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1. Introduction

In this article, we introduce two new variations of a game called “𝑃 -ordering” [4],
which we term an 𝑟-removed 𝑃 -ordering and a 𝑃 -ordering of order ℎ, respectively.
Given any subset 𝑆 of a Dedekind domain 𝐷 and a prime ideal 𝑃 of 𝐷, the game
involves the construction of a special sequence in 𝑆 having certain surprising com-
binatorial properties. In particular, these two notions of 𝑃 -ordering result in a
three-parameter generalization of the usual factorial function 𝑛!, which we denote

𝑛!
{𝑟}
𝑆,ℎ; here 𝑆, ℎ, and 𝑟 denote the three parameters, where 𝑆 is any subset of 𝐷,

𝑟 is a nonnegative integer, and ℎ ∈ ℝ∪∞. The usual factorial function is obtained
by setting 𝑆 = 𝐷 = ℤ, 𝑟 = 0, and ℎ =∞.
These generalizations of the factorial function share a number of fundamental

properties with the usual factorial function. For example:

Theorem 1. For any nonnegative integers 𝑘 and ℓ, we have that 𝑘!
{𝑟}
𝑆,ℎℓ!

{𝑟}
𝑆,ℎ divides

(𝑘 + ℓ)!
{𝑟}
𝑆,ℎ.
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Thus the generalized “binomial coefficient”
(
𝑘+ℓ
𝑘

){𝑟}
𝑆,ℎ

= (𝑘+ ℓ)!
{𝑟}
𝑆,ℎ/(𝑘!

{𝑟}
𝑆,ℎℓ!

{𝑟}
𝑆,ℎ) is

integral for all 𝑘 and ℓ, analogous to the usual binomial coefficients.
We use these notions of 𝑃 -ordering and generalized factorials to solve two clas-

sical number-theoretic problems in two areas that have traditionally been treated
separately in the literature.
The first area concerns the subject of “integer-valued polynomials”. The subject

goes back to 1915, when Pólya [23] showed that any rational polynomial in one
variable mapping the integers to the integers can be uniquely expressed in the form

𝑓(𝑥) =

𝑑∑
𝑛=0

𝑐𝑛

(
𝑥

𝑛

)
,

where 𝑑 is the degree of 𝑓 and the 𝑐𝑛 are integers. In the language of polynomial ring
theory, the polynomials

(
𝑥
𝑛

)
are said to form a regular basis (i.e., a basis consisting of

one polynomial of each degree) for the ring Int(ℤ,ℤ) of integer-valued polynomials
over the rational numbers. This result was extended to polynomials over quadratic
number fields (mapping the algebraic integers to themselves) by Pólya [24], and to
general number fields by Ostrowski [22].
More generally, given an arbitrary subset 𝑆 of a Dedekind domain 𝐷 with quo-

tient field 𝐾, the set of polynomials in 𝐾[𝑥] that are 𝐷-valued (“integer-valued”)
on 𝑆 forms a ring, denoted Int(𝑆,𝐷). Subsequent to Pólya and Ostrowski’s work
in the case 𝑆 = 𝐷, great interest arose in this area not only because of its inherent
beauty but also because rings of the form Int(𝑆,𝐷) “have many remarkable prop-
erties, and are a source of examples and counterexamples in commutative algebra”
([21, p. v]). Thus, following Pólya’s work, a number of authors examined Int(𝑆,𝐷)
in cases other than 𝑆 = 𝐷 = ℤ and gave Pólya-style decompositions of Int(𝑆,𝐷)
when 𝑆 = 𝐷 or more generally when 𝑆 is an ideal of 𝐷 (see, e.g., [22], [16], [17]).
A 𝐷-module description of Int(𝑆,𝐷) for general 𝑆 and 𝐷 was given in [4] using
𝑃 -orderings.
A number of different variants of Int(𝑆,𝐷) have also been considered in the past,

and they too have been shown to possess very interesting algebraic properties (see,
e.g., [9]). In this article, we consider two such subrings that arise very naturally,
and which are of additional interest due to their beautiful connections with 𝑝-adic
interpolation (described later in this introduction). These two rings are:

(a) the ring Int{𝑟}(𝑆,𝐷) of polynomials 𝑓 ∈ 𝐾[𝑥] whose first 𝑟 + 1 divided
differences1 Φ0𝑓 = 𝑓 , Φ1𝑓 , . . . , Φ𝑟𝑓 are all 𝐷-valued on 𝑆; and

(b) the ring Intℳ(𝑆,𝐷) of 𝐷-valued polynomials on 𝑆 of modulus ℳ, i.e.,
polynomials 𝑓 ∈ 𝐾[𝑥] such that 𝑓(𝑚𝑥 + 𝑎) ∈ 𝐷[𝑥] for all 𝑚 ∈ ℳ and
𝑎 ∈ 𝑆; here ℳ is an ideal of 𝐷.

Note that setting 𝑟 = 0 in item (a), or ℳ = (0) in item (b), recovers the ring
Int(𝑆,𝐷). These two classes of rings have not been considered systematically pre-
viously. However, for rings of polynomials with integer-valued differences on 𝑆,
special cases of these rings (particularly when 𝑟 = 1 and 𝑆 = 𝐷) have been studied

1Recall that the 𝑘-th divided difference Φ𝑘𝑓 of a polynomial 𝑓 ∈ 𝐾[𝑥] is defined inductively
by Φ0𝑓(𝑥0) = 𝑓(𝑥0) and

Φ𝑘𝑓(𝑥0, . . . , 𝑥𝑘) =
Φ𝑘−1𝑓(𝑥0, . . . , 𝑥𝑘−1) − Φ𝑘−1𝑓(𝑥0, . . . , 𝑥𝑘−2, 𝑥𝑘)

𝑥𝑘−1 − 𝑥𝑘
.
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heavily by a number of authors, beginning with the classical works of de Bruijn [13]
and Carlitz [12] in the 1950s. Rings of type (b), when 𝑆 = 𝐷, were studied in the
recent Ph.D. thesis of Yeramian [32]. As we will explain below, both of these types
of rings also arise naturally in the context of non-Archimedean analysis.
The question arises as to whether an explicit Pólya-type basis can be given for

these more general rings of polynomials. In Section 3, for both types of rings (a) and
(b), we give such explicit 𝐷-basis decompositions of Pólya type, using the notions
of 𝑟-removed 𝑃 -ordering and 𝑃 -ordering of order ℎ, respectively. The proof, in
particular, involves the construction of certain “generalized binomial polynomials”,
which extend the usual binomial polynomials

(
𝑥
𝑛

)
used by Pólya. Our results thus

unify and generalize the results of Pólya and also the results of [4], [8], [13], [16],
[17], and [22], and they yield a unified statement (and a more compact proof) of
all these results simultaneously in terms of the general 𝑃 -ordering construct.
The second area we treat concerns the subject of non-Archimedean analysis.

