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1. INTRODUCTION

Given a graph I', there is a naturally associated abelian group Sr, which has
gone in the literature by many names, including the sandpile group, the Jacobian,
the critical group, and the Picard group (due to its independent appearance in
many subjects ranging from statistical mechanics to combinatorics to arithmetic
geometry). The order of St is the number of spanning trees of I'. In [Lor08|, Section
4], Lorenzini asked about certain statistics of the distribution of group structures
among sandpile groups of random graphs. In [CLP13|, Clancy, Leake, and Payne
noticed that sandpile groups did not appear to be distributed according to the well-
known Cohen-Lenstra heuristics [CL84] (which provide a natural first guess as to
how random finite abelian groups might be distributed). They conjectured certain
new heuristics would govern how often various abelian groups appear as sandpile
groups. In this paper, we prove the distribution is as they conjectured.

For 0 < ¢ <1, welet I" € G(n, q) be an Erdds-Rényi random graph on n vertices
with independent edge probabilities q. One might first ask, for a finite abelian group
G, what is lim, o, P(ST ~ G)? In fact, as we prove in this paper (Corollary [0.3]),

lim P(Sr ~G) =0,

n—oo
showing this is too fine a question. We normalize by asking a coarser question
about Sp. For example, the sandpile group of I' is asymptotically almost never
Z7/87 ® Z/3Z & Z/11Z, but we ask, for example, how often is its 3-part Z/3Z7 A
finite abelian group G is simply the direct sum of its Sylow p-subgroups. Let Sr ,
be the Sylow p-subgroup of Sr. For a fixed prime p, we determine and prove how
often (asymptotically) Sr, is a particular finite abelian p-group G.

Theorem 1.1. Let p be a prime and G a finite abelian p-group. Then for a random
graph T' € G(n,q), with Srp the Sylow p-subgroup of its sandpile group,

(1) nl;ngo P(Sr,, ~ Q)

_ #{symmetric, bilinear, perfect ¢ : G x G — C*} H(l _ p2hy
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Theorem [[LT] can be viewed as a result in combinatorics about random graphs,
or alternatively viewed as a result in arithmetic statistics (given the analogies to
Jacobians of curves over finite fields, both philosophical and precise in terms of
component groups of Neron models, discussed in Section [[I]). However, behind
Theorem [Tl is a new universality result on random matrices (see, e.g., Theo-
rem [[L3)), showing that certain statistics of random symmetric matrices are quite
robust and insensitive to the distribution of the matrices. The methods developed
to prove this result include inverse Littlewood-Offord theorems over finite rings and
new techniques for studying homomorphisms of finite abelian groups with not only
precise structure but also approximate versions of that structure.

Note the product on the right in [{IJ) does not involve G and plays the role of a
normalization constant. Also, the entire right-hand side of () does not depend on
q, the edge-probability of the random graph. If G = @, Z/p*Z with Ay > Ay > -
and p is the transpose of the partition A, then we can express the fraction on the
left very concretely as

@) #{symmetric, bilinear, perfect ¢ : G x G — C*}
|G| Aut(G)]

Hi— K
A1 LT_HJ

_ ri(pi+1) YN
=p = ] I a-»2)"
i=1  j=1

(see Lemmas and [T3). For large p, every factor other than the leading power
of p is near 1. For example, if G = Z/p"Z, the right-hand side of Theorem [Tl
is ~ p". If G = (Z/pZ)", the right-hand side of Theorem [ is ~ p~"("+1)/2,
This explains why cyclic groups are seen as sandpile groups so much more often
than higher rank groups of the same size. For example, the Sylow 7-subgroup of a
sandpile group is Z/49 about 7 times as often as it is (Z/7Z)?.

In fact, we show quite a bit more than Theorem [Tl In particular (see Corol-
lary [@.2)) for any finite set of primes we give the asymptotic probabilities of particular
Sylow subgroups at all of those primes, and we find that the Sylow subgroups at
different primes behave (asymptotically) independently.

To prove Theorem [[LT] we first prove a complete set of moments for the random
groups St. Let Sur(A, B) denote the set of surjective homomorphisms from A to
B.

Theorem 1.2. Let G = @)_, Z/a;Z be a finite abelian group with a,|a,_1|---|a;.
Then for a random graph T' € G(n, q), with Sr its sandpile group,

nh_)ngo E(# Sur(Sr, G)) = Haﬁfl.

The product [[; ai" occurs as | A2 G|. We refer to E(# Sur(Sr, G)) as the G-
moment of Sp. For comparison, if H is a random group drawn according to the
Cohen-Lenstra heuristics, then for all finite abelian groups G the G-moment of H
is 1 [CL84l Proposition 4.1(ii) and Corollary 3.7(i)] (see also [EVW16], Section 8]),
whereas in our case the G-moments depend on the group G. We also obtain an
exponentially decreasing (in n) error term (see Theorem [6.2]) for Theorem

We then show (in Section [)) that the moments in Theorem determine the
distribution as given in Theorem [[LJ] despite the moments’ growing too fast to
use the usual probabilistic methods to show that moments determine a unique
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distribution. We also deduce many other statistics of sandpile groups of random
graphs, including the distribution of their p-ranks (see Corollaries[@.1]and @4]). For
example, the probability that p divides |Sr| goes to 1 — [[,~o(1 — p~2*71). Even
more concretely, the probability that a random graph I EiG(n,q) has an even
number of spanning trees goes to ~ .5806. We conclude in Corollary that the
probability that St is cyclic is asymptotically at most

¢(3)7M¢(B) (M) TI¢(9) T e(1) Tt - & . T935212,

where (¢ is the Riemann zeta function, differing from a conjectured value
[Wag00, Conjecture 4.2], and in Corollary that the probability that the
number of spanning trees of I' is square-free is asymptotically at most
C(2)7¢(3)7¢(B)TIC(T)TI¢C(9) 7 - - - &~ 48240306, again differing from a conjec-
tured value [Wag00, Conjecture 4.4]. See also [Lor08| Section 4] for some questions
and results on the topic of how often the sandpile group of a graph is cyclic.

1.1. Sandpile groups. For a general introduction to sandpile groups and some
beautiful pictures of sandpiles, see the Notices’ “What is ...a sandpile?” [LPI0].
There is also an overview given in [NWI11] of the way the group has arisen in
various contexts. One convenient definition is that St is the cokernel of the reduced
Laplacian Ar of ' (see [Lor90] and also Section[2.2]). Thus |Sr| = | Det(Ar)|, which
is the number of spanning trees of I' by Kirchhoff’s matrix tree theorem.

The name “sandpile” comes from work studying the dynamics of a sandpile,
which is a situation in which there is a number of chips at each vertex of a graph,
and a vertex with at least as many chips as its degree can topple, giving a chip to
each of its neighbors. (This is also called a chip-firing game, as originally studied in
[BLS91].) If chips randomly fall on vertices of a graph, toppling whenever possible,
then the recurrent states in this Markov chain naturally form a group (the sandpile
group) that is intimately related to the dynamics of the sandpile. This sandpile
model was first studied in statistical physics in 1988 [BTWSS] (see also [Dha90l
Gab93al|Gab93b.Big99]). The sandpile group is also related to the Tutte polynomial
of the graph. A generating function for counting elements of the sandpile group,
as recurrent sandpiles, by their number of chips (on non-sink vertices) is given by
T(1,y), where T is the Tutte polynomial [LI7l[Gab93allGab93b]. See [HLM™] for a
survey of some of these aspects of sandpiles.

In an analogy between Riemann surfaces and graphs, the sandpile group has been
studied and called the Jacobian (or Picard group or critical group) of the graph
[BATHNI7[Big97]. In this context, the group is a discrete analog of the Jacobian
of a Riemann surface, or alternatively, an analog of the Jacobian of an algebraic
curve over a finite field. In fact, this latter analogy can be made precise, and the
group of components of the Néron model of a Jacobian of a curve over a local field
is given as a Jacobian of a graph [Lor89L[BL02]. In this analogy, the order of the
sandpile group appears in the “analytic class number formula” for graphs [HST06],
and versions of Riemann-Roch and the Riemann-Hurwitz formulas are known for
the Jacobian of graphs [BNO7,BN09].

In part motivated by these many connections, the sandpile group has also been
studied as an interesting invariant of graphs in its own right and determined for
many families of graphs (see the Introduction to [AV12] for pointers to some of this
vast literature).
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1.2. Why those probabilities: The relation to the Cohen-Lenstra heuris-
tics. Some experts had speculated that sandpile groups of random graphs might
satisfy a Cohen-Lenstra heuristic. The Cohen-Lenstra heuristics [CL84] were de-
veloped to predict the distribution of ideal class groups of quadratic number fields,
which are finite abelian groups that measure the failure of unique factorization in
quadratic rings of algebraic integers such as Z[v/—5|. The basic principle is that a
finite abelian group G should occur with probability proportional to | Aut(G)|~t,
barring any known bias in how groups appear. It is a well-known phenomenon that
objects often occur inversely proportionally to their number of automorphisms. As
in our case, with this heuristic, each group must appear with probability 0 because
the sum of | Aut(G)|~! over all finite abelian groups is infinite, but as in this paper,
the usual approach is to study the occurrence of a given Sylow p-subgroup G, which
is expected to occur with positive probability proportional to | Aut(G)| 1.

As a first guess, this is a good one, and in fact the expected value given in
Theorem [[L2l when G is cyclic agrees with the average from the Cohen-Lenstra dis-
tribution, as was noticed empirically in [CLK™14]. But higher averages do not agree
with those from the Cohen-Lenstra distribution. The Cohen-Lenstra distribution
has been generalized to many other distributions where there is some additional
feature of the relevant finite abelian group. Even in the original Cohen-Lenstra
paper [CL84], they modified the heuristic to predict the distribution of Sylow p-
subgroups of class groups of real quadratic and higher degree abelian number fields
for “good” primes p. Gerth [Ger87al[Ger87b] gave different heuristics to predict
the distribution for “bad primes.” Cohen and Martinet gave different heuristics
that predict the class groups of any kind of extension of any number field [CM90].
New heuristics have been suggested by Malle [Mal08|Mal10] and Garton [Garl2]
to replace Cohen and Martinet’s heuristics when there are roots of unity in the
base field. (Note that our moments in Theorem agree with the “g =1 case” of
the moments in [Garl2, Corollary 3.1.2], where the quotes are because the work in
[Garl2] is motivated by work over a function field over F,.) Most closely related
to the situation for sandpile groups are Delaunay’s heuristics for the distribution
of Tate-Shafarevich groups of elliptic curves [Del01] (see also [BKLj"13]). These
groups are abelian and conjecturally finite, and if finite have a non-degenerate, al-
ternating, bilinear pairing. So Delaunay formulated heuristics that replaced Aut(G)
with automorphisms of G that preserve the pairing.

In fact, the sandpile group comes with a canonical perfect, symmetric, bilin-
ear pairing (see [Lor00,[BL02,[Shol0]), and so Clancy, Leake, and Payne [CLP13]
guessed that this pairing should play a role in the distribution. They conjectured,
based on their empirical results, that a particular group G with pairing (,) should
appear with probability proportional to |G|~ Aut(G, (,))|~!. Unlike the situation
for alternating pairings, where each isomorphism class of group has a unique iso-
morphism type of pairing, there are many isomorphism types of symmetric pairings,
especially for 2-groups. The right-hand side of Theorem [[.T]is what we obtain when
summing the heuristic of [CLP13| over all pairings for a given group. It would be
very interesting to have a refinement of Theorem [[.T] that determines how often the
various pairings occur for each group, and in particular to see if they indeed agree
with the prediction of [CLP13].

1.3. Connections to random matrices. When I' is a random graph, the re-
duced Laplacian Ar is a random matrix, so one naturally arrives at a question of
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statistics of random matrices with integer coefficients. It is a well-studied phenom-
enon in the field of random matrices that certain statistics of random matrices,
e.g., their eigenvalue distributions, are (asymptotically) universal in the sense that
they are the same for a large class of different kinds of random matrices. Usu-
ally within this class of random matrices, there are some coming from particularly
symmetric distributions for which the statistics can be computed much more easily
than in the general case. For example, in 1967 Mehta [Meh67] found the eigen-
value distribution of (properly normalized) independent and identically distributed
(i.i.d). Gaussian random matrices converges to the uniform distribution on the unit
disk. Many authors including Girko [Gir84l|Gir04], Bai [Bai97], Bai and Silverstein
[BS10], Gé6tze and Tikhomirov [GT06LGT10], Pan and Zhou [PZI10], and Tao and
Vu [TVO8[TVI0] have proven that large classes of i.i.d. random matrices give the
same asymptotic eigenvalue distribution, with the most general result [TVI0] of
this circular law requiring no other hypotheses other than mean 0 entries and nor-
malization. There is a similar story for symmetric or Hermitian random matrices
[Wigh8|[Pas72l[BS10].

Here, the statistics of interest for our random integral matrices are the distri-
butions of the Sylow p-subgroups of their cokernels. Since for an n x n matrix of
rank 7 mod p, the cokernel has p-rank n —r, the cokernel statistics are a refinement
of rank mod p statistics. In |[CLKT14], Clancy, Leake, Kaplan, Payne, and the
current author show that for a random symmetric matrix over the p-adic integers
Z,, drawn with respect to Haar measure, the cokernels are distributed as in The-
orem [[LT1 These matrices drawn with respect to Haar measure should be seen as
the analog of Gaussian random matrices in the circular law story above—they are
drawn from a distribution with the most possible symmetry and thus make com-
putations more accessible. For (not necessarily symmetric) matrices, the work of
Freidman and Washington [FW89] showed that cokernels of random matrices over
Zy, drawn with respect to Haar measure, are distributed according to the Cohen-
Lenstra heuristics. (See also [BKLj"13| for the case of alternating Haar random
matrices.)

Now we naturally ask whether these asymptotic cokernel (and rank mod p)
distributions for the nicest (Haar) random matrices are universal in the sense that
they hold more robustly for many different kinds of random matrices, as with
eigenvalue statistics in the circular law. There is work (with some errors) of Maples
[Map13] on this problem for (not necessarily symmetric) matrices with i.i.d. entries
in Z,. In this paper we prove the following strong universality result for cokernel
(and rank mod p) distributions of symmetric random matrices.

Theorem 1.3. Let 0 < a < 1 be a real number and p be a prime. Let X be a
symmetric random matric in My, (Z) with entries X;; independent for i < j such
that for any t € Z/pZ, the probability P(X,;; = t (mod p)) < 1 — a. Let col(X)
denote the column space of X in Z" and cok X, denote the Sylow p-subgroup of
Z"/ col(X). For any finite abelian p-group G,

lim P(cok X, ~ G)

n—oo
#{symmetric, bilinear, perfect ¢ : G x G — C*} ok_1
= 1—
Gl A(©) L=

k>0
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and
. o o _r(4n) = — = —2in—1
nh_}n;@ P(rank(X mod p) =n—r)=p~ " 2 ‘_l +| 1(1 —p" ‘l_ll(l —p~ ).

Theorem is proven in the same way as Corollaries and (see Re-
mark [07). We also prove asymptotic independence of the joint distribution for
finitely many primes p (see Corollary [0.2]). In Theorem [Tl our random matrix is
a graph Laplacian, so it does not have independent entries, and we further work to
show universality even given the dependence of the diagonal.

