, ξ, x) ∼ (t− 1, F (ξ, x)) = (t− 1, θ(ξ), fξ(x))

and define the quotient space Y = (R×X)/ ∼ . We denote by [t, ξ, x] the element
of the quotient space Y . The space Y is equipped with a natural flow

Φt : Y → Y, Φt([s, ξ, x]) = [s+ t, ξ, x].

We have that Φt preserves a Borel probability measure

dω([t, ξ, x]) = dμ(ξ, x) dt.

It is convenient to consider the measurable parametrization [0, 1)×X → Y given
by (ς, ξ, x) �→ [ς, ξ, x]. In these coordinates the flow Φt : Y → Y is given by

Φt(ς, ξ, x) = ({ς + t}, F 	ς+t
(ξ, x)),

where ��� denotes the integer part of � and {�} = �−���. When we write (ς, ξ, x) ∈
Y , it is implied that 0 ≤ ς < 1 and that (ς, ξ, x) is identified with [ς, ξ, x]. Given
(ς, ξ) ∈ [0, 1)×Ω we writeM(ς,ξ) = {ς}×{ξ}×M . We will also write Θt : [0, 1)×Ω →
[0, 1)× Ω for the induced suspension flow.

Note that the parametrization Y = [0, 1)×X makes Y into a Polish space with
respect to which the measure ω is Radon. To discuss convergence and continuity, we
equip [0, 1) and Ω with complete, separable metrics and endow Y = [0, 1)×Ω×M
with the product metric.

We use the parametrization [0, 1)×X → Y to extend the definition of local and
global unstable manifolds. Given p = (ς, ξ, x) ∈ Y write

• Wu
(ς,ξ),r(x) = Wu

ξ,r(x) ⊂ M ; Wu
(ς,ξ)(x) = Wu

ξ (x) ⊂ M ;

• Wu
r (p) = {ς} ×Wu

r (ξ, x) = {ς} × ξ ×Wu
ξ,r(x) ⊂ Y ;

• Wu(p) = {ς} ×Wu(ξ, x) = {ς} × ξ ×Wu
ξ (x) ⊂ Y .

We similarly extend the definition of local and global stable manifolds, affine pa-
rameters, frames for the stable and unstable spaces introduced in Section 6.2.1,
and the induced parametrizations Iu and Is. Given p = (ς, ξ, x) ∈ Y , we write
ωu
p = δς ×μu

(ξ,x) for the locally finite measures on Wu(p) normalized on Wu
1 (p) and

ωp := (Iu
p )

−1
∗ (ωu

p ) = μ(ξ,x) for the corresponding measure on R.

Although the flow Φt : Y → Y is, at best, measurable, the restriction

Φt : M(ς,ξ) → MΘt(ς,ξ)

is a C2-diffeomorphism. Define a fiber-wise tangent bundle

TY := [0, 1)× TX = [0, 1)× Ω× TM

and the fiber-wise differential DΦt : TY → TY

DΦt : (ς, ξ, (x, v)) �→
(
{ς + t}, θ	ς+t
(ξ),

(
f
	ς+t

ξ (x), Dxf

	ς+t

ξ (v)

))
.

We trivially extend norms on TM to TY by identifying {(ς, ξ)}× TxM with TxM .
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9. Preparations for the proof of Proposition 7.1

We begin with a number of constructions and technical lemmas that will be used
in the proof of Proposition 7.1.

9.1. Modification of F̂ . Recall we assume the function ξ �→ f−1
ξ is F̂ -measurable

which implies the entire past dynamics ξ �→ fn
ξ is F̂ -measurable for all n ≤ 0. It

is convenient for technical reasons below to allow the first future iterate fξ to be

measurable on F̂ as well. As fξ =
(
f−1
θ(ξ)

)−1

, this can be accomplished by replacing

F̂ with θ−1(F̂) ⊂ F̂ . Then θ−1(F̂) is a decreasing sub-σ-algebra for which ξ �→ fn
ξ

is measurable for all n ≤ 1. Moreover, as fξ is constant on atoms of θ−1(F̂), we
have that

(ξ, x) �→ Es
ξ (x)

is F-measurable if and only if (ξ, x) �→ Es
ξ (x) is F

−1(F)-measurable.

Thus for the remainder, we replace F̂ and F with θ−1(F̂) and F−1(F), respec-

tively. With this new notation, we then have that ξ �→ fn
ξ is F̂ -measurable for all

n ≤ 1.

9.2. Lyapunov norms. From Lemma 6.2, for each p ∈ Y we observe the hy-
perbolicity of the cocycle DΦt after a finite amount of time. We define here two
norms, called Lyapunov norms, with respect to which the hyperbolicity of DΦt is
seen immediately. We remark that while the induced Riemannian norm ‖ · ‖ on
TY is constant in the first parameter of the parametrization [0, 1) ×X → Y , the
Lyapunov norms defined below will vary in the parameter ς.

We first define the Lyapunov norms for the skew product F onX. For (ξ, x) ∈ X,
σ ∈ {s, u}, and v ∈ Eσ

ξ (x) define the two-sided Lyapunov norm

|||v|||σε0,±,(ξ,x) :=

(∑
n∈Z

‖Dfn
ξ v‖2e−2λσn−2ε0|n|

)1/2

(9.1)

and the past one-sided Lyapunov norm

|||v|||σε0,−,(ξ,x) :=

⎛⎝∑
n≤0

‖Dfn
ξ v‖2e−2λσn−2ε0|n|

⎞⎠1/2

.(9.2)

It follows from Lemma 6.2 that the sums above converge for almost every (ξ, x) ∈ X.
Observe that for v ∈ Eσ

ξ (x),

‖v‖ ≤ |||v|||σε0,−,(ξ,x) , ‖v‖ ≤ |||v|||σε0,±,(ξ,x) .

Remark 9.1. Recall that we have ξ → f−n
ξ is F̂-measurable for all n ≥ 0 whence the

assignment (ξ, x) �→ Eu
ξ (x) is F-measurable. Recall the F-measurable family of vec-

tors vu(ξ,x) ∈ Eu
ξ (x) built in Section 6.2.1. It follows from construction that (ξ, x) �→

|||vu(ξ,x)|||uε0,−,(ξ,x) is F-measurable. Moreover, as discussed in Section 9.1, since we

assume ξ �→ fξ is F̂-measurable, we have that (ξ, x) �→ |||Dxfξv
u
(ξ,x)|||uε0,−,F (ξ,x) is

F-measurable. This will be the primary reason for using the one-sided Lyapunov
norms rather than two-sided Lyapunov norms below.
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We have the following bounds on hyperbolicity. For the one-sided norm
|||·|||σε0,−,(ξ,x), the bounds are of most use when σ = u. (One can similarly de-

fine the future one-sided norm |||·|||sε0,+,(ξ,x) which is more natural for the stable

bundle.)

Lemma 9.2. For μ-a.e. (ξ, x) ∈ X, v ∈ Eσ
ξ (x), n ∈ Z, and k ≥ 0 we have

(1) enλ
σ−|n|ε0 |||v|||σε0,±,(ξ,x) ≤

∣∣∣∣∣∣∣∣∣Dfn
ξ v
∣∣∣∣∣∣∣∣∣σ

ε0,±,Fn(ξ,x)
≤ enλ

σ+|n|ε0 |||v|||σε0,±,(ξ,x),

(2) ekλ
σ−kε0 |||v|||σε0,−,(ξ,x) ≤

∣∣∣∣∣∣∣∣∣Dfk
ξ v
∣∣∣∣∣∣∣∣∣σ

ε0,−,Fk(ξ,x)
.

9.2.1. Extensions to Y . We extend the Lyapunov norms to TY as follows: For
p = (ς, ξ, x) ∈ Y and w ∈ Eσ

ξ (x) = Eσ
(ς,ξ)(x) ⊂ TxM , define

(9.3) |||w|||σε0,−,p =
(
|||w|||σε0,−,(ξ,x)

)1−ς (
|||Dxfξw|||σε0,−,F (ξ,x)

)ς
.

Identifying Eσ(p) = {(ς, ξ)} × Eσ
ξ (x) ⊂ TY with Eσ

(ς,ξ)(x) ⊂ TM , we extend the

definition of |||·|||σε0,−,p to Eσ(p). We similarly extend the two-sided Lyapunov norms
to TY.

Given t ∈ R we write∣∣∣∣∣∣DΦt�Eσ(p)

∣∣∣∣∣∣
ε0,−

,
∣∣∣∣∣∣DΦt�Eσ(p)

∣∣∣∣∣∣
ε0,±

to indicate the operator norm of DΦt : Eσ(p) → Eσ(Φt(p)) with respect to the
corresponding norms.

We have the following extension of Lemma 9.2.

Lemma 9.3. For ω-a.e. p = (ς, ξ, x) ∈ Y, v ∈ Eσ(p), t ∈ R, and s ≥ 0 we have

(1) etλ
σ−|t|ε0 |||v|||σε0,±,p ≤ |||DΦtv|||σε0,±,Φt(p) ≤ etλ

σ+|t|ε0 |||v|||σε0,±,p ,

(2) esλ
σ−sε0 |||v|||σε0,−,p ≤ |||DΦsv|||σε0,−,Φs(p) .

We have the following estimate which allows us to compare the Lyapunov norm
with the induced Riemannian norm. Recall the functionsD : Ω → R and L : X → R

in Lemmas 6.1 and 6.2. Let c1 = eε0(1− e−ε0)1/2.

Lemma 9.4. For any w ∈ Eu(ς, ξ, x),

‖w‖ ≤ |||w|||uε0,−,p ≤ L(ξ, x)D(ξ)c1‖w‖.

In particular, defining L̂ : Y → [1,∞) by

L̂(ς, ξ, x) = L(ξ, x)D(ξ)c1

we have
L̂(Φt(p)) ≤ e2ε0(|t|+1)L̂(p)

and

(9.4) L̂(p)−1‖DΦt�Eu(p)‖ ≤
∣∣∣∣∣∣DΦt�Eu(p)

∣∣∣∣∣∣u
ε0,−

≤ e2ε0(|t|+1)L̂(p)‖DΦt�Eu(p)‖.

(A similar estimate holds for the two-sided norms.)

Proof. Recall that for w ∈ Eu
ξ (x), we have ‖w‖ ≤ |||w|||uε0,−,(ξ,x) and

|||w|||uε0,−,(ξ,x) <
∣∣∣∣∣∣Dxfξw

∣∣∣∣∣∣u
ε0,−,F (ξ,x)

.

The lower bound then follows.



MEASURE RIGIDITY FOR RANDOM DYNAMICS ON SURFACES 1081

For the upper bound we have for (ξ, x) ∈ X and w ∈ Eu
ξ (x) that

|||w|||uε0,−,(ξ,x) ≤

⎛⎝∑
n≤0

(L(ξ, x))2‖w‖2e2nλu+|n|ε0e−2nλu−2ε0|n|

⎞⎠1/2

= L(ξ, x)
(
1− e−ε0

)−1/2 ‖w‖.

Similarly, from Lemma 6.2 we have

|||Dxfξw|||uε0,−,(ξ,x) ≤ L(ξ, x)eε0
(
1− e−ε0

)−1/2 ‖Dxfξw‖.

Then for p = (ς, ξ, x) ∈ Y and w ∈ Eu(p), with b = (1− e−ε0)
−1/2

we have

|||w|||uε0,−,p :=
(
|||w|||uε0,−,(ξ,x)

)1−ς (
|||Dxfξw|||uε0,−,F (ξ,x)

)ς
≤ (L(ξ, x)b‖w‖)1−ς (L(ξ, x)eε0b‖Dxfξw‖)ς

= (L(ξ, x)b‖w‖)1−ς (L(ξ, x)eε0bD(ξ)‖w‖)ς

≤ L(ξ, x)beε0D(ξ)‖w‖. �

Declaring that Eu(p) and Es(p) are orthogonal, we may extend the definitions
of both the two-side and one-side Lyapunov norms to all of TpY . When clear from
context, we will drop the majority of sub- and superscripts from the Lyapunov
norms.

9.3. The time changed flow. It is convenient to work with a flow Ψs that is a
time change of Φt and for which the norm of the restriction of DΨs to the unstable
spaces grows at a constant rate (with respect to the one-sided norm |||·|||uε0,−).

For p ∈ Y and t ∈ R, define

(9.5) Sp(t) = log
(∣∣∣∣∣∣DΦt�Eu(p)

∣∣∣∣∣∣u
ε0,−

)
.

It follows from construction and Lemma 9.3 that, for ω-a.e. p ∈ Y , the function
Sp : R → R is an orientation-preserving homeomorphism. Moreover, as Eu(ξ, x) is
one-dimensional, the map Y × R → R given by (p, t) → Sp(t) satisfies the cocycle
equation Sp(t1 + t2) = SΦt2 (p)(t1) + Sp(t2). It follows that Ψ

s : Y → Y given by

Ψs(p) = ΦS −1
p (s)(p)

defines a measurable flow on Y that is a time change of Φt.
Given p = (ς, ξ, x) ∈ Y define

(9.6) h(p) = h(ξ, x) = log

(∣∣∣∣∣∣∣∣∣Dxfξ�Eu
ξ (x)

∣∣∣∣∣∣∣∣∣u
ε0,−,(ξ,x)

)
.

We note that for −ς ≤ t < 1− ς

log
∣∣∣∣∣∣DΦt�Eu(p)

∣∣∣∣∣∣
ε0,−,p

= th(p).

In particular, if 0 ≤ ς + s/h(p) < 1, then Ψs(p) = (ς + s/h(p), ξ, x); that is, h(p)−1

is the local change of speed of the original flow Φt. It follows that

Sp(t) =

∫ t

0

h(Φs(p)) ds.
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By (9.4), Lemma 6.2, and the fact that h(p) ≥ λu − ε0 for almost all p, we have for
any t ≥ 0 that

(9.7) (λu − ε0)t ≤ Sp(t) ≤ a(p) + b0(t+ 1),

where
a(ς, ξ, x) = log(L(ξ, x)2D(ξ)c1), b0 = λu + 3ε0.

We claim the following.

Claim 9.5.

∫
h(ξ, x) dμ(ξ, x) < ∞.

Proof. Consider 0 �= w ∈ Eu
ξ (x). We have(

|||Dxfξw|||uε0,−,F (ξ,x)

)2
= ‖Dfξw‖2 +

∑
n≤−1

‖Dfn+1
ξ w‖2e−2λun−2ε0|n|

= ‖Dxfξw‖2 + e2λ
u−2ε0

⎛⎝∑
�≤0

‖Df �
ξw‖2e−2λu�−2ε0|�|

⎞⎠
= ‖Dxfξw‖2 + e2λ

u−2ε0
(
|||w|||uε0,−,(ξ,x)

)2
,

and since ‖w‖2 ≤
(
|||w|||uε0,−,(ξ,x)

)2
, we have(

|||Dxfξw|||uε0,−,F (ξ,x)

)2
(
|||w|||uε0,−,(ξ,x)

)2 ≤ ‖Dfξ�Eu
ξ (x)‖2 + e2λ

u−2ε0 ≤ ‖Dfξ‖2 + e2λ
u−2ε0 .

Recall
∫
log+ (|fξ|C1) dν(ξ) < ∞ by hypothesis (IC). The claim follows as∫

log
(
|fξ|2C1

+ e2λ
u−2ε0

)
dν(ξ) < ∞. �

From Claim 9.5 it follows that Ψs : Y → Y preserves a probability measure ω̂
given by

dω̂(ς, ξ, x) = 1∫
h(ξ,x) dμ(ξ,x)

h(ξ, x) dμ(ξ, x) dς.

Observe that ω̂ and ω are equivalent measures. Furthermore, since the σ-algebras
of Φt- and Ψs-invariant sets coincide, it follows that Ψs is ω̂-ergodic.

9.4. Decreasing subalgebras, conditional measures, and the martingale
convergence argument. We write S ⊂ BY and Ŝ ⊂ B[0,1)×Ω, respectively, for

the completions of B[0,1) ⊗F and B[0,1) ⊗ F̂ . Note that we have

Φt(S) ⊂ S, Θt(Ŝ) ⊂ Ŝ
for all t ≥ 0 whence S and Ŝ are decreasing σ-algebras for the respective flows. In
particular, the map

(9.8) Y × [0,∞) → (Y,S, ω) , (p, t) �→ Φ−t(p)

is S⊗B[0,∞)-measurable. Thus the backwards flow Φ−t, t ≥ 0 induces a measurable
semi-flow on the factor space (Y,S, ω).

As discussed in Remark 9.1 the past dynamics ξ �→ fn
ξ , n ≤ 0 is F̂ -measurable,

and thus the unstable spaces Eu
ξ (x) and family of one-sided norms |||·|||uε0,−,(ξ,x) are
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F-measurable. Furthermore, as the extension of the norms |||·|||uε0,−,(ξ,x) to Y in

(9.3) involves only the past dynamics and a single future iterate fξ, it follows that

the family of one-sided norms |||·|||uε0,−,p on Y are S-measurable. It follows that,
restricted to the past, the cocycle defining the time change

Y × [0,∞) → [0,∞), (p, t) �→ Sp(−t)

is S ⊗ B[0,∞)-measurable. Thus, the backwards time-changed flow Ψ−s, s ≥ 0,

given by Ψ−s(p) = ΦS −1
p (−s)(p), induces a measurable semi-flow on (Y,S, ω). In

particular, Ψs(S) ⊂ S for s ≥ 0.
Given m ∈ R define the sub-σ-algebra on Y by

Sm := Ψm(S) = {Ψm(C) : C ∈ S}.

From the above discussion, we have the following.

Claim 9.6. For m ≤ � we have S� ⊂ Sm. In particular, {Sm}m≥0 defines a
decreasing filtration on (Y, ω̂).

As usual, we write S∞ =
⋂∞

m=0 Sm.

9.4.1. Families of conditional measures. We fix once and for all a measurable par-
tition2 of Ω into atoms of F̂ and an induced family of conditional probabilities

{νF̂ξ }ξ∈Ω. Since in Theorem 4.10 we assume the map ξ �→ μξ is F̂ -measurable,

defining a family of measures {μF
(ξ,x)}(ξ,x)∈X by

dμF
(ξ,x)(η, y) := dνF̂ξ (η)δx(y),

it follows that {μF
(ξ,x)} defines a family of conditional measures induced by F . For

p = (ς, ξ, x) ∈ Y we write ωS
p = δς×μF

(ξ,x). Then {ωS
p }p∈Y is a family of conditional

measures of ω induced by S.
By a slight abuse of notation, for p = (ς, ξ, x) we may consider ωS

p as measures
on Ω by declaring

dωS
p (η) = dωS

p (ς, η, x).

This identifies ωS
p (η) with νF̂ξ . In particular, if q = (ς, ξ, y), then under this identi-

fication we have ωS
p = ωS

q .

Recall that ω and ω̂ are equivalent measures; moreover, dω̂
dω (ς, ξ, x) = 1∫

h dω

h(ς, ξ, x) where h is the speed change in (9.6). Thus, defining

dω̂S
p (q) :=

h(q)∫
h dωS

p

dωS
p (q)

it follows that {ω̂S
p }p∈Y defines a family of conditional measures for ω̂ induced by

S. As h : Y → R is S-measurable, we may take

ω̂S
p = ωS

p .

2Recall that given a sub-σ-algebra A of a Lebesgue probability space (Ω,B, μ), there is a unique
(up to a.s. equivalence) measurable partition α, called the partition into atoms. If {μα

ω} denotes
a family of conditional measures induced by the partition α, then E(f | A)(ω) =

∫
f dμα

ω.
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9.4.2. Martingale convergence argument. Consider any bounded measurable g : Y →
R. As ω̂ is Ψs-invariant, we have for m ∈ R∫

g(Ψm(q)) d
(
ωS
Ψ−m(p)

)
(q) =

∫
g(Ψm(q)) d

(
ω̂S
Ψ−m(p)

)
(q)(9.9)

=

∫
g(q′) d

(
(Ψm)∗ ω̂

S
Ψ−m(p)

)
(q′)(9.10)

� Eω̂(g | Sm)(p),(9.11)

where the first two equalities hold everywhere by definition and the last equality
holds as almost-everywhere defined functions.

The right-hand side of (9.11) defines a reverse martingale with respect to the
decreasing filtration Sm on (Y, ω̂). By the convergence theorem for reverse mar-
tingales, along any discrete subsequence of mj ∈ [0,∞) we have, almost surely,
that

E(g | Smj )(p) → E(g | S∞)(p).

On the other hand, given any m and any p ∈ Y , writing Ψ−m(p) = (ς, ξ, x), for all
ε < (λu − ε0)

−1(1− ς)

(Ψε)∗ω̂
S
Ψ−m(p) = ω̂S

Ψ−m+ε(p).

It follows that the sample paths defined by (9.10) are constant on half-open intervals
whose lengths are at least (λu − ε0)

−1. Taking a discrete subgroup with gaps less
than (λu − ε0)

−1 it follows that for almost every p ∈ Y , the left-hand side of (9.9)
converges to E(g | S∞)(p) as m → ∞.

9.5. Stopping times and bi-Lipschitz estimates. Given p = (ς, ξ, x) ∈ Y ,
δ > 0, ε > 0, and m ∈ R define

τp,δ,ε(m) := sup
{
� ∈ R :

∣∣∣∣∣∣DΦm�Es(p)

∣∣∣∣∣∣s
ε0,±,p

·
∣∣∣∣∣∣DΦ��Eu(Φm(p))

∣∣∣∣∣∣u
ε0,±,Φm(p)

δ ≤ ε
}

and

Lp,δ,ε(m) = m+ τp,δ,ε(m).

Note that τp,δ,ε : R → R and Lp,δ,ε : R → R are increasing homeomorphisms. In
fact we have the following.