Given a subset 𝑆 of a discrete valuation domain 𝑅 with quotient field 𝐾 and max-
imal ideal 𝑃 , one is frequently interested in functions from 𝑆 to 𝐾 that are con-
tinuous in the 𝑃 -adic topology. A classical and very useful theorem of Mahler [20]
states that any continuous function 𝑓 from the 𝑝-adic ring ℤ𝑝 to its quotient field
ℚ𝑝 can be uniquely expressed in the form

𝑓(𝑥) =
∞∑
𝑛=0

𝑐𝑛

(
𝑥

𝑛

)
,

where 𝑐𝑛 → 0 𝑝-adically as 𝑛 → ∞. In the language of “𝑝-adic Banach spaces” (see
Section 4), the theorem may be strengthened to state that the binomial polynomi-
als

(
𝑥
𝑛

)
(𝑛 ≥ 0) form an orthonormal base for the ℚ𝑝-Banach space of continuous

functions from ℤ𝑝 to ℚ𝑝, equipped with the supremum norm. Like Pólya’s theo-
rem, Mahler’s theorem has shown its face in numerous contexts in number theory.
Various generalizations of Mahler’s theorem have since appeared in the literature,
allowing cases where 𝑅 ∕= ℤ𝑝 or 𝑆 ∕= 𝑅 (see, e.g., [1], [27], [28]). An explicit con-
struction of polynomial orthonormal bases for continuous functions from 𝑆 to 𝐾
for general compact subsets 𝑆 of 𝐾 was given in [7] using 𝑃 -orderings.
Of course, in 𝑃 -adic analysis, one frequently requires functions satisfying con-

ditions of smoothness that are stronger than simple continuity. Perhaps the most
important examples of such smoothness conditions on 𝑃 -adic functions are (a) con-
tinuous differentiability, where functions are not only required to be continuous but
also possess continuous derivatives up to a given order, and (b) local analyticity,
where functions are required to have power series expansions in balls of a given
radius. It is known that each space ℬ of functions from 𝑆 to 𝐾, defined by one of
these smoothness conditions, comes naturally equipped with a norm (stronger than
the supremum norm) which turns ℬ into a 𝐾-Banach space.
It is thus natural to ask whether Mahler-style expansions exist in these more

general settings, i.e., whether analogous constructions of orthonormal bases exist
for Banach spaces ℬ of functions satisfying any of these more stringent conditions
of differentiability or analyticity. Such theorems have been achieved in the past
for certain very special 𝑆, 𝑅, and degrees of continuous differentiability or local
analyticity (see, e.g., Schikhof [25] or Amice [1]); however, a description in the
general case has never previously been given.
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In Section 4, for arbitrary compact sets 𝑆 of 𝐾, and for both types of smooth-
ness conditions (a) and (b), we give a unified method for constructing Mahler-style
expansions for functions from 𝑆 to 𝐾 satisfying such smoothness conditions. Our
method thus unifies and generalizes not only Mahler’s result but also the construc-
tions in [1], [7], [25], [27], and [28], and it yields a unified statement and also a
relatively short proof of these results. The key ingredients in our constructions for
each of these two types of smoothness are again the 𝑟-removed 𝑃 -ordering and the
𝑃 -ordering of order ℎ, respectively. Moreover, we note that our proofs of these
Mahler-style basis theorems for such functions are effective (unlike many of the
previously proved special cases), in that they yield complete information on rates
of convergence purely in terms of the combinatorial properties of 𝑆.
An important by-product of our results is that, for any 𝜖 > 0, the functions

in any of these 𝐾-Banach spaces of functions can be 𝜖-approximated by polyno-
mials with respect to their respective Banach norms. (Since the norm in each of
these 𝐾-Banach spaces is stronger than simply the supremum norm, polynomial
approximation in these spaces is a stronger notion than that of “uniform approxi-
mation.”) In the case of continuous functions with the supremum norm, this is a
well-known result of Weierstrass [30] in the Archimedean case and Dieudonné [14]
and Kaplansky [18] in the non-Archimedean context. For continuously differentiable
functions in the Archimedean setting, the analogous result (with appropriate norm)
was proven in the important works of de la Vallée Poussin [26] and Bernstein [3],
and various generalizations have since appeared (see, e.g., [19] for a survey). In this
article, we obtain significantly stronger versions of these approximation theorems in
the non-Archimedean setting by exhibiting explicit polynomial Schauder bases for
each of these 𝐾-Banach spaces of functions (with effective rates of convergence).
Historically, the construction of orthonormal bases for locally analytic functions

of order ℎ was first studied in the classic 1964 work of Amice [1], who examined the
special case of certain “well-distributed” sets 𝑆 ⊂ 𝐾. Our work here thus extends
Amice’s theory to a very general setting and also yields a significantly simpler and
shorter treatment.
In the case of 𝑟-times continuously differentiable functions on compact sets 𝑆, our

work here also recovers the special case 𝑟 = 0 and 𝑆 = ℤ𝑝 as in Mahler’s theorem,
the case 𝑟 = 0 and general 𝑆 as treated in [7], and the case 𝑟 ≥ 1 and 𝑆 = ℤ𝑝

treated in Schikhof [25]. In this paper, we give an effective treatment for arbitrary
𝑟 and arbitrary 𝑆. We note that our work also naturally allows one to construct
explicit orthonormal bases for Banach spaces of functions on compact sets 𝑆 that
satisfy desired degrees of both continuous differentiability and local analyticity.
One other work that must be mentioned in the context of this subject is that of

Barsky [2]. In that work, Barsky had already noticed a close connection between
integer-valued polynomials and a certain class of 𝑝-adic functions which were termed
“𝑘-Lipshitzian”. The case 𝑘 = 1 corresponds to (1-times) continuously differen-
tiable functions; for 𝑘 > 1, however, the notion of “𝑘-Lipshitzian” diverges from
that of continuous differentiability. We will not consider the class of 𝑘-Lipshitzian
functions here for the simple reason that the notion of 𝑘-Lipshitzian does not ap-
pear to generalize well to functions on general compact sets 𝑆, which is our primary
focus.
This paper is organized as follows. In Section 2, we consider generalizations of

a game called “𝑃 -ordering” that will play a crucial role in the constructions that
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follow. In Section 3 we then construct certain subrings of rings of integer-valued
polynomials that naturally relate to the study of smooth 𝑃 -adic functions. We
prove versions of Pólya’s regular basis theorem for each of these subrings, using the
generalized notions of 𝑃 -ordering as introduced in Section 2. In Section 4, we apply
these regular basis techniques to the study of 𝐾-Banach spaces of continuously
differentiable or locally analytic functions on general compact subsets 𝑆 of a local
field 𝐾. Finally, in Section 5, we end with a discussion of some generalizations of
these results that may be of interest in future work.

2. A game called 𝑃 -orderings

To set up the game, let 𝑆 ⊂ ℤ be any infinite subset and fix any prime number
𝑝. Let 𝑣𝑝 denote the 𝑝-adic valuation on ℤ. There may be any number of players
in this game, but each player does the following. Each player constructs what is
called a 𝑝-ordering of 𝑆, which is a sequence 𝑎0, 𝑎1, . . . in 𝑆 formed inductively as
follows:

∙ Choose 𝑎0 ∈ 𝑆 arbitrary.
∙ For 𝑘 ≥ 1, choose 𝑎𝑘 ∈ 𝑆 so as to minimize 𝑣𝑝((𝑎𝑘 − 𝑎0) ⋅ ⋅ ⋅ (𝑎𝑘 − 𝑎𝑘−1)).

There may frequently be ties when selecting the value of 𝑎𝑘, and hence one has
to make a choice at every such step. Nevertheless, once such a 𝑝-ordering of 𝑆 is
constructed, one obtains an associated 𝑝-sequence {𝜈𝑘(𝑆, 𝑝)}∞𝑘=0 of 𝑆, defined by

𝜈𝑘(𝑆, 𝑝) = 𝑝𝑣𝑝((𝑎𝑘−𝑎0)⋅⋅⋅(𝑎𝑘−𝑎𝑘−1)),

consisting of the powers of 𝑝 minimized at each step.
We declare that a player wins if say after 100 steps, he has the smaller 𝜈100(𝑆, 𝑝).

What is the optimal strategy? The surprising and perhaps not-immediately-obvious
answer is that the strategy is irrelevant, and the game is always a tie! That is, we
have the following theorem:

Theorem 2 ([4]). The associated 𝑝-sequence {𝜈𝑘(𝑆, 𝑝)} is independent of the choice
of 𝑝-ordering.

Thus the 𝑝-sequence {𝜈𝑘(𝑆, 𝑝)} is an invariant of the set 𝑆, and we may speak
of it without reference to any 𝑝-ordering.
In the case 𝑆 = ℤ, these invariants are in fact related to a well-known sequence,

namely the factorial function. We have the formula

𝑘! =
∏
𝑝

𝜈𝑘(ℤ, 𝑝).