The r = 0 case of the second part of Theorem [[L3] gives the probability that X
mod p is non-singular. The singularity probability of random matrices has been well
studied over R and over [F,,. Over R, upper bounds on the singularity probability of
a random matrix with +1 i.i.d. entries have been given by Komlés [Kom67,[Kom68|,
Kahn, Komlés, and Szemerédi [KKS95], Tao and Vu [TVO6L[TV07], and the current
best bound (and extension to more general entry distributions) is due to Bourgain,
Vu, and P. M. Wood [BVWIQ]. Over F,, there is work determining the asymptotic
singularity probability for quite general random matrices over I, by a large number
of authors, including Kozlov [Koz66], Balakin [Bal68], Kovalenko and Levitskaya
[KL75], Kovalenko, Levitskaya, and Savchuk [KLS86], Brent and McKay [BMS87],
Charlap, Rees, and Robbins [CRR90], Blémer, Karp, and Welzl [BKW97], Cooper
[Co000], Kahn and Komlés [KKO01], and Maples [Map10].

Our matrices Ar are symmetric, which adds significant difficulty over the case
of independent entries. In the case of singularity probability of symmetric matrices
over R with independent entries on and above the diagonal, Costello, Tao, and
Vu obtained the first good upper bound [CTV06], with improvements by Costello
[Cos13] and Nguyen [Ngul2], and the current best bound due to Vershynin [VerII].
To our knowledge, this paper is the first work that addresses the singularity prob-
ability of random symmetric matrices over F,. The specific tools we develop to
prove our results are new and of a more algebraic flavor than the previous work on
singularity probability over R or IF,,, but many themes, including inverse Littlewood-
Offord theorems, are similar.

1.4. Our method to determine the moments. We prove Theorem via a
result in which a much more general random symmetric matrix replaces the graph
Laplacian (see Theorem [6.1]). We then prove (in Theorem [B2)) that these moments
in fact determine a unique distribution. We are thus able to use the case of coker-
nels of uniform random symmetric matrices over Z/aZ, whose distributions were
determined in [CLK™ 14|, and by our universality results, deduce that the moments
and distribution of this simple case hold in great generality.

There are some interesting features of our method, in particular in comparison
to previous work. First of all, we only have to consider linear Littlewood-Offord
problems, and not quadratic ones (as in [CTV06l[Cos13|[Ngul2/[Veril]), even though
our matrices are symmetric. Second, our method can easily handle the dependence
of the diagonal of the Laplacian on the rest of the entries. Third, we in fact
obtain the moments, which are interesting averages in their own right and have
been studied at length for finite abelian group valued random variables in the work
related to the Cohen-Lenstra heuristics. (For example, Davenport and Heilbronn
[DHT1] determined the Z/3Z-moment of the class groups of quadratic fields. See
also [Bha05l[EVWI6,[EVWI12,[FK06,[FKOT7,[Gar12] for other examples of results in
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number theory about certain G-moments of class groups.) Fourth, the moments
only depend on the reduction of the matrix entries from Z to Z/aZ for some a, so
we are able to work with random symmetric matrices over Z/aZ. (Of course, we
need all the moments, so we must work over Z/aZ for each a.)

Theorem gives the expected number of surjections Sr — G. The sandpile
group is Sp = Z"1/ArZ" !, so it suffices to determine to probability that a
surjection F : Z"~! — G descends to Sr (for each F). Equivalently, we determine
the probability that FAr = 0. This is a system of linear equations in the entries of
Ar. The system is generated by on the order of n equations and is in (g) variables.
(This contrasts with the usual Littlewood-Offord problem which is 1 equation in n
variables.) Unfortunately, the natural generators for this system have only order
n of the (g) coefficients non-zero. The system of equations is parametrized by
Hom(Z"~1,G*) = (G*)"~!, where G* is the group of characters on G. Further,
some nontrivial C' € (G*)"~! (we call these special) turn out to give equations in
which all of the coefficients are 0, and which C are special depends on the choice
of F.

So while we have linear Littlewood-Offord type problems over Z/aZ (with a
not necessarily prime, and with a growing number of linear equations instead of a
single equation), the difficulty is to understand what structural properties of F' and
C influence how many of the coefficients of these equations are 0 (see Section []).
Our results are inverse Littlewood-Offord theorems (e.g., see Lemma [41]) in the
sense that they say that any F' that does not obey a desired bound has some very
specific structure that we use to give an upper bound on the number of bad F. We
develop two new concepts, depth and robustness, to capture these relevant kinds
of structure. We will give a brief overview of these concepts now; full details are
included as the concepts arise in the paper.

For o C [n — 1], let V,, denote the column vectors in Z"~! that have o entries
0. Depth captures the structural properties of F' that influence how many non-
zero coefficients appear in our system of equations. For an integer D with prime
factorization [[, p;’, let £(D) =3, e;.

Definition. The depth (depending on a parameter § > 0) of a surjection F' :
Z"! — G is the maximal positive D such that there is a o C [n — 1] with |o| <
{(D)d(n — 1) such that D =[G : FV,], or is 1 if there is no such D.

The idea is that up to ignoring a small number of basis vectors (those corre-
sponding to o), the image of F' is index D in G. For the o in the definition of
depth, the group F'V, can be thought of as the “stable” image of F.

Robustness captures the structural properties of C' that influence how many
non-zero coefficients appear in a particular equation, given F. Viewing F €
Hom(Z"~1,G) and C € Hom(Z"!,G*), we can add them to obtain F + C €
Hom(Z" ™1, G @ G¥).

Definition. Given F', we say C' is robust for F' (depending on a parameter v > 0),
if for every o C [n — 1] with |o] < v(n — 1),
ker(F + Cly, ) # ker(F|v, ).

We can think of a robust C' somewhat intuitively as preserving more informa-
tion about V' than F' does, even up to ignoring a small number of basis vectors.
Unfortunately, it is not easy to see why this controls non-zero coefficients without
getting into the technical details.
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We identify the special C' exactly in terms of F'. Despite their rarity, the special
C give the limit in Theorem (the main term in Theorem [6:2). The remaining
cases form a complicated error term that we must bound. For F' of depth 1, for
non-special C we prove the associated equation has at least order of n non-zero
coefficients, and for robust C' we prove the associated equation has at least order
of n? non-zero coefficients. For each larger depth, we compare F to a combination
of a depth 1 “F” for a subgroup F'V, of G (where we use the above) and an “F”
for a quotient group G/FV, of G (where we use an Odlyzko-type bound). There is
a delicate balance between the number of non-zero coefficients we can get in each
case and the number of pairs (F,C') that fall into that case.

Finally, to deal with the dependence of the diagonal in Ar, we actually do all
of the above for a matrix with independent diagonal entries and then enlarge F' to
condition on what we require of the diagonal.

1.5. Our method to determine the distribution from the moments. The
question of when the moments of a distribution determine a unique distribution is
well-studied in probability and called the moment problem. Roughly, if the sequence
of moments of a random variable does not grow too fast, then the distribution of the
random variable is determined by the moments. For example, Carleman’s condition
states that if D7, m;kl/ (k) diverges, then there is a unique distribution on R
having my, as the kth moment [Dur07, Section 2.3e]. The standard counterexample
is based on the lognormal density and has kth moment /2. Tn particular, there
are many R-valued random variables X with distinct distributions, such that for
every k, we have E(X¥) = ek’ /2,

In our problem, the moments grow like the lognormal counterexample. One
can see this even if we were only interested in the p-ranks of sandpile groups.
Recall our moments are indexed by groups, but we will compare some of them
to a usual moment. Note that # Hom(Sr, (Z/pZ)F) = X* for X = prrank(Sr),
By adding Theorem over all subgroups G of (Z/pZ)* we conclude E(X*) is of
order p(kz_k)/ 2. However, the fact that our random variable X can only take values
in powers of p makes the problem of recovering the distribution not completely
hopeless.

If we were interested just in p-ranks (and did not want to distinguish between
Z/pZ and Z/p*7Z for example), we could apply a method of Heath-Brown [HB94a),
Lemma 17]. His strategy can be used to show that if X is a random variable valued
in {1,p,p?, ...}, and there is a constant C such that for all integers k¥ > 0 we have
E(XF) < Cpk2/2, then the distribution of X is determined by its moments. Heath-
Brown uses coefficients of precisely constructed analytic functions of one variable
to lower-triangularize the infinite system of equations given by the moments. (See
also [FK06l, Section 4.2] which has a similar result but with a method that does not
generalize to suit our needs.)

In order to recover the distribution of the entire Sylow p-subgroups of the sand-
pile group, we develop a generalization of Heath-Brown’s method that replaces
the analytic functions of one variable with analytic functions of several complex
variables. However, the straightforward generalization which uses Heath-Brown’s
functions for each variable is too weak for our purposes. We perfectly optimize a
function in each variable for our needs, and our moments are just small enough
for it to work. In the end, we prove that mixed moments determine a unique joint
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distribution in cases where, as above, the moments are growing too fast to use
Carleman’s condition but where we have a restriction on the values taken by the
random variables.

1.6. Further questions. This work raises many further questions. While we ob-
tain an error bound in n for Theorem (see Theorem [6.2]), we have not made
explicit the dependence of the constant in that error bound on G. It would be
interesting to know if such an explicit dependence could translate into an error
bound in n for Theorem [[.1] and of what size.

We also work with p fixed, and therefore our methods are not ideal for ques-
tions that require consideration of p large compared to n, such as determining the
probability that Sr is cyclic (for which we obtain only an upper bound, though at
what, in light of our results, seems very likely to be the correct answer). It would
be very interesting to know if our approach could be combined with ideas from
[Map13], which are uniform in p, to determine the probability that Sr is cyclic. As
a by-product of understanding the group structure, we have determined the distri-
bution of the size of |St| in the p-adic metric, but it is also natural to ask about
the distribution of |Sr| as a real number. While from the above we see that it is
any particular size with asymptotic probability 0, we can ask about the probability
that it lies in appropriately sized intervals. As discussed above, it would also be
nice to have results on the distribution of the pairing on Sr.

Another interesting question is whether results such as Theorems [I.I] and
hold for other models of random graphs or whether the values of the probabilities
and the moments change (see [CLK 14, Remark 2]). Our results already allow the
edge probabilities to vary as long as they are independent and bounded above and
below by a constant. However, it would be interesting to know if one obtains the
same distribution on sandpile groups for sparser graphs, in particular in the case of
G(n,q) when ¢ > (1+¢€)log(n)/n in which the graph is still asymptotically almost
surely connected. There is an analogous question for denser graphs (and if g gets
too large, the graphs will be too close to complete graphs and will definitely not
follow the distribution of Theorem [[T]). It would also be interesting to determine
the distribution of sandpile groups of r-regular graphs.

In this paper we work with random symmetric matrices as the basic object, and
we have already had to deal with one kind of dependency (beyond the symmetry)
in our matrices—the dependency of the diagonal in the graph Laplacian on the
other entries. We specifically developed our method to handle this dependency
easily, and it should be able to handle other linear dependencies on the columns
of a symmetric matrix as well, as long as they apply to all the columns. It would
be nice to understand whether our approach can be extended to handle linear
dependencies that only apply to some of the columns, and in general to what extent
dependencies affect the outcome of the distribution of the cokernels of random
symmetric matrices. Another interesting case to consider is one in which some of
the entries of the matrix are fixed, such as for the adjacency matrix of a random
graph in which case the diagonal entries are 0. The cokernel of the adjacency matrix
is called the Smith group and has been studied, e.g., in [CSX14|[D.J13].

In this paper, our method finds the actual values of the probabilities occurring
in Theorem [[T] by using our universality results that say the values are the same
for a large class for random matrices, and then citing a computation for the case
of uniform random symmetric matrices over Z/aZ. There are further statistics
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of these uniform random matrices over Z/aZ, which if determined would, using
our Corollary @Il immediately give more statistics of sandpile groups of random
graphs. See the end of Section [0 for details.

1.7. Outline of the paper. In Sections ] through [6] we prove Theorem (and
the analog of Theorem for cokernels of symmetric random matrices). In Sec-
tion Bl we prove that the moments of Theorem in fact determine the relevant
distributions. In Section @ we show what those distributions are, by comparing to
the case of cokernels of uniform random symmetric matrices over Z/aZ, for which
the distribution and the moments have already been computed in [CLKT14]. In
particular, we deduce Theorem [[1] from Corollary

2. BACKGROUND

2.1. Cokernels of matrices. For an n x n matrix M with entries in a ring R, let
col(M) denote the column space of M (i.e., the image of the map M : R™ — R").
We define the cokernel of M,

cok(M) := R"™/ col(M).

2.2. Sandpile group. Let [n] denote the set {1,...,n}. Let I be a graph on n
vertices labeled by [n]. The Laplacian Ly is an n X n matrix with (4, j) entry

11if {4,5} is an edge of T’

0if i # j and {i,7} is not an edge of T'

—deg(i) if i = j.
We have that Lr is a matrix with coefficients in Z. Let Z C Z" be the vectors
whose coordinates sum to 0. Clearly, col(Lr) C Z. We define the sandpile group

Sr := Z/col(Lr). This is clearly a finitely generated abelian group, and it is finite
if and only if I" is connected.

2.3. Random graphs. We write I' € G(n, q) to denote that I" is an Erdés-Rényi
random graph on n labeled vertices with each edge independent and occurring with
probability q.

2.4. Finite abelian groups. For a prime p, a finite abelian p-group is isomorphic
toD._, 7./p 7 for some positive integers \; > Ay > --- > \,.. We call the partition
A the type of the abelian p-group. For a partition A, we use G to denote a p-group
of type A when p is understood.

For an a € Z and a finite abelian group G, we can form the tensor product
G ®z Z/aZ. This is a tensor product of the two objects as Z-modules, but it is
particularly simple to say what it does to a particular group. We have

(@ Z/aiZ> ®z L/aZ = (P Z/(ai,0)Z,

where (a;, a) is the greatest common divisor of a; and a. So for primes p t a, the
Sylow p-subgroups are killed, and if p® is the highest power of a prime p dividing
a, then summands Z/p‘Z of G for i < e are untouched and summands Z/p‘Z for
i > e are changed to Z/p°Z. In terms of the partition diagram for the type A of the
Sylow p-subgroup of G, it is truncated so that all rows are length at most e.
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The exterior power A2G is defined to be the quotient of G ® G by the subgroup
generated by elements of the form g ® g. If G, are the Sylow p-subgroups of G,
then A2G = @p /\QGp. If G, is type A, generated by e; with relations prie; =0,
then A?G,, is generated by the e; A e; for i < j with relations phie; A ej =0. So

NG =~ EB(Z/p)‘iZ)Fl.

K2

For a partition A, let A’ be the transpose partition, so )\;- is the number of \; that
are at least j. Note that ), (i —1))\; is the sum over boxes in the partition diagram
of A of i — 1, where i is in the row the box appears in. Summing by column, we

obtain (i —1)A; = >, M Of particular importance to us will be the size

7o
kj(/\J 1)

| A2 Gyl = pzi(ifl))‘i = pzj 3

The exponent of a finite abelian group is the smallest positive integer a such that
aG = 0. When R = Z/aZ, any finite abelian groups H, G of exponent dividing a are
also R-modules, and their group homomorphisms are the same as their R-module
homomorphisms. When the ring R is understood, we write G* for Hom(G, R). If
the exponent of G divides a, then G* is non-canonically isomorphic to G.

We use (g1,-..,9m) to denote the subgroup generated by g1, ..., gm.

2.5. Pairings. A map ¢ : G x G — C* is symmetric if ¢(g,h) = ¢(h,g) for all
g,h € G. When G is an abelian group, the map ¢ is bilinear if for all g1,g2,h € G
we have ¢(g1+ g2, h) = ¢(g1, h)P(ga, h), and similarly for the right factor. The map
¢ is perfect if the only g € G with ¢(g,G) = 1 is g = 0, and similarly for the other
factor.

2.6. Notation. We denote the order of groups and sets using either absolute value
signs | - | or #. (This inconsistency is because sometimes the absolute value signs
are confusing when coupled with the notation | for “divides” or parentheses, and
the sharps take up too much space in some formulas.) We use ~ to denote “is
isomorphic to.” We use P to denote probability and E to denote expected value.
The letter p will always denote a prime.