Lemma 9.7. Lp,δ,ε and τp,δ,ε are bi-Lipschitz with constants uniform in p, δ, ε. In
particular, for � ≥ 0

−λs − 3ε0
λu + ε0

� ≤ τp,δ,ε(m+ �)− τp,δ,ε(m) ≤ −λs + 3ε0
λu − ε0

�,(9.12)

λu − λs − 2ε0
λu + ε0

� ≤ Lp,δ,ε(m+ �)− Lp,δ,ε(m) ≤ λu − λs + 2ε0
λu − ε0

�.(9.13)

Proof. Write τp = τp,δ,ε. By definition we have

(9.14)

∣∣∣∣∣∣∣∣∣DΦτp(m+�)�Eu(Φm+�(p))

∣∣∣∣∣∣∣∣∣
ε0,±

·
∣∣∣∣∣∣∣∣∣DΦτp(m)�Eu(Φm+�(p))

∣∣∣∣∣∣∣∣∣−1

ε0,±

·
∣∣∣∣∣∣∣∣∣DΦτp(m)�Eu(Φm+�(p))

∣∣∣∣∣∣∣∣∣
ε0,±

·
∣∣∣∣∣∣DΦm+��Es(p)

∣∣∣∣∣∣
ε0,±

· δ = ε.
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As τp(m + �) ≥ τp(m), we bound the product of the first two terms of the
left-hand side of (9.14) by

exp((λu − ε0)(τp(m+ �)− τp(m)))

≤
∣∣∣∣∣∣∣∣∣DΦτp(m+�)�Eu(Φm+�(p))

∣∣∣∣∣∣∣∣∣
ε0,±

·
∣∣∣∣∣∣∣∣∣DΦτp(m)�Eu(Φm+�(p))

∣∣∣∣∣∣∣∣∣−1

ε0,±

≤ exp((λu + ε0)(τp(m+ �)− τp(m))).

To bound the remaining terms of (9.14) first note that∣∣∣∣∣∣∣∣∣DΦτp(m)�Eu(Φm+�(p))

∣∣∣∣∣∣∣∣∣
ε0,±

=
∣∣∣∣∣∣∣∣∣DΦτp(m)+��Eu(Φm(p))

∣∣∣∣∣∣∣∣∣
ε0,±

·
∣∣∣∣∣∣DΦ��Eu(Φm(p))

∣∣∣∣∣∣−1

ε0,±

=
∣∣∣∣∣∣∣∣∣DΦτp(m)�Eu(Φm(p))

∣∣∣∣∣∣∣∣∣
ε0,±

·
∣∣∣∣∣∣∣∣∣DΦ��Eu(Φm+τp(m)(p))

∣∣∣∣∣∣∣∣∣
ε0,±

·
∣∣∣∣∣∣DΦ��Eu(Φm(p))

∣∣∣∣∣∣−1

ε0,±
.

We have

e−2ε0� ≤
∣∣∣∣∣∣∣∣∣DΦ��Eu(Φm+τp(m)(p))

∣∣∣∣∣∣∣∣∣
ε0,±

·
∣∣∣∣∣∣DΦ��Eu(Φm(p))

∣∣∣∣∣∣−1

ε0,±
≤ e2ε0�,

whence it follows that

e−2ε0� ≤
∣∣∣∣∣∣DΦτp(m)�Eu(Φm+�(p))

∣∣∣∣∣∣
ε0,±∣∣∣∣∣∣DΦτp(m)�Eu(Φm(p))

∣∣∣∣∣∣
ε0,±

≤ e2ε0�.

As

exp((λs − ε0)�)ε

≤
∣∣∣∣∣∣∣∣∣DΦτp(m)�Eu(Φm(p))

∣∣∣∣∣∣∣∣∣
ε0,±

·
∣∣∣∣∣∣DΦm+��Es(p)

∣∣∣∣∣∣
ε0,±

· δ

≤ exp((λs + ε0)�)ε,

we have

exp((λs − 3ε0)�)ε

≤
∣∣∣∣∣∣∣∣∣DΦτp(m)�Eu(Φm+�(p))

∣∣∣∣∣∣∣∣∣
ε0,±

·
∣∣∣∣∣∣DΦm+��Es(p)

∣∣∣∣∣∣
ε0,±

· δ

≤ exp((λs + 3ε0)�)ε.

Reassembling (9.14) we have

exp
(
(λu − ε0)(τp(m+ �)− τp(m))

)
exp((λs − 3ε0)�)ε ≤ ε

and

exp
(
(λu + ε0)(τp(m+ �)− τp(m))

)
exp((λs + 3ε0)�)ε ≥ ε;

hence
−λs − 3ε0
λu + ε0

� ≤ τp(m+ �)− τp(m) ≤ −λs + 3ε0
λu − ε0

�,

proving (9.12).
We derive (9.13) from (9.12) noting

−λs − 3ε0
λu + ε0

�+ � ≤ L(m+ �)− L(m) ≤ −λs + 3ε0
λu − ε0

�+ �. �

Let Leb denote the Lebesgue measure on R. We have the following fact.
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Claim 9.8. Let g : R → R be a bi-Lipschitz homeomorphism with

a|y − x| ≤ |g(y)− g(x)| ≤ b|y − x|.

Then g∗ Leb � Leb � g∗ Leb and a ≤ dLeb
dg∗ Leb ≤ b.

9.6. Dichotomy for invariant subspaces. For this and the following subsection,
we return to the skew product F : X → X. In this section we establish the following
dichotomy for DF -invariant subbundles of TX. Let F : X → X and μ be as in
Theorem 4.10. Consider a μ-measurable line field V ⊂ TX. Write Vξ(x) ⊂ TxM
for the family of subspaces with

V(ξ, x) = {ξ} × Vξ(x).

The measurability of V with respect to a sub-σ-algebra of X is the measurability
of the function (ξ, x) �→ Vξ(x) with the standard Borel structure on TM . We say
V is DF -invariant if for μ-a.e. (ξ, x) ∈ X

DF(ξ,x)V(ξ, x) = V(F (ξ, x)) or DxfξVξ(x) = Vθ(ξ)(fξ(x)).

Recall that F in Theorem 4.10 is a decreasing sub-σ-algebra; that is, F (F) ⊂ F .
We write F∞ for the smallest σ-algebra containing

⋃
n≥0 F

−n(F). We similarly

define F̂∞. (We remark that in the case that F̂ is the σ-algebra of local unstable

sets in Section 4.3, F̂∞ and F∞ are, respectively, the completions of the Borel
algebras on Σ and Σ×M .)

Recall we write {νF̂ξ }ξ∈Ω for a family of conditional probabilities induced by F̂ .

Lemma 9.9. Let μ and F be as in Theorem 4.10. Then

(1) the line field (ξ, x) �→ Es
ξ (x) is F∞-measurable;

(2) for any DF -invariant, F∞-measurable line field V ⊂ TX either (ξ, x) �→
Vξ(x) is F-measurable or

for ν-a.e. ξ, μξ-a.e. x, and νF̂ξ -a.e. η, Vξ(x) �= Vη(x).(9.15)

Recall the family of conditional measures {μF
(ξ,x)} induced by F is defined by

dμF
(ξ,x)(η, y) = dνF̂ξ (η) × δx(y). Thus, for ν-a.e. ξ, and μξ-a.e. x, Vη(x) is defined

for νF̂ξ a.e. η, and the comparison (9.15) is well defined a.e.

Proof. To see (1) we recall that ξ �→ f−n
ξ is F̂ -measurable for all n ≥ 0. Then

ξ �→ fn
ξ =

(
f−n
θn(ξ)

)−1

is θ−n(F̂)-measurable. It follows that ξ �→ fn
ξ is F̂∞-measurable for all n ≥ 0.

Since Es
ξ (x) depends only on fn

ξ for n ≥ 0, we have

(ξ, x) �→ Es
ξ (x) =

{
v ∈ TxM | lim

n→∞

1

n
|Dfn

ξ (v)| < 0

}
is F∞-measurable.
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To prove (2) let P denote the measurable partition ofX into level sets of (ξ, x) �→
Vξ(x). We assume (9.15) fails,
(9.16)

μ

{
(ξ, x) | μF

(ξ,x)(P(ξ, x)) > 0

}
= μ

{
(ξ, x) | νF̂ξ

{
η | Vξ(x) = Vη(x)

}
> 0

}
> 0.

From (9.16) we will deduce F-measurability of (ξ, x) �→ Vξ(x).

Let Fn := F−n(F), and write {μFn

(ξ,x)} for a corresponding family of conditional

measures. Also write F̂n := θ−n(F̂).
For each (ξ, x) ∈ X define

φn(ξ, x) := μFn

(ξ,x)(P(ξ, x)).

We have

φn(ξ, x) = EμF
(ξ,x)

(1P(ξ,x)(·) | Fn)(ξ, x) = E
νF̂
ξ
(1P(ξ,x)(·, x) | F̂n)(ξ).

Consider any (ξ, x) with μF
(ξ,x)(P(ξ, x)) > 0 and such that V is F∞-measurable

modulo μF
(ξ,x). For η ∈ Ω define

ψn(η) := E
νF̂
ξ
(1P(ξ,x)(·, x) | F̂n)(η).

Then ψn(η) is a martingale (with filtration F̂n on the measure space (Ω,BΩ, ν
F̂
ξ )),

whence (using the F∞-measurability of V)

ψn(η) → E
νF̂
ξ
(1P(ξ,x)(·, x) | F̂∞)(η) = 1P(ξ,x)(η, x),

νF̂ξ -a.s. as n → ∞. In particular, for μF
(ξ,x)-a.e. (η, x) ∈ P(ξ, x)

φn(η, x) → 1

as n → ∞. It follows from (9.16) that

(9.17) μ {(ξ, x) ∈ X | φn(ξ, x) �→ 1 as n → ∞} > 0.

The F-measurability of (ξ, x) �→ Vξ(x) is equivalent to the assertion that

μ{(ξ, x) | φ0(ξ, x) = 1} = 1.

Since Fn
∗ (μ

Fn

(ξ,x)) = μF
Fn(ξ,x), V is DF -invariant, and (ξ, x) �→ Dxf

n
ξ is Fn-

measurable, we have that φ0(F
n(ξ, x)) = φn(ξ, x). The ergodicity and F -invariance

of μ and (9.17) then imply that φ0 ≡ 1 on a set of full measure completing the
proof. �

9.7. Sets of good angles, geometry of intersections, and bounds on dis-
tortion. We remark that in this section, all estimates are with respect to the
background Riemannian metric on M . Let X1 ⊂ X denote the full μ-measure

subset such that E
u/s
ξ (x) is defined and W

u/s
ξ (x) is an injectively immersed curve

tangent to E
u/s
ξ (x). Furthermore, assume the affine parameters and corresponding

parametrizations Iu/s in (6.4) are defined on W
u/s
ξ (x) for every (ξ, x) ∈ X1. Given

γ1 > 0, let Λ(γ1) ⊂ X1 denote the set of points where

∠
(
Es

ξ (x), E
u
ξ (x)

)
> γ1.
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Given 0 < γ2 < γ1/2 and (ξ, x) ∈ Λ(γ1) define Aγ2
(ξ, x) to be the set of η ∈ Ω with

(1) (η, x) ∈ X1,

(2) ∠
(
Es

ξ (x), E
s
η(x)

)
> γ2, and

(3) ∠
(
Eu

ξ (x), E
s
η(x)

)
> γ2.

As μ(X1) = 1, as remarked in the previous section, for almost every (ξ, x) we

have (η, x) ∈ X1 for νF̂ξ -a.e. η. For 0 < a < 1 we define the set Aγ1,γ2,a ⊂ Λ(γ1) by

Aγ1,γ2,a :=
{
(ξ, x) ∈ Λ(γ1) | νF̂ξ (Aγ2

(ξ, x)) > a
}
.

From Lemma 9.9 we obtain the following.

Lemma 9.10. Assume that (ξ, x) �→ Es
ξ (x) is not F-measurable. Then for any

α > 0 and 0 < a < 1 there exists γ1 > 0 and γ2 > 0 with

μ(Aγ1,γ2,a) > 1− α.

Fix a uniform ρ0 > 0 to be smaller than the injectivity radius of M , and given
x ∈ M let

expx : B(ρ0) ⊂ TxM → M

denote the exponential map. We recall that for every (ξ, x) ∈ X1 we have selected
vu(ξ, x) ∈ Eu

ξ (x) and vs(ξ, x) ∈ Es
ξ (x) such that (ξ, x) �→ vu(ξ, x) is F-measurable

and (ξ, x) �→ vs(ξ, x) is μ-measurable.
By Lusin’s theorem, there is a compact subset Λ2 ⊂ X1, of measure arbitrarily

close to 1, on which the family of parametrized stable and unstable manifolds

(ξ, x) �→ Iσ
(ξ,x)

vary continuously in the C1 topology on the space of embeddings C1([−r, r],M)
for σ = {s, u} and all 0 < r < 1.

Given x ∈ M , a subspace V ⊂ TxM , and 0 < γ < π we denote by Cγ(V ) the
open cone of angle γ around the subspace V . We have the following.

Lemma 9.11. Given any γ > 0, there exist r̂1, r̂0 > 0 such that for all (ξ, x) ∈ Λ2

and all (ξ, y) ∈ Λ2 with d(x, y) < r̂0,

(1) exp−1
x

(
Wu

ξ,r̂1
(x)
)
⊂ Cγ

(
Eu

ξ (x)
)
;

(2) exp−1
x

(
W s

ξ,r̂1
(x)
)
⊂ Cγ

(
Es

ξ (x)
)
;

(3) exp−1
x

(
W s

ξ,r̂1
(y)
)
⊂ Cγ

(
Es

ξ (x)
)
+ exp−1

x (y).

Fix ε1 = ε0/10. Fix a family of Lyapunov charts φ(ξ, x) with corresponding
function � : X → [1,∞), and retain all related notation from Section 6.1.2. Let
Λ3 ⊂ Λ2 be a set on which � is bounded above by �0 and such that there exist
0 < r̃0 and 0 < r̃1 such that for (ξ, x) ∈ Λ3,

(1) W s
ξ,r̃1

(x) ⊂ V s(ξ, x) where V s(ξ, x) is the local stable manifold built in
Theorem 6.4;

(2) the diameters of W s
ξ,r̃1

(x) and Wu
ξ,r̃1

(x) are less than
�−3
0 e−λ0−ε1

10k0
;
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(3) if (ξ, x), (ξ, y) ∈ Λ0 with d(x, y) ≤ r̃0, then

φ(ξ, x)
(
W s

ξ,r̃1(y)
)

is the graph of a 1-Lipschitz function gx,y : D ⊂ Rs → Ru(�−1
0 e−λ0−ε1) for

some D ⊂ Rs(�−1
0 e−λ0−ε1).

Note, in particular, for (ξ, x) and (ξ, y) above that W s
ξ,r̃1

(y) is in the domain of the

chart φ(ξ, x). We may take μ(Λ3) arbitrarily close to μ(Λ2).

�

�

�
�

x

v

z

y

W s
η (x)

W s
η (y)Wu

ξ (x) Wu
ξ (y)

W s
ξ (x)

Figure 1. Lemma 9.12.

Appealing repeatedly to Lusin’s theorem, and standard estimates in the con-
struction of stable and unstable manifolds, we may choose parameters satisfying
the following. See Figure 1. (Note that in our application of Figure 1 we have
Wu

ξ (x) = Wu
η (x).)

Lemma 9.12. For every 0 < γ1, 0 < γ2 < γ1/2, and Λ3 ⊂ Λ2 ⊂ Λ(γ1) as above
there exist a subset Λ′ ⊂ Λ3 with μ(Λ′) arbitrarily close to μ(Λ3), positive constants
r0 < r̃0, r1 < r̃1, and constants C1, C2, C3, D1 > 1, with the following properties.

For (ξ, x) ∈ Λ′ we have

(a) 1
C2

d(x,w) ≤ ‖Hu
(ξ,x)(w)‖ ≤ C2d(x,w) for all w ∈ Wu

ξ,r1
(x).

(b) 1
C2

d(x,w′) ≤ ‖Hs
(ξ,x)(w

′)‖ ≤ C2d(x,w
′) for all w′ ∈ W s

ξ,r1
(x).

For (ξ, x), (ξ, y) ∈ Λ′ with d(x, y) < r0

(c) W s
ξ,r1

(x) ∩ Wu
ξ,r1

(y) is a singleton {z} and the intersection is uniformly
transverse;

furthermore, if η ∈ Aγ2
(ξ, x) and (η, y), (η, x) ∈ Λ′,

(d) Wu
ξ,r1

(x) ∩ W s
η,r1(y) is a singleton {v} and the intersection is uniformly

transverse, and
(e) if D1 · ‖Hu

(ξ,y)(z)‖ ≤ ‖Hs
(ξ,x)(z)‖, then

1

C3
‖Hs

(ξ,x)(z)‖ ≤ ‖Hu
(ξ,x)(v)‖ ≤ C3‖Hs

(ξ,x)(z)‖.
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Additionally, we have a uniform bound C1 so that for (ξ, x) ∈ Λ′ and w ∈ Wu
ξ,r1

(x)

(f)
1

C1
≤ ‖Dxf

−n
ξ �TxWu

ξ,r1
(x)‖ · ‖Dwf

−n
ξ �TwWu

ξ,r1
(x)‖−1 ≤ C1 for all n ≥ 0,

and for (ξ, y) ∈ Λ′ with d(x, y) < r0 and z as in (c)

(g)
1

C1
≤ ‖Dxf

n
ξ �TxWu

ξ,r1
(x)‖ · ‖Dzf

n
ξ �TzWu

ξ,r1
(y)‖−1 ≤ C1 for all n ≥ 0.

Proof. Conclusions (a)–(d) follow simply from the C1 topology and Luzin’s theo-
rem.

For (e), we work in the exponential chart at x. By the law of sines, given fixed
γ1 and γ2, we pick a sufficiently small γ > 0 so that if ŷ ∈ Cγ(E

s
ξ (x)), then there

exists Ĉ > 1 with

d(0, ŷ)

Ĉ
≤ max{d(0, v) : v ∈ Cγ(E

u
ξ (x)) ∩ Cγ(E

s
η(x)) + ŷ} < Ĉd(0, ŷ).

We then obtain (e) from the uniform Lipschitz bounds on the exponential map and
the affine parameters. See Figure 1.

The estimates (f) and (g) follow from the fact that the pairs f−n
ξ (x) and f−n

ξ (w),

fn
ξ (x) and fn

ξ (z), and Dxf
n
ξ (TxW

u
ξ,r1

(x)) and Dzf
n
ξ (TzW

u
ξ,r1

(y)) are exponentially

asymptotic while |fξ|C1 , Lip(Dfn
ξ ), and the Lipschitz constants for the variation of

the tangent spaces to f−n
ξ (Wu

ξ,r(x)) grow sub-exponentially for ξ ∈ Ω0 and (ξ, x)
as in the the proof of Proposition 6.5. �

The following lemma will be needed in Claim 10.3 below.

Lemma 9.13. Take (ξ, x) ∈ Λ′ and (ξ, y) ∈ Λ′ with d(x, y) < r0, and set z =
W s

ξ,r1
(x) ∩ Wu

ξ,r1
(y) and w = W s

ξ,r1
(y) ∩ Wu

ξ,r1
(x). Let Γ ⊂ W s

ξ,r1
(y) be the curve

with end points w and y. Let n ≥ 0 be such that∣∣∣φ(F−j(ξ, x))(f−j
ξ (z))

∣∣∣ ≤ e−λ0−ε1�−1
0 e−ε1j

10

for all 0 ≤ j ≤ n. Then f−n
ξ (Γ) is in the domain of φ(F−n(ξ, x)), and

φ(F−n(ξ, x))(f−n
ξ (Γ))

is the graph of a 1-Lipschitz function

g : D̂ ⊂ Rs → Ru(e−λ0−ε1�(F−n(ξ, x))−1)

for some D̂ ⊂ Rs(e−λ0−ε1�(F−n(ξ, x))−1).

Proof. We prove by induction on n. For n = 0 the conclusion follows from hypothe-
ses and the choice of Λ3. For n ≥ 1, assume

φ(F−(n−1)(ξ, x))(f
−(n−1)
ξ (Γ))

is the graph of a 1-Lipschitz function g : D ⊂ Rs → Ru(�(F−(n−1)(ξ, x))−1e−λ0−ε1)
for some D ⊂ Rs(e−λ0−ε1�(F−(n−1)(ξ, x))−1). From Lemma 6.3 it follows that
f−n
ξ (Γ) is in the domain of φ(F−n(ξ, x)) and

φ(F−n(ξ, x))(f−n
ξ (Γ))
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is the graph of a 1-Lipschitz function ĝ : D̂ ⊂ Rs → Ru(e−λ0−ε1�(F−n(ξ, x))−1)

for some D̂ ⊂ Rs(�(F−n(ξ, x))−1). By the hypothesis, we have that f−n
ξ (z) is

contained in the domain of φ(F−n(ξ, x)). We have

d(f−n
ξ (y)), (f−n

ξ (z))) ≤ �0k0e
n(−λu+2ε1)

�−3
0 e−λ0−ε1

10k0

≤ en(−λu+2ε1)
1

10
�−2
0 e−λ0−ε1 .

Thus,∣∣∣φ(F−n(ξ, x))(f−n
ξ (y))− φ(F−n(ξ, x))(f−n

ξ (z))
∣∣∣ ≤ �0e

nε1en(−λu+2ε1)
1

10
�−2
0 e−λ0−ε1

≤ 1

10
�(F−n(ξ, x))−1e−λ0−ε1 ;

hence,∣∣∣φ(F−n(ξ, x))(f−n
ξ (x))− φ(F−n(ξ, x))(f−n

ξ (y))
∣∣∣ ≤ 2

10
�(F−n(ξ, x))−1e−λ0−ε1 .