In [4] and [5], we thus defined a “generalized factorial function” 𝑘!𝑆 , given by

𝑘!𝑆 =
∏
𝑝

𝜈𝑘(𝑆, 𝑝),

associated to any subset 𝑆 of ℤ. The sequence {𝑘!𝑆}∞𝑘=0 of generalized factorials
encodes and compresses all the invariants 𝜈𝑘(𝑆, 𝑝) into one sequence; it also occurs
and is useful in a number of applications ([4], [5]), including those to be considered
in this article.
More generally, let 𝑆 be any infinite subset of a Dedekind domain 𝐷, and let

𝑃 in 𝐷 be a prime ideal. Then we may define a 𝑃 -ordering of 𝑆 in the analogous
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way, obtaining invariants 𝜈𝑘(𝑆, 𝑃 ), which are now ideals of 𝐷, and a sequence of
generalized factorials

(1) 𝑘!𝑆 =
∏
𝑃

𝜈𝑘(𝑆, 𝑃 ),

which are also then ideals of 𝐷.
If 𝑃 = (𝜋) is principal, we may speak of 𝑃 -orderings also as “𝜋-orderings” and

view the invariants 𝜈𝑘(𝑆, 𝜋) of 𝑆 as powers of 𝜋.

2.1. On 𝑟-removed 𝑃 -orderings. We noted that the game of the previous section
was always a tie. Let us now change the rules slightly.
Let 𝑆 again be any infinite subset of a Dedekind domain 𝐷, and let 𝑃 ⊂ 𝐷 be

a prime. For any integer 𝑟 ≥ 0, we define an 𝑟-removed 𝑃 -ordering of 𝑆 to be
a sequence 𝑎0, 𝑎1, . . . in 𝑆 in which the first 𝑟 + 1 elements 𝑎0, . . . , 𝑎𝑟 are chosen
arbitrarily, and then the 𝑎𝑛 for 𝑛 > 𝑟 are successively chosen to minimize the value
of

(2)
∑
𝑖∈𝐴𝑛

𝑣𝑃 (𝑎𝑛 − 𝑎𝑖),

where the sum is over any set 𝐴𝑛 of 𝑛− 𝑟 elements in {0, . . . , 𝑛−1} that minimizes
(2). Thus there is a minimization both over elements 𝑎𝑛 ∈ 𝑆 and subsets 𝐴𝑛 ⊂
{0, . . . , 𝑛− 1} of cardinality 𝑛− 𝑟. We write 𝐴𝑛 = {0, . . . , 𝑛− 1} ∖ {𝑛1, . . . , 𝑛𝑟} for
the chosen value of 𝐴𝑛 yielding this desired minimum, where 𝑛1, . . . , 𝑛𝑟 denote the
indices that have been “removed”.
Again, there are choices to be made, for both 𝑎𝑛 and 𝐴𝑛, at each step of the 𝑟-

removed 𝑝-ordering process. However, once an 𝑟-removed 𝑃 -ordering is constructed
in this way, we then obtain what we call the associated 𝑟-removed 𝑃 -sequence

{𝜈{𝑟}
𝑘 (𝑆, 𝑃 )} of 𝑆, defined by

(3) 𝜈
{𝑟}
𝑘 (𝑆, 𝑃 ) = 𝑃

∑
𝑖∈𝐴𝑘

𝑣𝑃 (𝑎𝑘−𝑎𝑖).

Note that a 0-removed 𝑃 -ordering (resp. 𝑃 -sequence) coincides with the usual no-
tion of 𝑃 -ordering (resp. 𝑃 -sequence).
What now is the strategy in choosing the sequence 𝑎0, 𝑎1, . . . to minimize the

valuation of 𝜈
{𝑟}
𝑘 (𝑆, 𝑃 ) as 𝑘 becomes large? It turns out as before that the strategy

does not matter; we have again the following independence theorem:

Theorem 3. The associated 𝑟-removed 𝑃 -sequence of 𝑆 is independent of the
choice of 𝑟-removed 𝑃 -ordering.

Thus for each value of 𝑟, the 𝑟-removed 𝑃 -sequence of 𝑆 yields yet another
sequence of invariants of the set 𝑆. We may encode these invariants into a single

sequence {𝑘!{𝑟}𝑆 }, called the 𝑟-removed factorial function, defined by

𝑘!
{𝑟}
𝑆 =

∏
𝑃

𝜈
{𝑟}
𝑘 (𝑆, 𝑃 ).

The usual factorial sequence of 𝑆 is of course the special case 𝑟 = 0. We postpone
the proof of Theorem 3 to Section 3.1.1.
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2.2. On 𝑃 -orderings of order ℎ. Let us now change the rules of the game in yet
another way. As before, let 𝑆 be any infinite subset of a Dedekind domain 𝐷, and
let 𝑃 be a prime of 𝐷. Fix any integer ℎ ≥ 0. This time, we ask each player to
construct a 𝑃 -ordering of 𝑆 of order ℎ, which is a sequence 𝑎0, 𝑎1, . . . in 𝑆 in which
𝑎0 is chosen arbitrarily, and then the 𝑎𝑛 are successively chosen to minimize the
value of the sum

(4)

𝑛−1∑
𝑖=0

min(ℎ, 𝑣𝑃 (𝑎𝑛 − 𝑎𝑖)).

(That is, we essentially “cap off” all valuations of differences of elements 𝑎𝑛− 𝑎𝑖 at
ℎ, thus helping the players to keep the values of the sum (4) small.)
Given such a 𝑃 -ordering of order ℎ, one obtains an associated 𝑃 -sequence of

order ℎ, denoted {𝜈𝑘(𝑆, 𝑃, ℎ)} and defined by
(5) 𝜈𝑘(𝑆, 𝑃, ℎ) = 𝑃

∑𝑘−1
𝑖=0 min(ℎ,𝑣𝑃 (𝑎𝑘−𝑎𝑖)).

Note that a 𝑃 -ordering (resp. 𝑃 -sequence) of order ∞ coincides with the usual
notion of 𝑃 -ordering (resp. 𝑃 -sequence).
Given ℎ, what is the strategy for the players in choosing the sequence 𝑎0, 𝑎1, . . .

to keep the 𝑃 -adic valuations of 𝜈𝑘(𝑆, 𝑃, ℎ) to a minimum as 𝑘 becomes large? It
turns out again that the game is always a tie. We have the following independence
theorem:

Theorem 4. The associated 𝑃 -sequence of 𝑆 of order ℎ is independent of the choice
of 𝑃 -ordering of order ℎ.

Thus for every ℎ, the 𝑃 -sequence of 𝑆 of order ℎ gives yet another sequence of
invariants of the set 𝑆. Note that the ordinary 𝑃 -sequence {𝜈𝑘(𝑆, 𝑃 )} of 𝑆 is simply
{𝜈𝑘(𝑆, 𝑃,∞)}. We postpone the proof of Theorem 4 to Section 3.2.2.

Now suppose that ℳ is any ideal of 𝐷, with prime factorization ℳ = 𝑃 ℎ1
1 ⋅ ⋅ ⋅

𝑃 ℎ𝑟
𝑟 . We define the 𝑘th factorial ideal of 𝑆 of modulus ℳ by

(6) 𝜈𝑘(𝑆;ℳ) =
𝑟∏

𝑖=1

𝜈𝑘(𝑆, 𝑃𝑖, ℎ𝑖);

the usual factorial 𝑘!𝑆 , defined by (1), may be considered as the special case ℳ =
(0). Factorials of modulus ℳ will play an important role in Sections 3.2 and 4.2.

Remark 5. Theorems 3 and 4 in fact admit a common generalization; see Theo-
rem 30.