3. OBTAINING THE MOMENTS I: DETERMINING THE STRUCTURAL PROPERTIES
OF THE EQUATIONS

In the next four sections, we will prove Theorem Let G be a finite abelian
group and I € G(n,q). We will write S for Sr and L for the Laplacian L. The
group S is defined as a quotient of Z, so any surjection S — G lifts to a surjection
Z — @, so we have

E(#Sur(S,G)) = > P(col(L) C ker(F)).

FeSur(Z,G)

Our approach will be to estimate the probabilities on the right, but we will start
with a slightly more general setup.

Let a be a positive integer and let G be a finite abelian group of exponent dividing
a. Let R be the ring Z/aZ. We will retain this notation through Section [l Note
that Sur(S,G) = Sur(S ® Z/aZ,q). Said another way, whether col(L) C ker(F)
only depends on the entries of L modulo a.
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In this and the next three sections, we shall do all our “linear algebra” over
R. Since R is not a domain, this necessitates working more abstractly instead of
just with matrices. A particular source of difficulty compared to the case of linear
algebra over a field is that not all exact sequences of R-modules split; i.e., there are
subgroups of our finite abelian groups that are not direct summands. We will work
carefully to find summands when we need them.

For an R-module A, let A* := Hom(A, R). We define the R-module V = R™.
We have a distinguished basis vy,...,v, of V, and a dual basis v],...,v} of V*.
Also let W = R™. We have a basis wy,...,w, of W, and a dual basis wj,...,w}
of W*. If we realize V' and W as spaces of length n column vectors with entries
in R, then an n x n matrix M over R gives a homomorphism from W to V| i.e.,
M € Hom(W, V).

Let F € Hom(V, @) be a homomorphism[| Then col(M) C ker(F) if and only
if the composition FM € Hom(W,G) is 0. Let ¢ be a primitive ath root of unity.
For M € Hom(W, V), since FM is in the finite abelian group Hom(W, G) of order
|G|™, the Fourier expansion give

1
lppm=0 = R Z (oM.
CeHom(Hom(W,G),R))
Thus if X € Hom(W,V) is a random matrix,
1
P(FX =0) =E(lpx—0) = —— E(¢OFX)).
( ) =Ellrx—0) = 5w > (¢ )
CeHom(Hom(W,G),R))

These C' give the equations a matrix that has to satisfy in order for a surjection
given by F' to extend to the cokernel of the matrix. (Hence, “equations” appears
in the title of this section.) As a function of X, we have that C(FX) is a linear
function of the entries X;; (for ¢ < j) of the matrix X. Below we will work out
explicitly the coefficient of each X;;. When these entries X;; are independent, we
can then factor the expected value above (see Equation () below).

Since W ~ R™, we have that the natural map Hom(W, R) ® G — Hom(W, G) is
an isomorphism. So, the natural map Hom(Hom (W, G), R)) — Hom(Hom(W, R) ®
G, R)) is an isomorphism. Composing with the isomorphism Hom(W* @ G, R) ~
Hom(W*, Hom(G, R)), we have an isomorphism Hom(Hom(W,G),R)) —
Hom(W™*,G*). Via this isomorphism, we will viewll C € Hom(W™*,G*). So for
w* € W*, we have C(w*) € G*. We write e : G* x G — R for the map that
evaluates a homomorphism.

Because of our interest in random matrices whose entries with respect to a specific
choice of basis of V are independent, we must necessarily sometimes compute things
with respect to this basis. In other parts of the proof, we will work with a different

LIf we realize V as a space of column vectors of length n, and G as a space of column vectors
of length k, then we can realize F' as a k X n matrix. However, note that G will not be the space
of all length k column vectors over R. If G = @ Z/a;Z, then the ith entry of G (and thus the
entries in the ith row of F) must be multiples of a/a;.

2If a is a prime p, and we realize everything as in the footnote above, then FX is a k X n matrix
with entries in Z/pZ, and the C in the sum are the Z/pZ-valued functions on k X n matrices that
give linear combinations of the coefficients of the matrix. We could realize each C as Tr(C'—) for
some n x k matrix C' over Z/pZ.

3When a is prime, following the above footnotes, C' gives the n x k matrix € Hom(W*, G*)
that we associate to C' (and call C, by a slight abuse of notation).
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choice of basis more closely aligned with G (through F'). For some parts of our
proof, in particular because we are working over the non-domain R = Z/aZ, it will
be much simpler to work in a basis-free way.

In particular, our interest is in symmetric matrices X. For this even to make
sense, we nNow identify@ W =V*, and so v; = w; and v} = w;. Our matrix X will
be symmetric, and so we have

CFX) = 373 elCloy), F(e) X
= Z (e(C(v;), F(vi)) + e(C(vi), F(v5))) Xij + ZG(C(Ui)v F(v;)) Xis.
1=1 j=1+1 =1

We will study these coefficients in detail. For i < j we define, E(C, F,i,j) :=
e(C(vj), F(v;))+e(C(v;), F(vj)), and we also define E(C, F,1,1) := e(C(v;), F(v;)).
Thus when the entries X;; (for ¢ < j) of X are independent,

3) MFXzO%:E%- }: T E(CPEFiXer)

CeHom(Hom(W,G),R)) i<j

When u # 0, we will see that E(¢%Xii) is pretty small (Lemma[@Z). Thus, our goal
is to see that as many as possible of these E(C, F,i,j) coefficients are non-zero,
as often as possible. To do this we will have to identify structural properties of F'
and of C' that influence the number of non-zero coefficients. Given F' and C, there
are on the order of n? coefficients, and so ideally we would like on the order of n?
of them to be non-zero. Unfortunately, given F', this is not the case for every C.
Given a “good” F, for most C we will be able to show that on the order of n? of
the coefficients are non-zero, but for some only on the order of n of the coefficients
are non-zero, and for some C all of the coefficients are 0. The rest of this section
is devoted to explaining the structural properties of C' that will determine which
of the three cases above it falls into. (This is all for “good” F. In this section
we will determine the structural property that makes F' good, and in Section B we
will come to the rest of the F', which we will have to stratify by further structural
properties. )

We will now write these coefficients E(C, F, 1, j) more equivariantly via a pairing.
For F € Hom(V,G) and C € Hom(V, G*), we have a mapl ¢ ¢ € Hom(V, G & G*)
given by adding F and C. (In the Introduction we called this F + C, but that
notation would get too cumbersome below.) Similarly, we have a map ¢c r €
Hom(V,G* ® G) given by adding C' and F. There is a map

(GHG*) x (G*®G) S R,
((g1,01), (¢2,92)) = d2(g1) + ¢1(g2).
Note that for all u,v € V,
t(¢o,r(u), drc(v)) = e(Cu), F(v)) + e(C(v), F(u)).

4We see here another reason using matrices and vectors is problematic. Since V is supposed
to consist of column vectors, V* is naturally row vectors, but yet W is column vectors.

5Following the above footnotes, if we have matrices F' and C, then ¢F,c corresponds to the
matrix obtained by stacking F' on top of C?.
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Note that V has distinguished submodules V, generated by the v; with ¢ & o for
each o C [n]. So V, comes from not using the coordinates in o. Clearly, for any
submodule U of V|

ker(¢p clu) C ker(F|u).
Now we will define the key structural property of C' (with respect to F') that
determines if enough of the coefficients F(C, F,i,j) are non-zero.

Definition. Let 0 < v < 1 be a real number which we will specify later in the
proof. Given F, we say C is robust (for F) if for every o C [n] with |o| < yn,

ker(¢r.clv,) # ker(Fly,).
Otherwise, we say C is weak for F'.

We will estimate the number of weak C'.

Lemma 3.1 (Estimate for number of weak C). Given G, there is a constant Cg
such that for all n the following holds. Given F € Hom(V,QG), the number of
C € Hom(V,G*) such that C is weak for F is at most

OG(HH?— 1) 1™

Proof. If C' is weak, then there exists some o C [n] with || < [yn] such that
ker(¢F70|Va) = ker(F|Vd).

If the above equality holds, it will still hold if we enlarge o, so we can assume
|o| = [yn] — 1. We note in particular this implies that for s € V,, we have that
Cs is determined by F's. (If Fs = Fs' but Cs # Cs', then s — s’ € ker F but
s —s & keréopclv,.) Let H := imF|y,. Further, there is a homomorphism
¥ 1 H — G* so that Cs = ¢(F's) for all s € V,,. There are (Hnﬁ—l) choices for
o, then |G|[""1=1 choices for Cv; for i € o, then # Hom(H,G*) choices for ¢, and
then C is determined. Note that since H is a subgroup of G we can find C'g such
that # Hom(H,G*) < Cg. O

Now we will find a sufficient condition for C' to be weak in terms of our pairing ¢.

Lemma 3.2. Let FF € Hom(V,G) and C € Hom(V,G*). Let U be a submodule
of V such that FU = G. Then if U' is a submodule of V such that t is 0 on
do.r(U) X ¢pc(U’), then the projection map G & G* — G, when restricted to
orc(U"), is an injection. In particular ker(¢pp c|u+) = ker(F|yr).

Proof. Suppose for the sake of contradiction that there is a k € U’ with Fk = 0
and Ck =1 # 0 € G*. Since ¥ # 0, there must be some g € G such that 1(g) # 0.
Since FU = G, there must be some r € U such that Fr = g. Suppose Cr = /.
Then t(¢c,r(r), ¢r.c(k)) = ¢'(0)+1(g) # 0. So, we conclude ¢r (U’) injects into
G.

If ker(¢pp.clu’) # ker(F|y), then there is some (0,¢) € ¢pc(U’) with ¢ # 0,
which is a contradiction. (]

Corollary 3.3. Let F € Hom(V,G) and C € Hom(V,G*). Let U be a submodule
of V' such that FU = G. If

#{i € [n] | Uoc,r(U), drc(vi)) # 0} <n,
then C' is weak for F.
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Proof. Let o :={i € [n] | t(¢pc,p(U), dr,c(vi)) # 0}. Then t(¢c,r(U), ¢r,c(Vs)) =
0, and so by Lemma we have that C' is weak for F. O

Now we will identify the influential structural property of F' (which will make it
“g00d” as discussed above), which is a (transpose and) generalization of the notion
of a linear code from vector spaces to R-modules.

Definition. We say that F' € Hom(V, G) is a code of distance w, if for every o C [n]
with |o| < w, we have FV, = G. In other words, F' is not only surjective, but would
still be surjective if we throw out (any) fewer than w of the standard basis vectors
from V. (If a is prime so that R is a field, then this is equivalent to whether the
transpose map F : G* — V* is injective and has image im(F) C V* as a linear
code of distance w, in the usual sense.)

We have the following lemma about codes which we will next combine with the
property of robustness to get a good bound on the number of E(C, F\ i, j) that are
non-zero.

Lemma 3.4. Let H be a finite R-module with Sylow p-subgroup of type \. Suppose
F € Hom(V, H) is a code of distance on, and let C € Hom(V, H*). Let r = \.
Then we can find Ay, ..., A, € H and By, ..., B, € H* such that for every1 <i <r

#{j € [n] | Fv; = A; and Cv; = B;} > én/|H|?,

and after the projection to the Sylow p-subgroup H, of H, the elements Ay, ..., A,
generate Hy.

Proof. We find the A; and B; by induction, so that (after the projection to H,,) the
elements Ay,..., Ay generate a p-subgroup of type Ai,..., \; that is a summand
of H,. Suppose we are done for ¢ < k. First, we count for how many 7 is Fv;
order pM+1 in H,/(Aj1,..., Ag). Suppose, for the sake of contradiction, that there
were fewer than dn. Then we have a o C [n] with |o| < én such that F'V, # H,
contradicting the fact that F' is a code. So, we have at least dn values of i such that
Fu; is order p**+1 in the projection of H/(A1, ..., Ay) to the Sylow p-subgroup of
H. There are at most |H|? possible values for (Fv;, Cv;), so we let (Agi1, Bri1)
be the most commonly occurring value for at least the dn values of ¢ we have
found above. Any element of order p**+! in an abelian p-group of exponent p*++1

generates a summand. Since after projection to H), we have that (4,,...,A) is a
summand of H), and Ay41 generates a summand of the quotient H,/(A1, ..., Ax),
we see that (Ay,..., Ag, Agy1) is as desired. O

Now we will see that robustness does in fact determine that many of our coeffi-
cients of interest are non-zero.

Lemma 3.5 (Quadratically many non-zero coefficients for robust C'). Let P be the
set of primes dividing the order of G. If F € Hom(V,G) is a code of distance dn,
and if C € Hom(V,G*) is robust for F, then there are at least von?/(2|G|?|P|)
pairs (i,7) with i < j such that

E(C,F,i,j) #0.
Proof. For each p € P, let G, be the Sylow p-subgroup of G. Now using p € P and
F € Hom(V,G) and C € Hom(V,G*), we pick A;(p) and B;(p) as in Lemma B4]

and let
7i(p) :={j € [n] | Fv; = A; and Cv; = B;}.
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Let 7(p) := U;7;(p). Let V, be the submodule of V' generated by the v; for j € 7(p).
In particular, note that 'V}, in the projection to G,, is all of G,,.

Now, let W be the submodule of V generated by the V, for all p € P. In
particular, note that FW = G. So if C is robust for F, by Corollary [3.3]

#{i € [n] [ t(¢c,r(W), drc(vi)) # 0} = ¥n.

We have
Y #licn] | H¢o,r(Vy), dro(v)) # 0} = #{i € [n] | t(do,r (W), drc(vi) # 0}
peEP

because if v; pairs non-trivially with W, it must pair non-trivial with one of the
submodules generating W. So for some p € P, we have

#{i € [n] | t(¢c,r(Vp), ¢rc(vi)) # 0} = yn/|P|.
Then for that particular p,
#{i € [n] [ tdc.r(v)), prp.c(vi)) # 0 for some j € 7(p)} = yn/|P|.

However, there are at least dn/|G|? values of j' € 7(p) with ¢c r(vy) = dc,r(v;).
Since for ¢ < j we have t(¢c,r(vj), prc(vi)) = E(C, F,1,7), and also t(¢c r(v;),
dr.c(vi)) = 2E(C, F,i,i), we conclude that there are at least ydn?/(2|G|?| P|) pairs
(i,7) with ¢ < j such that F(C, F,i,j) # 0. O

Next, we will study how many coefficients can be non-zero for weak C'. Of course,
for C =0, all the E(C, F,i,7) are 0. However, given F', there are other C for which
this can happen, and next we will identify those C.

We now take a second equivariant point of view on FE(C, F,i,7). There is a
natural map coming from the evaluation map G ® G* — R,

Hom(V,G) @ Hom(V,G*) - V* @ V*.
We can further compose with the quotient V* ® V* — Sym? V* to obtain
Hom(V,G) @ Hom(V,G*) = V* @ V* — Sym? V*.
So given an F' € Hom(V, G), we have a map
(4)
mp : Hom(V,G*) — Sym? V*,
Cmr > > (e(Clug), Fv) + e(Clvy), Fu)))oivs + Y e(Clvg), Fvi)) (07
i=1 j=i+1 i=1

First, we determine some elements C' € Hom(V, G*) that are in the kernel of mp;
i.e., all the E(C, F,i,j) are 0. For F' € Hom(V,G) and u € G*, we can compose F’
with u to obtain w(F) € Hom(V, R). We can then multiply by v € G* to obtain
u(F)v € Hom(V,G*). So we have a map

sp @ A°G* — Hom(V, G*),
uAv = u(F)v—o(F)u.