Similarly,∣∣∣φ(F−n(ξ, x))(f−n
ξ (x))− φ(F−n(ξ, x))(f−n

ξ (w))
∣∣∣ ≤ 1

10
�(F−n(ξ, x))−1e−λ0−ε1 ;

hence D̂ ⊂ Rs(e−λ0−ε1�(F−n(ξ, x))−1). �

Under the hypotheses of Lemma 9.13, if F−n(ξ, x) ∈ Λ′ and F−n(ξ, y) ∈ Λ′,
then φ(F−n(ξ, x))(Γ) and

φ(F−n(ξ, x))
(
Wu

θ−n(ξ),r1

(
f−n
ξ (x)

))
have at most one point of intersection, thus we have the following corollary.

Corollary 9.14. For n satisfying the hypotheses of Lemma 9.13, if F−n(ξ, x) ∈ Λ′,
F−n(ξ, y) ∈ Λ′, and d(f−n

ξ (x), f−n
ξ (y)) ≤ r0, then

W s
θ−n(ξ),r1

(
f−n
ξ (y)

)
∩Wu

θ−n(ξ),r1

(
f−n
ξ (x)

)
= f−n

ξ (w).

Remark 9.15. In the case that Ω = Σ, recall that the stable line fields, stable
manifolds, and corresponding affine parameters are defined using only the forwards
itinerary. As fn

η = fn
ξ for all η ∈ Σ−

loc(ξ) and n ≥ 0, it follows that we may choose

vs(ξ, x) and the corresponding parametrizations Is
(ξ,x) of the stable manifolds to be

constant on sets of the form Σ−
loc(ξ) × {x} and thus induce corresponding objects

vs(ω, x) and Is
(ω,x) for the one-sided skew product on Σ+ × M . We may then

take Λ̂s ⊂ Σ+ × M of (ν̂N × μ̂)-measure arbitrarily close to 1 so that on Λ̂s the
parametrized stable manifolds

(ω, x) �→
(
t �→ Is

(ω,x) (tv
s(ω, x))

)
vary continuously in the space of C1-embeddings [−r, r] → M for all sufficiently
small 0 < r < 1.

Let π+ : Σ → Σ+ be the natural projection. We may modify parts (c)–(e), (g)
of Lemma 9.12 as follows: Choose Λ′ in Lemma 9.12 so that if (ξ, x) ∈ Λ′, then

(π+(ξ), x) ∈ Λ̂s. Then the constants can be chosen for the following lemma.
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Lemma 9.12’. For (ξ, x) ∈ Λ′, (ζ, y) ∈ Λ′ with π+(ζ) = π+(ξ) and d(x, y) < r0

(c’) W s
ξ,r1

(x) ∩ Wu
ζ,r1

(y) is a singleton {z} and the intersection is uniformly
transverse;

furthermore, if η ∈ Aγ2
(ξ, x), η′ ∈ Σ is such that π+(η

′) = π+(η) and (η′, y), (η, x) ∈
Λ′, then

(d’) Wu
ξ,r1

(x) ∩ W s
η′,r1

(y) is a singleton {v} and the intersection is uniformly
transverse, and

(e’) if D1 · ‖Hu
(ζ,y)(z)‖ ≤ ‖Hs

(ξ,x)(z)‖, then

1

C3
‖Hs

(ξ,x)(z)‖ ≤ ‖Hu
(ξ,x)(v)‖ ≤ C3‖Hs

(ξ,x)(z)‖.

Additionally, for x, y, z as above we have uniform bounds

(g’)
1

C1
≤ ‖Dxf

n
ξ �TxWu

ξ,r1
(x)‖ · ‖Dzf

n
ζ �TzWu

ζ,r1
(y)‖−1 ≤ C1 for all n ≥ 0.

Note that in (g’), we have fn
ξ = fn

ζ for all n ≥ 0.

10. Proof of Proposition 7.1

Given the skew product F : X → X and μ satisfying (IC), we have λs < 0 < λu

given by the hyperbolicity of DF and ε0 < min{1, λu/200,−λs/200} fixed in Sec-
tion 6.1. We recall the family μ(ξ,x) introduced in Section 6.5. Recall that our goal
is to prove for such measures that the measurable sets Gε and G in Proposition 7.1
have positive μ-measure (for some fixed M and all sufficiently small ε). This will
be shown in Section 10.4.

We define X0 ⊂ X1 ⊂ X to be the full μ-measure, F -invariant subset of Ω0 ×M
where all propositions from Section 6 hold and such that the stable and unstable
manifolds, Lyapunov norms, affine parameters, and the parametrizations Iu/s are
defined. We also assume that for (ξ, x) ∈ X0 the measures μξ, μ

u
(ξ,x), μ

s
(ξ,x), and

μ(ξ,x) are defined and satisfy F∗μξ = μθ(ξ), F∗μ
u/s
(ξ,x) � μ

u/s
F (ξ,x), and

(
Iu
F (ξ,x)

)−1

◦
F ◦ Iu

(ξ,x)(μ(ξ,x)) � μF (ξ,x). We further assume μ(ξ,x) contains 0 in its support. We

further take X0 so that for (ξ, x) ∈ X0 and νF̂ξ -a.e. η ∈ Ω we have fn
ξ = fn

η for all

n ≤ 0; for such η we have Wu
ξ (x) = Wu

η (x), and corresponding equality of affine
parameters, parametrizations Iu, and measures μ(ξ,x) = μ(η,x). Finally, we assume

that if (ξ, x) ∈ X0, then μξ(X0) = 1 and μF
(ξ,x)(X0) = νF̂ξ ({η : (η, x) ∈ X0}) = 1.

Write Y0 = [0, 1)×X0.

10.1. Choice of parameters and sets. We pick any

(A.) 0 < β < 1 such that
1 + β

1− β
<

λu − λs − 2ε0
−λs + ε0

;

and fix the following constants for the remainder

(B.) κ1 =
λu − λs − 2ε0

λu + ε0
; κ2 =

λu − λs + 2ε0
λu − ε0

;
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(C.) α0 =
1

2
− 1

2

(1 + β)(−λs + ε0)

(1− β)(λu − λs − 2ε0)
;

(D.) α =

(
κ1α0

5(κ1 + κ2)

)
.

Note α0 > 0 by the choice of β.
Recall that the measures ω and ω̂ are equivalent. We select

(E.) N0 such that ω

{
p : 1

N0
≤ dω̂

dω
(p) ≤ N0

}
> 1− α/2.

(F.) By Lusin’s theorem, we may choose a compact subset K0 ⊂ Y0 ⊂ Y with
ω- and ω̂-measure sufficiently close to 1 on which
i) the frames for the stable and unstable subbundles p �→ vsp, p �→ vsp

defined in Section 6.2.1;
ii) the stable and unstable manifolds parametrized by (6.4);
iii) all Lyapunov norms defined in Section 9.2.1;
iv) the families of measures ωp

vary continuously.
We may also assume the functions a(p) in (9.7) and L̂(p) in Proposi-

tion 9.4 are bounded on K0, respectively, by a0 and L̂. Finally, we may
assume there is a L1 > 1 so that for p = (ς, ξ, x) ∈ K0 and y ∈ W s

(ς,ξ),1(x),

writing (ςt, ξt, xt) = Φt(p), and (ςt, ξt, yt) = Φt(ς, ξ, y), for any t ≥ 0

d(xt, yt) ≤ L1e
t(λs+ε0)d(x, y).

(G.) Let M0 > 1 denote the maximal ratio of all Lyapunov and Riemannian
norms on K0:

M0 = sup
p=∈K0

sup
0�=v∈TxM

⎧⎨⎩
(
|||v|||ε0,±,p

|||v|||ε0,−,p

)±1

,

( |||v|||ε0,±,p

‖v‖

)±1

,

( |||v|||ε0,−,p

‖v‖

)±1
⎫⎬⎭ .

(H.) As discussed in Section 9.7, fix ε1 < ε0/10, a function � : X → [1,∞), and
a family of Lyapunov charts φ(ξ, x). Let �0 > 1 be such that �(ξ, x) ≤ �0
for (ξ, x) ∈ Λ3 where Λ3 is as in Section 9.7.

(I.) By Lemma 9.10, we pick γ1, γ2 so that μ(Aγ1,γ2,0.9) > 1 − α. We fix
C1, C2, C3 > 1, 0 < r0, r1 < 1, D1 > 1, and Λ′ ⊂ Λ3 with measure suffi-
ciently close to 1 satisfying Lemma 9.12. We write A = [0, 1) ×Aγ1,γ2,0.9

and for p = (ς, ξ, x) ∈ Y0, Aγ2
(p) = Aγ2

(ξ, x).
(J.) Take r̂ = min{r0/(2C2), r1}.
(K.) Set T̂ = log(L̂M2

0C
3
1 )/(λ

u − ε0).
Fix a compact set Λ′′ ⊂ Y0 and D0 > 0 such that for p ∈ Λ′′ and

t ∈ [−T̂ , T̂ ]

D−1
0 ≤ ‖DΦt�Eu(p)‖ ≤ D0.

(L.) We fix a compact Ω′ ⊂ Ω with ν(Ω′) sufficiently close to 1 and such that

for all j ∈ Z with |j| ≤ T̂ +1 we have ξ �→ θj(ξ) and ξ �→ f j
ξ are continuous

when restricted to Ω′. Consider qn ∈ [0, 1) × Ω′ × M converging to q ∈
[0, 1) × Ω′ × M , and let tn be a sequence with |tn| ≤ T̂ , tn → t, and
Φtn(qn) ∈ [0, 1− a]×Ω×M for all n and some a > 0. It then follows that
Φtn(qn) converges to Φt(q).
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(M.) The above choices can be made so that setting

K := K0 ∩ Λ′′ ∩
(
[0, 1)× Λ′) ∩ ([0, 1)× Ω′ ×M

)
we may ensure

(10.1) ω(K) > 1− α

10
and ω̂(K) > 1− α

40N0
.

(N.) Fix α̂ =
α

40N0
. Let U ⊂ Y be any open set to be specified later with

ω̂(U) < α̂. We have ω̂(K � U) > 1− α
20N0

.

Recall if ψ : Y → [0, 1] is ω-measurable with
∫
ψ dω > 1− ab, then

(10.2) ω{p : ψ(p) > 1− a} > 1− b.

Recall that we have the filtration {Sm : m ∈ R} on (Y, ω̂) decreasing to S∞ =⋂
m∈R

Sm. From (10.2) and (E) we claim

Claim 10.1. With N0, K, and U as above

(a) ω {p : Eω(1K | S)(p) > 0.9} > 1− α;
(b) ω̂ {p : Eω̂(1K�U | S∞)(p) > 0.9} > 1− α/(2N0);
(c) ω {p : Eω̂(1K�U | S∞)(p) > 0.9} > 1− α.

(O.) Let S0 := {p ∈ Y | ωS
p (K) > 0.9}.

As discussed in Section 9.4.2, taking g(p) = 1K�U (p) we have

ωS
Ψ−m(p)(Ψ

−m(K � U)) = Eω̂(1K�U | Sm)(p) → Eω̂(1K�U | S∞)(p)

as m → ∞ for ω-a.e. p ∈ Y . Given M > 0 let

SM = {p ∈ Y | ωS
Ψ−m(p)(Ψ

−m(K � U)) > 0.9 for all m ≥ M}.

(P.) Fix M̂ so that ω(SM̂ ) > 1− α.

Given T > 0, define R(T ) ⊂ K to be the set of p ∈ K such that for B =
K,A , SM̂ , or S0 and any T ′, T ′′ ≥ T

i)
1

T ′ Leb({t ∈ [0, T ′] : Φt(p) ∈ B}) > 1− α;

ii)
1

T ′′ Leb({t ∈ [−T ′′, 0] : Φt(p) ∈ B}) > 1− α;

and thus
1

T ′ + T ′′ Leb({t ∈ [−T ′′, T ′] : Φt(p) ∈ B}) > 1− α.

(Q.) By the pointwise ergodic theorem, fix T0 with ω(R(T0)) > 0.

(R.) Finally, set ε0 = min

{
r̂

M4
0

,
r1

2C3M6
0

,
eλ

s−ε0e−λ0−ε1�−2
0

10C2

}
.

10.2. Choice of time intervals. Consider a fixed ε < ε0. This ε will be as in
Proposition 7.1. Given 0 < δ < 1 we define

(1) mδ =
(1 + β) log δ − log(M4

0 )

λu − λs − 2ε0
,

(2) Mδ =
(1− β) log δ − log ε

−λs + ε0
.
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Note that for all sufficiently small 0 < δ < 1 we haveMδ < mδ < 0. For 0 < δ < ε
consider any � with

log δ − log ε

−λs + ε0
≤ � ≤ 0.

By the definition of τp,δ,ε (see Section 9.5) we have τp,δ,ε(�) ≥ 0 and

eτp,δ,ε(�)(λ
u−ε0)e�(λ

s+ε0)δ ≤ ε ≤ eτp,δ,ε(�)(λ
u+ε0)e�(λ

s−ε0)δ.

It follows for such � that

(10.3)
log(ε/δ) + (−λs + ε0)�

λu + ε0
≤ τp,δ,ε(�) ≤

log(ε/δ) + (−λs − ε0)�

λu − ε0
.

In particular, for any Mδ ≤ � ≤ mδ < 0, (10.3) holds and τp,δ,ε(�) > 0.
From (10.3) we obtain the following asymptotic behavior.

Claim 10.2. For fixed ε > 0 we have that

(a) τp,δ,ε(0) = Lp,δ,ε(0) → ∞,
(b) τp,δ,ε(Mδ) → ∞, and
(c) Lp,δ,ε(Mδ) → −∞

as δ → 0; furthermore, the divergence is uniform in p ∈ Y0.

Proof. Conclusions (a) and (b) follow from (10.3).
For (c) we have

Lp,δ,ε(Mδ) ≤
log(ε/δ) + (−λs − ε0)Mδ

λu − ε0
+Mδ

=
log ε+ (λu − λs − 2ε0)Mδ − log δ

λu − ε0

=
log ε

λu − ε0
− (λu − λs − 2ε0) log ε

(λu − ε0)(−λs + ε0)
+

[
(1− β)(λu − λs − 2ε0)

−λs + ε0
− 1

]
log δ,

and the limit follows from our choice of β as from the fact that

λu − λs − 2ε0
−λs + ε0

>
1 + β

1− β
>

1

1− β
. �

The choice of mδ above guarantees that, for (ς, ξ, x) and (ς, ξ, y) in K with x and
y sufficiently close in M , the image of y under the backwards flow Φt is in general
position with respect to the hyperbolic splitting TΦt(ς,ξ,x)M = Eu(Φt(ς, ξ, x)) ⊕
Es(Φt(ς, ξ, x)) for t < mδ. Mδ is chosen so that, in addition to the properties in
Claim 10.2, the images of x and y do not drift too far apart under the backwards
flow. We make this precise in the following claim.

Recall r̂ is chosen in (J) and that r1 and r0 were fixed in (I) to be as in
Lemma 9.12. See Figure 2.

Claim 10.3. Let p = (ς, ξ, x) and q = (ς, ξ, y) be in K with d(x, y) < r0. Let

z = Wu
ξ,r1(y) ∩W s

ξ,r1(x) , w = W s
ξ,r1(y) ∩Wu

ξ,r1(x) .

Assume z �= x and set δ = ‖Hs
p(z)‖. For any m with

Mδ ≤ m ≤ mδ < 0

set

i) p̂m = (ς̂m, ξ̂m, x̂m) = Φm(p), q̂m = (ς̂m, ξ̂m, ŷm) = Φm(q),

ii) (ς̂m, ξ̂m, ẑm) = Φm(ς, ξ, z), (ς̂m, ξ̂m, ŵm) = Φm(ς, ξ, w),
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ξ (y)
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ξ (x)

z

w
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ξ (y)

�
�
�

�

x̂m

ŷm

ẑm

ŵm

Figure 2. Claim 10.3

iii) p̃m = (ς̃m, ξ̃m, x̃m) = ΦLp,δ,ε(m)(p), q̃m = (ς̃m, ξ̃m, ỹm) = ΦLp,δ,ε(m)(q),

iv) (ς̃m, ξ̃m, z̃m) = ΦLp,δ,ε(m)(ς, ξ, z), (ς̃m, ξ̃m, w̃m) = ΦLp,δ,ε(m)(ς, ξ, w).

Then, if p̂m, q̂m, p̃m, q̃m ∈ K, we have

(a) δ−β · ‖Hu
q̂m

(ẑm)‖ ≤ ‖Hs
p̂m

(ẑm)‖ ≤ r̂δβ,

(b) δ−β · ‖Hu
p̂m

(ŵm)‖ ≤ ‖Hs
p̂m

(ẑm)‖ ≤ r̂δβ,

(c) d(x̂m, ŷm) < r0,
(d) ‖Hu

p̃m
(w̃m)‖ ≤ r̂δβ,

(e) d(x̃m, ỹm) < C2δ
β r̂ + C2L1e

τp,δ,ε(m)(λs+ε0)r1.

Proof. Note 0 < δ < 1. For (a), first observe that ‖Hu
q (z)‖ ≤ 1. We then obtain

the lower bound

‖Hs
p̂m

(ẑm)‖ ≥ 1

M0

∣∣∣∣∣∣Hs
p̂m

(ẑm)
∣∣∣∣∣∣s

ε0,±,p̂m
≥ 1

M0
e(λ

s+ε0)m
∣∣∣∣∣∣Hs

p(z)
∣∣∣∣∣∣s

ε0,±,p

≥ 1

M2
0

δe(λ
s+ε0)m ≥ 1

M2
0

δe(λ
s+ε0)mδ

=
1

M2
0

exp

[(
(λs + ε0)

(
(1 + β) log δ − log(M4

0 )
)

λu − λs − 2ε0

+ (1 + β) log δ − log(M4
0 )

)
− β log δ + log(M4

0 )

]

=
M4

0

M2
0

e(λ
u−ε0)mδδ−β ≥ M4

0

M3
0

δ−β
∣∣∣∣∣∣Hu

q̂m(ẑm)
∣∣∣∣∣∣u

ε0,±,p̂m

≥ δ−β‖Hu
q̂m(ẑm)‖.
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The lower bound in (b) is identical. The upper bound in (a) and (b) follows since

‖Hs
p̂m

(ẑm)‖ ≤ M0

∣∣∣∣∣∣Hs
p̂m

(ẑm)
∣∣∣∣∣∣s

ε0,±,p̂m
≤ M0e

(−λs+ε0)|m| ∣∣∣∣∣∣Hs
p(z)

∣∣∣∣∣∣s
ε0,±,p

≤ M2
0 e

(−λs+ε0)|m|‖Hs
p(z)‖ ≤ M2

0 e
(−λs+ε0)|Mδ|‖Hs

p(z)‖

≤ M2
0 exp

[
(−λs + ε0)

−(1− β) log δ + log ε

−λs + ε0
+ log δ

]
≤ M2

0 εδ
β ≤ r̂δβ .

For (d) we have

‖Hu
p̃m

(w̃m)‖ ≤ M0

∣∣∣∣∣∣Hu
p̃m

(w̃m)
∣∣∣∣∣∣u

ε0,±,p̃m

≤ M2
0

∣∣∣∣∣∣∣∣∣DΦτp,δ,ε(m)�Eu(Φm(p))

∣∣∣∣∣∣∣∣∣u
ε0,±,p̂m

‖Hu
p̂m

(ŵm)‖

≤ δβM2
0

∣∣∣∣∣∣∣∣∣DΦτp,δ,ε(m)�Eu(Φm(p))

∣∣∣∣∣∣∣∣∣u
ε0,±,p̂m

∥∥Hs
p̂m

(ẑm)
∥∥

≤ δβM4
0

∣∣∣∣∣∣∣∣∣DΦτp,δ,ε(m)�Eu(Φm(p))

∣∣∣∣∣∣∣∣∣u
ε0,±,p̂m

∣∣∣∣∣∣DΦm�Es(p)

∣∣∣∣∣∣s
ε0,±,p

δ

≤ δβM4
0 ε ≤ δβ r̂.

From (a) and Lemmas 9.12(a) and 9.12(b) we have the inequality d(x̂m, ŷm) ≤ 2C2r̂.
By the definition of r̂ we obtain (c).

For (e), recall that z is in the domain of the chart φ(ξ, x). We have

|φ(ξ, x)(z)| ≤ C2�0δ.

Then for 0 ≤ j ≤ �−Mδ + 1� we have

|φ(F−j(ξ, x))(f−j
ξ (z))| ≤ e(−λs+2ε1)jC2�0δ

≤ e−8ε1je(−λs+ε0)jC2�0δ

≤ e−8ε1je(−λs+ε0)(−Mδ+1)C2�0δ

≤ e−8ε1je(−λs+ε0)C2�0δ
βε.

Since ε ≤ ε0 ≤ eλ
s−ε0e−λ0−ε1�−2

0

10C2
and d(ŷm, x̂m) < r0, it follows from Corollary 9.14

that ŵm ∈ W s
ξ̂m,r1

(ŷm). Conclusion (e) follows as

d(x̃m, ỹm) ≤ d(x̃m, w̃m) + d(w̃m, ỹm)

≤ C2‖Hu
p̃m

(w̃m)‖+ L1e
τp,δ,ε(m)(λs+ε0)d(ŷm, ŵm)

≤ C2δ
β r̂ + L1e

τp,δ,ε(m)(λs+ε0)(C2r1). �

We observe that for

g(δ) =
Mδ −mδ

Mδ
= 1− ((1 + β) log δ − log(M4

0 ))(−λs + ε0)

((1− β) log δ − log ε)(λu − λs − 2ε0)

we have

lim
δ→0

g(δ) = 1− (1 + β)(−λs + ε0)

(1− β)(λu − λs − 2ε0)
= 2α0.
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We define one final parameter in addition to those from Section 10.1.