The generalized factorial functions we have described in this section will turn
out to be critical in the study of integer-valued polynomials on 𝑆, and in the study
of 𝑃 -adically smooth functions on 𝑆. We turn first to the subject of integer-valued
polynomials.

3. Rings of integer-valued polynomials

In this section, we introduce and study two new rings of integer-valued polyno-

mials, namely 1) the ring Int{𝑟}(𝑆,𝐷) of integer-valued polynomials on 𝑆 whose
divided differences of order up to 𝑟 are also integer-valued on 𝑆, and 2) the ring
Intℳ(𝑆,𝐷) of integer-valued polynomials on 𝑆 of modulus ℳ. These rings of
polynomials arise in a very natural way and also play a central role in the study of
smooth 𝑝-adic functions (see Section 4).
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3.1. Polynomials with integer-valued divided differences. As we have al-
ready seen in Pólya’s theorem (and its generalizations), a rational polynomial that
takes integer values on the integers (or on any infinite subset 𝑆 of ℤ) need not
be an integral polynomial itself. One key property that an integer polynomial 𝑓
possesses, which an integer-valued polynomial does not necessarily share, is that of
congruence preservation, i.e., 𝑓(𝑥) ≡ 𝑓(𝑦) (mod 𝑚) whenever 𝑥 ≡ 𝑦 (mod 𝑚). In
other words, the first divided difference

(7) Φ𝑓(𝑥, 𝑦) =
𝑓(𝑥)− 𝑓(𝑦)

𝑥− 𝑦

of 𝑓 is also an integral polynomial (now in two variables); in particular, it too takes
only integer values. This gives a criterion on the values taken by a polynomial that
can be used to distinguish integral polynomials from integer-valued polynomials.
This still does not distinguish the two types of polynomials entirely, of course.

However, more generally, if 𝑓 is an integral polynomial, then so is its 𝑛-th divided
difference Φ𝑛𝑓(𝑥0, . . . , 𝑥𝑛), defined inductively by the equation

(8) Φ𝑛𝑓(𝑥0, . . . , 𝑥𝑛) =
Φ𝑛−1𝑓(𝑥0, . . . , 𝑥𝑛−1)− Φ𝑛−1𝑓(𝑥0, . . . , 𝑥𝑛−2, 𝑥𝑛)

𝑥𝑛−1 − 𝑥𝑛
.

It is easy to see that a polynomial is integral if and only if it and all its 𝑛-th divided
differences take integer values on 𝑆, where 𝑆 is any infinite subset of ℤ. This follows,
e.g., from the Newton interpolation formula

𝑓(𝑥) = 𝑓(𝑎0) + Φ𝑓(𝑎0, 𝑎1)(𝑥− 𝑎0) + Φ
2𝑓(𝑎0, 𝑎1, 𝑎2)(𝑥− 𝑎0)(𝑥− 𝑎1) + ⋅ ⋅ ⋅

+Φ𝑑−1𝑓(𝑎0, . . . , 𝑎𝑑−1)(𝑥− 𝑎0) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑑−2)

+Φ𝑑𝑓(𝑎0, . . . , 𝑎𝑑−1, 𝑥)(𝑥− 𝑎0) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑑−1),

where 𝑎0, . . . , 𝑎𝑑−1 ∈ 𝑆 are any integers, and 𝑑 denotes the degree of 𝑓 . (By
convention, the 0-th divided difference Φ0𝑓 of 𝑓 is 𝑓 itself; it is known that Φ𝑛𝑓 is
a function symmetric in its 𝑛+ 1 arguments.)
Thus a rational polynomial that is integer-valued on 𝑆 can be distinguished from

an integral polynomial by computing its 𝑘-th divided differences for sufficiently
many values of 𝑘. Given any integer 𝑟 ≥ 0, the set of integer-valued polynomials
on 𝑆 whose 𝑘-th divided differences are also integer-valued for all 𝑘 ≤ 𝑟 forms a

ring, which we denote by Int{𝑟}(𝑆,ℤ). That Int{𝑟}(𝑆,ℤ) is indeed a ring follows
from the product identity

Φ𝑘(𝑓𝑔)(𝑥0, . . . , 𝑥𝑘) =

𝑘∑
𝑖=0

Φ𝑖𝑓(𝑥0, . . . , 𝑥𝑖)Φ
𝑘−𝑖𝑔(𝑥𝑖, . . . , 𝑥𝑘).

In particular, the case 𝑟 = 0 recovers the usual ring Int(𝑆,ℤ) of integer-valued

polynomials on 𝑆. Also, we have seen already that
∩∞

𝑟=0 Int
{𝑟}(𝑆,ℤ) = ℤ[𝑥].

The ring Int{𝑟}(𝑆,ℤ) consists precisely of those polynomials that cannot be dis-
tinguished from integral polynomials even after the computation of all divided dif-
ferences on 𝑆 up to the 𝑟-th divided differences. More generally, we have the
following:

Definition 6. Let 𝑆 be any subset of a Dedekind domain 𝐷 having quotient field
𝐾. Then the set of all polynomials in 𝐾[𝑥] whose 𝑘-th divided differences for

𝑘 = 0, . . . , 𝑟 are all 𝐷-valued on 𝑆 forms a ring, which we denote by Int{𝑟}(𝑆,𝐷).
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In Sections 3.1.1–3.1.2, we derive a regular basis theorem for these special rings

Int{𝑟}(𝑆,ℤ) of integer-valued polynomials. More generally, for a Dedekind domain
𝐷, we give necessary and sufficient conditions on 𝑆, 𝐷, and 𝑟 for Int{𝑟}(𝑆,𝐷) to
have a regular basis, and we give a construction of such a basis whenever it exists.
(The significantly simpler special case 𝑟 = 0 was treated in [4].)

3.1.1. Local basis for Int{𝑟}(𝑆,𝐷). We begin by constructing an explicit regular
basis for Int{𝑟}(𝑆,𝐷) in the case where 𝐷 = 𝑅 is local. Thus let 𝐾 denote a local
field with discrete valuation, let 𝑅 be its valuation ring, and let 𝜋 be a uniformizer.
Let 𝑣(𝑥) denote the 𝜋-valuation of 𝑥, normalized so that 𝑣(𝜋) = 1.
Given any compact subset 𝑆 of 𝐾 and an 𝑟-removed 𝜋-ordering Λ = {𝑎𝑖} of 𝑆,

define the 𝑟-removed factorial function 𝑛!
{𝑟}
Λ of 𝑆 by

𝑛!
{𝑟}
Λ =

∏
𝑖∈𝐴𝑛

(𝑎𝑛 − 𝑎𝑖)

(i.e., 𝑛!
{𝑟}
Λ generates the ideal 𝜈

{𝑟}
𝑘 (𝑆, 𝜋)) and define the 𝑛-th 𝑟-removed generalized

binomial polynomial by

(9)

(
𝑥

𝑛

){𝑟}

Λ

=
(𝑥− 𝑎0)(𝑥− 𝑎1) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑛−1)

𝑛!
{𝑟}
Λ

.

We claim that these 𝑟-removed binomial polynomials lie in Int{𝑟}(𝑆,𝑅), and
moreover, they form a regular basis for the ring Int{𝑟}(𝑆,𝑅). We state this in the
following theorem.

Theorem 7. Let 𝑟 ≥ 0 be any integer, and let Λ = {𝑎𝑖}∞𝑖=0 be an 𝑟-removed

𝜋-ordering of 𝑆. Then the 𝑟-removed binomial polynomials {(𝑥𝑛){𝑟}Λ
}𝑛≥0 form an

𝑅-basis for the ring Int{𝑟}(𝑆,𝑅).

Proof. First, let us check that the 𝑟-removed binomial polynomials actually lie in

Int{𝑟}(𝑆,𝑅). To achieve this, we prove the following key formula for the divided
differences of

(
𝑥
𝑛

){𝑟}
Λ
; this formula will also be of use in the sequel.