We can check that im(sp) C ker(mp) by choosing a generating set for G*. Let
G~ @™, Z/a;Z, with ay, | am—1 | -+ | a1. Let G* be given by generators e and
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relations ef = 0. So using Equation (), we will check that im(sp) C ker(mp).
Let C' = sp(ej Aej). Then the v;v; coefficient of mp(C) is

e(C(vp), F(va)) + e(C(va), F(vp))
= e(ej (Fup)ej — ej(Fup)ei, F(va)) + e(ej (Fva)ej — €5 (Fva)ei, F(up))
= ¢ (Fup)ej(Fva) — €5 (Fvp)ei (Fva) + €7 (Fug)ef (Fop) — e (Fva)e; (Fop)

=0.

Similarly, the coefficient of (v})* in mp(sr(ef Ae})) is 0. So we conclude im(sr) C
ker(mp). (Later, in Lemma B we will show that im(sp) = ker(mp) when F is
surjective.) We call the C in im(sp) special for F.

Now we see how many special C' there are.

Lemma 3.6. If FV = G, then we have that sp is injective. In particular, # N>
G|# ker(mp).

Proof. Tt suffices to show that # A% G|#im(sr). Since everything in sight can be
written as a direct sum of Sylow p-subgroups, we can reduce to the case that G is
a p-group of type A (and accordingly assume R = Z/p°Z). Let r = \,.

By Lemma B4 we can find 7 C [n] with |7| = 7 such that F'v; generate G for
i € 7. Let W be the submodule of V' generated by the v; for v € 7. Let e; generate
G with relations p*ie; = 0. Let w; € W be such that Fw; = e;. Let W/ C W be
the subgroup of W generated by the w;. Note that we have the maps

W JpW — W/pW 5 G /pG.

Since W' /pW', W/pW, and G/pG are vector spaces over F,,, with rank at most r,
exactly r, and exactly r, respectively, and the composite map above is surjective,
we must have that W’ /pW' — W/pW is surjective and thus by Nakayama’s Lemma
that W’ = W. Since the r elements w1, ..., w,, generate the free rank r R-module
W, they must be a basis, and we have a dual basis w} of W*.

Let G* be generated by e}, ..., e’ with relations p*ief = 0, and such that efe; =

p¢~ i and for i # j we have efe; = 0.

Recall we have
sp: A°G* — Hom(V,G*).
We can take the further quotient
s A°G* — Hom(W, G*).
We see that by the definition of sp
sp(e; Nej)(wa) = ej(ea)e; —ej(ead)e;-

Recall that since W is a free R-module, the natural map W* @ G* — Hom(W, G*)
is an isomorphism. By checking the values on each w,, we can confirm that

sple; ANej) =p°~ klwf@e;—pe ’\Jw ® e}
For i < j, this element has order p*i, and we can easily conclude that

PP DA | i (50 | im(sg). =

Now we will see that as long as C' is not special (in particular even if it is weak),
we can get a moderately good bound on the number of non-zero E(C, F,i,j).
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Lemma 3.7 (Linearly many non-zero coefficients for non-special C). Given F €
Hom(V,G) a code of distance én, suppose C' € Hom(V,G*) \ im(sp) (so C is not
special for F). Then there are at least dn/2 pairs (i,7) with i,5 € [n] and i < j
such that

In other words, not only do we have im(sz) = ker(mp), but in fact when F is a
code, we have that non-special C' are not even near ker(mp).

Proof. Suppose not, for contradiction. Then let 7 = {(i,5)|i,5 € [n];i < j;
E(C,F,i,j) # 0} and |7| < én/2. Let o be the set of all ¢ and j that appear
in an (¢,j) € m. Then |o| < dn and for (4,7) with i € o or with j ¢ o we have
E(C, F,i,j) = 0.

In Lemma [3.0] we have a lower bound on the size of ker(mp). Next we will find
a lower bound on the size of im(mp). Recall we have

mp : Hom(V,G*) — Sym? V*,

Cr D D (e(Cloy), Fui)) +e(Cvi), Fvg))vivy + D e(Clui), Flvi)) (0] ).
i=1

i=1 j=i+1

We can take the further quotient using Sym? V* — Z that sends vivi to0if,j € 0.
Call this map

mp : Hom(V,G*) — Z.

So we have some C which is not in im(sp) but for which m/=(C) = 0. We will
showd this is impossible by showing that (#G"/# N2 G)|#1im(m/z). Once we have
established (#G"/# A% G) | #im(m/z), by combining with Lemma [B.6] we will see
that im(sy) = ker(m/z) and obtain a contradiction, proving the lemma.

As in the proof of Lemma [B:6] we can establish that (#G"/# A? G)|# im(m/,)
by reducing to the case where G is a p-group of type A, which we will do for the
rest of the proof of this lemma (and accordingly assume R = Z/p°Z).

We can find 7 C [n] \ o such that |7| = r and Fv; for ¢ € 7 generate G using
Lemma B4l (Specifically, since |o| < dn, and F is a code of distance dn, we have
FV, =G and so Fly, is a code of some positive distance. We apply Lemma [34] to
Flv,.) Let e; be generators for G with relations ptie; = 0. Let G* be generated
by e},...,e: with relations p*ief = 0, and such that efe; = p°~* and for i # j,
we have efe; = 0. As in the proof of Lemma [B.6] we can find an alternate basis
w1, - .., w, for the free R-module generated by the v; with ¢ € 7, with the property
that F'w; = e;.

S0ur argument below is analogous to the following procedure for finding a lower bound on
the rank of a matrix. (1) Cross off some rows (analogous to our consideration of m/, and m/.).
(2) Find 71 columns whose remaining (not crossed off) entries have a single non-zero entry and
the rest 0, and all those r1 non-zero entries are in different rows. (The analog of this is done
in Equation (@), where the z} ® e, for £ ¢ 7 and 1 < m < r correspond to the “columns” and
the wy, ® z; correspond to the “rows.”) (3) Cross off the r1 rows that have a non-zero entry in
one of the columns found in step 2 (analogous to our consideration of m%/). (4) Find r2 columns
whose remaining (not crossed off) entries have a single non-zero entry and the rest 0, and all those
ro non-zero entries are in different rows. (The analog of this is done in Equation (), where the
z; ®e;, for £ € 7 and 1 < m < r correspond to the “columns” and the wy, ® z; correspond to

the “rows.”) (5) Conclude the matrix has rank at least r1 + ra.
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We will in fact consider the further quotient by Sym? V* — Z’ that sends vivy
to 0 for ¢, j with neither ¢ nor j in 7. Call this map

m'p : Hom(V,G*) — Z'.

It will now be convenient to pick a new basis, other than the v;, for V. We do
this by replacing v; (for i € 7) with the wy, (for 1 < k < r) chosen above. Precisely,
fori & 7,let z; :=v;. Let 7 = {m,..., 7}, and for 1 < i < r, let 2z, := w;. These z;
are a basis for V', and the corresponding dual basis of V* we call z}. So zf(z;) =1
if i = j and is 0 otherwise. (Note that for ¢ ¢ 7, we have 2z} = v}.)

If we write F' =371, <, 1<j<, fij#] ® ej, for any 2z we have

Fzp = Z ferer.

1<k<r

Then

mp(C) = Z Z F(z))z7 2 + > e(Clz), F(z)) ()
i=1j5=1 i=1
Z (Clz), Y fwen)zizy + > e(Clz), Y fwew)(2])

i=1 j=1 1<k<r i=1 1<k<r
So
(27 ®ey,)
n n n
=> Z ez (z) ® e, > finer)zizy + Y ez () ®@eh, > finer)(2))’
i=1 j=1,j%#i 1<k<r i=1 1<k<r

n
Z f“np )\mZ[ Z] +Zfzmp )\mZ; Zi)(zj)z

e=Am 2 2p.

Since, Fzy = > 1<, foner, and Fz,, = e;, we have f;; = 1 and f. = 0 for
kAt LT, T

— Ao K K e—Am Kk e—Xm k%
(5) mF Zé ® 6 E fzmp R Ry = E f‘rimp Wiz =P W Zp -
1ET 1<i<r

We see here that im(m/) has a subgroup of size #G™~". We can then form m//,

a further quotient to only terms z/z7 with 4,j € 7. In particular, the subgroup of
size #G™~" we have identified above will go to 0 under ml. If £ € 7,

/l/ —Am Kk e—Am k% =Ny, Kk
(6) mp(zf ®ep, E fimp® 2Ry = E frimp W;zg =P WinZg -
1€ET 1<i<r

e—N\; "

So for i < j, we see that p*~“w;w} € im(mF). It follows that im(m/) has a
subgroup of size pM 7T tA We conclude that #G"/# N2 G = #Gn—phrt A |
im(m/%) | im(m/z) . This completes the proof of the lemma as explained above. O
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4. OBTAINING THE MOMENTS II: A GOOD BOUND FOR SURJECTIONS
THAT ARE CODES

In this section, we put the results of the last section together to prove a good
bound on the probability that a code descends to a map from the cokernel of a
random matrix. If X is a random matrix with integer entries X;;, we say X is
not a-concentrated mod a if for any prime pla and any ¢ € Z/pZ, the probability
P(X;; =t (modp)) <1—oa.

Lemma 4.1. Let 0 < a < 1, § > 0, a is a positive integer, and G is a finite abelian
group of exponent dividing a. Then there is a ¢ > 0 and a real number K such that
the following holds.

Let X be a random symmetric n X n matriz, not a-concentrated mod a, whose
entries X;; € Z/aZ, for i < j, are independent. Let F' € Hom(V,G) be a code of
distance on. Let A € Hom(V*,G). For all n we have

IP(FX =0) — | A2 G||G]™"| < Ke%(l;c")

and
P(FX = A) < K|G|™".

From the point of view of descending a surjection to the cokernel of a matrix, we
only need A = 0 above, but, in fact, for our work with non-codes we will need the
case of general A as above. For the proof of Lemma [4.1] we will need the following
result.

Lemma 4.2. Let £ # 1 be a bth root of unity, and z a random variable valued
in Z/VZ that takes each value with probability at most 1 — «. Then |E(&*)] <

exp(—a/b?).

Proof. For t € Z/bZ, let py = P(z =t). We have 0 < p; <1 —a with >, p, = 1.
Then we will see | Y, p&'| < e=/Y" Let U be a unit vector in the same direction
as E := )", pi&" in the complex plane. We consider the projections of the £ onto U
and their (signed) lengths projy (£'). We have E = U Y, piproju (£'). Let c € Z/bZ
be so that among the ¢!, the complex number £¢ is closest to U in angle. So for
t # ¢, we have projy(£') < cos(w/b). So

ZptprojU(ﬁt) < cos(m/b) + pe(1 — cos(m/b)) < acos(m/b) +1 — au.

We have —1 + cos(m/b) < —b=2 for b > 1. So —1 + cos(w/b) < —b2e=/V”,

Integrating with respect to «, we obtain acos(m/b) +1 —a < e’o“/b27 and conclude

| > pet] < e=/%” | as desired. 0
Now we are ready to prove Lemma [Tl

Proof of Lemma [£1]. Recall,

1 _
P(FX =A)= e > EEOTEY),
‘ | CeHom(V,G*)

where ( is a primitive ath root of unity.
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We break the sum into 3 pieces: (we will later choose 0 < v < §)

(1) when C is special for F,
(2) when C is not special for F and is weak for F,
(3) when C is robust for F.

Given F, there are | A2 G| special C for which ¢¢FX) =1 for all X. Thus, the
sum from (1) contributes | A2 G||G|™™ when A = 0 and at most | A2 G||G|™™ in
absolute value for any A.

For (2), we will first use the fact that there are not too many weak C' and
our bound from Lemma 3.7 From Lemma [3I] we have that the number of C €
Hom(V, G*) such that C is weak for F' is at most

OG(Hn?— 1) 1™

Next we factor the expected value
]E(CC(FX_A)) _ E(CC(—A)) H E(CE(C’F’i’j)Xij) H E(é—E(C,F,iﬂi)Xu).
1<i<j<n 1<i<n

Let u € R = Z/aZ with u # 0. So by LemmalL2] we have |[E(("*#)| < exp(—a/a?).
Given F a code of distance én and a C that is not special, by Lemma 3.7 we
have that at least on/2 of the E(F,C,i,7) are non-zero. So if C' is not special for
F', we conclude that
[E(CFXD)| < exp(—adn/(2a”)).

Now, given F and a robust C for F, by Lemma [35 we have that at least
von?/(2|G|?|P|) of the E(C,F,i,j) are non-zero (where P is the set of primes
dividing a). So if C' is robust for F', we conclude that

[E(CFXA)] < exp(—aron®/(2G|Pla?)).

In conclusion

1 _
CeHom(V,G*), special
1 _
<o > [E(COx—A)

CeHom(V,G*), not special

1 n
<— Cg< >G””exp —adn/(2a2))+|G|" exp(—aydn?/(2|G|?| P|a? )
G (o[ )67 expl=adn (203) +G]" exp(-ande? (CIGI|Pla®)
So for any ¢ > 0 such that ¢ < ad/(2a?), given 6, o, G, ¢, we can choose ~ sufficiently
small so that we have

1 —
BEX=4)- R > E(CCFX-4))
CeHom(V,G*), special
1
< G (Cg exp(—cn) + exp(log(|G|)n — aydn?/(2|G[*|P|a?))) .

For n sufficiently large given «, G, d, ¢, 7y, we have

log(|G|)n — ayén?/(2|G|?|Pla?) < —cn.
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So in the case A = 0, for n sufficiently large, we have

Ca + 1) exp(—cn)
G|

B(FX = 0) — | 2 GGl < &

For n that are not sufficiently large, we will just increase the constant K in the
lemma.
For any A, we have for n sufficiently large given «, |G|, 4, ¢, 7,

1 _
P(FX = A) < R Z E(cCFX-A))| 4 (Cq + 15):1)( cn)
CeHom(V,G*), special

IN

|G|7"(| A G|+ Cg +1).

For n that are not sufficiently large, we can increase the constant K as necessary. [

5. OBTAINING THE MOMENTS III: DETERMINING THE STRUCTURAL PROPERTIES
OF THE SURJECTIONS

In the last section, we dealt with F' € Hom(V, G) that were codes. Unfortunately,
it is not sufficient to divide F' into codes and non-codes. We need a more delicate
division of F' based on the subgroups of G. For an integer D with prime factorization

[Lp5t, let £(D) =", e;.

Definition. The depth of an F € Hom(V,G) is the maximal positive D such that
there is a o C [n] with |o| < £(D)dn such that D = [G : FV,], or is 1 if there is no
such D. (When using this definition, we will always assume § < £(|G|)~1.)

Remark 5.1. In particular, if the depth of F' is 1, then for every ¢ C [n] with
|o| < dn, we have that F'V, = G (as otherwise {([G : FV,]) > 1), and so we see
that I is a code of distance dn. We have handled F' that are codes in the previous
section, and for each larger depth, we compare F' to a combination of a depth 1
“F” for the subgroup FV, of G (and an “F” for the quotient group G/FV, of G
(where we use an Odlyzko-type bound).

Also, if the depth of F'is D, then D | #G. Now we will bound the number of F
that we have of depth D.

Lemma 5.2 (Count F' of given depth). There is a constant K depending on G
such that if D > 1, then number of F € Hom(V, G) of depth D is at most

n —n n
K(rw)m - 1)'0'"“" .

Proof. We sum over o C [n] with |o| = [¢(D)dn] — 1 the number of F' such that
D =[G : FV,]. Then we sum over the subgroups of G of index D (this sum will
go into the constant). Now given a particular subgroup H of index D, we bound
the number of F such that FV, = H. We have at most (|G|/D)™~1?]) maps from
V, to H, and at most |G|I°! choices for the Fv; with i € 0. So, for a particular &
and H, the number of F' such that F'V, = H is at most

(1G1/D)*1DIGy ! = @y D=1,
Note that |o| < £(D)dn, and the lemma follows. O
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The following is a variant on the bound on the number of F' of depth D that we
will need when we are working with the Laplacian of a random graph. Note that
if G is a finite abelian group of exponent dividing a, then so is G ® R, and so we
can apply the definition of depth above to an F' € Hom(V, G @ R) (where G in the
definition would be replaced with G @ R).