(S.) For T0 > 0 and ε0 fixed in (Q) and (R), given any 0 < ε < ε0 we define
0 < δ0(T0, ε) < 1 so that for all 0 < δ < δ0(T0, ε) we have
(1) Mδ < mδ < 0,
(2) Mδ−mδ

Mδ
≥ α0,

(3) Mδ < −T0,
(4) Lp,δ,ε(Mδ) < −T0 for all p ∈ Y0,
(5) Lp,δ,ε(0) > T0 for all p ∈ Y0,

(6) τp,δ,ε(Mδ) > max{M̂, M̂
λu−ε0

} where M̂ was fixed in (P),

(7) δ−β > D1.

10.3. Key lemma. We have the following lemma, whose proof follows from the
above choices.

Lemma 10.4. Given 0 < ε < ε0 and any open U ⊂ Y with ω̂(U) < α̂, there exist
sequences

i) p̃j = (ς̃j , ξ̃j , x̃j),

ii) q̃j = (ς̃j , ξ̃j , ỹj),
iii) p′j = (ς ′j , ξ

′
j , x

′
j),

iv) q′j = (ς ′j , ξ
′
j , y

′
j),

v) q′′j = (ς ′′j , ξ
′′
j , y

′′
j ),

such that for all j

(a) p′j , p̃j , q
′′
j , q̃j ∈ K;

(b) p′j /∈ U ;

(c) q′j = Φtj (q′′j ) for some |tj | ≤ T̂ where T̂ is as in (K);

(d) there is v′j ∈ Wu
ξ′j ,r1

(
x′
j

)
with 1

C3M6
0
ε ≤ ‖Hu

p′
j
(v′j)‖ ≤ C3M

6
0 ε and d(y′j , v

′
j) →

0 as j → ∞.

Moreover,

(e) d(x̃j , ỹj) → 0 as j → ∞ and

(f) for every j there are aj and bj with |aj |, |bj | ∈ [M−4
0 ,M4

0 ] with

ωp̃j
�
(
λaj

)
∗ ωp′

j
, and ωq̃j � (λbj )∗ωq′′j

.

In (f) above, λa : R → R denotes the multiplication map λa : t �→ at.

10.3.1. Construction of the sequences in Lemma 10.4. Let 0 < ε < ε0 be fixed, and
let U ⊂ Y satisfy ω̂(U) < α̂. We take this to be the U in (N). We construct the
sequences in Lemma 10.4 through a sequence of claims and then show they have
the desired properties.

Recall that we assume μξ is non-atomic for ν-a.e. ξ. It follows that μξ is not
locally supported on Wu

r (ξ, x) for almost every (ξ, x). Indeed, as μξ is assumed
non-atomic, if otherwise it would follow that μu

(ξ,x) was not atomic, whence hμ(F |
π) > 0. But then μs

(ξ,x) would necessarily be non-atomic a.s. and thus μξ could not

be locally supported on Wu
r (ξ, x). It follows that ω(ς,ξ) is not locally supported on

Wu
r (ς, ξ, x).
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Figure 3. Choices of points in Lemma 10.4 and proof of Lemma 10.8.

Recall R(T0) fixed in (Q). We fix p = (ς, ξ, x) ∈ R(T0) ⊂ K such that p is a
ω(ς,ξ)-density point of R(T0) for our fixed T0 > 0 and such that ω(ς,ξ) is not locally
supported on Wu

r (ς, ξ, x). It follows that there exists a sequence of points {yj} ⊂ M
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such that qj = (ς, ξ, yj) ∈ R(T0) ⊂ K, d(x, yj) ≤ r0, and yj /∈ Wu
r1(ξ, x) for all j

and d(x, yj) → 0 as j → ∞. For each j > 0 set (cf. Figure 2)

• zj = W s
ξ,r1

(x) ∩Wu
ξ,r1

(yj);

• wj = W s
ξ,r1

(yj) ∩Wu
ξ,r1

(x);

• δj = ‖Hs
p(zj)‖.

We have δj > 0 for all j and δj → 0. By omission, we may assume δj < δ0(T0, ε)
for all j.

We select a sequence of times {mj} satisfying the following claim. Recall A
defined in (H).

Claim 10.5. Writing δ = δj, there exists an m ∈ [Mδ,mδ] with

(1) Φm(p) ∈ A ∩K ∩ S0 and Φm(qj) ∈ K ∩ S0;

(2) ΦLp,δ,ε(m)(p) ∈ SM̂ ∩K and ΦLp,δ,ε(m)(qj) ∈ SM̂ ∩K.

Proof of Claim 10.5. Let

(1) F1 = {t ∈ R : Φt(p) ∈ K ∩ A ∩ S0};
(2) F2 = {t ∈ R : Φt(qj) ∈ K ∩ S0};
(3) F3 =

{
t ∈ R : Φt(p) ∈ K ∩ SM̂

}
;

(4) F4 =
{
t ∈ R : Φt(qj) ∈ K ∩ SM̂

}
.

Write L = Lp,δ,ε. Since p, qj ∈ R(T0), Mδ ≤ −T0, and
Mδ−mδ

Mδ
> α0, we have

(10.4) Leb ([Mδ,mδ] ∩ F1 ∩ F2) ≥ (α0 − 5α)|Mδ|.

Furthermore, as [−T0, T0] ⊂ L ([Mδ, 0]), we have

Leb (L ([Mδ, 0]) ∩ F3 ∩ F4) ≥ (1− 4α) Leb (L ([Mδ, 0])) ;

hence, by Lemma 9.7 and Claim 9.8,

Leb (L ([Mδ, 0])� (F3 ∩ F4)) ≤ (4α) Leb (L ([Mδ, 0])) ≤ 4ακ2|Mδ|.

Then,

Leb
(
[Mδ, 0]� L−1 (F3 ∩ F4)

)
≤ 4ακ−1

1 κ2|Mδ|.
Thus,

Leb
(
[Mδ,mδ] ∩ F1 ∩ F2 ∩ L−1

p,δ,ε(F3) ∩ L−1
p,δ,ε(F4)

)
≥ (α0 − 5α− 4ακ−1

1 κ2)|Mδ|.

Our choice of α ensures α0 − 5α− 4ακ−1
1 κ2 > 0. �

For each j, select a mj < 0 satisfying Claim 10.5. We define p̃j and q̃j satisfying
the conclusions in Lemma 10.4 by

• p̃j = (ς̃j , ξ̃j , x̃j) = ΦLp,δj
(mj)(p);

• q̃j = (ς̃j , ξ̃j , ỹj) = ΦLp,δj
(mj)(qj).

We also define

• p̂j = (ς̂j , ξ̂j , x̂j) = Φmj (p); q̂j = (ς̂j , ξ̂j , ŷj) = Φmj (qj);
• s′j = Sp̂j

(τp,δj ,ε(mj)); s
′′
j = Sq̂j (τp,δj ,ε(mj)).

Then p̃j = Ψs′j (p̂j) and q̃j = Ψs′′j (q̂j) .
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With the above choices, for each j we choose a η̂j satisfying the following.

Claim 10.6. Given p, qj , and mj as above, for each j there exists η ∈ Ω with

(a) (ς̂j , η, x̂j) ∈ K ∩Ψ−s′j (K � U);

(b) (ς̂j , η, ŷj) ∈ K ∩Ψ−s′′j (K);
(c) η ∈ (Aγ2

(p̂j)).

Furthermore, we may choose η so that

(d) fn
ξ = fn

η for all n ≤ 0;

(e) Wu
η (x̂j) = Wu

ξ̂j
(x̂j) and ωp̂j

= ω(ς̂j ,η,x̂j);

(f) Wu
η (ŷj) = Wu

ξ̂j
(ŷj) and ωq̂j = ω(ς̂j ,η,ŷj).

Proof of Claim 10.6. We have p̂j = (ς̂j , ξ̂j , x̂j) and q̂j = (ς̂j , ξ̂j , ŷj) in K ⊂ Y0.

Then (d)–(f) hold for νF̂
ξ̂j
-a.e. η.

Recall for p = (ς, ξ, x) we have ωS
p = δς × νF̂ξ × δx as discussed in Section 9.4.1.

Since p̂j ∈ S0 ∩ A , q̂j ∈ S0, we have

(1) ωS
p̂j
(K) ≥ 0.9;

(2) ωS
q̂j
(K) ≥ 0.9;

(3) νF̂
ξ̂j
(Aγ2

(p̂j)) ≥ 0.9.

Furthermore, since p̃j , q̃j ∈ SM̂ , and since

s′j ≥ (λu − ε0)τp,δ,ε(mj) ≥ (λu − ε0)τp,δ,ε(Mδj ) ≥ M̂,

and similarly s′′j > M̂ , we have by (P)

(4) ωS
p̂j

(
Ψ−s′j (K � U)

)
≥ 0.9;

(5) ωS
q̂j

(
Ψ−s′′j (K)

)
≥ 0.9.

From the natural identification of ωS
p̂j

and ωS
q̂j

with νF̂
ξ̂j
, it follows that the set of η

satisfying the conclusions of the claim has νF̂
ξ̂j
-measure at least 0.5. �

10.3.2. Proof of Lemma 10.4. Having selected p, yj ,mj , and η̂j above, we define

• (ς̃j , ξ̃j , z̃j) = ΦLp,δ,ε(mj)(ς, ξ, zj), and (ς̃j , ξ̃j , w̃j) = ΦLp,δ,ε(mj)(ς, ξ, wj);

• (ς̂j , ξ̂j , ẑj) = Φmj (ς, ξ, zj), and (ς̂j , ξ̂j , ŵj) = Φmj (ς, ξ, wj);
• pj = (ς̂j , η̂j , x̂j), and qj = (ς̂j , η̂j , ŷj);

• t′j = S −1
pj

(s′j), and t′′j = S −1
qj

(s′′j ).

We show Lemma 10.4 holds with p̃j , q̃j defined above and

• p′j = (ς ′j , ξ
′
j , x

′
j) := Ψs′j (pj) = Φt′j (pj);

• q′j = (ς ′j , ξ
′
j , y

′
j) := Φt′j (qj);

• q′′j = (ς ′′j , ξ
′′
j , y

′′
j ) := Ψs′′j (qj) = Φt′′j (qj).

Proof of Lemma 10.4. Part (a) of Lemma 10.4 follows from the selection procedure
in the above claims. Part (b) follows from Claim 10.6(a). Part (e) follows immedi-
ately from Claim 10.3(e) since as j → ∞, δj → 0 and τp,δ,ε(mj) ≥ τp,δ,ε(Mδj ) → ∞.

By Claim 10.3(c) we have d(ŷj , x̂j) < r0. By Lemma 9.12, and the fact that
(ς̂j , η̂j , x̂j) and (ς̂j , η̂j , ŷj) are in K ⊂ [0, 1) × Λ′, we define v̂j to be the point of
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intersection

v̂j = Wu
ξ̂j ,r1

(x̂j) ∩W s
η̂j ,r1(ŷj) .

From Lemma 9.12, Claim 10.3(a), and the fact that δ−β
j ≥ D1, for each j we have

1

C3
‖Hs

p̂j
(ẑj)‖ ≤ ‖Hu

p̂j
(v̂j)‖ ≤ C3‖Hs

p̂j
(ẑj)‖.

Recall that Wu
ξ̂j ,r1

(x̂j) = Wu
η̂j ,r1

(x̂j) and

‖Hu
p̂j
(v̂j)‖ = ‖Hu

pj
(v̂j)‖.

We define v′j in Lemma 10.4(d) by

(ς ′j , ξ
′
j , v

′
j) = Φt′j (ς̂j , η̂j , v̂j).

We claim

Claim 10.7. 1
C3M6

0
ε ≤ ‖Hu

p′
j
(v′j)‖ ≤ C3M

6
0 ε.

Proof of Claim 10.7. We have the upper bound

‖Hu
p′
j
(v′j)‖ ≤ M0

∣∣∣∣∣∣∣∣∣Hu
p′
j
(v′j)
∣∣∣∣∣∣∣∣∣

ε0,−

= M0

∣∣∣∣∣∣∣∣∣Hu
pj
(v̂j)
∣∣∣∣∣∣∣∣∣

ε0,−

∣∣∣∣∣∣∣∣∣DΦtj �Eu(pj)

∣∣∣∣∣∣∣∣∣
ε0,−

= M0

∣∣∣∣∣∣∣∣∣Hu
pj
(v̂j)
∣∣∣∣∣∣∣∣∣

ε0,−
es

′
j

≤ M2
0 ‖Hu

pj
(v̂j)‖es

′
j = M2

0 ‖Hu
p̂j
(v̂j)‖es

′
j ≤ M2

0C3‖Hs
p̂j
(ẑj)‖es

′
j

≤ M3
0C3

∣∣∣∣∣∣∣∣∣Hs
p̂j
(ẑj)
∣∣∣∣∣∣∣∣∣

ε0,±
es

′
j

= M3
0C3

∣∣∣∣∣∣∣∣∣Hs
p̂j
(ẑj)
∣∣∣∣∣∣∣∣∣

ε0,±

∣∣∣∣∣∣∣∣∣DΦτp,δj ,ε(mj)�Eu(p̂j)

∣∣∣∣∣∣∣∣∣
ε0,−

≤ M5
0C3

∣∣∣∣∣∣∣∣∣Hs
p̂j
(ẑj)
∣∣∣∣∣∣∣∣∣

ε0,±

∣∣∣∣∣∣∣∣∣DΦτp,δj ,ε(mj)�Eu(p̂j)

∣∣∣∣∣∣∣∣∣
ε0,±

≤ M6
0C3

∣∣∣∣∣∣DΦmj �Es(p)

∣∣∣∣∣∣
ε0,±

δj

∣∣∣∣∣∣∣∣∣DΦτp,δj ,ε(mj)�Eu(p̂j)

∣∣∣∣∣∣∣∣∣
ε0,±

= M6
0C3ε.

The lower bound is identical. �

As qj ∈ K we have

d(y′j , v
′
j) ≤ L1e

t′j(λ
s+ε0)d(ŷj , v̂j)

≤ C2L1e
t′j(λ

s+ε0)r1.

Since qj ∈ K for each j and since s′j ,→ ∞, by the upper bound in (9.7) and the
fact that a in (9.7) is bounded on K we have t′j → ∞ as j → ∞. Thus, d(y′j , v

′
j) → 0

as j → ∞, completing the proof of Lemma 10.4(d).
To derive the bound in Lemma 10.4(c), first consider the case t′j ≥ t′′j . As pj ∈ K,

by the lower bound in (9.4) we have∣∣∣∣∣∣∣∣∣DΦt′′j �Eu(pj)

∣∣∣∣∣∣∣∣∣
ε0,−

≥ L̂−1‖DΦt′′j �Eu(pj)
‖.
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Moreover, as qj and q′′j = Φt′′j (qj) are in K,

‖DΦt′′j �Eu(qj)
‖ ≥ 1

M2
0

∣∣∣∣∣∣∣∣∣DΦt′′j �Eu(qj)

∣∣∣∣∣∣∣∣∣
ε0,−

.

Write p′′j = (ς ′′j , ξ
′′
j , x

′′
j ) := Φt′′j (pj) and (ς ′′j , ξ

′′
j , v

′′
j ) := Φt′′j (ς̂j , η̂j , v̂j). For n′ =

�ς̂j + t′j� ≥ n′′ = �ς̂j + t′′j � ≥ 0 we have

‖DΦt′′j �Eu(qj)
‖

‖DΦt′′j �Eu(pj)
‖
=

‖Dfn′′

η̂j
�Tŷj

Wu
η̂j
(ŷj)‖

‖Dfn′′
η̂j

�Tx̂j
Wu

η̂j
(x̂j)‖

=
‖Dfn′′

η̂j
�Tŷj

Wu
η̂j
(ŷj)‖

‖Dfn′′
η̂j

�Tv̂j
Wu

η̂j
(x̂j)‖

·
‖Df−n′′

ξ′′j
�Tx′′

j
Wu

ξ′′
j
(x′′

j )
‖

‖Df−n′′

ξ′′j
�Tv′′

j
Wu

ξ′′
j
(x′′

j )
‖

=
‖Dfn′′

η̂j
�Tŷj

Wu
η̂j
(ŷj)‖

‖Dfn′′
η̂j

�Tv̂j
Wu

η̂j
(x̂j)‖

·
‖Df−n′

ξ′j
�Tx′

j
Wu

ξ′
j
(x′

j)
‖

‖Df−n′

ξ′j
�Tv′

j
Wu

ξ′
j
(x′

j)
‖
·
‖Df

−(n′−n′′)
ξ′j

�Tv′
j
Wu

ξ′
j
(x′

j)
‖

‖Df
−(n′−n′′)
ξ′j

�Tx′
j
Wu

ξ′
j
(x′

j)
‖
.(10.5)

As p′j , qj ∈ K we have (η̂j , ŷj) ∈ Λ′ and (ξ′j , x
′
j) ∈ Λ′. Moreover, as ‖Hu

p′
j
(v′j)‖ ≤

r1 from Lemmas 9.12(f) and 9.12(g) we have that (10.5) is bounded above by C3
1 .

Thus ∣∣∣∣∣∣∣∣∣DΦt′′j �Eu(pj)

∣∣∣∣∣∣∣∣∣
ε0,−

≥ 1

C3
1M

2
0 L̂

∣∣∣∣∣∣∣∣∣DΦt′′j �Eu(qj)

∣∣∣∣∣∣∣∣∣
ε0,−

.

As∣∣∣∣∣∣∣∣∣DΦt′′j �Eu(qj)

∣∣∣∣∣∣∣∣∣
ε0,−

=
∣∣∣∣∣∣∣∣∣DΦt′j �Eu(pj)

∣∣∣∣∣∣∣∣∣
ε0,−

≥ e(λ
u−ε0)(t

′
j−t′′j )

∣∣∣∣∣∣∣∣∣DΦt′′j �Eu(pj)

∣∣∣∣∣∣∣∣∣
ε0,−

≥ e(λ
u−ε0)(t

′
j−t′′j )

1

C3
1M

2
0 L̂

∣∣∣∣∣∣∣∣∣DΦt′′j �Eu(qj)

∣∣∣∣∣∣∣∣∣
ε0,−

,

it follows that

t′j − t′′j ≤ log(C3
1M

2
0 L̂)

λu − ε0
= T̂ .

If t′′j ≥ t′j we similarly have∣∣∣∣∣∣∣∣∣DΦt′j �Eu(qj)

∣∣∣∣∣∣∣∣∣
ε0,−

≥L̂−1‖DΦt′j �Eu(qj)
‖, ‖DΦt′j �Eu(pj)

‖≥ 1

M2
0

∣∣∣∣∣∣∣∣∣DΦt′j �Eu(pj)

∣∣∣∣∣∣∣∣∣
ε0,−

.

Then with n′ = �ς̂j + t′j� ≥ 0 we have

‖DΦt′j �Eu(qj)
‖

‖DΦt′j �Eu(pj)
‖
=

‖Dfn′

η̂j
�Tŷj

Wu
η̂j
(ŷj)‖

‖Dfn′
η̂j
�Tx̂j

Wu
η̂j
(x̂j)‖

=
‖Dfn′

η̂j
�Tŷj

Wu
η̂j
(ŷj)‖

‖Dfn′
η̂j
�Tv̂j

Wu
η̂j
(x̂j)‖

·
‖Df−n′

ξ′j
�Tx′

j
Wu

ξ′
j
(x′

j)
‖

‖Df−n′

ξ′j
�Tv′

j
Wu

ξ′
j
(x′

j)
‖
,(10.6)
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and, as above, by Lemmas 9.12(f) and 9.12(g) the expression in (10.6) is bounded

below by
1

C2
1

. Thus∣∣∣∣∣∣∣∣∣DΦt′j �Eu(qj)

∣∣∣∣∣∣∣∣∣
ε0,−

≥ 1

C2
1M

2
0 L̂

∣∣∣∣∣∣∣∣∣DΦt′j �Eu(pj)

∣∣∣∣∣∣∣∣∣
ε0,−

,

and the same analysis as above gives

t′′j − t′j ≤
log(C2

1M
2
0 L̂)

λu − ε0
≤ T̂ .

Finally, for Lemma 10.4(f) we have

ωp̃j
�
(
λ
±‖DΦ

τp,δj,ε
(mj)�Eu(p̂j)

‖

)
∗
ωp̂j

=

(
λ
±‖DΨ

s′
j �Eu(p̂j )‖

)
∗
ωp̂j

,

where the sign depends on whether DΦτp,δj ,ε(mj)�Eu(p̂j) : E
u(p̂j) → Eu(p̃j) pre-

serves orientation. We similarly have

ωp′
j
�
(
λ
±‖DΦ

t′
j �Eu(pj)

‖

)
∗
ωpj

=

(
λ
±‖DΨ

s′
j �Eu(pj)

‖

)
∗
ωpj

.

Since ωpj
= ωp̂j

we have

ωp′
j
�
(
λaj

)
∗ ωp̃j

,

where

|aj | =
‖DΨs′j �Eu(pj)

‖
‖DΨs′j �Eu(p̂j)‖

≤ M4
0

|||DΨs′j �Eu(pj)
|||ε0,−

|||DΨs′j �Eu(p̂j)|||ε0,−
= M4

0

proving the upper bound in Lemma 10.4(f). The lower bound on |aj | and the
existence of bj and its bounds are similar.

�

10.4. Proof of Proposition 7.1. We show Proposition 7.1 follows with

M := C1M
14
0 C3D0,(10.7)

where M0 is as in (G), C1 and C3 are as in (I), and D0 is as in (K). For ε < ε0
define the set Gε as in Remark 7.2. Set G̃ε = [0, 1)×Gε. Consider G̃ε ∩K. Were

ω̂(G̃ε ∩ K) < α̂ there would exist an open U ⊃ (G̃ε ∩ K) with ω̂(U) < α̂. With
such a U we obtain a sequence p′j ∈ K satisfying the conclusions of Lemma 10.4.
We have the following.