Lemma 8. Fix any elements 𝑎0, . . . , 𝑎𝑛−1 and 𝑏0, . . . , 𝑏𝑞 in 𝑅. For each vector
𝒊 = (𝑖1, . . . , 𝑖𝑞) satsfying 0 ≤ 𝑖1 < ⋅ ⋅ ⋅ < 𝑖𝑞 < 𝑛, we define the sequence 𝑚𝒊(0),
𝑚𝒊(1), . . . ,𝑚𝒊(𝑛 − 1) inductively by choosing 𝑚𝒊(𝑘) to be the smallest index in
{0, . . . , 𝑞} ∖ {𝑚𝒊(𝑖𝑗) : 𝑖𝑗 < 𝑘} that maximizes 𝑣(𝑏𝑚𝒊(𝑘) − 𝑎𝑘). Then for 𝑓(𝑥) =
(𝑥− 𝑎0) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑛−1), we have the formula

(10) Φ𝑞𝑓(𝑏0, . . . , 𝑏𝑞) =
∑

𝒊=(𝑖1,...,𝑖𝑞)

0≤𝑖1<⋅⋅⋅<𝑖𝑞<𝑛

∏
𝑘∈{0,...,𝑛−1}∖{𝑖1,...,𝑖𝑞}

(𝑏𝑚𝒊(𝑘) − 𝑎𝑘).

Proof. We proceed via induction on 𝑞 + 𝑛 = 𝑞 + deg(𝑓). In the case of 𝑞 + 𝑛 = 0
(indeed for 𝑞 = 0 and any 𝑛), the formula simply states that 𝑓 = 𝑓 , since the only
vector 𝒊 in the sum in this case is the empty vector. Now set 𝑓0(𝑥) = 𝑓(𝑥)/(𝑥−𝑎0);
then we have the following identity (itself easily proven by induction on 𝑞):

(11) Φ𝑞𝑓(𝑏0, . . . , 𝑏𝑞) = (𝑏𝑚𝒊(0)−𝑎0)Φ
𝑞𝑓0(𝑏0, . . . , 𝑏𝑞)+Φ

𝑞−1𝑓(𝑏0, . . . , 𝑏𝑚𝒊(0), . . . , 𝑏𝑞),

where 𝑏𝑚𝒊(0) denotes an omitted term. Now the induction hypothesis gives the first
term of (11) as the 𝑖1 ∕= 0 part of the sum in (10), while the second term of (11)
gives the 𝑖1 = 0 part of the sum in (10). The lemma follows. □
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To prove that
(
𝑥
𝑛

){𝑟}
Λ

∈ Int{𝑟}(𝑆,𝑅), we apply the lemma with 𝑎0, 𝑎1, . . . , 𝑎𝑛−1

as in the 𝑟-removed 𝜋-ordering Λ, and 𝑏0, . . . , 𝑏𝑞 arbitrary elements of 𝑆, where
𝑞 ≤ 𝑟. With 𝑓(𝑥) as in the lemma, we have formula (10) for Φ𝑞𝑓(𝑏0, . . . , 𝑏𝑞). For a
vector 𝒊 = (𝑖1, . . . , 𝑖𝑞), let𝑚𝒊(0), . . . ,𝑚𝒊(𝑛−1) be the sequence as constructed in the
lemma, and furthermore let 𝑚𝒊(𝑛) be the unique element of {0, . . . , 𝑞}∖{𝑖1, . . . , 𝑖𝑞}.
Then, by the construction of 𝑚𝒊(𝑘), we know that 𝑣(𝑏𝑚𝒊(𝑘) − 𝑎𝑘) ≥ 𝑣(𝑏𝑚𝒊(𝑛) − 𝑎𝑘).
Thus for any given 𝑖 = (𝑖1, . . . , 𝑖𝑞), we have
(12)

𝑣
( ∏
𝑘∈{0,...,𝑛−1}∖{𝑖1,...,𝑖𝑞}

(𝑏𝑚𝒊(𝑘) − 𝑎𝑘)
) ≥ 𝑣

( ∏
𝑘∈{0,...,𝑛−1}∖{𝑖1,...,𝑖𝑞}

(𝑏𝑚𝒊(𝑛) − 𝑎𝑘)
)

≥ 𝑣
( ∏
𝑘∈{0,...,𝑛−1}∖{𝑛1,...,𝑛𝑟}

(𝑎𝑛 − 𝑎𝑘)
)

= 𝑣(𝑛!
{𝑟}
Λ ),

since Λ = {𝑎𝑖} is an 𝑟-removed 𝜋-ordering. Thus for any 𝑞 ≤ 𝑟 and 𝑏0, . . . , 𝑏𝑞 ∈ 𝑆,
formula (10) gives an expression for Φ𝑞(𝑏0, . . . , 𝑏𝑞) as a sum of terms, where each

term is an 𝑅-multiple of 𝑛!
{𝑟}
Λ . Thus

(
𝑥
𝑛

){𝑟}
Λ

∈ Int{𝑟}(𝑆,𝑅), as desired.
To see that these polynomials actually form an 𝑅-basis for Int{𝑟}(𝑆,𝑅), let 𝑓 ∈

Int{𝑟}(𝑆,𝑅) denote any element of degree 𝑑, and write

𝑓(𝑥) =
𝑑∑

𝑗=0

𝑐𝑗

(
𝑥

𝑗

){𝑟}

Λ

for some elements 𝑐𝑗 ∈ 𝐾. We wish to show that the 𝑐𝑗 actually lie in 𝑅. Suppose
not, and let 𝑛 be the minimal index such that 𝑐𝑛 /∈ 𝑅. We consider the value
of Φ𝑟𝑓(𝑎𝑛1

, . . . , 𝑎𝑛𝑟
, 𝑎𝑛), where 𝑛1, . . . , 𝑛𝑟 denote as usual the 𝑟 indices removed

at the 𝑛-th step of the 𝑟-removed 𝜋-ordering process. Then it is easy to see that

Φ𝑟[𝑐𝑗
(
𝑥
𝑗

){𝑟}
Λ
](𝑎𝑛1

, . . . , 𝑎𝑛𝑟
, 𝑎𝑛) vanishes for 𝑗 > 𝑛, while for 𝑗 < 𝑛 it is in 𝑅 by the

minimality of 𝑛 and the fact that the binomial polynomials are in Int{𝑟}(𝑆,𝑅). We
conclude that Φ𝑟

[
𝑐𝑛
(
𝑥
𝑛

){𝑟}
Λ

]
(𝑎𝑛1

, . . . , 𝑎𝑛𝑟
, 𝑎𝑛) = 𝑐𝑛 must also be in 𝑅, a contradic-

tion. It follows that all 𝑐𝑛 must lie in 𝑅, and thus the polynomials
(
𝑥
𝑛

){𝑟}
Λ

indeed

form an 𝑅-basis for Int{𝑟}(𝑆,𝑅), as was desired. □

Remark 9. The arguments above in fact show that the generalized factorials {𝑘!{𝑟}𝑆 }
must occur as the denominators of the leading coefficients of any regular basis of

Int{𝑟}(𝑆,𝑅). Moreover, for any sequence {𝑎𝑖} in 𝑆, the polynomials

(𝑥− 𝑎0)(𝑥− 𝑎1) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑘−1)

𝑘!
{𝑟}
Λ

, 𝑘 = 0, 1, 2, . . . ,

give a regular basis of Int
{𝑟}
𝜋ℎ (𝑆,𝑅) if and only if {𝑎𝑖} is an 𝑟-removed 𝜋-ordering of

𝑆.