Lemma 5.3. Let pro : G @& R — R be the projection onto the second factor.
There is a constant K depending on G such that if D > 1, then the number of
F € Hom(V, G ® R) such that pro(Fuv;) =1 for alli € [n] and of depth D is at most

n —n n
K(rw)svﬂ - 1)'0'"“" .

Proof. Let G' = G @ R. Note that |G'| = a|G|. We sum over o C [n] with |o] =
[¢(D)dén] —1 the number of F' such that F'V, has index D in G’. Then we sum over
the subgroups of G’ of index D (this sum will go into the constant). Now given a
particular subgroup H of index D, we bound the number of F' such that F'V, = H.

For i € [n] \ 0, we must have Fv, € H and pra(Fv;) = 1. There are at most
|H|/a elements h € H such that pra(h) = 1. So there are at most

(|H|/a)*~ "t = (|&")/(aD))"*~ V" = (|G| / D)~V

possibilities for F|y, . There are at most |G| choices for the Fv; with i € 0. So,
for a particular o and H, the number of F' such that FV, = H (and pra(Fuv;) =1
for all i € [n]) is at most

(IGl/Dy* NG|l = |G Dl
Note that |o| < £(D)dn, and the lemma follows. O

For each depth D of F, we will use the following specially tailored bound for
P(FX =0).

Lemma 5.4 (Bound probability given depth). Let a,d, G, a be as in Lemma ET1
Then there is a real number K such that if F € Hom(V,G) has depth D > 1 and
[G: FV] < D (e.g., the latter is true of FV = G), then for all X as in Lemma [£]]

and all n,

P(FX =0) < Ke 1= q|/ D)~ A=HD))n,

Proof. Pick a o C [n] with |o| < ¢(D)dn such that D =[G : FV,]. Let FV, = H.

We will now divide the elements i € [n] depending on whether Fv; € H. Let n
be the set of ¢ such that Fv; € H. Let 7 = [n] \ n. Note that [n]\ o Cn, so 7 C o,
and so |7| < ¢(D)dén. However, since [G : FV] < D, we cannot have 7 empty.

Let X,, be obtained from X by replacing the entries in the 7 rows with 0, and
let X, be obtained from X by replacing the entries in the 1 rows with 0. Note that
FX € Hom(V*,G). We identify Hom(V*, G) with G™ using the preferred basis of
V*. We have

P(FX =0) = P(FX, € H")P(FX = 0|FX, € H").

Let X,, be obtained from X, by replacing the entries in the 7 columns with 0.
We have

P(FX, € H") < P(FX,, € H").
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Note that all the entries in X, that we have not made zero are independent. So if
col;(X;) denotes the ith column of X,

P(FX., € H") = [[P(Fcoli(X,) € H).
i€EN
Consider a single column and let 1, ..., x|, be the entries in the 7 rows of X, and
fi,--+, fiz] € G\ H be the corresponding entries of F'. We condition on x3, ..., ||
Then, for some fixed g € G, and f; € G\ H, we are trying to bound

P(fiz1 =g in G/H).

Since f; # 0 (mod G/H), there is some prime p that divides the order of f; in
G/H. Note that if fix = g in G/H, then for A € Z such that p 1 A, we have
filx + A) # gin G/H. So the = such that fiz = ¢g in G/H are contained in a
single equivalence class modulo p. Thus,

P(fiz1 =ain G/H) <e™ %,

since the probability that x; is any particular equivalence class mod p is at most
e~ “. We can then conclude

P(FX, e H") < el

Now let X,,, be obtained from X,, by replacing the entries in 7 columns with 0.
Let X, = X, + Xy (s0 X, is obtained from X by replacing the 7 columns with
0). We have

P(FX = 0|FX, € H") < P(FX,, =0|FX, € H").

We estimate P(F X, = 0|FX, € H") by conditioning on the 7 rows (and columns)
of X. Then for any n x n matrix Y, over R supported on the 7 rows with F'Y, € H"
(and with Y7, obtained from Y, by replacing the entries in the 7 columns by 0),

P(FX,, =0/X, =Y;) = P(FX,, + FY;, = 0|X, = Y,).

In particular, F'Y,, is some fixed value in H Il Also, note that Xy is independent
of X,. For a fixed A € H!" we need to estimate P(FX,, = A). Note that F|y.
(i.e., restricted to the n indices) is a code of distance én in Hom(V,, H). (If it
were not, then by eliminating 7 and < Jn indices, we would eliminate fewer than
(4(D) +1)on indices and have an image which was an index that D strictly divides,
contradicting the depth of F.) So by Lemma [T] for some K

P(FX,, + FY,, =0|X, =Y;) = P(FX,, = —FY,, ¢ H") < K|H|~I"l.
So we conclude

P(FX =0) < Kefa\n\‘Hr\nl < Klefa(lff(D)ﬁ)n(|G|/D)7(175(D)5)n_ 0

6. OBTAINING THE MOMENTS IV: PUTTING IT ALL TOGETHER

We can combine our work above to give a universality result on (and the actual
values of) the moments of cokernels of random matrices and of sandpile groups of
random graphs, which we do in the following two theorems, respectively. Recall
the definition of a-concentrated from Section [l
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Theorem 6.1. Let 0 < a < 1 be a real number and G a finite abelian group.
For any ¢ sufficiently small, there is a K > 0 (depending on «, G, c) such that the
following holds. Let X be a random symmetric n X n matriz, not a-concentrated
mod |G|, whose entries X;; € Z, for i < j, are independent. Then,

|E(# Sur(cok(X),G)) — | A2 G| < Ke™.

Proof. We omit the details in this proof, as they are almost identical to (and slightly
simpler than) the details in the proof of our next result, Theorem[6.2] which is in the
case of main interest. If the exponent of G divides a, we can reduce X modulo a so
as to agree with our notation above. We wish to estimate ZFGSur(V,G) P(FX =0).
Using Lemmas and [5.4] we have

> P(FX =0) < Ke ",

FeSur(V,G)
F not code of distance dn

Also, from Lemma [5.2]

E |A2G|G™" < Ke ™.
FeSur(V,G)
F not code of distance dn

‘We also have

> |A2Gl|GIT" < K27,
FeHom(V,G)\Sur(V,G)

Then we have, using Lemma [T]

> |P(FX =0)— | A*G||G]™"| < Ke™*".
FeSur(V,G)
F code of distance dn

Combining, we obtain the theorem. ([l

In particular, the following theorem implies Theorem

Theorem 6.2. Let 0 < g < 1, and let G be a finite abelian group. Then there exist
¢, K > 0 (depending on G) such that if T € G(n,q) is a random graph, S is its
sandpile group, and for all n we have

|E(# Sur(S,G)) — | A* G| < Ke™".

Proof. Let a be the exponent of G. Let R = Z/aZ. Note that # Sur(S,G) =
#Sur(S ® R, G), so throughout this proof we will let S := S ® R. We let L be the
reduction of the Laplacian L modulo a, so L is an n x n matrix with coefficients in
R.

We let X be an n x n random symmetric matrix with coefficients in R with X;
distributed as Eij for ¢ < j and with Xj; distributed uniformly in R, with all X,
(for ¢ < j) and X;; independent. Let Fy € Hom(V, R) be the map that sends each
v; to 1. Now, X and L do not have the same distribution, as the column sums of
X can be anything and the column sums of L are zero, i.e., FoL = 0. However, if
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we condition on FpX = 0, then we find that this conditioned distribution of X is
the same as the distribution of L. Given X and conditioning on the off diagonal
entries, we see that the probability that FpX = 0 is a™" (for any choice of off
diagonal entries). So any choice of off diagonal entries is equally likely in L as in
X conditioned on FpX = 0.

Recall V = R™. So for F' € Hom(V, G), we have

P(FL =0)=P(FX = 0|F,X =0) = P(FX = 0 and F,X = 0)a"

Let I € Hom(V, G @ R) be the sum of F and Fp.

Let Z C V denote the vectors whose coordinates sum to 0, ie., Z = {v €
V | Fov = 0}. Let Sur*(V, G) denote the maps from V to G that are a surjection
when restricted to Z. We wish to estimate

E(# Sur(S,G)) = E(# Sur(Z/ col(L), G))
= > PFL=0)

FeSur(Z,G)
1 -
= P(FL =0
a2 )
FeSur*(V,G)
=|G[7a» > P(FX =0).
FeSur*(V,G)

Note that if F': V — G is a surjection when restricted to Z, then F is a surjection
from V to G @ R.

We start by considering the part of the sum to which we can apply Lemma [5.4]
We let K change in each line, as long as it is a constant depending only on ¢, G, §.
Let oo = max(q,1 — ¢q). We then have

n

@] > P(FX =0)

FeSur*(V,G)
F‘ not code of distance én
| a > P(FX=0) (by Remark 5I)

D>1 FeSur*(V,G)
DI#G  F depth D

Z #{F € Hom(V,G @ R) depth D | pry(v;) = 1 for all i}

| D>1
D|#G

% Ke—a(l —L(D (a|G\/D) (1—¢(D)d)n

a™ n
< — K G nD—n-M(D)én
<jai 2 (mmanw )@

x (=D (o] G D)= 1-HPI (b Temma )

" o—a(1-6(GD5 561Gl
<% ugaypnt 1) " (al )

< Ke “".
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For any 0 < ¢ < a, we can choose § small enough so that

n —a(1-L(|G|)é)n 55(\G|)n< —en
<[£<|G|>an1_1)€ (al G090 < oen,

and the last inequality in the long chain above holds.

Also,
> Inalert< Y Y IAGlaT
FeSur*(V,G) D>1 FeSur™(V,G)
F not code of distance dn DI#G F depth D
n
by L < K GI"D —n+£4(D)én /\2 relllelinis
Oy Lemma B3 < Y & (0 )IG1ID) payelte
D>1
D|#G
n
<K 27n+f(|G\)5n
(V(lG)MW - 1)
< Ke om,

For any 0<c< log(2), we can choose § small enough so that (V(\Gl%rﬂ 71)2_"+€(|GD5"§

—Cn

e~ ", and the last inequality above holds.
We also have
> | A GlIGI™ < > > IAGe
FeHom(V,G)\Sur*(V,G) H proper s.g of G FeEHom(Z,H)
< Z |H‘n—1| A2 G||G|—n+1
H proper s.g of G
< K27™,

Then we have, using Lemma [£.]

3 ‘IP’(FX = 0) - | A2(G @ R)|(a|lG)™
FeSur*(V,G)
F code of distance én

< Z Ke “"(a|G])™

FeSur*(V,G)
F code of distance én

< Ke “"a™".
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In conclusion

n

a ~
— P(FX =0)| —|A*G
| eEx-n) e
FeSur*(V,G)
< % 3 P(FX = 0)
| | FeSur™ (V,G)
F not code of distance én
a” -
g 3 ’]P’(FX:O)— | A2 (G @ R)|(a|G]) ™
FeSur*(V,G)
F code of distance on
+ |- 2G|+ > | A2 (G & R)|(alG))™
FeSur* (V,GQ)
F code of distance dn
< Ke ™ + > | A2 GG + > A2 GG
FeSur*(V,G), FeHom(V,G)\Sur*(V,G)
F not code of distance én
< Ke “".

Recall from above, we have
E(#Sur(S,G)) = [G['a® > P(FX=0),
FeSur*(V,G)

and so we conclude the proof of the theorem. O

7. BASIC ESTIMATES ON ABELIAN GROUPS

In this section we collect some basic estimates on numbers of maps between finite
abelian groups. We do not claim any originality of the results in this section, but
we merely collect them here for completeness and easy reference.

We write G for the abelian p-group of type A. The following two lemmas are
standard.

Lemma 7.1. We have
‘ HOm(Gl“ G)\)‘ = pzl ,U‘;A,Ii .

Proof. Since for finite abelian groups A, B,C, we have Hom(A & B,C)
~ Hom(A,(C) x Hom(B,C) and Hom(A, B ® C) ~ Hom(A, B) x Hom(A4, (), it
suffices to check that the lemma holds for cyclic groups and that the formula re-
spects this multiplicativity, each of which is clear. O

Lemma 7.2 (e.g., Theorem 4.1 of [HROT]). We have

)\1 mg

| Aut(G)] = p= OO T T - p~

i=1j=1

The following lemma, is used in the Introduction to write down an explicit formula
for the probabilities of particular groups.
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Lemma 7.3. If G is a finite abelian p-group of type A,

#{symmetric, bilinear, perfect ¢ : G x G — C*}

A 1
A [FE

= pz, Ai(N+1)/2 H H (1 _p172j).
=1 j=1

Proof. Since any such ¢ has an image in the p*ith roots of unity, we replace C*
by p~MZ/Z, in order to be able to use additive notation. We can write G as an
abelian group with generators ey, ..., ey, and relations phi e; = 0. We can write
Hom(G, p~*Z/Z) then with generators é; such that é;(e;) = p~* and é;(ex) = 0
for k # j.

A symmetric bilinear pairing G' x G — p~*Z/Z is the same as a homomorphism
G — Hom(G,p~™MZ/Z), which can be given explicitly as

ej = > (ejen)ert+ Y (ej,en)p™ Néy

k k
)\kg)\J >\k>/\j

for any choices of (e, ex) € Z/p™»(XiAR)Z such that (e, ex) = (ex, e;). Thus there
are p>i NN +D/2 choices of symmetric bilinear pairings G x G — p~Z/Z.

Now we will compute how many of these are perfect, i.e., induce isomorphisms
G — Hom(G,p~™MZ/Z). By Nakayama’s Lemma, a homomorphism ¢ : G —
Hom(G,p~Z/Z) is an isomorphism if and only if it is an isomorphism mod-
ulo p. In Hom(G,p~™Z/Z)/pHom(G,p~MZ/7Z), we see that p*~2i¢; is trivial
if A\ > A;. Thus it follows from the block upper triangular shape of the map
G/pG — Hom(G,p~™Z/Z)/pHom(G,p~*Z/Z) that this map is an isomorphism
if and only if for every i, the (e;,ex) for elements e;, e, among the A\j — A\j, | gen-
erators with order p’ form an invertible matrix mod p. Using the fact that

[n/2]
#{symmetric matrices in GL,,(Z/pZ)} = pn(n‘;r : H (1—p'=29)
j=1

(e.g., from [Mac69, Theorem 2]), and the fact that in the quotient from homomor-
phisms G — Hom(G, p~*Z/Z) to homomorphisms G/pG — Hom(G,p MZ/Z)/
pHom(G,p~?Z/Z), all the fibers have the same size, we conclude the lemma. [

Lemma 7.4. Let p and X be partitions. Let G, » be the set of subgroups of G
that are isomorphic to G,,. Then

< 1 pE X = ()?,

Gl = s a—2m

Proof. 1t is standard that

!’ !’
My —Hipq pil\i{FH;ik

_ N = (1)) l—p i
71_[ pu g H 1_p—k

i>1 k=1

‘G;M
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(see, e.g., [But87, Equation (1)]). Note that for ¢ such that A, = 0, then if u} > 0,
then |G, | = 0, and otherwise the inner product above is 1. Thus

’ ’
A1 i —Hip1

Gl = p=20=* TT | 10

’ !
1— p_)‘ﬁ‘ﬂi_k

-
i=1 k=1 1=p
SO N = ()2 7 (T 1
= i=1 Mitg i — .
' H ==

The lemma follows using p > 2. (It will be simpler later to have a single bound for
all p.) O

Lemma 7.5. Let G be an abelian p-group of type \. Let F = 172%1/81_[1‘>1
(1—27971. We have

AN —1)
§ ‘/\2 G1| S FAlpZi FASAr)
G1 subgroup of G

Proof. We have

nh(ph—1)
Yo NG =) |Gl

G1 subgroup of G °w

Note that we only have to sum over p that are subpartitions of A, or else |G, x| = 0.
In particular, we only have to sum over p such that py < Ay.
Let C:=[[;5,(1 - 27" and D := 172%1/8 We apply Lemma [T.4]

L) > Lt 1)
pT T < LS e N

Z ‘G“’)‘ CM
I Hopr1 SA1
1 A d;(d;—1)
oD DI ST e
1
di,...,dx; >0
' AL —1)
— pilc“ ’ 3 (p%) Dtk ~ =241 41
1
(117 ,d>\1>0
A (AL —-1)
Zi = A
< pT E (p%)EL=11 —e?+1'
- 1

e1,...,ex; €Z, e; odd

We have that

1, _e2 1, _,2 1. _ 2
)DINIRCIEED SR IED Sy R )

e1€7Z, e1 odd e1>1 e1>1
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So, applying this to each of the A; sums, we have

D AL(A=1)
b=+ 2 Ly g2
E | A2 Gyl < e v E (ps)>i=t —e
G subgroup of G e1,...,ex, €Z, e; odd
AN —1)
1

The above lemma will be used in particular to see that our moments are not too
big for the method developed in the next section to recover a distribution from its
moments.