Lemma 10.8. Let p be an accumulation point of {p′j}. Then p ∈ G̃ε.

On the other hand, as p′j /∈ U for every j, we have p /∈ U . This yields a contradiction

showing ω̂(G̃ε ∩ K) ≥ α̂ for all ε < ε0. Then for G defined as in Proposition 7.1
and for

G× [0, 1) = {p | p ∈ G̃1/N for infinitely many N} =: G̃,

we have that ω̂(G̃) ≥ α̂ and hence, as ω and ω̂ are equivalent measures, ω(G̃) > 0.
Then μ(G) > 0 and Proposition 7.1 follows.

We prove the lemma, concluding the proof of Proposition 7.1.
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Proof of Lemma 10.8. With U as above, we recall all notation from Lemma 10.4.
We have that each p′j and q′′j is contained in the compact set K. Let p0 ∈ Gε be

an accumulation point of {p′j}. We may restrict to an infinite subset B ⊂ N0 such

that lim
j∈B→∞

p′j = p0 = (ς0, ξ0, x0). Further restricting B we may assume that the

sequence (q′′j )j∈B converges. Let q1 = lim
j∈B→∞

q′′j .

Recall that Φtj (q′′j ) = q′j for some |tj | ≤ T̂ . We may assume (tj)j∈B converges.
Note that q′j is not assumed to be contained in K. However, as p′j = (ς ′j , ξ

′
j , x

′
j)j∈B

converges we have ς ′j ∈ [0, 1− a] for some a > 0 and all j ∈ B. As q′j = (ς ′j , ξ
′
j , y

′
j),

from (L) we have that q′j = Φtj (q′′j ) converges to q0 = (ς0, ξ0, y0) = Φt̂(q1) for some

|t̂| ≤ T̂ . See Figure 3.
Note that q1 ∈ K, and by Lemma 10.4(d), q0 ∈ Wu

r1(p0) and

1

C3M6
0

ε ≤ ‖Hu
p0
(y0)‖ ≤ C3M

6
0 ε.

We need not have q0 ∈ K. However—as q1 ∈ K ⊂ Y0, q0 = Φt̂(q1), and Y0 is Φt-
invariant—we have q0 ∈ Y0. Thus, the unstable line field Eu(q0), unstable manifold
Wu(q0) = Wu(p0), trivialization Iu

q0 , affine parameters Hu
q0 , and measure ωq0 are

defined at q0.

Fix γ := d(
(
Iu
q0

)−1◦Iu
p0
(t))/dt(0), and let v := (Iu

p0
)−1(y0) where Iu

p is defined in
(6.4). As p0 ∈ K, by Proposition 6.5 and (6.3) (applied to unstable manifolds), and
Lemma 9.12(f) we have C−1

1 ≤ |γ| ≤ C1. We also have (C3M
6
0 )

−1ε ≤ |v| ≤ C3M
6
0 ε.

Define the map φ : R → R by

φ : t �→ γ(t− v).

By construction, we have

(10.8) φ∗ωp0
� ωq0 .

Recall that given α ∈ R we write λα : R → R for the linear map λα : x �→ αx. Let

β := ‖DΦt̂�Eu(q1)‖. As q1 ∈ K we have 1
D0

≤ β ≤ D0. Also, ωq0 � (λ±β)∗ωq1 where

the sign depends on whether DΦt̂�Eu(q1) : E
u(q1) → Eu(q0) preserves orientation.

It remains to relate the measures ωp0
and ωq1 .

Let aj and bj be as in Lemma 10.4(f). We further restrict the set B ⊂ N so that
the limits

lim
j∈B→∞

aj = a, lim
j∈B→∞

bj = b

are defined.
We claim that (λa)∗ωp0

� (λb)∗ωq1 . Indeed, for all j we have

(λaj
)∗ωp′

j
� ωp̃j

, (λbj )∗ωq′′j
� ωq̃j .

We introduce normalization factors

cj := ωp′
j
([−a−1

j , a−1
j ])−1, dj := ωq′′j

([−b−1
j , b−1

j ])−1

and

c := ωp0
([−a−1, a−1])−1, d := ωq0([−b−1, b−1])−1.

We remark that for q ∈ Y0, the measure ωq has at most one atom which by as-
sumption is at 0. It follows that non-trivial intervals centered at 0 are continuity
sets for each ωq and thus cj → c and dj → d. Let f be a continuous, compactly
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supported function f : R → R. We note that q �→ ωq(f) is uniformly continuous on
K and that ∣∣(λa)∗ωq(f)− (λaj

)∗ωq(f)
∣∣ = ∣∣∣∣∫ f(at)− f(ajt) dωq(t)

∣∣∣∣
approaches zero uniformly in q as j ∈ B → ∞. Thus for any κ > 0 and for all
sufficiently large j ∈ B we have

• |c(λa)∗ωp0
(f)− c(λa)∗ωp′

j
(f)| ≤ κ,

• |c(λa)∗ωp′
j
(f)− cj(λaj

)∗ωp′
j
(f)| ≤ κ,

• |d(λb)∗ωq1(f)− d(λb)∗ωq′′j
(f)| ≤ κ,

• |d(λb)∗ωq′′j
(f)− dj(λbj )∗ωq′′j

(f)| ≤ κ,

• |ωp̃j
(f)− ωq̃j (f)| ≤ κ,

where the final estimate follows since p̃j and q̃j become arbitrarily close in K ⊂ Y
as j ∈ B → ∞ by Lemma 10.4(e).

Since

cj(λaj
)∗ωp′

j
(f) = ωp̃j

(f), dj(λbj )∗ωq′′j
(f) = ωq̃j (f),

we conclude c(λa)∗ωp0
= d(λb)∗ωq1 , or

ωp0
� (λb/a)∗ωq1 .

Combining the above with (10.8), it follows that map (with the appropriate sign
discussed above)

ψ = (λb/a) ◦ λ±β−1 ◦ φ : t �→ ± bγ

βa
(t− v)

satisfies

ψ∗ωp0
� ωp0

.

It follows that p0 ∈ G̃ε. �

11. Geometry of the stable support of stationary measures

In this and the following sections, we return to the special case where Ω = Σ
to prove Theorem 4.8. Recall the measure μ constructed by Proposition 4.2. We
show that if the fiber-wise measures μξ are finitely supported and if (ξ, x) �→ Es

ξ (x)
is not F-measurable, then the stationary measure μ̂ is finitely supported and hence
ν̂-a.s. invariant. This result is analogous to [BQ1, Lemmas 3.10 and 3.11] but our
methods of proof are completely different.

In Section 12, assuming (ξ, x) �→ Es
ξ (x) is not F-measurable, we show that

the fiber-wise measures are non-atomic under the additional assumption that the
conditional measures along total stable sets (in both the Σ−

loc and fiber-wise stable
directions) satisfy a certain geometric criterion. In this section we consider the case
in which the geometric criterion mentioned above fails. This degenerate case forces
some rigidity of the measure μ which implies that the stationary measure μ̂ is ν̂-a.s.
invariant.

We remark, however, that in this section we do not use the fact that M is
a surface though we still require that the stationary measure μ̂ be hyperbolic to
obtain Lemma 11.2 below. Thus, for this section alone, take M to be any closed
manifold, take ν̂ as a measure on Diff2(M) satisfying (∗), and take μ̂ to be an
ergodic, hyperbolic, ν̂-stationary measure. μ is as in Proposition 4.2. We note that
if μ̂ has only positive exponents, then, by the invariance principle in [AV], μ̂ is ν̂-a.s.
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invariant and μ = ν̂Z × μ̂. We thus also assume μ̂ has one negative exponent. If
all exponents of μ̂ are negative, the analysis and conclusions in this section are still
valid.

Consider P a μ-measurable partition of Σ×M with the property that for μ-a.e.
(ξ, x) ∈ X, there is an r(ξ, x) with

(11.1) Σ−
loc(ξ)×W s

r(ξ,x)(ξ, x) ⊂ P(ξ, x) ⊂ Σ−
loc(ξ)×W s(ξ, x) .

Let {μP
(ξ,x)} denote an associated family of conditional measures. We consider

here the degenerate situation where μP
(ξ,x) is supported on Σ−

loc(ξ)× {x} for μ-a.e.

(ξ, x). Note that hyperbolicity and recurrence imply that for any other partition P ′

satisfying (11.1) we have that μP′

(ξ,x) is supported on Σ−
loc(ξ)× {x} for μ-a.e. (ξ, x)

and that

μP
(ξ,x) = μP′

(ξ,x).

In particular, the hypothesis that μP
(ξ,x) is supported on Σ−

loc(ξ)×{x} for μ-a.e. (ξ, x)
implies that the partition P ′ given by P ′ = {Σ−

loc(ξ)×W s(ξ, x)} is measurable.
The purpose of this section is to prove the following proposition.

Proposition 11.1. Assume for some partition P as above that the measures μP
(ξ,x)

are supported on Σ−
loc(ξ)× {x} for μ-a.e. (ξ, x). Then μ = ν̂Z × μ̂ and μ̂ is ν̂-a.s.

invariant.

The idea behind the proof of Proposition 11.1 is that if, for P as in (11.1),
the conditional measures μP

(ξ,x) are supported on Σ−
loc(ξ) × {x}, then the entropy

of the skew product F : (X,μ) → (X,μ) has no fiber-wise entropy and thus the
μ-entropy of F equals the entropy of the shift σ : (Σ, ν̂Z) → (Σ, ν̂Z). As F is
hyperbolic, the entropy of F : (X,μ) → (X,μ) should be captured by the mean
conditional entropy Hμ(FP | P) for any (decreasing) partition P subordinated
to the stable sets of F in X (a partition P as in (11.1) will be such a partition
under the assumptions on the support of μP

(ξ,x)). Let β denote the partition on X

given by β(ξ, x) = Σ−
loc(ξ) × {x}. Then β is equivalent to P mod μ, and we have

Hμ(Fβ | β) = hν̂Z(σ). Using Jensen’s inequality in a manner analogous to the
proof of [Led1, Theorem 3.4] (see also [LY1, (6.1)] for the argument in English) one

could show that the conditional measures μβ
(ξ,x) are canonically identified with νN

almost everywhere. This would complete the proof.
However, the main technical obstruction in implementing the above procedure is

that hν̂Z(σ) is not assumed to be finite. Thus extra care is needed to approximate
differences of the form ∞−∞ arising from the outline above.

11.1. Proof of Proposition 11.1. Before presenting the proof of Proposition 11.1
we recall some facts about mean conditional entropy. A primary reference is [Rok].
Let (X,μ) be a Lebesgue probability space. Given measurable partitions α, β of
(X,μ) (which may be uncountable) we define the mean conditional entropy of α
relative to β to be

Hμ(α | β) = −
∫

log(μβ
x(α(x))) dμ(x),

where {μβ
x} is a family of conditional measures relative to the partition β. The

entropy of α is Hμ(α) = Hμ(α | {∅, X}). Note that if Hμ(α) < ∞, then α is
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necessarily countable. Given measurable partitions α, β, γ of (X,μ) we have

(1) Hμ(α ∨ γ | β) = Hμ(α | β) +Hμ(γ | α ∨ β);
(2) If α ≥ β, then Hμ(α | γ) ≥ Hμ(β | γ) and Hμ(γ | α) ≤ Hμ(γ | β);
(3) If γn ↗ γ and if Hμ(α | γ1) < ∞, then Hμ(α | γn) ↘ Hμ(α | γ).
We proceed with the proof of Proposition 11.1.

Proof of Proposition 11.1. Let β denote the partition on X given by β(ξ, x) =
Σ−

loc(ξ) × {x}. As remarked above, the hypothesis that μP
(ξ,x) is supported on

Σ−
loc(ξ)×{x} for μ-a.e. (ξ, x) for some partition P satisfying (11.1) implies that all

such partitions are equivalent modulo μ and, furthermore, that any such partition
P is equivalent to β modulo μ.

Given a measure λ on Σ×M and a λ-measurable partition Q of Σ×M we write
λ�Q for the restriction of λ to the sub-σ-algebra of Q-saturated subsets and λQ

(ξ,x)

for the conditional measure of λ along the atom Q(ξ, x). As we explain below, the

proposition follows if we can show the conditional measures μβ
(ξ,x) take the form

dμβ
(ξ,x)(η, y) = δx(y) dν̂

N(. . . , η−3, η−2, η−1) δξ0(η0) δξ1(η1)δξ2(η2) . . . .

To this end, define a measure λ on Σ×M with λ�β = μ�β and define λβ
(ξ,x) by

dλβ
(ξ,x)(η, y) = δx(y) dν̂

N(. . . , η−3, η−2, η−1) δξ0(η0) δξ1(η1)δξ2(η2) . . . .

In what follows we show—under the hypothesis that μP
(ξ,x) is supported on Σ−

loc(ξ)×
{x}—that μ = λ.

Define the partition Q of Σ×M by

Q(ξ, x) = Σ−
loc(ξ)×M.

Observe for any k ≥ 0 that

(11.2) F kβ = F kQ ∨ β.

Given a partition α of Σ×M we write

α− :=

∞∨
i=0

f−iα.

We need the following lemma whose proof we postpone until the next subsection.

Lemma 11.2. There exists a finite entropy partition α of Σ×M with α ≤ β and

(11.3) α− ∨Q � β.

Our strategy below will be to show that μ = λ by showing that

(11.4) μα−

(ξ,x)�Fk(β) = λα−

(ξ,x)�Fk(β)

for a.e. (ξ, x) and all k ≥ 0. Note that the equality λ�α− = μ�α− and the k = 0
case

μα−

(ξ,x)�β = λα−

(ξ,x)�β
follow from the construction of λ and that α− ≤ β. Thus, as F kβ generates the
point partition for k ≥ 0, showing (11.4) for all k ≥ 1 is sufficient to prove that
μ = λ.

As noted above, the maps F : (Σ × M,μ) → (Σ × M,μ) and σ : (Σ, ν̂Z) →
(Σ, ν̂Z) may have infinite entropy. Thus it is necessary in the below argument to
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approximate (Σ, ν̂Z) by a finite entropy subsystem. Fix an increasing family of
partitions An, n ∈ N, of (Diff2(M), ν̂) with the following properties:

(1) An contains n elements;
(2) An+1 ≥ An;

(3) An increases to the point partition on (Diff2(M), ν̂).

Let An be the partition of (Σ, ν̂Z) defined by An(ξ) = {η | η0 ∈ An(ξ0)}. Define
the partition Qn on Σ×M by

Qn(ξ, x) = {(η, y) | ηk ∈ An(ξk) for all k ≥ 0}.

Continue to write π : Σ×M → Σ. Then Qn = (π−1An)
−. We have

hν̂Z(σ,An) = hμ(F, π
−1An) = Hμ(FQn | Qn) ≤ log(n).

Given i ≤ j ∈ Z and n ∈ N define a (finite) partition R[i,j]
n of Σ×M by

R[i,j]
n (ξ, x) := {(η, y) : η� ∈ An(ξ�) for all i ≤ � ≤ j}.

We have R[−k,m]
n ↗ F k(Qn) ↗ F k(Q), respectively, as m → ∞ and n → ∞.

For fixed (ξ, x) and k ≥ 0, consider the sequence

(11.5)
λα−

(ξ,x)(R
[−k,m]
m (η, y))

μα−
(ξ,x)(R

[−k,m]
m (η, y))

as (η, y) varies over α−(ξ, x). For fixed k, this forms a non-negative supermartingale

(on
(
α−(ξ, x), μα−

(ξ,x)

)
, indexed by m) and hence converges pointwise.

From (11.2), (11.3), and the fact that Q ≤ F kQ we have

(11.6) α− ∨ F kQ = α− ∨ F kQ ∨Q = F kβ.

As the σ-algebras generated by R[−k,m]
m increase to the algebra generated by F kQ

as m → ∞, by a theorem of Andersen and Jessen ([AJ]; see also [Sch, Hor] for
statements) the pointwise limit of (11.5) is the Radon-Nikodym derivative

lim
m→∞

λα−

(ξ,x)(R
[−k,m]
m (η, y))

μα−
(ξ,x)(R

[−k,m]
m (η, y))

=
dλα−

(ξ,x)�Fkβ

dμα−
(ξ,x)�Fkβ

(η, y).

Note that R[0,m]
n ≤ β for all m ≥ 0 and n ≥ 1, and hence

λα−
(ξ,x)(R

[0,m]
n (ξ, x)) = μα−

(ξ,x)(R
[0,m]
n (ξ, x))

for any m ≥ 0. For (η, y) ∈ α−(ξ, x) ∩R[0,m]
n (ξ, x) we have

λ
α−∨R[0,m]

n

(ξ,x) (R[−k,m]
n (η, y))

μα−∨R[0,m]
n

(ξ,x) (R[−k,m]
n (η, y))

=
λα−

(ξ,x)(R
[−k,m]
n (η, y))

μα−
(ξ,x)(R

[−k,m]
n (η, y))

·
μα−

(ξ,x)(R
[0,m]
n (ξ, x))

λα−
(ξ,x)(R

[0,m]
n (ξ, x))

.

Thus

λ
α−∨R[0,m]

n

(ξ,x) (R[−k,m]
n (η, y))

μα−∨R[0,m]
n

(ξ,x) (R[−k,m]
n (η, y))

=
λα−

(ξ,x)(R
[−k,m]
n (η, y))

μα−
(ξ,x)(R

[−k,m]
n (η, y))

.
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For every k, n,m, and (ξ, x) we have∫
(
α−∨R[0,m]

n

)
(ξ,x)

λ
α−∨R[0,m]

n

(ξ,x) (R[−k,m]
n (η, y))

μα−∨R[0,m]
n

(ξ,x) (R[−k,m]
n (η, y))

dμ
α−∨R[0,m]

n

(ξ,x) (η, y) ≤ 1.

Consider the expressions

I1(n,m) =

∫ ∫
log
(
λ
α−∨R[0,m]

n

(ξ,x) (R[−k,m]
n (η, y))

)
dμ

α−∨R[0,m]
n

(ξ,x) (η, y) dμ(ξ, x)

and

I2(n,m) =

∫ ∫
log
(
μ
α−∨R[0,m]

n

(ξ,x) (R[−k,m]
n (η, y))

)
dμ

α−∨R[0,m]
n

(ξ,x) (η, y) dμ(ξ, x).

From the above inequality and Jensen’s inequality, for every k, n, and m we have

that I1(n,m)−I2(n,m) ≤ 0. From the explicit form of λβ
(ξ,x), for (η, y) ∈ α−(ξ, x)∨

R[0,m]
n (ξ, x) we have for k ≥ 1

λ
α−∨R[0,m]

n

(ξ,x) (R[−k,m]
n (η, y)) =

k∏
i=1

ν̂ (An(η−i))

= μQn

(η,y)

(
F kQn(η, y)

)
,

whence

I1(n,m) =

∫ (
log μQn

(η,y)

(
F kQn(η, y)

))
dμ(η, y) = −H(F kQn | Qn)

= −hμ(F
k, π−1(An)).

On the other hand, we have

I2(n,m) =

∫ ∫
log
(
μ
α−∨R[0,m]

n

(ξ,x) (R[−k,m]
n (η, y))

)
dμ

α−∨R[0,m]
n

(ξ,x) (η, y) dμ(ξ, x)

=

∫ ∫
log
(
μ
α−∨R[0,m]

n

(η,y) (R[−k,m]
n (η, y))

)
dμ

α−∨R[0,m]
n

(ξ,x) (η, y) dμ(ξ, x)

=

∫
log
(
μ
α−∨R[0,m]

n

(η,y) (R[−k,m]
n (η, y))

)
dμ(η, y)

= −Hμ

(
R[−k,m]

n | α− ∨R[0,m]
n

)
.

Recall the facts about mean conditional entropy collected above. We have the
formula

Hμ

(
R[−k,m]

n ∨ F kα− | α− ∨R[0,m]
n

)
= Hμ

(
R[−k,m]

n | α− ∨R[0,m]
n

)
+Hμ

(
F kα− | α− ∨R[0,m]

n ∨R[−k,m]
n

)
.(11.7)

As Hμ(α) < ∞ we have Hμ

(
F kα− | α−) < ∞. In particular, as R[−k,m]

n and R[0,m]
n

are finite partitions, both terms on the right-hand side of (11.7) are finite.
By (11.6) and the fact that Q ≤ F kQ, we have Hμ

(
F kα− | α− ∨ F kQ

)
= 0. As

Hμ

(
F kα− | α− ∨R[−k,m]

n

)
↘

m→∞
Hμ

(
F kα− | α− ∨ F kQn

)
↘

n→∞
Hμ

(
F kα− | α− ∨ F kQ

)
,
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given ε > 0 we may select m0 so that

Hμ

(
F kα− | α− ∨R[−k,m0]

m0

)
< ε.

Furthermore for any n > 0

Hμ

(
R[−k,m]

n ∨ F kα− | α− ∨R[0,m]
n

)
= Hμ

(
R[−k,−1]

n ∨ F kα− | α− ∨R[0,m]
n

)
↘

m→∞
Hμ

(
R[−k,−1]

n ∨ F kα− | α− ∨ Qn

)
= Hμ

(
F kQn ∨ F kα− | α− ∨Qn

)
.

But, for any n

Hμ

(
F kQn ∨ F kα− | α− ∨ Qn

)
= hμ

(
F k, π−1(An) ∨ α

)
≥ Hμ

(
F kQn | Qn

)
.

Thus for m0 above we have

I1(m0,m0)− I2(m0,m0) = −Hμ

(
F kQm0

| Qm0

)
+Hμ

(
R[−k,m0]

m0
| α− ∨R[0,m0]

m0

)
= −Hμ

(
F kQm0

| Qm0

)
+Hμ

(
R[−k,m]

n ∨ F kα− | α− ∨R[0,m]
n

)
−Hμ

(
F kα− | α− ∨R[−k,m0]

m0

)
≥ −Hμ

(
F kQm0

| Qm0

)
+Hμ

(
F kQm0

∨ F kα− | α− ∨ Qm0

)
−Hμ

(
F kα− | α− ∨R[−k,m0]

m0

)
≥ −Hμ

(
F kα− | α− ∨R[−k,m0]

m0

)
≥ −ε.