As a consequence we note that Theorem 7 implies, in particular, that the frac-
tional ideal consisting of 0 and all the leading coefficients of degree 𝑘 polynomials in

Int{𝑟}(𝑆,𝑅) is simply (𝑘!{𝑟}𝑆 )−1. Since the definition of the ring Int{𝑟}(𝑆,𝑅) does
not depend on any choice of 𝜋-ordering, Theorem 3 follows.
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3.1.2. Global basis for Int{𝑟}(𝑆,𝐷). Now suppose that 𝐷 is any Dedekind domain
having quotient field 𝐾. Standard localization arguments (see, e.g., [23], [22],
and [4]) then show that the fractional ideal of all leading coefficients of degree 𝑘

polynomials in Int{𝑟}(𝑆,𝐷) is (𝑘!{𝑟}𝑆 )−1.

If the ideal (𝑘!
{𝑟}
𝑆 )−1 is not principal, then the ring Int{𝑟}(𝑆,𝐷) clearly cannot

have a regular basis. Otherwise, one may construct a regular basis using 𝑟-removed

𝑃 -orderings, as follows. For each prime ideal 𝑃 of 𝐷, let {𝑎(𝑃 )
𝑖 } be an 𝑟-removed 𝑃 -

ordering of 𝑆. For each 𝑛 ≥ 0, construct (using the Chinese Remainder Theorem)

a sequence {𝑎𝑖,𝑛}𝑛−1
𝑖=0 in 𝐷 such that for every prime 𝑃 dividing 𝑛!

{𝑟}
𝑆 , we have

𝑎𝑖,𝑛 ≡ 𝑎
(𝑃 )
𝑖 (mod 𝑃 𝑒+1), where 𝑃 𝑒 ∣∣𝑛!{𝑟}𝑆 . Then we have the following analogue of

Pólya and Ostrowski’s regular basis theorems in the context of Int{𝑟}(𝑆,𝐷):

Theorem 10. The ring Int{𝑟}(𝑆,𝐷) has a regular basis if and only if 𝑘!
{𝑟}
𝑆 is a

nonzero principal ideal for all 𝑘 ≥ 0. In that case, a regular basis for Int{𝑟}(𝑆,𝐷)
is given by

𝐵𝑘(𝑥) =
(𝑥− 𝑎0,𝑘)(𝑥− 𝑎1,𝑘) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑘−1,𝑘)

𝛽𝑘
, 𝑘 = 0, 1, 2, . . . ,

where 𝛽𝑘 denotes an element of 𝐷 such that (𝛽𝑘) = 𝑘!
{𝑟}
𝑆 .

Proof. We need only check that the values of 𝐵𝑘(𝑥) and of its first 𝑟 divided differ-
ences on 𝑆 all lie in 𝐷. For this, it suffices to check that all these values lie in the
localization 𝐷𝑃 for each prime 𝑃 . But this is implied by Theorem 7 and the fact
that the 𝑎𝑖,𝑛 were chosen sufficiently close 𝑃 -adically to an 𝑟-removed 𝑃 -ordering

{𝑎(𝑃 )
𝑖 } of 𝑆. The result follows. □

3.2. Integer-valued polynomials having a given modulus.

3.2.1. The modulus of an integer-valued polynomial. Let 𝑓(𝑥) be an integer-valued
polynomial on ℤ, i.e., a polynomial 𝑓(𝑥) ∈ ℚ[𝑥] such that 𝑓(𝑎) ∈ ℤ for all 𝑎 ∈
ℤ. Then, as we demonstrate below, there exist infinitely many 𝑚 ≥ 0 such that
𝑓(𝑚𝑥+ 𝑎) ∈ ℤ[𝑥] for all 𝑎 ∈ ℤ (equivalently, for all 𝑎 ∈ {0, 1, . . . ,𝑚− 1}). That is,
although 𝑓 itself might not be an integral polynomial, there exist infinitely many
𝑚 such that 𝑓 is integral when considered as a polynomial on each of the residue
classes modulo 𝑚. For any such value of 𝑚, we say that 𝑓 is (integer-valued) of
modulus 𝑚.
If an integer-valued polynomial is of modulus𝑚, then it is clearly also of modulus

𝑘𝑚 for any 𝑘 ≥ 0; in particular, any integer-valued polynomial is of modulus
0. To see that any integer-valued polynomial is of modulus 𝑚 for some 𝑚 > 0,
we may apply Pólya’s regular basis theorem, which states that any integer-valued
polynomial on ℤ can be expressed as a ℤ-linear combination of the polynomials(
𝑥
𝑛

)
, 𝑛 = 0, 1, . . .. As it is easy to see that

(
𝑥
𝑛

)
is of modulus 𝑚 = lcm(1, 2, . . . , 𝑛)

but is not of modulus 𝑚 for any smaller positive 𝑚, it follows that any degree 𝑛
polynomial taking integer values on ℤ is necessarily of modulus lcm(1, 2, . . . , 𝑛),
but might not be of any smaller positive modulus.
The set of all integer-valued polynomials on ℤ forms a ring, which is generally de-

noted by Int(ℤ). The set of all integer-valued polynomials of a given fixed modulus
𝑚 is seen to form a subring of Int(ℤ), which we denote by Int𝑚(ℤ). In particular,
Int0(ℤ) = Int(ℤ).
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In the following two subsections, we derive a regular basis theorem for Int𝑚(ℤ)
analogous to Pólya’s regular basis theorem for Int(ℤ). In fact, we consider the
following more general situation. Let 𝐷 be a Dedekind domain and let 𝑆 ⊆ 𝐷 be
any subset. As is customary, denote by Int(𝑆,𝐷) the ring of 𝐷-valued polynomials
on 𝑆.

Definition 11. For any ideal ℳ of 𝐷, we say that a polynomial 𝑓 is 𝐷-valued on
𝑆 of modulus ℳ if for all 𝑚 ∈ ℳ and 𝑎 ∈ 𝑆, 𝑓(𝑚𝑥 + 𝑎) ∈ 𝐷[𝑥]. We denote the
ring of all 𝐷-valued polynomials on 𝑆 of modulus ℳ by Intℳ(𝑆,𝐷).

Again, Int(0)(𝑆,𝐷) = Int(𝑆,𝐷). In Section 3.2.3, we give necessary and sufficient
conditions on 𝑆, 𝐷, and ℳ for Intℳ(𝑆,𝐷) to have a regular basis (i.e., a 𝐷-basis
consisting of one element of each degree), and we give a construction of such a basis
whenever it exists. The (much simpler) special case ℳ = (0) was treated in [4].

3.2.2. Local basis for Intℳ(𝑆,𝐷). We first turn to the problem of constructing
a regular basis for Intℳ(𝑆,𝐷) when 𝐷 = 𝑅 is local, i.e., when it is a discrete
valuation domain. Thus, in this subsection, let 𝐾 denote a local field with discrete
valuation, let 𝑅 be its valuation ring, and let 𝜋 be a uniformizer. Denote by 𝑣(𝑥)
the 𝜋-valuation of 𝑥 ∈ 𝐾, normalized so that 𝑣(𝜋) = 1.
Given any compact subset 𝑆 of 𝐾 and a 𝜋-ordering Λ = {𝑎𝑖} of 𝑆 of order ℎ,

define the factorial function 𝑛!𝑆,ℎ by

𝑛!𝑆,ℎ = 𝜋
∑𝑛−1

𝑖=0 min(ℎ,𝑣(𝑎𝑛−𝑎𝑖))

(i.e., 𝑛!𝑆,ℎ generates 𝜈𝑘(𝑆, 𝜋, ℎ)) and define the 𝑛-th generalized binomial polynomial
of order ℎ by

(13)

(
𝑥

𝑛

)
Λ,ℎ

=
(𝑥− 𝑎0)(𝑥− 𝑎1) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑛−1)

𝑛!𝑆,ℎ
.