8. MOMENTS DETERMINE THE DISTRIBUTION

In this section we will see that the moments we have found in fact determine
the distributions of our group valued random variables. We have been working
with the moments E(# Sur(—, G)) so far. As we have seen, these take nice values.
Summing over all subgroups of G, we then obtain the moments E(# Hom(—, G)).
From the point of view of how we found these moments, the “Hom” moments
are just derivative from the “Sur” moments. However, from an analytic point
of view, the moments E(# Hom(—, G)) are easier to work with. For example, if
G = (Z/pZ)* for a prime p, then # Hom(H, G) = prank(H)k Qo for G = (Z/pZ)*,
the Hom moments give the usual moments of the random variable pP-r22k(H) = For
example, when S is a sandpile group of a random graph, as above, we have that
]E((pp'ra“k(s))k) is on the order of p*(*~1)/2 (see Lemma [7.5).

As discussed in the Introduction, these moments are too big to use Carleman’s
condition to recover the distribution, but we can take advantage of the fact that we
know the random variable takes only values p’, where ¢ is a non-negative integer.
In this case, we can view the problem as one of a countably infinite system of
linear equations which we would like to show has a unique (non-negative) solution.
Heath-Brown [HB94a, Lemma 17] (see also [HB94b, Lemma 17]) and Fouvry and

Kliiners [FK06, Section 4.2] have methods which will show that for E((pprank(s ))k)
on the order of p*(*~1/2  the moments do indeed determine the distribution of
p-rank(S). (See also [EVW16, Lemma 8.1] for the case when all the Sur moments
are 1.) However, this will at best determine the distribution of the p-ranks of the
sandpile groups.

Since we would like to determine more than just the p-ranks of the sandpile group,
in this section we prove that we can recover the distribution from the moments we
have found. Heath-Brown’s method [HB94al Lemma 17] is to construct an infinite
matrix that lower-triangularizes the infinite matrix that gives the relevant system
of linear equations. Once the system is lower-triangular, it certainly has a unique
solution. The difficulty is to construct a matrix with entries that are sufficiently
small (and you can prove are sufficiently small) so that all the infinite sums involved
converge. Heath-Brown constructs his matrix with entries from Taylor expansions
of analytic functions in one variable.

Our approach is to develop a multi-variable version of Heath-Brown’s method.
However, the size of our moments are on the boundary of where this approach will
work, and the functions we construct in the following lemma are carefully optimized.
In particular, it is critical that only terms with ds + --- 4+ d,, < by appear in the
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Taylor expansion of H,, ,5(2) below. We now construct the analytic functions of
several variables whose Taylor coefficients we will use to lower-triangularize our
system of equations.

Lemma 8.1. Given a positive integer m, a prime p, and b € Z'™ with by > by >

<o« > by, we have an entire analytic function in the m variables zy, ..., zZm
d dm
Hpp(2) = > Qdy,.d 21" 2
di,...,dm >0
da+rFdpm <by

and a constant E (depending on m, p, and b) such that

“bydy— Gty

lad, ..., | < Ep

Further, if f is a partition of length at most m and f > b (in the lexicographic order-
ing)’ then Hm7p,b(pfl,pf1+f2, L 7pfl-i-"'-i'fm) =0. Iff — b’ then [{7”71)7l)(])]cl’pfl-‘rfz7
L plite) 2,

Note that we could make E explicit in the proof below, but we do not for
simplicity.
Proof. We define analytic functions
Z1 d
G(z) == H (1 — E) = Z ca, 21"
d,>0

and
H(zo,...,2m)

2by - by +2by - b4 4bm_24+2bm 1 >
— _z2 _2) .. _zm
SRR O I R O R [ O

Jj=bi1+b2+1 Jj=bi+ba+bz+1 Jj=b1-+bm+1
d dm
= D) Chadn s
d27--<7dm20

In each of the z; separately, for 2 < i < m, we have that H is a polynomial of
degree b;_1 — b;. We then have an entire, analytic function in m variables

Hppip(2) = G(z1)H (22, ..., 2m) = Z adh_“?dmzfl coegdm
iy rdm >0
do+-+dm <bi

We now estimate the size of the aq, ... 4,,. We see that aq,....q4,, = Cd,€ds,,....d,, -
We have that G(pz) = (1 — ﬁ)G(z) So ¢,p" = ¢, — p~c,_q. Thus ¢, =

—by —bin n(n+1)

p Cn—1 : : _ n —bin——5—
o1 o and by lIldllCthn7 Cn = (—1) m So |Cn| < P 1 2 HZZl
(1 —p~%)~1. Thus,

1 —bydy — 311 +D
|ady,....dp| < 5———5P bry 2 max €d,,. . .d,,-
Hi21(1 —-p") day..sdm

Now we check the final statements of the lemma. If f > b, suppose f; = b; for
i <tand fiy1 > by for some 0 <t < m—1. Then, in particular, fi+---+f; = b1+
cootb; fori <t,and fi+-- -+ fig1 > by +- -+ b1+ 1. However, (when ¢ > 1) since
fis1 < fe = by, we have fi+- -+ fig1 <bi+-- -+ b1 +2b;. Since H,y, ;, » vanishes
whenever 2,411 = p* for integers k with by +- - b1 1 <EkE<by+---+bi—1 420y,
we obtain the desired vanishing.
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For the last statement, we first note that since the product in the definition of G
is absolutely convergent, we have that z; = p” is not a root of G. Then we observe
all the other finitely many factors in H are non-zero in this case as well. ([l

In the following theorem, we prove that the variation of the moments, in which
we take all homomorphisms instead of just surjections, of our abelian group valued
random variables determines the distribution of the variables when the moments are
not too large. We state the result in terms of an infinite system of linear equations.
We will apply this with C', the expected number of homomorphisms, to a group
of type A, and x,, and y,, are the probabilities that the random variable is a group
of type u. Note that the expected number of homomorphisms is a mixed moment,

J
in the traditional sense, of the variables pg ‘.

Theorem 8.2. Let p1,...,ps be distinct primes. Let mq,...,ms > 1 be integers.
Let M; be the set of partitions X\ with at most m; parts. Let M = My x---x M. For
w € M, we write u_j for its jth entry, which is a partition consisting of non-negative
integers p with pj > pd > - ~,ufnj. Suppose we have non-negative reals x,,y,, for
each tuple of partitions € M. Further suppose that we have non-negative reals
C\ for each A € M such that

Jend
Mg

C/\ < ﬁ FmeZ7 2 )

J

j=1

where F' > 0 is an absolute constant. Suppose that for all A € M,

@ > a [Ier g S [[ e SN

peM  j=1 peM  j=1
Then for all u, we have that x, = y,.

To prove Theorem B2l we will use the analytic functions constructed in
Lemma [BJ] to construct an infinite matrix that will lower-triangularize the sys-
tem of equations in (@) below.

Proof. We will induct on the size of p in the lexicographic total ordering (we take
the lexicographic ordering for partitions and then the lexicographic ordering on top
of that for tuples of partitions). Suppose for a v € M have z, = y, for every
€ M with T < v.

We use Lemma Bl to find H,,, ;. ,i(2) = Zda(j)dzfl e z:i,{?j. For A € M, we
define

S
A || (]))\Jlf)\é,)\é—Aé,‘..,Ainj
Jj=1

We wish to show that the sum aem ArC converges absolutely. We have

s > A (-1
< H AT PR P ” M j i 2
E [ANCAl < E a(j)Aif)\é,)\éf)\g,...,)\{njF Pj
ANEM AEM j=1
S
= H E a(]))\l—>\27>\2—>\3,~~7>\mj ijpj : :

j=1XeM;
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We now investigate the inner sum. We drop the j index, and let b = /. We
apply Lemma 8] to obtain

Z (§)dy,da...dye | F P2

diy...,dm >0
do+-+dpm <by

_ _di(di+1) Thei de(CThe; A —1)
< D Ep =TT g : :

di,...,dm >0
do+---+dm <by

it de (St di—1)
2

For each choice of ds,...,d,,, the remaining sum over d; is a constant times
2 di >0 pda(Zbi=ltdatetdm) which converges, so it follows that > xenr ArCy con-
verges absolutely.

Suppose we have x, for 1 € M all non-negative, such that for all A € M,

Z I“Hpj A

pneM j=1
So we have that

2. ZAWHPJ o

AEM peM

converges absolutely. Thus,

ZA)\C)\ Z ZAA%HPZMZZ

xeM NEM peM

= Z Ty Z Ax HPJZZ Ml

pEM  XeM  j=1

= E qu E )\1 A2, X2 =23, Am; P :

neM j=1XeM;

Now we consider the inner sum. Again we drop the j indices. We have

. Dy
E A7) A1 Ao da— gy A D2 i
AEM,

- Z a(j)dl o (pr) B (pratezyde L ppact Y
diseeydm
- H m,p,v (pﬂl7p#1+#27 e ,p,u.1+“-+,um)_

If 1 > v (in the lexicographic total ordering), then some p/ > v7, and so for m = m;
and p = pj, by Lemma BTl H,,, . (p",p*tHe . ptrtotim) = 0. Further, if
p = v, then for each (implicit) j we have Hy, ,, (pHt,ptitrz, .. ptrtthm) £ (),
So for some non-zero u,

ZAACAZ:BVqu Z %ZAAHPJZMM.

AEM peEM,p<v AEM j=1

So since by assumption z, with p < v we determined by the C), we conclude that
x, is determined as well. O
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In the following theorem we achieve two things. We translate solving the above
studied system of linear equations into finding the distribution of our random groups
given their moments. We also deal with the issue that we do not technically have
moments of a distribution, but rather limits of moments of a sequence of distribu-
tions. An important ingredient in solving this issue is showing that in our case, for
any particular equation, we can use bounds coming from other equations to show
that we satisfy the hypotheses of the Lebesgue dominated convergence theorem.

Theorem 8.3. Let X,, be a sequence of random variables taking values in finitely
generated abelian groups. Let a be a positive integer and A be the set of (isomor-
phism classes of) abelian groups with exponent dividing a. Suppose that for every
G € A, we have

lim E(# Sur(X,, G)) = | A% G.

Then for every H € A, the limit lim, . P(X,, ® Z/aZ ~ H) exists, and for all
G € A we have

> lim P(X, ® Z/aZ ~ H)# Sur(H,G) = | \* G.
HeA’ﬂ—)OO

Suppose Yy, is a sequence of random variables taking values in finitely generated
abelian groups such that for every G € A, we have
lim E(#Sur(Y,, 6)) = | A% G
Then, we have that for every H € A
lim P(X, ® Z/aZ ~ H) = ILH;OIP’(Y,ZGQZ/@Z:H).

n—oo
Proof. First, we will suppose that the limits lim,,_, o, P(X,, ® Z/aZ ~ H) exist, and
from that we show that

> lim P(X, ® Z/aZ ~ H)# Sur(H,G) = | \* G.

n—o00
HecA

For each G € A, we claim we can find an abelian group G’ € A such that
Z # Hom(H, G)
a #Hom(H, G")

converges. We can factor over the primes p dividing a and reduce to the problem
when a = p°. Then if G has type A, we take G’ of type m with n, = 2\, + 1 for
1 < i < e. Then we use Lemma [T 1] and we see

DR 2 O EC E A

1> >ce>0 1> >ce>0
converges.
We have
> P(X, ® Z/aZ ~ B)# Hom(B, G') = E(# Hom(X,,G"))
BeA

= > E(#Swr(X,, H)),

HCG'
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and by supposition, each of the finite summands on the right-hand side has a finite
limit as n — oo (and in particular is bounded above for all n). Thus, there is some
constant D¢g such that for all n we have

P(X, ® Z/aZ ~ H)#Hom(H,G') < Y P(X, ® Z/aZ ~ B)# Hom(B,G') < Dg.
BeA
Thus, for all n,
P(X, ® Z/aZ ~ H)# Hom(H,G) < Dg# Hom(H, G)# Hom(H,G') ™ .
Since )y 4 Do# Hom(H, G)# Hom(H, G’)~! converges, by the Lebesgue domi-

nated convergence theorem we have

> lim P(X, ® Z/aZ ~ H)# Hom(H, G)

= lim_ > P(X, ® Z/aZ ~ H)# Hom(H,G).
HeA

As this holds for every G € A, we also have (by a finite number of additions and
subtractions)

> lim P(X, ® Z/aZ ~ H)# Sur(H,G)

n—oo
HecA
= lim_ HZEAP(Xn ® Z/aZ ~ H)# Sur(H, G)

=|A2G|.
Next, we show that if for every G € A,
Z lim P(X, ® Z/aZ ~ H)# Sur(H, G)
He n—oo

=Y lim P(Y, ® Z/aZ ~ H)# Sur(H,G)
=|A*Gl,

then we have for every H € A that lim, . P(X, ® Z/aZ ~ H) = lim,,, o, P(Y,, ®

Z/aZ ~ H). For each G, by a finite number of additions we have

> lim P(X, ® Z/aZ ~ H)# Hom(H, G)

=Y lim P(Y, ® Z/aZ ~ H)# Hom(H,G)
HeA

n—oo

= > | A2 Gy

G subgroup of G

Now we will explain how to apply Theorem to conclude that lim, . P(X, ®

Z)aZ =~ H) = lim, o P(Y,, ® Z/aZ =~ H). We factor a = [[;_, p?”. The partition

A € M; is the transpose of the type of the Sylow p;-subgroup of H, which gives a

bijection between M and A. We have that for G € A with corresponding A € M,
s A (-1

C)\ — Z | /\2 Gll < H ijij:i 2 ,

G subgroup of G j=1
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by Lemmal[.5l For H,G € A with corresponding u, A € M, we have # Hom(H, G) =

szl iji Ak So for H € A with corresponding 1 € M, we let z,,:=1im,,_, o P(X,,®
Z/aZ ~ H) and similarly for y,, and we can apply Theorem

Now, we suppose for the sake of contradiction that the limit lim, . P(X, ®
Z/aZ ~ H) does not exist for at least some H € A. Then we can use a diagonal
argument to find a subsequence of X,, where the limits do exist for all H € A, and
then another subsequence where the limits do also exist for all H € A, but at least
one is different. In each subsequence the limits lim, ., P(X;, ® Z/aZ ~ H) exist.
Above, we have shown that if these limits exist, then the limit probabilities give
the | A2 G| moments. We can apply that to each of our subsequences. But above
we have also shown that if we have two sequences whose limit probabilities give
the | A2 G| moments, they have the same limit probabilities, a contradiction of our
choice of subsequences. (Il

9. COMPARISON TO UNIFORM RANDOM MATRICES

Above we have seen that the moments we have determined for sandpile groups
of random graphs in particular imply many well-defined asymptotic statistics of
the sandpile groups, but we have not yet determined the values of these statistics.
From Theorem [G.1] we see these same moments hold for cokernels of a wide class of
random matrices, in particular uniform random matrices over Z/aZ. (Though the
moments for cokernels of uniform random matrices follow from Theorem [6.1] there
is a much simpler proof for the uniform case given in [CLK"14].) We can then use
computations in the uniform case to give us our desired statistics.