It follows that

∫ ∫
log

⎛⎝λα−

(ξ,x)(R
[−k,m]
m (η, y))

μα−
(ξ,x)(R

[−k,m]
m (η, y))

⎞⎠ dμα−

(ξ,x)(η, y) dμ(ξ, x)

=

∫ ∫
log

⎛⎝λ
α−∨R[0,m]

n

(ξ,x) (R[−k,m]
m (η, y))

μα−∨R[0,m]
n

(ξ,x) (R[−k,m]
m (η, y))

⎞⎠ dμ
α−∨R[0,m]

n

(ξ,x) (η, y) dμ(ξ, x)

= I1(m,m)− I2(m,m)

approaches 0 as m → ∞.
We have the following elementary claim.

Claim 11.3. Let fn be a sequence of positive, μ-integrable functions. Assume∫
fn dμ ≤ 1 for every n and that

∫
log fn dμ → 0 as n → ∞. Then fn converges

to 1 in measure.
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Proof. Given δ > 0, there is a cδ > 0 such that for all x ∈ (0,∞) with |x − 1| > δ
we have log x ≤ x− 1− cδ. Then for every n,∫

log fn dμ ≤
∫

fn dμ− 1− μ ({x : |fn(x)− 1| > δ}) cδ

≤ −μ ({x : |fn(x)− 1| > δ}) cδ.
As
∫
log fn dμ → 0 we have μ ({x : |fn(x)− 1| > δ}) → 0 as n → ∞. �

As
λα−

(ξ,x)(R
[−k,m]
m (η, y))

μα−
(ξ,x)(R

[−k,m]
m (η, y))

→
dλα−

(ξ,x)�Fkβ

dμα−
(ξ,x)�Fkβ

(η, y) it follows from Claim 11.3 that

dλα−

(ξ,x)�Fkβ

dμα−
(ξ,x)�Fkβ

(η, y) = 1

for μ-a.e. (ξ, x) and μα−

(ξ,x)-a.e. (η, y). Taking k → ∞ it follows that λ = μ.

Now consider an atom of Q(ξ, x). We have the canonical product representation
Q(ξ, x) = Σ−

loc(ξ) × M . Let μQ
(ξ,x) denote the projection of μQ

(ξ,x) on Σ−
loc(ξ) × M

onto M . Using that μ = λ, in these coordinates we have for η ∈ Σ−
loc(ξ) and y ∈ M

that

dμQ
(ξ,x)(η, y) = dν̂(η−1) dν̂(η−2) · · · dμQ

(ξ,x)(y).

Then we have the natural identification μη = μξ = μQ
(ξ,x) for ν̂N-a.e. η ∈ Σ−

loc(ξ).

In particular, the function ξ �→ μξ is a.s.-constant on almost every local stable set.
As ξ �→ μξ is a.s.-constant on almost every local unstable set in Σ, an argument
similar to Proposition 4.6 shows that ξ �→ μξ is a.s. constant on Σ. �

11.2. Proof of Lemma 11.2. We remark that we continue to assume M to be
a compact, d-dimensional manifold. For ν̂ a measure on Diff2(M) satisfying (∗),
we take μ̂ to be an ergodic, ν̂-stationary measure. We further assume that μ̂ is
hyperbolic. Take κ > 0 so that μ̂ has no exponents in the interval [−κ, κ].

11.2.1. One-sided Lyapunov charts and stable manifolds as Lipschitz graphs. Let
k be the almost-surely constant value of dimEs

ω(x). Given v ∈ Rd = Rk × Rd−k,
decompose v = v1 + v2 and write |v|i = |vi| and |v| = max{|v|i}. We will write
dRd(·, ·) for the induced metric on Rd and d(·, ·) for the metric on M . We use
the notation Rd(r) to denote the ball of radius r centered at 0. To emphasize the
one-sidedness of our constructions we work on Σ+×M . Recall the associated skew

product F̂ : Σ+×M → Σ+×M and the corresponding F̂ -invariant measure ν̂N× μ̂
on Σ+ ×M .

As outlined in [LY3, (4.1)], for every sufficiently small ε > 0, there is a measurable
function l : Σ+ ×M → [1,∞) and a full measure set Λ ⊂ Σ+ ×M such that

(1) for (ω, x) ∈ Λ and every n ∈ N, there exists a diffeomorphism φn defined
on a small neighborhood of fn

ω (x) whose range is Rd(�(ω, x)−1e−nε) with
(a) φ0(ω, x)(x) = 0;
(b) Dφ0(ω, x)E

s
ω(x) = Rk × {0};

(c) Dφ0(ω, x) (E
s
ω(x))

⊥ = {0} × Rd−k;

(2) for n ≥ 1, writing f̃n(ω, x) = φn+1(ω, x) ◦ fσn−1(ω) ◦ φn(ω, x)
−1 where

defined, for all n ≥ 0 we have
(a) f̃n(ω, x)(0) = 0;
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(b) D0f̃n(ω, x) =

(
An 0
0 Bn

)
where An ∈ GL(k,R), Bn ∈ GL(d− k,R)

and |Anv| ≤ e−κ+ε|v|, v ∈ Rk, eκ−ε|v| ≤ |Bnv|, v ∈ Rd−k;

(c) Lip(f̃n(ω, x)−D0f̃n(ω, x)) < ε,
where Lip(·) denotes the Lipschitz constant of a map on its domain;

(3) �(ω, x)−1e−nε ≤ Lip(φn(ω, x)) ≤ �(ω, x)enε.

Note that the domain of φn(ω, x) contains a ball of radius �(ω, x)
−2e−2nε centered

at fn
ω (x) in M . We remark that while the Lipschitz constant of f̃n, norm of Bn, and

conorm of An need not be bounded, the hyperbolicity of D0f̃n and the Lipschitz
closeness of f̃n to D0f̃n is uniform in n.

Relative to the charts φn(ω, x), one may apply the Perron-Irwin method of con-
structing stable manifolds through each point of the orbit {fn

ω (x), n ≥ 0}. See
the proof of Theorem 3.1 in [LQ] or the similar proof of [QXZ, Theorem V.4.2].
Choosing ε > 0 above sufficiently small, the outcome is the following.

Proposition 11.4. For (ω, x) ∈ Λ and every n ≥ 0 there is a Lipschitz function

hn(ω, x) : R
k
(
�(ω, x)−1e−nε

)
→ Rd−k

with

(1) hn(ω, x)(0) = 0;
(2) Lip(hn(ω, x)) ≤ 1;

(3) f̃n(graph(hn(ω, x))) ⊂ graph(hn+1(ω, x)), and if y, z ∈ graph(hn(ω, x)),
then

|f̃n(ω, x)(y)− f̃n(ω, x)(z)| ≤
(
e−κ+ε + ε

)
|y − z|.

Note that we have that graph(hn(ω, x)) is contained in the domain of f̃n. We
have that φ−1

n (graph(hn(ω, x)) is an open subset of W s
σn(ω)(f

n
ω (x)).

11.2.2. Divergence from the stable manifold in local charts. We have the following
claim.

Claim 11.5. Fix (ω, x) ∈ Λ, and suppose y ∈ Rd(�(ω, x)−1e−nε) is in the domain

of f̃n(ω, x). Write y = (u, v) and f(y) = (u′, v′). Then

|v′ − hn+1(ω, x)(u
′)|2 ≥

(
eκ−ε − 2ε

)
|v − hn(ω, x)(u)|2.

Proof. Write z = (u, hn(ω, x)(u)) and (û, v̂) = f̃n(ω, x)(z). Then

|v′ − hn+1(ω, x)(u
′)|2 ≥ |v′ − v̂|2 − |v̂ − hn+1(ω, x)(u

′)|2.
As

f̃n(ω, x)(y)− f̃n(ω, x)(z) = D0f̃n(ω, x)(y − z) + w,

where |w| ≤ ε|y − z|, we have

(1) |u′ − û|1 = |f̃n(ω, x)(y)− f̃n(ω, x)(z)|1 ≤ ε|y − z|;
(2) |v′ − v̂|2 = |f̃n(ω, x)(y) − f̃n(ω, x)(z)|2 = |f̃n(ω, x)(y) − f̃n(ω, x)(z)| ≥

eκ−ε|y − z| − ε|y − z|.
As Lip(hn(ω, x)) ≤ 1 and as f̃n(ω, x)(z) ∈ graph(hn+1(ω, x)), we have

|v̂ − hn+1(ω, x)(u
′)|2 = |hn+1(ω, x)(û)− hn+1(ω, x)(u

′)|2 ≤ |u′ − û|1 ≤ ε|y − z|.
As |y − z| = |v − hn(ω, x)(u)|2, the claim follows. �
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Note that having taken ε > 0 sufficiently small we can arrange that eκ−ε − 2ε ≥
eκ−3ε.

We write W̃ s
m(ω, x) := graph(hm(ω, x)) for the remainder. Note that W̃ s

m(ω, x)
is the path-connected component of

φm(ω, x)(W s
σm(ω)(f

m
ω (x)))

in Rd(�(ω, x)−1e−mε) containing 0.

11.2.3. Radius function and related estimates. Fix K0 ⊂ Σ+ × M with a positive
measure on which the function �(ω, x) is bounded above by some � > 10. Fix
m0 ∈ N so that

χ :=
(
e−m0(κ−4ε)

)
2�2 < 1.

For (ω, x) ∈ K0 define n(ω, x) to be the m0th return of (ω, x) to K0. We define
ρ : Σ×M → (0,∞) as

ρ(ω, x) =

⎧⎪⎪⎨⎪⎪⎩
1

4
�−4e−2εn(ω,x)

⎛⎝n(ω,x)−1∏
k=0

(
|fσk(ω)|C1

)−1

⎞⎠ (ω, x) ∈ K0,

�−1 (ω, x) /∈ K0.

Consider (ω, x) ∈ K0 and y ∈ M with d(x, y) < ρ(ω, x). Let n = n(ω, x), and
for 0 ≤ j ≤ n write xj = f j

ω(x) and yj = f j
ω(y). For all 0 ≤ j ≤ n we have

d(xj , yj) ≤ 1
4 �

−4e−2εn, and hence yj is in the domain of φj(ω, x); it follows that for

0 ≤ j ≤ n− 1 we have that φj(ω, x)(yj) is in the domain of f̃j(ω, x). We claim

(11.8) dRd

(
φ0(ω, x)(y), W̃

s
0 (ω, x)

)
≤ 2e−n(κ−3ε)dRd

(
φn(ω, x)(yn), W̃

s
n(ω, x)

)
.

Indeed write (uj , vj) = φj(ω, x)(yj). By Claim 11.5 and the fact that W̃ s
n(ω, x) is

a graph of the 1-Lipschitz function we have

2dRd

(
φn(ω, x)(yn), W̃

s
n(ω, x)

)
≥ |vn − hn(ω, x)(un)|2

≥ en(κ−3ε)|v0 − h0(ω, x)(u0)|2

≥ en(κ−3ε)dRd

(
φ0(ω, x)(y), W̃

s
0 (ω, x)

)
.

We now consider the transition between the charts φn(ω, x) and φ0(F̂
n(ω, x)).

Recall n = n(ω, x) and write x̂ = xn, ŷ = yn, and ω̂ = σn(ω). Recall that
(ω̂, x̂) ∈ K0. As d(x̂, ŷ) ≤ 1

4�
−4e−2εn we have that ŷ is in the domain of φ0(ω̂, x̂).

Furthermore, as |φ0(ω̂, x̂)(ŷ)| ≤ �−3 ≤ 0.01�−1, we can find z ∈ W s
ω̂(x̂) such that

dRd

(
φ0(ω̂, x̂)(ŷ), W̃

s
0 (ω̂, x̂)

)
= dRd (φ0(ω̂, x̂)(ŷ), φ0(ω̂, x̂)(z)) .

Let φ0(ω̂, x̂)(z) = (u, v) = (u, h0(ω̂, x̂)(u)). As h0(ω̂, x̂) has a Lipschitz constant
less than 1, for t ∈ [0, 1] we have

|(tu, h0(ω̂, x̂)(tu))| = |(tu, h0(ω̂, x̂)(tu))|1 ≤ |u|1 = |(u, v)|.

Then for any 0 ≤ t ≤ 1, writing

z(t) = φ0(ω̂, x̂)
−1
(
tu, h0(ω̂, x̂)(u)

)
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we have

d(x̂, z(t)) ≤ �|φ0(ω̂, x̂)(z)|
≤ �
(
dRd (0, φ0(ω̂, x̂)(ŷ)) + dRd (φ0(ω̂, x̂)(ŷ), φ0(ω̂, x̂)(z))

)
≤ �2|φ0(ω̂, x̂)(ŷ)|
≤ 2�2d(x̂, ŷ)

≤ 1

2
�−2e−2εn.

Thus z(t) is in the domain of φn(ω, x) for all 0 ≤ t ≤ 1 whence φn(ω, x)(z(t)) ∈
W̃ s

n(ω, x) for all 0 ≤ t ≤ 1. It follows that

dRd

(
φn(ω, x)(ŷ), W̃

s
n(ω, x)

)
≤ dRd

(
φn(ω, x)(ŷ), φn(ω, x)(z)

)
≤ �enεd (ŷ, z)

≤ �2enεdRd

(
φ0(ω̂, x̂)(ŷ), W̃

s
0 (ω̂, x̂)

)
.

Combining the above with (11.8) we have

dRd

(
φ0(ω, x)(y), W̃

s
0 (ω, x)

)
≤ 2e−n(κ−3ε)�2enεdRd

(
φ0(ω̂, x̂)(ŷ), W̃

s
0 (ω̂, x̂)

)
≤ χdRd

(
φ0(ω̂, x̂)(ŷ), W̃

s
0 (ω̂, x̂)

)
.(11.9)

Now let nj denote the (jm0)th return of (ω, x) to K0. Suppose for some k that

d
(
f
nj
ω (x), f

nj
ω (y)

)
≤ ρ(F̂nj (ω, x)) for all 0 ≤ j ≤ k. By induction on (11.9) we have

that

dRd

(
φ0(ω, x)(y), W̃

s
0 (ω, x)

)
≤ χkdRd

(
φ0(F̂

nk(ω, x))(fnk
ω (y)), W̃ s

0 (F̂
nk(ω, x))

)
.

This establishes the following claim.

Claim 11.6. Let (ω, x) ∈ K0, and let y ∈ M be such that d(fn
ω (x), f

n
ω (y)) ≤

ρ(F̂n(ω, x)) for all n ≥ 0. Then y ∈ W s
ω(x).

11.2.4. Construction of the partition α. Recall the integrability hypothesis (∗). As
ω �→ log+ |fω|C2 is integrable, it follows that∫

| log ρ(ω, x))| d(ν̂Z × μ̂)(ω, x) < ∞.

We adapt [Mañ, Lemma 2] to our ρ to produce a finite entropy partition α̂ of
Σ+ ×M such that diam(α̂(ω, x)∩Mω) ≤ ρ(ω, x) for almost every (ω, x). The only
modification needed in the proof of [Mañ, Lemma 2] is to replace, for each r, the

family Pr at the top of page 97 with the partition Pr = {Σ× P | P ∈ Pr}.
Take α to be the preimage of α̂ under the natural projection π+ : Σ × M →

Σ+ ×M . Then clearly α ≤ β. Furthermore, if (η, y) ∈ Q ∨ α−(ξ, x), then

(1) there is an ω ∈ Σ+ with π+(η, y) = (ω, y) and π+(ξ, x) = (ω, x), and

(2) F̂n(ω, y) ∈ α̂(F̂n(ω, x)) for all n ≥ 0.

If (ω, x) ∈ K0, then, by Claim 11.6, y ∈ W s
ω(x). If (ω, x) /∈ K0, then take n so that

F̂n(ω, x) ∈ K0. Then fn
ω (y) ∈ W s

σn(ω)(f
n
ω (x)) whence y ∈ W s

ω(x). This completes

the proof of Lemma 11.2.
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12. Proof of Theorem 4.8

We continue to work in the case Ω = Σ. As remarked earlier, the F-measurability
of (ξ, x) �→ Es

ξ (s) holds trivially if all exponents of μ̂ are negative and the ν̂-a.s.

invariance of μ̂ follows from the invariance principle of [AV] if all exponents of μ̂
are positive. We thus assume μ̂ has two exponents, one of each sign λs < 0 < λu.
Moreover, assume that the map (ξ, x) �→ Es

ξ (x) is not F-measurable.

As above, let P be a measurable partition of Σ × M satisfying (11.1). We
show that if μP

(ξ,x) is not supported on a set of the form Σ−
loc(ξ) × {x}, then the

measures μξ are non-atomic. From this contradiction and Proposition 11.1, the
finiteness and ν̂-a.s. invariance of μ̂ follows. The non-atomicity of the measures
μξ is established, under the above hypotheses, through a procedure similar to the
proof of Proposition 7.1.

We introduce one piece of new notation in the specific case Ω = Σ.

Definition 12.1. Given ξ=(. . . , ξ−1, ξ0, ξ1, ξ2, . . . ) and η = (. . . , η−1, η0, η1, η2, . . . )
in Σ define

[ξ, η] := (. . . , ξ−2, ξ−1, η0, η1, η2, . . . ).

Recall that in Section 9.1 we replaced the σ-algebra of Σ+
loc-saturated sets with

its preimage under σ. Let

Σ+
loc,−1(ξ) = σ−1(Σ+

loc(σ(ξ))) = {η ∈ Σ : ηj = ξj for all j ≤ 0}.

Then F̂ as modified in Section 9.1 is the sub-σ-algebra of Σ+
loc,−1-saturated sets.

The proof of Theorem 4.8 is a simplified version of the proof of Theorem 4.10
except our initial points p and q remain fixed and, as p and q are in the same total
stable space, we use only positive times. In particular, the open set U , the choice
of Mδ,mδ, and the estimates in Section 10.2 are not used here.

Proof of Theorem 4.8. We assume in the setting of Theorem 4.8 that the map
(ξ, x) �→ Es

ξ (x) is not F-measurable.
We recall all constructions and notations from Sections 9 and 10 in the case that

Ω = Σ. In particular, we retain the notation Y = (R× Σ ×M)/ ∼ equipped with
the measurable parametrization, Φt the suspension flow, Sp(t) and Ψs the time
change and corresponding flow, ω and ω̂ the Φt- and Ψs-invariant measures, and
τp,δ,ε, and Lp,δ,ε the stopping times.

Recall the choice of κ1, κ2 in Section 10.1 and take α = ( κ1

5(κ1+κ2)
). Recall the

choices of various parameters

M0, M̂ , γ1, γ2, r0, r1, r̂, C1, C2, C3, D0, D1, L1, a0, L̂, T̂ , T0

in Section 10.1 as well as the sets K0, S0, SM̂ ,A ,R(T0) and the σ-algebras S, Sm.
In this section, the constants r0, r1, C1, C3, D1 are chosen so that Lemma 9.12’ holds
and we take R(T0) ⊂ K where K is defined below.

We assume for the sake of contradiction that the measures μξ are finitely sup-
ported ν̂Z-a.s. but that μ̂ is not ν̂-a.s. invariant. By ergodicity, each μξ is sup-
ported on a finite set F (ξ) ⊂ M with the same cardinality a.s. We fix a compact
Λ′′′ ⊂ Σ×M such that μξ has an atom at (ξ, x) for every (ξ, x) ∈ Λ′′′ and

min{d(x, y) | (ξ, x) ∈ Λ′′′, y ∈ F (ξ)� {x}}
is bounded below by some ε1 > 0.
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By choosing the above parameters so that the associated sets have sufficiently
large measures, we can take the compact set

K = K0 ∩ Λ′′ ∩
(
[0, 1)× Λ′) ∩ ([0, 1)× Ω′ ×M

)
∩ ([0, 1)× Λ′′′),

where K0, Λ
′, Λ′′, Ω′ are as in Section 10.1, to be such that

ω(K) > 1− α

10
and ω̂(K) > 1− α

20N0
.

We have the same estimates as in Claim 10.1 (with U = ∅).
As we assume the measure μ̂ is not ν̂-a.s. invariant, by Proposition 11.1, it follows

that the measures {μP
ξ } are not supported on sets of the form Σ−

loc(ξ)× {x} where

P is a partition of Σ×M satisfying (11.1). Recall the set R(T0) ⊂ K in (Q). We
may find p = (ς, ξ, x) and q = (ς, ζ, y) in Y with

• p ∈ R(T0), q ∈ R(T0);
• ζ ∈ Σ−

loc(ξ);
• y ∈ W s

ξ,r1
(x)� {x}.

Fix δ = ‖Hs
p(y)‖ > 0. We may assume δ < ε1/(2C2C3M

6
0 ).

As in Claim 10.5 we have the following. Note that unlike in Claim 10.5, �j > 0.

Claim 12.2. The exists a sequence {�j} with �j → ∞ such that

(a) Φ�j (p) ∈ K ∩ S0 ∩ A ;
(b) Φ�j (q) ∈ K ∩ S0;
(c) ΦLp,δ,δ(�j)(p) ∈ K ∩ SM̂ ;

(d) ΦLp,δ,δ(�j)(q) ∈ K ∩ SM̂ .

Proof. Let Fk be as in Claim 10.5 (with q = qj). Then, as in the proof of Claim 10.5,
for our fixed T0 and any T > T0 with Lp,δ,δ(T ) > T0 we have

Leb ([0, T ] ∩ F1 ∩ F2) ≥ (1− 5α)T

and, as Lp,δ,δ(0) = τp,δ,δ(0) = 0,

Leb (Lp,δ,δ ([0, T ])� (F3 ∩ F4)) ≤ (4α) Leb (Lp,δ,δ ([0, T ])) ≤ 4ακ2T,

whence

Leb
(
[0, T ]� L−1

p,δ,δ (F3 ∩ F4)
)
≤ 4ακ−1

1 κ2T.