Then
(
𝑥
𝑛

)
Λ,ℎ

∈ Int𝜋ℎ(𝑆,𝑅), as the 𝜋-valuation of
(
𝜋ℎ𝑋+𝑎

𝑛

)
Λ,ℎ

is

𝑛−1∑
𝑖=0

min(ℎ, 𝑣(𝑎− 𝑎𝑖))−
𝑛−1∑
𝑖=0

min(ℎ, 𝑣(𝑎𝑛 − 𝑎𝑖)),

which is nonnegative for 𝑎 ∈ 𝑆 since {𝑎𝑖} is a 𝜋-ordering of 𝑆 of order ℎ.
It turns out that these generalized binomial polynomials of order ℎ actually form

an 𝑅-basis for the space Int𝜋ℎ(𝑆,𝑅) (see [32], [1] for a nice discussion of the special
case 𝑆 = 𝑅):

Theorem 12. Let {𝑎𝑖}∞𝑖=0 be a 𝜋-ordering of 𝑆 of order ℎ. Then the polynomials
{(𝑥𝑛)Λ,ℎ}𝑛≥0 form a regular basis for the ring Int𝜋ℎ(𝑆,𝑅).

It is most convenient to prove Theorem 12 first for a special class of 𝜋-orderings.
We say that a 𝜋-ordering Λ = {𝑎𝑖} of order ℎ is restricted if for any 𝑚 and 𝑛,
𝑎𝑚 ≡ 𝑎𝑛 (mod 𝜋ℎ) implies 𝑎𝑚 = 𝑎𝑛. We note that any 𝜋-ordering of order ℎ can
be transformed into a restricted 𝜋-ordering of order ℎ by replacing each 𝑎𝑛 (𝑛 ≥ 0)
by 𝑎𝑚, where 𝑚 ≥ 0 is the smallest integer such that 𝑎𝑚 ≡ 𝑎𝑛 (mod 𝜋ℎ); thus
restricted 𝜋-orderings of order ℎ exist.

Proof of Theorem 12 for restricted Λ. We have already seen that the polynomials(
𝑥
𝑛

)
Λ,ℎ

lie in Int𝜋ℎ(𝑆,𝑅) for all 𝑘 ≥ 0. Conversely, any polynomial 𝑓 ∈ Int𝜋ℎ(𝑆,𝑅)
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having degree 𝑑 may be expressed in the form

(14) 𝑓(𝑥) =
𝑑∑

𝑛=0

𝑐𝑛

(
𝑥

𝑛

)
Λ,ℎ

,

where the coefficients 𝑐𝑛 lie in 𝐾; we claim that the 𝑐𝑛 must lie in 𝑅. For if not,
let 𝑚 be the minimal index such that 𝑐𝑚 ∕∈ 𝑅 and let 𝑘 equal the number of times
𝑎𝑚 occurs in the multiset {𝑎0, 𝑎1, . . . , 𝑎𝑚−1}.
We now set 𝑥 = 𝜋ℎ𝑋 + 𝑎𝑚 in (14) to obtain

(15) 𝑓(𝜋ℎ𝑋 + 𝑎𝑚) =

𝑑∑
𝑛=0

𝑐𝑛𝑃𝑚,𝑛(𝑋),

where

(16) 𝑃𝑚,𝑛(𝑋) =

(
𝜋ℎ𝑋 + 𝑎𝑚

𝑛

)
Λ,ℎ

,

and we examine the coefficient of 𝑋𝑘 in (15). Since 𝑓 ∈ Int𝜋ℎ(𝑆,𝑅), the coefficient
of 𝑋𝑘 in (15) must be integral. Now the coefficient of 𝑋𝑘 in 𝑃𝑚,𝑛(𝑋) is zero
for 𝑛 > 𝑚, since 𝑃𝑚,𝑛(𝑋) is actually a multiple of 𝑋

𝑘+1 by the definition of 𝑘.
Furthermore, the coefficient of 𝑋𝑘 in 𝑐𝑛𝑃𝑚,𝑛(𝑋) for 𝑛 < 𝑚 must be integral by
the minimality of 𝑚 and the fact that

(
𝑥
𝑛

)
Λ,ℎ

∈ Int𝜋ℎ(𝑆,𝑅). It follows that the

coefficient of 𝑋𝑘 in 𝑐𝑚𝑃𝑚,𝑚(𝑋) must also be integral. However, we may write

(17) 𝑃𝑚,𝑚(𝑋) =
𝑚−1∏
𝑖=0

(
𝜋ℎ𝑋 + 𝑎𝑚 − 𝑎𝑖
𝜋min(ℎ,𝑣(𝑎𝑚−𝑎𝑖))

)
,

where each of the factors on the right-hand side is clearly integral and of 𝜋-valuation
zero. It follows from this factorization and the definition of 𝑘 that the 𝜋-valuation
of the coefficient of 𝑋𝑘 in 𝑃𝑚,𝑚(𝑋) is zero, and hence we must have 𝑐𝑚 ∈ 𝑅, a
contradiction. □

We may now prove Theorem 12 for general 𝜋-orderings Λ of order ℎ using a
simple change-of-basis argument.

Proof of Theorem 12 for general Λ. Denote by Λ0 any restricted 𝜋-ordering of or-
der ℎ. Then we have already shown that {(𝑥𝑛)Λ0,ℎ

}𝑛≥0 forms an 𝑅-basis for

Int𝜋ℎ(𝑆,𝑅). Since the polynomials
(
𝑥
𝑛

)
Λ,ℎ

also lie in Int𝜋ℎ(𝑆,𝑅), there exists a

transformation 𝑇 = (𝑡𝑚𝑛) defined over 𝑅 such that(
𝑥

𝑚

)
Λ,ℎ

=
𝑚∑
𝑛=0

𝑡𝑚𝑛

(
𝑥

𝑛

)
Λ0,ℎ

for all 𝑚,𝑛 ≥ 0. We wish to show that 𝑡𝑚𝑛 is invertible over 𝑅. However, 𝑇 is
lower triangular, and 𝑡𝑛𝑛 = 1 for all 𝑛 since the leading coefficients of

(
𝑥
𝑛

)
Λ,ℎ

and(
𝑥
𝑛

)
Λ0,ℎ

are identical. The invertibility of 𝑇 follows. □

Remark 13. The arguments in fact show that the generalized factorials {𝑘!𝑆,ℎ}
must occur as the denominators of the leading coefficients of any regular basis of
Int𝜋ℎ(𝑆,𝑅); moreover, for any sequence {𝑎𝑖} in 𝑆, the polynomials

(𝑥− 𝑎0)(𝑥− 𝑎1) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑘−1)

𝑘!𝑆,ℎ
, 𝑘 = 0, 1, 2, . . . ,
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give a regular basis of Int𝜋ℎ(𝑆,𝑅) if and only if {𝑎𝑖} is a 𝜋-ordering of 𝑆 of order
ℎ.

As a consequence, we note that Theorem 12 implies that the fractional ideal
consisting of 0 and all the leading coefficients of degree 𝑘 polynomials in Int𝜋ℎ(𝑆,𝑅)
is simply 𝜈𝑘(𝑆, 𝜋, ℎ)

−1. Since the definition of the ring Int𝜋ℎ(𝑆,𝑅) does not depend
on any choice of 𝜋-ordering, Theorem 4 also follows.