Corollary 9.1 (of Theorems [[.2] [6.1] and B3]). Let G be a finite abelian group of
exponent dividing a. Let T € G(n,q) be a random graph with sandpile group S. Let
H,, be a uniform random n X n symmetric matriz with entries in Z/aZ.

lim P(S® Z/aZ ~ G) = lim P(cok(H,) ~ G).
n—oo n—oo
In particular, we can conclude the following, which proves Theorem [I.1]

Corollary 9.2. Let G be a finite abelian group. Let I' € G(n,q) be a random graph
with sandpile group S. Let P be a finite set of primes including all those dividing
|G|. Let Hy be a random n x n symmetric matriz with entries in [[,cp Z, with
respect to Haar measure. Let Sp be the sum of the Sylow p-subgroups of S for
p € P. Then

li_>m P(Sp ~ G)
= li_>m P(cok(H,) ~ G)

#{symmetric, bilinear, perfect ¢ : G x G — C* o
-+ Gl Au(C) IO
pEP k>0
Proof. Note that if G is a finite abelian group with an exponent that has prime
factorization Hpe p PP, then if we take a = Hpe pp T, for any finitely generated
abelian group H, with Hp the sum of the Sylow p-subgroups of H for p € P, we
have

H®7Z/aZ ~ G if and only if Hp ~ G.

So the first equality follows from Corollary
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For the second equality, note that everything factors over p € P, and so we can
reduce to the case when G is a p-group. Let ®4 be the set of symmetric, bilinear,
perfect pairings ¢ : G x G — C*. For ¢ € ®g, we let Aut(G, ¢) be the set of
automorphisms of G that respect the pairing ¢. Then Aut(G) acts naturally on
®, with orbits the isomorphism classes of symmetric, bilinear, perfect pairings
G x G — C*, and stabilizers Aut(G, ¢) for ¢ in the isomorphism class. Let ®g be
the set of isomorphism classes of symmetric, bilinear, perfect pairings G x G — C*.

Then |CLK™14, Theorem 2| shows that

1
nhﬁrrolo P(cok(H,) ~ G) = Z m H 1—p 21y,

[¢ede k>0

By the orbit-stabilizer theorem, we have
[¢Z #AtG¢ Z |Aut

We conclude the second equality of the corollary. |

In particular, this lets us see that any particular group appears asymptotically
with probability 0

Corollary 9.3. Let G be a finite abelian group. LetT' € G(n,q) be a random graph
with sandpile group S. Then

lim P(S~G)=0.

n—oo
Proof. Let Py be the set of primes < N not dividing the order of G. Let Sy be
the sum of the Sylow p-subgroups of S for p € Py. Then

lim P(S~G) < hm P(Sy trival) H H p 2k

n—00
pEPN k>0

where the last equality is by Corollary In particular, since the product HpE Py

(1 —p~1) goes to 0 as N — oo, we can conclude the corollary. O

Also taking a = p for a prime p in Corollary @Il we conclude the following on
the distribution of p-ranks of sandpile groups.

Corollary 9.4. Let p be a prime. LetT' € G(n,q) be a random graph with sandpile
group S. Let H, be a uniform random n X n symmetric matrix with entries in
Z/pZ. Then for every non-negative integer r

lim P(rank(S ® Z/pZ) =r) = lim P(rank(H,)=n—r7)

n—oo

n— oo
oo

T I a-pH[a-p)

i=r+1 i=1

Proof. We have the second equality because the number of symmetric n xn matrices
over Z/pZ with rank n — r is (by [Mac69, Theorem 2]) pEE - [T/l
A =p™) T s (I =p7). O

We can also conclude an asymptotic upper bound on the probability that the
sandpile group is cyclic.
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Corollary 9.5. Let ' € G(n,q) be a random graph with sandpile group S. Then
lim B(S eyelic) < ((3)7¢(5)"¢(7) 7 ¢(9)

Proof. Let Py be the set of primes < N. Let Sy be the sum of the Sylow p-
subgroups of S for p € Py. Then

lim P(S cyclic) < lim P(Sy cyclic).
n— oo

n—oo

We apply Corollary with a the product of the primes in Py and add over all
G cyclic with exponent dividing a. We have

Z P(cok(H,) ~ G) = H (P(cok(H,(modp)) ~ 1)
G cylic,aG=0 pEPN
+ P(cok(H,(modp)) ~ Z/pZ)) .
By [Mac69, Theorem 2], as above, we have

nlgxgo (P(cok(H, (modp))) ~ 1) 4+ P(cok(H,(mod p))) ~ Z/pZ))

=[[a-p) ' [Ja-p )+ JJa-p ) ] - 1)
1=1 i=1 i1 s
—TTa—p21.
i=1
So,
lim P(S cyclic) < H H(1 _p,
e pEPy i=1
Taking the limit as N — oo, we obtain the corollary. 0

Similarly, we can obtain an asymptotic upper bound for the probability that the
number of spanning trees is square-free.

Corollary 9.6. Let T' € G(n,q) be a random graph with sandpile group S. Then
lim P(|S| square-free) < ¢(2)71¢(3)71¢(5) 7 ¢(T) 7 ¢(9) 7 -
n—oo
Proof. Let Py be the set of primes < N. Let Sy be the sum of the Sylow p-
subgroups of S for p € Py. Then
lim P(|S] square-free) < lim P(|Sn| square-free).
n—o0 n—0o0

By summing Corollary @2 over all G such that |G| has all prime factors in Py and
|G| is square-free, we have

nh—{%o P(|Sn| square-free) = H (1+ph H(l —p 2kl
pEPN k>0

= I (A=) JJC=p>

pePN k>1

Taking the limit as N — oo, we obtain the corollary. (Il
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Remark 9.7. Of course, all of the corollaries in this section also follow if S is replaced
by the cokernel of a random matrix satisfying the hypotheses of Theorem [61] (using
Theorem [6.1] in place of Theorem [T2]).

It would be nice to know the rest of the limits for uniform random matrices
that occur in Corollary More specifically, let H,, be a uniform random n x n
symmetric matrix with entries in Z/aZ. What is

1 ~ ?
nh_)rr;o P(cok(H,) ~ G)1

Above we have seen the answer when a is a prime, and when every prime dividing
the exponent of G divides a to at least one higher power than it divides the exponent

of G.

ACKNOWLEDGMENT

The author would like to thank Sam Payne, Betsy Stovall, Jordan Ellenberg,
Philip Matchett Wood, Benedek Valko, and Steven Sam for useful conversations
regarding the work in this paper, and Sam Payne, Philip Matchett Wood, Lionel
Levine, Van Vu, Dino Lorenzini, Karola Mészaros, and the referees for helpful
comments on the exposition.

REFERENCES

[AV12] Carlos A. Alfaro and Carlos E. Valencia, On the sandpile group of the cone of a graph,
Linear Algebra Appl. 436 (2012), no. 5, 1154-1176, DOI 10.1016/j.1aa.2011.07.030.
MR2890910

[BAIHN97] Roland Bacher, Pierre de la Harpe, and Tatiana Nagnibeda, The lattice of integral
flows and the lattice of integral cuts on a finite graph (English, with English and
French summaries), Bull. Soc. Math. France 125 (1997), no. 2, 167-198. MR 1478029

[Bai97] Z. D. Bai, Circular law, Ann. Probab. 25 (1997), no. 1, 494-529, DOI
10.1214/a0p/1024404298. MR1428519

[BS10] Zhidong Bai and Jack W. Silverstein, Spectral Analysis of Large Dimensional Random
Matrices, 2nd ed., Springer Series in Statistics, Springer, New York, 2010. MR2567175

[Bal68] G. V. Balakin, The distribution of the rank of random matrices over a finite field
(Russian, with English summary), Teor. Veroyatn. Primen. 13 (1968), 631-641.
MR0243571

[Bha05] Manjul Bhargava, The density of discriminants of quartic rings and fields, Ann.
of Math. (2) 162 (2005), no. 2, 1031-1063, DOI 10.4007/annals.2005.162.1031.
MR2183288

[BKLjt13] Manjul Bhargava, Daniel M. Kane, Lenstra Hendrik W., Bjorn Poonen, and
Eric Rains, Modeling the distribution of ranks, Selmer groups, and Shafarevich-
Tate groups of elliptic curves, Camb. J. Math. 3 (2015), no. 3, 275-321, DOI
10.4310/CJM.2015.v3.n3.al. MR3393023

[Big97] Norman Biggs, Algebraic potential theory on graphs, Bull. Lond. Math. Soc. 29 (1997),
no. 6, 641-682, DOI 10.1112/S0024609397003305. MR1468054

[Big99] N. L. Biggs, Chip-firing and the critical group of a graph, J. Algebraic Combin. 9
(1999), no. 1, 25-45, DOI 10.1023/A:1018611014097. MR 1676732

[BKW97] Johannes Blomer, Richard Karp, and Emo Welzl, The rank of sparse random matrices
over finite fields, Random Structures Algorithms 10 (1997), no. 4, 407-419, DOI
10.1002/(SICI)1098-2418(199707)10:4(407::AID-RSA1)3.0.CO;2-Y. MR1608234

[BLO2] Siegfried Bosch and Dino Lorenzini, Grothendieck’s pairing on component groups of
Jacobians, Invent. Math. 148 (2002), no. 2, 353-396, DOI 10.1007/s002220100195.
MR1906153

[BLS91] Anders Bjorner, Laszlé Lovasz, and Peter W. Shor, Chip-firing games on graphs,
European J. Combin. 12 (1991), no. 4, 283-291, DOI 10.1016,/S0195-6698(13)80111-
4. MR1120415


http://www.ams.org/mathscinet-getitem?mr=2890910
http://www.ams.org/mathscinet-getitem?mr=1478029
http://www.ams.org/mathscinet-getitem?mr=1428519
http://www.ams.org/mathscinet-getitem?mr=2567175
http://www.ams.org/mathscinet-getitem?mr=0243571
http://www.ams.org/mathscinet-getitem?mr=2183288
http://www.ams.org/mathscinet-getitem?mr=3393023
http://www.ams.org/mathscinet-getitem?mr=1468054
http://www.ams.org/mathscinet-getitem?mr=1676732
http://www.ams.org/mathscinet-getitem?mr=1608234
http://www.ams.org/mathscinet-getitem?mr=1906153
http://www.ams.org/mathscinet-getitem?mr=1120415

[BNO7]

[BN09)

[BMS87]

[BTW8S]

[BVW10]

[But87]

[CL84]

[CLK+14]

[CLP13]

[CMY0]

[Co000]

[Cos13]

[(CSX14]

[CTV06]

[CRR90]

[Del01]
[DHT1]
[Dha90]
[DJ13]
[Dur07]

[EVW16]

THE DISTRIBUTION OF SANDPILE GROUPS OF RANDOM GRAPHS 955

Matthew Baker and Serguei Norine, Riemann-Roch and Abel-Jacobi theory on a fi-
nite graph, Adv. Math. 215 (2007), no. 2, 766-788, DOI 10.1016/j.aim.2007.04.012.
MR2355607

Matthew Baker and Serguei Norine, Harmonic morphisms and hyperelliptic graphs,
Int. Math. Res. Not. IMRN 15 (2009), 2914-2955, DOI 10.1093/imrn/rnp037.
MR2525845

Richard P. Brent and Brendan D. McKay, Determinants and ranks of random matrices
over Zm, Discrete Math. 66 (1987), no. 1-2, 35-49, DOI 10.1016,/0012-365X(87)90117-
8. MR900928

Per Bak, Chao Tang, and Kurt Wiesenfeld, Self-organized criticality, Phys. Rev. A
(3) 38 (1988), no. 1, 364-374, DOI 10.1103/PhysRevA.38.364. MR949160

Jean Bourgain, Van H. Vu, and Philip Matchett Wood, On the singularity probabil-
ity of discrete random matrices, J. Funct. Anal. 258 (2010), no. 2, 559-603, DOI
10.1016/j.jfa.2009.04.016. MR2557947

Lynne M. Butler, A unimodality result in the enumeration of subgroups of a fi-
nite abelian group, Proc. Amer. Math. Soc. 101 (1987), no. 4, 771-775, DOI
10.2307/2046687. MR911049

H. Cohen and H. W. Lenstra Jr., Heuristics on Class Groups of Number Fields, Num-
ber theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Math.,
vol. 1068, Springer, Berlin, 1984, pp. 33-62, DOI 10.1007/BFb0099440. MR 756082
Julien Clancy, Nathan Kaplan, Timothy Leake, Sam Payne, and Melanie Matchett
Wood, On a Cohen-Lenstra heuristic for Jacobians of random graphs, J. Algebraic
Combin. 42 (2015), no. 3, 701-723, DOI 10.1007/s10801-015-0598-x. MR3403177
Julien Clancy, Timothy Leake, and Sam Payne, A note on Jacobians, Tutte polyno-
mials, and two-variable zeta functions of graphs, Exp. Math. 24 (2015), no. 1, 1-7,
DOI 10.1080/10586458.2014.917443. MR3305035

Henri Cohen and Jacques Martinet, Etude heuristique des groupes de classes des corps
de nombres (French), J. Reine Angew. Math. 404 (1990), 39-76. MR1037430

C. Cooper, On the rank of random matrices, Random Structures Algorithms
16 (2000), no. 2, 209-232, DOI 10.1002/(SICI)1098-2418(200003)16:2(209:: AID-
RSA6)3.3.CO;2-T. MR1742352

Kevin P. Costello, Bilinear and quadratic variants on the Littlewood-Offord prob-
lem, Israel J. Math. 194 (2013), no. 1, 359-394, DOI 10.1007/s11856-012-0082-4.
MR3047075

David B. Chandler, Peter Sin, and Qing Xiang, The Smith and critical groups of Paley
graphs, J. Algebraic Combin. 41 (2015), no. 4, 1013-1022, DOI 10.1007/s10801-014-
0563-0. MR3342710

Kevin P. Costello, Terence Tao, and Van Vu, Random symmetric matrices are almost
surely nonsingular, Duke Math. J. 135 (2006), no. 2, 395-413, DOI 10.1215/S0012-
7094-06-13527-5. MR2267289

Leonard S. Charlap, Howard D. Rees, and David P. Robbins, The asymptotic prob-
ability that a random biased matriz is invertible, Discrete Math. 82 (1990), no. 2,
153-163, DOI 10.1016,/0012-365X(90)90322-9. MR1057484

Christophe Delaunay, Heuristics on Tate-Shafarevitch groups of elliptic curves defined
over Q, Experiment. Math. 10 (2001), no. 2, 191-196. MR 1837670

H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II,
Proc. R. Soc. Lond. Ser. A 322 (1971), no. 1551, 405-420. MR0491593

Deepak Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev.
Lett. 64 (1990), no. 14, 1613-1616, DOI 10.1103/PhysRevLett.64.1613. MR 1044086
Joshua E. Ducey and Deelan M. Jalil, Integer invariants of abelian Cayley graphs, Lin-
ear Algebra Appl. 445 (2014), 316-325, DOI 10.1016/j.1aa.2013.12.004. MR3151277
Richard Durrett, Probability: Theory and Examples, World Publishing Co., Beijing,
2007.