Then

Leb
(
[0, T ] ∩ F1 ∩ F2 ∩ L−1

p,δ,δ(F3) ∩ L−1
p,δ,δ(F4)

)
> (1− 5α− 4ακ−1

1 κ2)T.

The choice of α guarantees (1− 5α− 4ακ−1
1 κ2)T → ∞ as T → ∞. �

Let {�j} be a sequence of times satisfying Claim 12.2. As in Section 10, for each j

write p̂j =(ς̂j , ξ̂j , x̂j)=Φ�j (p), q̂j =(ς̂j , ζ̂j , ŷj)=Φ�j (q), p̃j =(ς̃j , ξ̃j , x̃j)=ΦLp,δ,δ(�j)

(p), q̃j =(ς̃j , ζ̃j , ỹj)=ΦLp,δ,δ(�j)(p), s′j =Sp̂j
(τp,δ,δ(�j)), s

′′
j =Sq̂j (τp,δ,δ(�j)).

Note that τp,δ,δ(�j) → ∞ as �j → ∞. Then for �j large enough,

s′′j , s
′
j ≥ (λu − ε0)τp,δ,δ(�j) ≥ M̂,

and, since p̃j , q̃j ∈ SM̂ , it follows that

Eω̂(1K |Ss′j ) (p̃j) > 0.9, Eω̂(1K |Ss′′j ) (q̃j) > 0.9.

As in Section 10 we have p̂j , q̂j ∈ K, ωS
p̂j
(K) > 0.9, ν̂N(Aγ2

(p̂j)) > 0.9, ωS
p̂j
(Ψ−s′j

(K)) > 0.9, ωS
q̂j
(K) > 0.9, and ωS

q̂j
(Φ−s′′j (K)) > 0.9.
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The measures ωS
p̂j

and ωS
q̂j

are, respectively, canonically identified with ν̂N (the

F̂-conditional measure) on Σ+
loc,−1(ξ̂j) and Σ+

loc,−1(ζ̂j). Furthermore, the natural
identification

Σ+
loc,−1(ξ̂j) → Σ+

loc,−1(ζ̂j), η �→ η′ = [ζ̂j , η]

preserves the measure ν̂N. Thus the set of η̂j ∈ Σ+
loc,−1(ξ̂j) such that

(1) η̂j ∈ Aγ2
(p̂j),

(2) pj := (ς̂j , η̂j , x̂j) ∈ K ∩Ψ−s′j (K),

(3) qj := (ς̂j , η
′
j , ŷj) ∈ K ∩Ψ−s′′j (K),

where η′j = [ζ̂j , η̂j ], has ν̂
N-measure at least 1/2. For each j, fix such a pair η̂j and

η′j = [ζ̂j , η̂j ].

As before, write t′j = S −1
pj

(s′j), t
′′
j = S −1

qj
(s′′j ), and define p′j = (ς ′j , ξ

′
j , x

′
j) :=

Ψs′j (pj) = Φt′j (pj) ∈ K, q′′j = (ς ′′j , ζ
′′
j , y

′′
j ) := Ψs′′j (qj) = Φt′′j (qj) ∈ K, and q′j =

(ς ′j , ζ
′
j , y

′
j) := Φt′j (qj). For �j sufficiently large we have d(x̂j , ŷj) < r0. For such �j ,

as pj , qj ∈ K let
v̂j = W s

η′
j ,r1

(ŷj) ∩Wu
ξ̂j ,r1

(x̂j) .

Since ŷj ∈ W s
ξ̂j ,r1

(x̂j), by (e’) of Lemma 9.12’ we have

1

C3
‖Hs

p̂j
(ŷj)‖ ≤ ‖Hu

p̂j
(v̂j)‖ ≤ C3‖Hs

p̂j
(ŷj)‖.

Exactly as in Claim 10.7 we have

1

C3M6
0

δ ≤ ‖Hu
p′
j
(v′j)‖ ≤ C3M

6
0 δ,

where (ς ′j , ξ
′
j , v

′
j) = Φt′j (ς̂j , η̂j , v̂j). (We take ẑj = ŷj in the proof.) Hence

1

C2C3M6
0

δ ≤ d(x′
j , v

′
j) ≤ C2C3M

6
0 δ.

As in Lemma 10.4(c) we have q′j = Φt̂j (q′′j ) for some |t̂j | ≤ T̂ . To adapt the proof
to the current setting, we replace the estimate (10.5) with

‖DΦt′′j �Eu(qj)
‖

‖DΦt′′j �Eu(pj)
‖
=

‖Dfn′′

η′
j
�Tŷj

Wu
η′
j
(ŷj)‖

‖Dfn′′
η̂j

�Tx̂j
Wu

η̂j
(x̂j)‖

=

‖Dfn′′

η′
j
�Tŷj

Wu
η′
j
(ŷj)‖

‖Dfn′′
η̂j

�Tv̂j
Wu

η̂j
(x̂j)‖

·
‖Df−n′

ξ′j
�Tx′

j
Wu

ξ′
j
(x′

j)
‖

‖Df−n′

ξ′j
�Tv′

j
Wu

ξ′
j
(x′

j)
‖
·
‖Df

−(n′−n′′)
ξ′j

�Tv′
j
Wu

ξ′
j
(x′

j)
‖

‖Df
−(n′−n′′)
ξ′j

�Tx′
j
Wu

ξ′
j
(x′

j)
‖

(12.1)

and similarly modify (10.6). Note that the bound on the first term of (12.1) now
follows from Lemma 9.12’(g’) as π+(η

′
j) = π+(η̂j).

Consider an accumulation point p0 = (ς0, ξ0, x0) of {p′j} and B ⊂ N such that
limj∈B→∞ p′j = p0. Then the measure ω(ς0,ξ0) has an atom at p0.

Note that, as ξ′jk → ξ0 for some subsequence {jk}, we have ζ ′jk → ξ0. Indeed,

for any j and any n ∈ N with n ≤ �j we have that ξ̂j and ζ̂j , and hence η̂j and η′j ,
agree in the kth index for all −n ≤ k ≤ ∞. As s′j > 0, ξ′j and ζ ′j agree in the kth
index for all −n ≤ k ≤ ∞.
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Thus, as in the proof of Lemma 10.8, passing to subsequences of B there are
accumulation points q0 = (ς0, ξ0, y0) of {q′j} and q1 = (ς1, ξ1, y1) ∈ K of {q′′j } and

a t̂ ∈ [−T̂ , T̂ ] such that Φt̂(q1) = q0. As vj ∈ W s
η′
j ,r1

(ŷj), qj ∈ K, and t′j → ∞ and

as fn
η′
j
= fn

η̂j
for n ≥ 0, we have d(v′j , y

′
j) → 0; hence d(x0, y0) ≥ 1

C2C3M6
0
δ. Since

q1 ∈ K ⊂ [0, 1) × Λ′′′, the measure ω(ς1,ξ1) has an atom at q1. By the invariance
of ω, it follows that ω(ς0,ξ0) has an atom at q0. On the other hand, x0 �= y0 yet

d(x0, y0) ≤ C2C3M
6
0 δ < ε1. As p0 ∈ K ⊂ [0, 1)×Λ′′′, this contradicts the choice of

ε1. �

Remark 12.3. In the above proof, we have that q0 ∈ Wu
r1(p0). Thus one can modify

the above proof to conclude that the skew product F : (X,μ) → (X,μ) has positive
fiber-wise entropy. In this way, one can show that for any hyperbolic, ν̂-stationary
measure μ̂ such that

(1) Es
ω(x) is not non-random, and

(2) μ̂ is not ν̂-a.s. invariant

the μ̂ entropy hμ̂(X+(M, ν̂)) is positive. Under the positive entropy hypothesis,
the authors showed in an earlier version of this paper that μ̂ must then be SRB.
However, one still needs to perform the more detailed analysis in Section 10 to rule
out the existence of a ν̂-a.s. invariant, hyperbolic measure μ̂ with zero entropy and
such that Es

ω(x) is not non-random to derive the full result in Theorem 3.1.

13. Proofs of remaining theorems

13.1. Proof of Theorem 3.4.

Proof. Let μ̂ be as in Theorem 3.4, and assume μ̂ is not finitely supported and that
the stable distribution Es

ω(x) is non-random. It follows from Theorem 3.1 that μ̂
is SRB. Let F : Σ × M → Σ × M be the canonical skew product constructed in
Section 4.1, and let μ be the F -invariant measure defined by Proposition 4.2. Then
the conditional measures of μ along almost every unstable manifold Wu(x, ξ) for
the skew product F are absolutely continuous. Define the ergodic basin B ⊂ Σ×M
of μ to be the set of (ξ, x) ∈ Σ×M such that

lim
n→∞

1

N

N−1∑
n=0

φ(fn
ξ (x)) =

∫
φ dμ̂

for all φ : M → R continuous. By the pointwise ergodic theorem and the separability
of C0(M), we have μ(B) = 1. Furthermore, for points (ξ, x) ∈ B whose fiber-wise
stable manifold W s(ξ, x) is defined we have

W s(ξ, x) ⊂ B.

We have the following “transverse” absolute continuity property. Given a typical
ξ ∈ Σ and certain continuous families of fiber-wise local stable manifolds S :=
{W s

ξ,r(x)}x∈Q, consider two manifolds T1 and T2 everywhere uniformly transverse to
the collection S. Define the holonomy map from T1 to T2 by “sliding along” elements
of S. Such holonomy maps were shown by Pesin to be absolutely continuous in
the deterministic volume-preserving setting [Pes]. For fiber-wise stable manifolds
associated to skew products satisfying (IC), such holonomy maps are also known
to be absolutely continuous. See [LY3, (4.2)] or [LQ, III.5] for further details and
references to proofs.
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The above absolute continuity property implies that if μ̂ is SRB (whence μ is
fiber-wise SRB) and if A ⊂ Σ × M is any set with μ(A) > 0, then for a positive
measure subset of ξ, ⋃

(ξ,x)∈A∩Mξ

W s
ξ (x) ⊂ Mξ

has positive Lebesgue measure in Mξ. It follows that for the ergodic basin B,

(ν̂Z ×m)(B) > 0.

We note that if η ∈ Σ−
loc(ξ), then (under the natural identification of subsets of Mη

and Mξ)

B ∩Mη = B ∩Mξ

since fn
ξ = fn

η for n ≥ 0. Define B̂ to be the ergodic basin of νN × μ̂ for the skew

product F̂ : Σ+ ×M ; that is, (ω, x) ∈ B̂ if

lim
n→∞

1

N

N−1∑
n=0

φ(fn
ω (x)) =

∫
φ dμ̂

for all φ : M → R continuous. We have that B̂ is the image of B under the natural
projection Σ×M → Σ+ ×M whence (ν̂N ×m)(B̂) > 0.

Define a measure

m̂ = 1
(ν̂N×m)(B̂)

(ν̂N ×m)�B̂
on Σ+ ×M . Since both the set B̂ and the measure ν̂N ×m are F̂ -invariant (recall

that m is ν̂-a.s. invariant), the measure m̂ is F̂ -invariant. Furthermore, for m̂-a.e.
(ω, x) and any continuous φ : M → R, the Birkhoff sums satisfy

lim
n→∞

1

N

N−1∑
n=0

φ(fn
ω (x)) =

∫
φ dμ̂,

which implies that m̂ is ergodic for F and, in particular, is an ergodic component
of ν̂Z × m. This implies (see e.g. [Kif, Proposition I.2.1]) that m̂ is of the form
m̂ = ν̂Z ×m0 for m0 an ergodic component of m for X+(M, ν).

Then, for any continuous function φ : M → R, ν̂N-a.e. ω ∈ Σ+, and m0-a.e.
x ∈ M , we have

lim
n→∞

1

N

N−1∑
n=0

φ(fn
ω (x)) =

∫
φ dμ̂.

Furthermore, since ν̂ ×m0 is invariant and ergodic for F̂ , for ν̂N-a.e. ω ∈ Σ+ and
m0-a.e. x ∈ M we also have that

lim
n→∞

1

N

N−1∑
n=0

φ(fn
ω (x)) =

∫
φ dm0.

In particular,
∫
φ dμ̂ =

∫
φ dm0 for all continuous φ : M → R, whence μ̂ = m0. �

13.2. Proof of Theorem 5.1. Let M be a compact surface, and let μ be a non-
atomic Borel probability on M . Let f ∈ Diff2

μ(M) as in Theorem 5.1. In particular,
f is ergodic, hyperbolic, and, as μ has no atoms, f has one positive and one negative
exponent which we denote by λs

f < 0 < λu
f .



MEASURE RIGIDITY FOR RANDOM DYNAMICS ON SURFACES 1121

13.2.1. Preliminary constructions and observation. Let K ⊂ Diff2
μ(M) be a fixed

compact subset with f ∈ K. Moreover, assume that K is symmetric in that if
g ∈ K, then g−1 ∈ K. For this section set

Σ := ΣK = KZ.

Let σ : Σ → Σ be the left shift, F : Σ×M → Σ×M the canonical invertible skew
products, and DF : Σ×TM → Σ×TM the fiber-wise derivative. With X = Σ×M ,
we observe that F and DF are continuous transformations of X and TX. In what
follows, we will study the fiber-wise exponents of the cocycle DF as the measures
on Σ change. We rely on tools developed in the study of continuity properties of
Lyapunov exponents appearing in many sources including [BBB,BGMV,BNV,Via].

Write M(K) for the space of all Borel probability measures on K. Given
ν ∈ M(K), equip Σ with the shift-invariant measure νZ. For any ν ∈ M(K),
we have that μ is ν-stationary. Moreover, as μ is preserved by every element of
K, the measure νZ × μ is F -invariant and coincides with the measure given by
Proposition 4.2. We will say that μ is ergodic for ν if it is ergodic as a ν-stationary
measure.

We make some preliminary observations.

Claim 13.1. Let ν ∈ M(K) with ν(f) > 0. Then μ is ergodic for ν.

Proof. Suppose μ = μ1+μ2 where μi are non-trivial, ν-stationary, mutually singular
measures. Then

μ1 =

∫
g �=f

g∗μ1 dν(g) + ν(f)f∗μ1.

By the f -ergodicity of μ, f∗μ1 is not mutually singular with respect to μ2. This
contradicts that μ1 is mutually singular with respect to μ2. �

For ν ∈ M(K), we recall the definition of Lyapunov exponents guaranteed by
Proposition 2.1 for the stationary measure μ. We recall that the exponent is νN-a.s.
independent of choice of word. We write

λ1
ν(x) ≤ λ2

ν(x)

for the Lyapunov exponents of μ for words defined by ν at the point x with the
convention that if μ has only one exponent at x we declare λ1

ν(x) = λ2
ν(x). Given

ν and x with λ1
ν(x) �= λ2

ν(x) and ξ ∈ Σ = KZ write

(13.1) TxM = E1
ξ (x)⊕ E2

ξ (x)

for the associated Lyapunov splitting. If λ1
ν(x) = λ2

ν(x), then we write E1
ξ (x) =

E2
ξ (x) = TxM .

Consider an involution on M(K) defined as follows. For g ∈ K define θ(g) :=
g−1. For ν ∈ M(K), θ∗ν is the measure

(13.2) θ∗ν(A) := ν(θ(A))

for A ⊂ K. We have that θ∗ : M(K) → M(K) is involutive.

Lemma 13.2. For ν ∈ M(K) and μ-a.e. x we have

λ1
ν(x) = −λ2

θ(ν)(x).
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Proof. On Σ := KZ, define the involution Ψ: Σ → Σ given by

Ψ: (. . . , g−2, g−1.g0, g1, . . . ) �→ (. . . , g−1
1 , g−1

0 .g−1
−1 , g

−1
2 , . . . ).

We have Ψ∗(ν
Z) = (θ∗ν)

Z.
Consider a μ-generic x and νZ-generic ξ. Then

lim
n→∞

1

n
log ‖Dfn

Ψ(ξ)�E1
ξ (x)

‖ = lim
n→∞

1

n
log ‖Df−n

ξ �E1
ξ (x)

‖ = −λ1
ξ(x).

Similarly

lim
n→∞

1

n
log ‖Dfn

Ψ(ξ)�E2
ξ (x)

‖ = −λ2
ξ(x).

Since Ψ takes νZ-generic words to (θ∗ν)
Z-generic words, this completes the proof.

�

Consider ν ∈ M(K). We remark that if the fiber-wise exponents were both
positive or both negative, the measure μ would necessarily by atomic. Hence for
ν ∈ M(K) we have λ1

ν(x) ≤ 0 ≤ λ2
ν(x).

13.2.2. Invariant measures for the projectivized cocycle. With X := Σ × M and
TX = Σ× TM , let PTX denote the projectivized tangent bundle

PTX := Σ× PTM.

Given (ξ, x, v) in TX with v �= 0, write (ξ, x, [v]) for the class in PTX. We write
PDF : PTX → PTX to denote the action induced by DF on PTX.

For a fixed ν ∈ M(K) let η be a PDF -invariant, Borel probability measure on
PTX which projects to νZ×μ under the natural projection PTX → X. Given such
an η write {ηξ} for the family of conditional measures induced by the projection
PTX → Σ.

Given ζ, ξ ∈ Σ we have a natural identification of {ξ} × PTM and {ζ} × PTM ,
and we view ξ �→ ηξ as a measurable map from X to the space of measures on
PTM .

Recall we have two natural partitions of Σ: the partitions into local stable and
unstable sets {Σ−

loc} and {Σ+
loc}. The conditional measures on Σ induced by either

partition is naturally identified with νN. Recall (cf. Section 4.3 and ignore the

modification in Section 9.1) that we write F̂ for the σ-algebra of local unstable sets

on Σ. We will say η is a u-measure if ξ �→ ηξ is F̂ -measurable. Alternatively η is a
u-measure if for νZ-a.e. ξ ∈ Σ and νN-a.e. ζ ∈ Σ+

loc(ξ), we have

ηξ = ηζ .

We similarly define s-measures and define η to be an su-measure if it is simultane-
ously an s- and u-measure. We remark that u-measures correspond to ν-stationary
measures on PTM projecting to μ. (See [Via, Chapter 5] for more details.)

If η is an su-measure, then the level sets of the map ζ �→ ηζ are essentially
saturated by local stable and local unstable sets. Since the measure νZ has product
structure, if η is an su-measure, the assignment ζ �→ ηζ is νZ-a.s. constant. In
particular, if ν is an su-measure, there is a measure η0 on PTM projecting to μ
on M with η = νZ × η0. If η is assumed PDF -invariant it follows that η0 is ν-a.s.
invariant.
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Claim 13.3. Let νj ∈ M(K) converge to ν in the weak-∗ topology. Let ηj be a
sequence of PDF -invariant u-measures, projecting to (νj)

Z × μ. Then the set of
weak-∗ accumulation points of {ηj} is non-empty and consists of PDF -invariant
u-measures projecting to νZ × μ.

The above claim follows for instance from [Via, Proposition 5.18].
We note that there always exist PDF -invariant s- and u-measures. However,

the existence of PDF -invariant su-measures is unexpected, absent the existence of
a ν-a.s. invariant subbundle V ⊂ TM . However, there is a dynamical situation
where every PDF -invariant measure is an su-measure.

Proposition 13.4 ([Led2, AV]). Suppose ν ∈ M(K) is such that λ1
ν(x) = 0 =

λ2
ν(x) for μ-a.e. x. Then any PDF -invariant measure η for the projectivized cocycle

PDF : PTX → PTX projecting to νZ × μ is an su-measure.

In what follows, we will primarily focus on measures ν such that μ is ergodic
and has two distinct Lyapunov exponents λ1

ν < λ2
ν for DF . In this case we have

two canonical measures η1ν and η2ν given by

(13.3) dηjν(ξ, x, [v]) := dδEj
ξ(x)

([v]) dμ(x) dνZ(ξ),

where Ej
ξ(x) is the associated subspace of the Lyapunov splitting (13.1). By the

DF -invariance of the distributions Ej
ξ(x), we have that the measures ηjν are PDF -

invariant. Furthermore, it follows from Proposition 4.5 that η2ν is a u-measure and
η1ν is an s-measure.

In the above setting, the measures defined by (13.3) are the only ergodic PDF -
invariant measures on PTX projecting to νZ × μ. Indeed, see the following claim.

Claim 13.5. Let ν ∈ M(K) be such that μ is ergodic for ν and has two distinct
Lyapunov exponents. Then any PDF -invariant probability measure η projecting to
νZ × μ is of the form

η = aη1ν + (1− a)η2ν

for some a ∈ [0, 1].

Proof. For (ξ, x, v) ∈ TX � E1(ξ, x) write v = v1 + v2 with vj ∈ Ej
ξ(x) and define

ψ(ξ, x, v) ∈ [0,∞) by

ψ(ξ, x, v) =
‖v1‖
‖v2‖ .

As ψ(ξ, x, tv) = ψ(ξ, x, v), ψ descends to a function

ψ : PTX � E1(ξ, x) → [0,∞).

For (ξ, x, v) ∈ TX � E1(ξ, x), we have that

DFn(ξ, x, v) =
(
σn(ξ), fn

ξ (x), Dxf
n
ξ v

1 +Dxf
n
ξ v

2
)
,

and hence for any sufficiently small ε > 0 and νZ × μ-a.e. (ξ, x) there is a c with

ψ (PDFn(ξ, x, [v])) ≤ c exp
(
n(λ1

ν − λ2
ν + 2ε)

)
ψ(ξ, x, [v]).