Jordan S. Ellenberg, Akshay Venkatesh, and Craig Westerland, Homological stability
for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields, Ann. of
Math. (2) 183 (2016), no. 3, 729-786, DOI 10.4007/annals.2016.183.3.1. MR3488737


http://www.ams.org/mathscinet-getitem?mr=2355607
http://www.ams.org/mathscinet-getitem?mr=2525845
http://www.ams.org/mathscinet-getitem?mr=900928
http://www.ams.org/mathscinet-getitem?mr=949160
http://www.ams.org/mathscinet-getitem?mr=2557947
http://www.ams.org/mathscinet-getitem?mr=911049
http://www.ams.org/mathscinet-getitem?mr=756082
http://www.ams.org/mathscinet-getitem?mr=3403177
http://www.ams.org/mathscinet-getitem?mr=3305035
http://www.ams.org/mathscinet-getitem?mr=1037430
http://www.ams.org/mathscinet-getitem?mr=1742352
http://www.ams.org/mathscinet-getitem?mr=3047075
http://www.ams.org/mathscinet-getitem?mr=3342710
http://www.ams.org/mathscinet-getitem?mr=2267289
http://www.ams.org/mathscinet-getitem?mr=1057484
http://www.ams.org/mathscinet-getitem?mr=1837670
http://www.ams.org/mathscinet-getitem?mr=0491593
http://www.ams.org/mathscinet-getitem?mr=1044086
http://www.ams.org/mathscinet-getitem?mr=3151277
http://www.ams.org/mathscinet-getitem?mr=3488737

956

[EVW12]

[FKO6]

[FKO07]

[FW89)

[Gab93a]

[Gab93b]

[Gar12]

[Ger87a)
[Ger87b]
[Gir84]
[Gir04]

[GT06)

[GT10]
[HB94a

[HB94b]

[HLM™]

[HRO7]

[HSTO6]

[KKO1]

[KKS95]

[KL75]

MELANIE MATCHETT WOOD

Jordan Ellenberg, Akshay Venkatesh, and Craig Westerland, Homological stabil-
ity for Hurwitz spaces and the Cohen Lenstra conjecture over function fields, II.
arXiv:1212.0923, 2012.

Etienne Fouvry and Jiirgen Kliiners, Cohen-Lenstra heuristics of quadratic number
fields, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer,
Berlin, 2006, pp. 40-55, DOI 10.1007/11792086-4. MR2282914

Etienne Fouvry and Jiirgen Kliiners, On the 4-rank of class groups of quadratic number
fields, Invent. Math. 167 (2007), no. 3, 455-513, DOI 10.1007/s00222-006-0021-2.
MR2276261

Eduardo Friedman and Lawrence C. Washington, On the distribution of divisor class
groups of curves over a finite field, Théorie des nombres (Quebec, PQ, 1987), de
Gruyter, Berlin, 1989, pp. 227-239. MR 1024565

Andrei Gabrielov, Abelian avalanches and Tutte polynomials, Phys. A 195 (1993),
no. 1-2, 253-274, DOI 10.1016/0378-4371(93)90267-8. MR1215018

Andrei Gabrielov, Avalanches, sandpiles and Tutte decomposition, The Gel fand
Mathematical Seminars, 1990-1992, Birkhduser Boston, Boston, MA, 1993, pp. 19-26.
MRI1247281

Derek Garton, Random matrices and Cohen-Lenstra statistics for global fields with
roots of unity, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)-The University
of Wisconsin—-Madison. MR3078415

Frank Gerth III, Densities for ranks of certain parts of p-class groups, Proc. Amer.
Math. Soc. 99 (1987), no. 1, 1-8, DOI 10.2307/2046260. MR866419

Frank Gerth III, Extension of conjectures of Cohen and Lenstra, Expo. Math. 5
(1987), no. 2, 181-184. MR887792

V. L. Girko, The circular law (Russian), Teor. Veroyatn. Primen. 29 (1984), no. 4,
669-679. MR773436

V. L. Girko, The strong circular law. Twenty years later. II, Random Oper. Stoch.
Equ. 12 (2004), no. 3, 255-312, DOI 10.1163/1569397042222477. MR2085255

F. Gotze and A. N. Tikhomirov, Limit theorems for spectra of random matrices with
martingale structure (English, with Russian summary), Teor. Veroyatn. Primen. 51
(2006), no. 1, 171-192, DOI 10.1137/S0040585X97982268; English transl., Theory
Probab. Appl. 51 (2007), no. 1, 42-64. MR2324173

Friedrich Gotze and Alexander Tikhomirov, The circular law for random matrices,
Ann. Probab. 38 (2010), no. 4, 1444-1491, DOI 10.1214/09-A0P522. MR2663633
D. R. Heath-Brown. The size of Selmer groups for the congruent number problem, II.
118 (1994). preprint version, http://eprints.maths.ox.ac.uk/154/.

D. R. Heath-Brown, The size of Selmer groups for the congruent number problem.
II, Invent. Math. 118 (1994), no. 2, 331-370, DOI 10.1007/BF01231536. With an
appendix by P. Monsky. MR1292115

Alexander E. Holroyd, Lionel Levine, Karola Mészaros, Yuval Peres, James Propp,
and David B. Wilson, Chip-firing and rotor-routing on directed graphs, In and out
of equilibrium. 2, Progr. Probab., vol. 60, Birkh&duser, Basel, 2008, pp. 331-364, DOI
10.1007/978-3-7643-8786-0_17. MR2477390

Christopher J. Hillar and Darren L. Rhea, Automorphisms of finite abelian groups,
Amer. Math. Monthly 114 (2007), no. 10, 917-923. MR2363058

Matthew D. Horton, H. M. Stark, and Audrey A. Terras, What are zeta functions
of graphs and what are they good for?, Quantum graphs and their applications, Con-
temp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 173-189, DOI
10.1090/conm/415/07868. MR2277616

Jeff Kahn and Janos Komlés, Singularity probabilities for random matrices
over finite fields, Combin. Probab. Comput. 10 (2001), no. 2, 137-157, DOI
10.1017/5096354830100462X. MR1833067

Jeff Kahn, Jdnos Komlés, and Endre Szemerédi, On the probability that a ran-
dom +1-matriz is singular, J. Amer. Math. Soc. 8 (1995), no. 1, 223-240, DOI
10.2307/2152887. MR1260107

I. N. Kovalenko and A. A. Levitskaya, Limiting behavior of the number of solutions
of a system of random linear equations over a finite field and a finite ring (Russian),
Dokl. Akad. Nauk SSSR 221 (1975), no. 4, 778-781. MR0380957


http://www.ams.org/mathscinet-getitem?mr=2282914
http://www.ams.org/mathscinet-getitem?mr=2276261
http://www.ams.org/mathscinet-getitem?mr=1024565
http://www.ams.org/mathscinet-getitem?mr=1215018
http://www.ams.org/mathscinet-getitem?mr=1247281
http://www.ams.org/mathscinet-getitem?mr=3078415
http://www.ams.org/mathscinet-getitem?mr=866419
http://www.ams.org/mathscinet-getitem?mr=887792
http://www.ams.org/mathscinet-getitem?mr=773436
http://www.ams.org/mathscinet-getitem?mr=2085255
http://www.ams.org/mathscinet-getitem?mr=2324173
http://www.ams.org/mathscinet-getitem?mr=2663633
http://www.ams.org/mathscinet-getitem?mr=1292115
http://www.ams.org/mathscinet-getitem?mr=2477390
http://www.ams.org/mathscinet-getitem?mr=2363058
http://www.ams.org/mathscinet-getitem?mr=2277616
http://www.ams.org/mathscinet-getitem?mr=1833067
http://www.ams.org/mathscinet-getitem?mr=1260107
http://www.ams.org/mathscinet-getitem?mr=0380957

[KLS86]
[Koz66]
[Kom67]
[Kom68]
[L97]
[Lor89)]
[Lor90]
[Lor00]
[Lor08]
[LP10]
[Mac69]
[Mal08]
[Mal10]
[Map10]
[Map13]
[Meh67]

[Ngul2]

[NW11]

[PZ10]

[Pas72]

[Shol0]

[TV06]

[TV07)

[TVO08]

[TV10]

THE DISTRIBUTION OF SANDPILE GROUPS OF RANDOM GRAPHS 957

I. N. Kovalenko, A. A. Levitskaya, and M. N. Savchuk, Izbrannye zadachi veroyatnos-
tnoi kombinatoriki (Russian), “Naukova Dumka,” Kiev, 1986. MR899073

M. V. Kozlov, On the rank of matrices with random Boolean elements, Sov. Math.
Dokl. 7 (1966), 1048-1051. MR0224119

J. Komlés, On the determinant of (0, 1) matrices, Studia Sci. Math. Hungar. 2 (1967),
7-21. MR0221962

J. Komlés, On the determinant of random matrices, Studia Sci. Math. Hungar. 3
(1968), 387-399. MR0238371

Criel Merino Lépez, Chip firing and the Tutte polynomsal, Ann. Comb. 1 (1997), no. 3,
253-259, DOI 10.1007/BF02558479. MR1630779

Dino J. Lorenzini, Arithmetical graphs, Math. Ann. 285 (1989), no. 3, 481-501, DOI
10.1007/BF01455069. MR1019714

Dino J. Lorenzini, A finite group attached to the Laplacian of a graph, Discrete Math.
91 (1991), no. 3, 277-282, DOI 10.1016/0012-365X(90)90236-B. MR1129991

Dino Lorenzini, Arithmetical properties of Laplacians of graphs, Linear Multilinear
Algebra 47 (2000), no. 4, 281-306, DOI 10.1080/03081080008818652. MR 1784872
Dino Lorenzini, Smith normal form and Laplacians, J. Combin. Theory Ser. B 98
(2008), no. 6, 1271-1300, DOI 10.1016/j.jctb.2008.02.002. MR2462319

Lionel Levine and James Propp, What is ... a sandpile?, Notices Amer. Math. Soc.
57 (2010), no. 8, 976-979. MR2667495

Jessie MacWilliams, Orthogonal matrices over finite fields, Amer. Math. Monthly 76
(1969), 152-164. MR0238870

Gunter Malle, Cohen-Lenstra heuristic and roots of unity, J. Number Theory 128
(2008), no. 10, 2823-2835, DOI 10.1016/j.jnt.2008.01.002. MR2441080

Gunter Malle, On the distribution of class groups of number fields, Experiment. Math.
19 (2010), no. 4, 465-474, DOI 10.1080/10586458.2010.10390636. MR2778658
Kenneth  Maples, Singularity of random matrices over finite fields.
arXiv:1012.2372[math], December 2010.

Kenneth Maples, Cokernels of random matrices satisfy the Cohen-Lenstra heuristics,
2013. arXiv:1301.1239.

M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels, Academic
Press, New York-London, 1967. MR0220494

Hoi H. Nguyen, Inverse Littlewood-Offord problems and the singularity of ran-
dom symmetric matrices, Duke Math. J. 161 (2012), no. 4, 545-586, DOI
10.1215/00127094-1548344. MR2891529

Serguei Norine and Peter Whalen, Jacobians of nearly complete and threshold graphs,
European J. Combin. 32 (2011), no. 8, 1368-1376, DOI 10.1016/j.ejc.2011.04.003.
MR2838022

Guangming Pan and Wang Zhou, Circular law, extreme singular wvalues and
potential theory, J. Multivariate Anal. 101 (2010), no. 3, 645-656, DOI
10.1016/j.jmva.2009.08.005. MR2575411

L. A. Pastur, The spectrum of random matrices (Russian, with English summary),
Teoret. Mat. Fiz. 10 (1972), no. 1, 102-112. MR0475502

Farbod Shokrieh, The monodromy pairing and discrete logarithm on the Jacobian of
finite graphs, J. Math. Cryptol. 4 (2010), no. 1, 43-56, DOI 10.1515/JMC.2010.002.
MR2660333

Terence Tao and Van Vu, On random =+1 matrices: singularity and determinant,
Random Structures Algorithms 28 (2006), no. 1, 1-23, DOI 10.1002/rsa.20109.
MR2187480

Terence Tao and Van Vu, On the singularity probability of random Bernoulli matrices,
J. Amer. Math. Soc. 20 (2007), no. 3, 603-628, DOI 10.1090/S0894-0347-07-00555-3.
MR2291914

Terence Tao and Van Vu, Random matrices: the circular law, Commun. Contemp.
Math. 10 (2008), no. 2, 261-307, DOI 10.1142/S0219199708002788. MR2409368
Terence Tao and Van Vu, Random matrices: universality of ESDs and the circular
law, Ann. Probab. 38 (2010), no. 5, 2023-2065, DOI 10.1214/10-AOP534. With an
appendix by Manjunath Krishnapur. MR2722794


http://www.ams.org/mathscinet-getitem?mr=899073
http://www.ams.org/mathscinet-getitem?mr=0224119
http://www.ams.org/mathscinet-getitem?mr=0221962
http://www.ams.org/mathscinet-getitem?mr=0238371
http://www.ams.org/mathscinet-getitem?mr=1630779
http://www.ams.org/mathscinet-getitem?mr=1019714
http://www.ams.org/mathscinet-getitem?mr=1129991
http://www.ams.org/mathscinet-getitem?mr=1784872
http://www.ams.org/mathscinet-getitem?mr=2462319
http://www.ams.org/mathscinet-getitem?mr=2667495
http://www.ams.org/mathscinet-getitem?mr=0238870
http://www.ams.org/mathscinet-getitem?mr=2441080
http://www.ams.org/mathscinet-getitem?mr=2778658
http://www.ams.org/mathscinet-getitem?mr=0220494
http://www.ams.org/mathscinet-getitem?mr=2891529
http://www.ams.org/mathscinet-getitem?mr=2838022
http://www.ams.org/mathscinet-getitem?mr=2575411
http://www.ams.org/mathscinet-getitem?mr=0475502
http://www.ams.org/mathscinet-getitem?mr=2660333
http://www.ams.org/mathscinet-getitem?mr=2187480
http://www.ams.org/mathscinet-getitem?mr=2291914
http://www.ams.org/mathscinet-getitem?mr=2409368
http://www.ams.org/mathscinet-getitem?mr=2722794

958 MELANIE MATCHETT WOOD

[Verl1] Roman Vershynin, Invertibility of symmetric random matrices, Random Structures
Algorithms 44 (2014), no. 2, 135-182, DOI 10.1002/rsa.20429. MR3158627

[Wag00] David G. Wagner. The critical group of a directed graph. arXiv:math/0010241, Oc-
tober 2000.

[Wigh8] Eugene P. Wigner, On the distribution of the roots of certain symmetric matrices,
Ann. of Math. (2) 67 (1958), 325-327. MR0095527

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, 480 LINCOLN DRIVE,
MADISON, WISCONSIN 53705, AND AMERICAN INSTITUTE OF MATHEMATICS, 360 PORTAGE AVENUE,
PAaLo Arro, CALIFORNIA 94306-2244

E-mail address: mmwood@math.wisc.edu


http://www.ams.org/mathscinet-getitem?mr=3158627
http://www.ams.org/mathscinet-getitem?mr=0095527

	1. Introduction
	1.1. Sandpile groups
	1.2. Why those probabilities: The relation to the Cohen-Lenstra heuristics
	1.3. Connections to random matrices
	1.4. Our method to determine the moments
	1.5. Our method to determine the distribution from the moments
	1.6. Further questions
	1.7. Outline of the paper

	2. Background
	2.1. Cokernels of matrices
	2.2. Sandpile group
	2.3. Random graphs
	2.4. Finite abelian groups
	2.5. Pairings
	2.6. Notation

	3. Obtaining the moments I: Determining the structural properties of the equations
	4. Obtaining the moments II: A good bound for surjections that are codes
	5. Obtaining the moments III: Determining the structural properties of the surjections
	6. Obtaining the moments IV: Putting it all together
	7. Basic estimates on abelian groups
	8. Moments determine the distribution
	9. Comparison to uniform random matrices
	Acknowledgment
	References