In particular, for almost every (ξ, x, [v]) ∈ PTX � E1(ξ, x) we have

ψ (PDFn(ξ, x, [v])) → 0

as n → ∞. By Poincaré recurrence, we conclude that η(ψ−1(0,∞)) = 0. �
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In the context of Theorem 5.1 we have the following characterization of su-
measures.

Lemma 13.6. Let ν ∈ M(K) be such that ν(f) > 0. Then there exists a PDF -
invariant, su-measure projecting to νZ × μ if and only if one of the subbundles
{Eu

f , E
s
f} or their union Eu

f ∪ Es
f is ν-a.s. invariant.

Proof. The only if case is clear. Indeed, if Eu
f is ν-a.s. invariant, then η defined by

dη = dδEu
f
dμ dνZ is an su-measure. If the union Eu

f ∪ Es
f is ν-a.s. invariant, we

may take

dη = 1
2 dδEu

f
dμ dνZ + 1

2 dδEs
f
dμ dνZ.

To prove the converse, suppose η is a PDF -invariant, su-measure on PTX. As
remarked above, there is a measure η0 on PTM , projecting to μ, such that η =
νZ× η0. Furthermore, such η0 is Dg-invariant for ν-a.e. g. Since ν(f) > 0, we have
Df∗(η0) = η0. However, by the hyperbolicity of f and arguments analogous to the
proof of Claim 13.5, the only such measures are supported on Eu

f ∪ Es
f . �

13.2.3. Characterization of discontinuity of exponents. Let Merg(K) ⊂ M(K) be
the set of ν such that μ is ergodic for ν. Then for ν ∈ Merg(K) the Lyapunov
exponents λ1

ν ≤ λ2
ν are independent of x. We study the continuity properties of the

maps

λj
(·) : Merg → R

as ν varies in Merg(K) with the weak-∗ topology. The arguments here are well
known. (See, for example, [BNV,Via] and references therein.)

Proposition 13.7. Let ν ∈ Merg(K) be a point of discontinuity for one of λ1
(·),

λ2
(·). Then

(1) λ1
ν < λ2

ν , and
(2) there exists a PDF -invariant su-measure η projecting to νZ × μ.

Proof. We first consider the case where λ1
ν = λ2

ν . Recall then that λ1
ν = λ2

ν = 0.
Suppose λ1

(·) is discontinuous at ν ∈ Merg(K). Then there is some ε > 0 and a

sequence νj → ν in Merg(K) with λ1
νj

< −ε < 0 for every j. For such j, we have

two distinct exponents λ1
νj

< 0 ≤ λ2
νj
. By the pointwise ergodic theorem we have

λ1
νj

=

∫
log ‖Dxfξ�E1

ξ (x)
‖ dμ(x) dνZ(ξ) =

∫
log ‖Dxfξ�[v]‖ dη1νj

(ξ, x, [v]),

where η1νj
are as defined in (13.3). Let η0 be an accumulation point of {η1νj

}. Passing
to subsequences assume η1νj

→ η0. Since each ηνj
is PDF -invariant, it follows that

η0 is PDF -invariant.
Note that (ξ, x, E) �→ ‖Dxfξ�E‖ is a continuous function on PTX. By weak-∗

convergence we have

−ε ≥ lim
j→∞

∫
log ‖Dxfξ�[v]‖ dη1νj

(ξ, x, [v]) =

∫
log ‖Dxfξ�[v]‖ dη0(ξ, x, [v]).(13.4)

From the pointwise ergodic theorem, (13.4) implies that for (νZ × μ)-a.e. (ξ, x) ∈
Σ×M there is a v ∈ TxM with

lim
n→∞

1

n
‖Dfn

ξ (v)‖ < −ε
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contradicting that λ1
ν = 0. This shows that if λ1

ν = 0, then λ1
(·) is continuous at ν.

Similarly, λ2
(·) is continuous at ν if λ2

ν = 0.

We now assume that λ1
ν < λ2

ν . Suppose again that λ1
(·) is discontinuous at ν.

Then there is a convergent sequence νj → ν in Merg(K) with

lim
j→∞

λ1
νj

�= λ1
ν .

We may then select a sequence of PDF -invariant s-measures ηj projecting to νZj ×μ
with

λ1
νj

:=

∫
log ‖Dxfξ�[v]‖ dηj(ξ, x, [v]).

Indeed, if λ1
νj

< λ2
νj
, we may take the canonical s-measures ηj = η1j . Otherwise

we have λ1
νj

= λ2
νj

= 0, and hence, by Proposition 13.4, we may take ηj to be any

PDF -invariant measure with projection νZj × μ.
Let η0 be any accumulation point of {ηj}. Again, η0 is PDF -invariant, and by

Lemma 13.5 we have

η0 = αη1ν + βη2ν , α+ β = 1.

Moreover, by weak-∗ convergence we have

αλ1
ν + βλ2

ν =

∫
log ‖Dxfξ�[v]‖ d(αη1ν + βη2ν)(ξ, x, [v])

=

∫
log ‖Dxfξ�[v]‖ dη0(ξ, x, [v])

= lim
j→∞

∫
log ‖Dxfξ�[v]‖ dηj(ξ, x, [v])

= lim
j→∞

λ1
νj

�= λ1
ν .

It follows that α �= 1, whence β �= 0. By Claim 13.3, η0 is an s-measure. On the
other hand, we have that η1ν is an s-measure and η2ν is an u-measure, whence

η2ν =
1

β
(η0 − αη1ν)

is an su-measure. �

13.2.4. Proof of Theorem 5.1: irreducible case. We prove the conclusion of Theo-
rem 5.1(a). Let f be as in Theorem 5.1. Under the hypotheses of Theorem 5.1(a)
we may find g1, g2 ∈ Γ with Dg1E

u
f �⊂ Es

f ∪ Eu
f and Dg2E

s
f �⊂ Es

f ∪ Eu
f . In-

deed, without loss of generality we may assume there is g2 ∈ Γ with Dg2E
s
f (x) �⊂

{Eu
f (g2(x)), E

s
f(g2(x))} for all x ∈ A with μ(A) > 0. Let g ∈ Γ be such that

DgEu
f (x) �= Eu

f (x) for all x ∈ B with μ(B) > 0. If DgEu
f (x) = Es

f (g(x)) for

almost every x ∈ B, then there is some k with μ(fk(g(B)) ∩ A) > 0. Then take
g1 = g2 ◦ fk ◦ g.

Let K = {f, f−1, g1, g
−1
1 , g2, g

−1
2 }. Then M(K) is the simplex Δ given by the

convex hull of {
δf , δf−1 , δg1 , δg−1

1
, δg2 , δg−1

2

}
.

We write int(Δ) for the interior of the simplex Δ.
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Proof of Theorem 5.1(a). Note that for ν ∈ int(Δ) we have ν(f) > 0, whence μ is
ergodic for ν. It follows from the choice of gi, Proposition 13.7, and Lemma 13.6 that
every ν ∈ int(Δ) is a continuity point of the functions ν �→ λ1

ν , ν �→ λ2
ν . Indeed, were

ν a discontinuity point, there would exist a PDF -invariant su-measure projecting to
νZ×μ which by Lemma 13.6 would imply a union of the two distributions Es

f ∪Eu
f

is Dg1 and Dg2 invariant. Moreover, for ν ∈ int(Δ), at least one λ1
ν , λ

2
ν is non-zero.

Indeed, by Proposition 13.4, if λ1
ν = λ2

ν = 0, then there exists a PDF -invariant
su-measure over νZ × μ which again, by Lemma 13.6, contradicts the choice of gi.

Let P,N ⊂ Δ be the sets

P = {ν ∈ Δ | λ2
ν > 0}, N = {ν ∈ Δ | λ1

ν < 0}.
By the continuity of λj the sets P and N are open in int(Δ). Furthermore, the
simplex Δ is invariant under the involution (13.2) whence P is non-empty if and
only if N is non-empty. Since there are no ν ∈ int(Δ) with all exponents of μ of
the same sign or all zero, it follows that {P,N} is an open cover of int(Δ). In
particular, there exists a ν0 ∈ int(Δ) such that λ1

ν < 0 < λ2
ν .

The conclusion then follows from Theorem 4.10 for ν0. Indeed, we have that μ is
an ergodic, hyperbolic, ν0-stationary measure that is not finitely supported. Recall
that sub-σ-algebras F and G are on Σ×M . If (ξ, x) �→ E1

ξ (x) were F-measurable,

then since is it G-measurable, we have E1
ξ (x) = V (x) for some ν0-a.s. invariant

μ-measurable line field V ⊂ TM . As ν0(f) > 0, by the hyperbolicity of f , we can
conclude that V (x) coincides with either Eu

f (x) or Es
f (x) for almost every x. By

the ergodicity of f and f -invariance of V , Eu
f , and Es

f , it follows that V (x) = Es
f (x)

a.s. or V (x) = Eu
f (x) a.s. The hypotheses on gi ensure no such V (x) exists, and

thus the measure νZ0 × μ is fiber-wise–SRB for the skew product F .
Repeating the above argument, and using the fact that μ is ν0-a.s. invariant,

we conclude that νZ × μ is fiber-wise–SRB for the skew product F−1. It follows
from the transverse absolute continuity property of stable and unstable manifolds
discussed in the proof of Theorem 3.4 that μ is absolutely continuous. �

13.2.5. Proof of Theorem 5.1: reducible case. We prove Theorem 5.1(b). Theo-
rem 5.1(c) is proved similarly. Note that in this case, the continuity of exponents
follows immediately from the hypotheses.

Let f be as in Theorem 5.1(b) and take g ∈ Γ with DgEs
f (x) �= Es

f (g(x)) for a

positive measure set of x. Let K = {f, f−1, g, g−1}. For t ∈ [0, 1] write

νt := tδf + (1− t)δg.

Note that for t > 0 we have νt ∈ Merg(K).
Write V (x) = Eu

f (x). By hypotheses, the line field V is preserved by f and g.
Define

(13.5) χ(t) :=

∫
t log ‖Dxf�Vx

‖+ (1− t) log ‖Dxg�Vx
‖ dμ(x).

It follows that χ(t) is a Lyapunov exponent for the νt-stationary measure μ. Fixing a
Riemannian structure onM , define the average Jacobian J(νt) =

∫
t log | detDxf |+

(1− t) log | detDxg| dμ(x). Then from (2.4)

(13.6) χ̃(t) := J(νt)− χ(t)

is also a Lyapunov exponent. This establishes the following.
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Claim 13.8. For t ∈ (0, 1] the Lyapunov exponents λj
νt

are continuous.

We continue the proof of the theorem.

Proof of Theorem 5.1(b). Let t → 1. By the hyperbolicity of f , from (13.5) and
(13.6), for t sufficiently close to 1, μ has one positive and one negative exponent.
Moreover, for t sufficiently close to 1, it follows that the stable bundle for the
random dynamics Es

ω(x) does not coincide with Eu
f (x) on a set of positive measure.

Thus, were Es
ω(x) non-random, as νt(f) > 0 by the ergodicity of f , the line bundle

Es
ω(x) would have to coincide with Es

f . As g does not preserve Es
f , we conclude

that Es
ω(x) is not non-random.

As μ is not finitely supported, by Theorem 3.1 it follows that μ is an SRB νt-
stationary measure for all sufficiently large t < 1. We show μ is SRB for f . Let
δu denote the unstable dimension of μ with respect to the single diffeomorphism
f : M → M . We show below that δu = 1 which implies μ is SRB for f . This follows
from the following entropy trick.

Let D = dim(μ). Recall the fiber-wise entropy and dimension formulas for
skew products given by Proposition 6.10. Similar formulas hold for the individual
diffeomorphism f. Suppose for the sake of contradiction that δu < 1. Then given
any ε > 0, for all sufficiently large 0 < t < 1,

δuλ2
ν1

= (D − δu)(−λ1
ν1
) > (D − 1)(−λ1

νt
) = λ2

νt
≥ λ2

ν1
− ε.

As ε → 0 as t → 1 this yields a contradiction. We thus have δu = 1. �

13.3. Proof of Proposition 5.5 and Theorem 5.6. Recall the joint cone con-
dition and relevant notation from Section 5.3.

Proof of Proposition 5.5. If A and B do not commute, it follows that Es
A �= Es

B

and Eu
A �= Eu

B. Then for n > 0 large enough, we have that A−nCs and B−nCs are
disjoint. We take f and g sufficiently close to LA and LB so that for some κ > 1
and any x ∈ M

(1) Df(x)f
−1Cs ⊂ Cs and Dg(x)g

−1Cs ⊂ Cs;

(2) if v ∈ Cs, then ‖Dg(x)g
−1v‖ > κ‖v‖ and ‖Df(x)f

−1v‖ > κ‖v‖;
(3) Dfn(x)f

−nCs and Dgn(x)g
−nCs are disjoint in TxT

2.

We further assume analogous properties to the above hold relative to the unstable
cones.

Let Σ+ = {f, g}N. Given ω = (f0, f1, f2, . . . ) ∈ Σ+ define

Es
ω(x) :=

M⋂
i=0

D(fM◦···◦f0)(x) (fM ◦ · · · ◦ f0)−1 (Cs).

The set Es
ω(x) is invariant under scaling; moreover, the cone conditions ensure

Es
ω(x) is non-empty for every ω and every x. Note that if v ∈ Es

ω(x), then for any
j ≥ 0, ‖D(fj ◦ · · · ◦ f0)v‖ ∈ Cs; hence we have

‖D(fj ◦ · · · ◦ f0)v‖ ≤ κ−j‖v‖.

Similarly, if u ∈ Cu, then ‖D(fj ◦ · · · ◦ f0)u‖ ∈ Cu for any j, and hence we have
‖D(fj ◦· · ·◦f0)v‖ ≥ κj‖v‖. It follows that every ν-stationary measure is hyperbolic
with one exponent of each sign. We claim that Es

ω(x) is a one-dimensional subspace.
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Indeed, if otherwise there are non-zero v, u ∈ Es
ω(x) with v = u + w for w ∈ Cu,

then for M sufficiently large we obtain a contradiction as

κM‖w‖ ≤ ‖D(fM ◦ · · · ◦ f0)w‖ ≤ ‖D(fM ◦ · · · ◦ f0)u‖+ ‖D(fM ◦ · · · ◦ f0)v‖
≤ κ−M (‖v‖+ ‖u‖).

In particular, for any ν-stationary measure, Es
ω(x) coincides with the stable Lya-

punov subspace for the word ω at x.
Recall that the cones Dfn(x)f

−nCs and Dgn(x)g
−nCs are disjoint. As the set

of words ω = (f0, f1, f2, . . . ) ∈ Σ with fi = f for 0 ≤ i ≤ n and the set of words
ω = (f0, f1, f2, . . . ) ∈ Σ with fi = g for all 0 ≤ i ≤ n have positive νN-measure,
it follows that the distribution Es

ω(x) is not non-random for every ν-stationary
measure.

It then follows from Theorem 3.1 that any ergodic, ν-stationary measure μ on
T2 is either SRB or finitely supported. Moreover, fixing f , by choosing a generic
perturbation g, for any periodic point p for f we may further assume that p is not
a periodic point for g. Then, as f and g have no common finite invariant subsets,
there are no finitely supported ν-stationary measures. �

Proof of Theorem 5.6. Recall in the statement of Theorem 5.6 we set ν0=
∑

pkδLAk
.

We take ν̃0 =
∑

pkδAk
on SL(2,Z). Consider μ any ν0-stationary measure. The

Lyapunov exponents of μ coincide with the Lyapunov exponents of the random
product of matrices given by ν̃0. In particular, the Lyapunov exponents of μ are
constant a.s. and independent of the choice of μ. As Γ ⊂ SL(2,Z) is infinite and
does not have Z as a finite-index subgroup, it follows that Γ is not contained in a
compact subgroup and that any line L ∈ RP1 has infinite Γ-orbit. By a theorem
of Furstenberg ([Fur, Theorem 8.6]; see also [Via, Theorem 6.11]) it follows that
the random product of matrices given by ν̃0 has one positive and one negative
Lyapunov exponent. The same is then true for any ν0-stationary measure on T2.
Moreover, as Γ is not virtually Z, one can find hyperbolic elements B1, B2 ∈ Γ that
satisfy a joint cone property (defined in Section 5.3) and such that B1 and B2 do
not commute. Write

(13.7) B1 = Ai1Ai2 · · ·Ai� , B2 = Aj1Aj2 · · ·Ajp

in terms of the generators.
For each 1 ≤ k ≤ n take a neighborhood LAk

∈ Uk ⊂ Diff2(T2) sufficiently small
so that

(1) |g±1
k |C2 ≤ C for all gk ∈ Uk and some C > 0, and

(2) writing

f1 = gi1 ◦ · · · ◦ gi� , f2 = gj1 ◦ · · · ◦ gjp
as in (13.7) for any choice of gi� ∈ Ui� and gjm ∈ Ujm , f1 and f2 are
sufficiently close to B1 and B2 so that Proposition 5.5 holds.

In particular, such f1 and f2 satisfy a joint cone condition, are Anosov diffeomorph-
isms of T2, and Es

f1
(x) �= Es

f2
(x) and Eu

f1
(x) �= Eu

f2
(x) for any x ∈ T2.

Take U ⊂ Diff2(T2) in the theorem to be the set U = {g ∈ Diff2(T2) : |g|C2 <
C}. Let ν be a probability measure on U . We moreover assume ν is sufficiently
close to ν0 so that ν(Uk) > 0 for each 1 ≤ k ≤ n.

We introduce some notation. Given f ∈ Diff2(T2), consider PDf acting on the
projectivized tangent bundle PTT2. We naturally identify ν with a measure on
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{PDf : f ∈ Diff2(T2)}. Consider a ν-stationary probability measure η on PTT2.
Note that the projection of η onto T2 is also a ν-stationary measure.

Given f ∈ Diff2(T2), write

Φ(f, x, E) = log(‖Dxf�E‖).

Note that Φ: Diff2(T2)× PTT2 → R is continuous and uniformly bounded on U .

Lemma 13.9. For all ν sufficiently close to ν0, every ergodic, ν-stationary measure
on T2 has a positive Lyapunov exponent.

Proof. Suppose νk → ν0 on U in the weak-∗ topology and that for each k, there is
an ergodic, νk-stationary measure μk with only non-positive exponents. For each
k we may select a νk-stationary probability measure ηk on PTT2 projecting to μk

such that ∫ ∫
Φ(f, x, E) dηk(x,E) dνk(f) ≤ 0.

Indeed, the existence and construction of ηk is essentially the same as in the proof
of Proposition 13.7 and (13.3).

As PTT2 is compact, let η0 be an accumulation point of {ηk}. Then (see, for
example, [Via, Proposition 5.9]) η0 is ν0-stationary. Moreover, η0 projects to a
ν0-stationary measure μ0 on T2 and by weak-∗ convergence (and boundedness of
Φ(f, x, E) on U) ∫ ∫

Φ(f, x, E) dη0(x,E) dν0(f) ≤ 0.

Recall we define ν̃0 =
∑

pkδAk
to be a measure on Γ ⊂ SL(2,Z). Note that TT2

is parallelizable so PTT2 = T2 × RP1. Then define a factor measure η̃0 on RP1 by

η̃0(D) := η0(T
2 ×D).

We have that η̃0 is a ν̃0-stationary measure for the natural action of SL(2,R) on

RP1. Moreover, with Φ̃(A,E) = log ‖A�E‖ we have∫ ∫
Φ̃(A,E) dη̃(E) dν̃0(A) ≤ 0.

On the other hand, by a theorem of Furstenberg ([Fur, Theorem 8.5], [Via, Theorem
6.8]) this is impossible under our hypotheses on Γ. �

Take ν sufficiently close to ν0 so that every ergodic, ν-stationary measure on T2

has a positive Lyapunov exponent. Consider μ an ergodic, ν-stationary measure
on T2. Suppose that all exponents of μ were non-negative. By the invariance
principle in [AV], it would follow that μ is invariant for ν-a.e. f ∈ Diff2(T2). In
particular, the sets of f1 and f2 constructed above for which μ is simultaneously f1-
and f2-invariant have positive measure. As f1 does not preserve Es

f2
, Eu

f2
, or their

union, Theorem 5.1 implies that either μ is atomic or is absolutely continuous. If
μ were absolutely continuous, then, as ν-a.e. f preserves an absolutely continuous
measure, it follows from (2.4) that μ is necessarily hyperbolic. Hence, for all ν
satisfying Lemma 13.9, every ergodic, ν-stationary measure either is atomic or is
hyperbolic with one exponent of each sign.

In the case that μ is hyperbolic with one exponent of each sign, we claim that
the stable line fields for μ are not non-random.
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Definition 13.10. ν is strongly expanding if, for any ν-stationary measure η on
PTT2, ∫ ∫

Φ(f, x, E) dη(x,E)dν(f) > 0.

Let μ be an ergodic, hyperbolic, ν-stationary measure with one exponent of each
sign. Suppose the stable line bundle is non-random. That is, Es

ω(x) = V (x) for
some measurable line field V (x) on TT2. Let η be the measure on PTT2 defined as
follows: for measurable ψ : PTT2 → R set∫

ψ(x,E) dη(x,E) =

∫
ψ(x, V (x)) dμ(x).

It follows from the invariance of Es
ω(x) that η is a ν-stationary measure. Moreover,

from the pointwise ergodic theorem we have∫ ∫
Φ dη dν < 0.

Thus, see the following claim.

Claim 13.11. If ν is strongly expanding, then the stable line bundle for any hy-
perbolic, ν-stationary measure μ is not non-random.

As in the previous lemma we have the following.

Lemma 13.12. Every ν sufficiently close to ν0 is strongly expanding.

From the above, it follows that for all ν sufficiently close to ν0, any ergodic ν-
stationary measure μ which is not atomic is hyperbolic with one exponent of each
sign and, moreover, the stable line field for μ is not non-random. From Theorem 3.1,
it follows that if μ is non-atomic, then μ is SRB for ν. �
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