3.2.3. Global basis for Intℳ(𝑆,𝐷). Next, suppose 𝐷 is a general Dedekind domain
with quotient field 𝐾. The identical arguments via localization show that the
fractional ideal of leading coefficients of degree 𝑘 polynomials in Intℳ(𝑆,𝐷) must
be 𝜈𝑘(𝑆;ℳ)−1.
If the ideal 𝜈𝑘(𝑆;ℳ)−1 is not principal, then evidently the ring Intℳ(𝑆,𝐷)

will not have a regular basis. Otherwise, a construction analogous to that in Sec-
tion 3.1.2 yields a regular basis also in this case. Namely, let {𝑎𝑖} be any sequence
in 𝐷 that, for every nonzero prime power 𝑃 ℎ appearing in the prime factorization
of ℳ, is termwise congruent modulo 𝑃 ℎ to some 𝑃 -ordering of 𝑆 of order ℎ. Such
a sequence may be constructed using the Chinese Remainder Theorem. Then we
have the following analogue of Pólya and Ostrowski’s regular basis theorems in the
context of Intℳ(𝑆,𝐷):

Theorem 14. The ring Intℳ(𝑆,𝐷) has a regular basis if and only if 𝜈𝑘(𝑆;ℳ) is
a nonzero principal ideal for all 𝑘 ≥ 0. In that case, a regular basis of Intℳ(𝑆,𝐷)
is given by

𝐵𝑘(𝑥) =
(𝑥− 𝑎0)(𝑥− 𝑎1) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑘−1)

𝛽𝑘
, 𝑘 = 0, 1, 2, . . . ,

where 𝛽𝑘 denotes an element of 𝐷 such that (𝛽𝑘) = 𝜈𝑘(𝑆;ℳ).

The proof of Theorem 14 is analogous to that of Theorem 10.

4. Smooth functions on compact subsets of local fields

In this section, we investigate two fundamental notions of smoothness for func-
tions on compact subsets of local fields, namely, continuous differentiability and
local analyticity.
Let 𝐾 be a local field, i.e., the quotient field of a complete discrete valuation

ring 𝑅 whose residue ring 𝑅/𝜋𝑅 is finite. As usual, one equips 𝐾 with the non-
Archimedean absolute value ∣𝑥∣ = ∣𝑅/𝜋𝑅∣−𝑣(𝑥), where 𝑣(𝑥) denotes the valuation
of 𝑥 normalized so that 𝑣(𝜋) = 1. This absolute value satisfies the ultrametric
triangle inequality ∣𝑥 + 𝑦∣ ≤ max(∣𝑥∣, ∣𝑦∣), and induces a metric topology (the “𝜋-
adic” topology) on 𝐾.
A 𝐾-Banach space is a complete normed 𝐾-linear space ℬ whose norm ∥ ⋅ ∥ also

satisfies the ultrametric triangle inequality ∥𝑣+𝑤∥ ≤ max(∥𝑣∥, ∥𝑤∥). For example,
let 𝑆 be any compact subset of 𝐾. Then the space 𝐶(𝑆,𝐾) of continuous functions
from 𝑆 to 𝐾, equipped with the supremum norm ∥𝑓∥∞ = sup𝑥∈𝑆{∣𝑓(𝑥)∣}, is a
𝐾-Banach space. There are many linear subspaces of 𝐶(𝑆,𝐾) which are of interest
as 𝐾-Banach spaces in their own right—for instance, spaces of functions satisfying
various conditions of analyticity. We consider some of these spaces in Sections 4.1
and 4.2.
As shown in [25], much of the theory of𝐾-Banach spaces parallels that of Hilbert

spaces. For example, there is the notion of orthogonality of two elements 𝑥, 𝑦 in a
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𝐾-Banach space ℬ: we write 𝑥 ⊥ 𝑦 if ∥𝑥∥ ≤ ∥𝑥 − 𝜆𝑦∥ for all 𝜆 ∈ 𝐾. It is easy
to see that the orthogonality relation ⊥ is in fact symmetric. More generally, we
say that a set {𝑥1, 𝑥2, . . .} ⊂ ℬ is orthogonal if each element 𝑥𝑖 is orthogonal to
every element in the 𝐾-linear span of the other 𝑥𝑗 ’s (𝑗 ∕= 𝑖). In addition, if each 𝑥𝑖
satisfies ∥𝑥𝑖∥ = 1, then we say that {𝑥1, 𝑥2, . . .} is an orthonormal set.
As with separable Hilbert spaces, for separable 𝐾-Banach spaces (i.e., those

having countable dense subsets) there is the notion of an orthonormal base. A set
{𝑒0, 𝑒1, . . .} is an orthonormal base of a 𝐾-Banach space ℬ if it is an orthonormal
set in ℬ and every element 𝑥 ∈ ℬ can be expressed as a convergent sum 𝑥 =

∑
𝑐𝑛𝑒𝑛

for some sequence of elements 𝑐𝑛 ∈ 𝐾. It is not hard to see that the latter definition
of orthonormal base is equivalent to the following (for further information, see [25]
or [15]):

Definition 15. A sequence of elements 𝑒0, 𝑒1, . . . in a 𝐾-Banach space ℬ is said to
be an orthonormal base of ℬ if
(i) any 𝑣 ∈ ℬ has a unique representation as a convergent sum 𝑣 =

∑∞
𝑛=0 𝑐𝑛𝑒𝑛,

where 𝑐𝑛 ∈ 𝐾 and 𝑐𝑛 → 0;
(ii) ∥𝑣∥ = sup𝑛≥0{∣𝑐𝑛∣}.
For example, Mahler’s theorem [20] implies that the sequence of polynomials

(
𝑥
𝑛

)
forms an orthonormal base of the ℚ𝑝-Banach space 𝐶(ℤ𝑝,ℚ𝑝). Indeed, Mahler’s
theorem immediately gives property (i) of Definition 15, while property (ii) can in
fact be deduced from Pólya’s theorem as follows. Because of property (i), it suffices

to check (ii) on finite linear combinations 𝑣 = 𝑓(𝑥) =
∑𝑁

𝑛=0 𝑐𝑛
(
𝑥
𝑛

)
. In that case,

(ii) amounts to the statement that the fixed divisor 𝑑(𝑓) of 𝑓 , i.e., the greatest
common divisor of the values taken by 𝑓(𝑥) on ℤ𝑝, is equal to gcd𝑛≥0{𝑐𝑛} (viewed
as a power of 𝑝). Clearly 𝑑(𝑓) is a multiple of gcd{𝑐𝑛}, since each polynomial

(
𝑥
𝑛

)
is ℤ𝑝-valued on ℤ𝑝. Now suppose 𝑑(𝑓) is not equal to gcd{𝑐𝑛}. Then 𝑓(𝑥)/𝑑(𝑓) is
a ℤ𝑝-valued polynomial on ℤ𝑝, but in its expansion as

𝑓(𝑥)

𝑑(𝑓)
=

𝑁∑
𝑛=0

𝑐𝑛
𝑑(𝑓)

(
𝑥

𝑛

)

we see that not all the coefficients 𝑐𝑛
𝑑(𝑓) are integers in ℤ𝑝, contradicting Pólya’s

regular basis theorem for ℤ𝑝, i.e., that the polynomials
(
𝑥
𝑛

)
form a ℤ𝑝-basis for

the ℤ𝑝-valued polynomials on ℤ𝑝. We conclude that 𝑑(𝑓) = gcd𝑛≥0{𝑐𝑛}, yielding
property (ii).
It is thus property (ii) that relates orthonormal bases of 𝐾-Banach spaces with

integer-valued polynomials. In this section, we wish to further study and make use
of this relationship.
Analogous polynomial orthonormal bases also exist for the ℚ𝑝-Banach spaces

𝐶(𝑆,𝐾), where 𝑆 is any compact subset of a local field 𝐾; these bases were con-
structed in [4] and [7] using 𝑃 -orderings and by examining the corresponding rings
Int(𝑆,ℤ𝑝) of integer-valued polynomials.
In Section 4.1.1, we completely resolve the case of 𝑟-times continuously differen-

tiable functions on an arbitrary compact subset 𝑆 of a local field𝐾. In particular, we
construct explicit polynomial orthonormal bases for the 𝐾-Banach space 𝐶𝑟(𝑆,𝐾)
of such functions, using the notion of 𝑟-removed 𝑃 -orderings. This is accomplished

by exploiting connections with the ring Int{𝑟}(𝑆,𝑅) of polynomials having integer-
valued 𝑘-th divided differences for all 0 ≤ 𝑘 ≤ 𝑟. In Section 4.1.2, we show that any
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regular polynomial orthonormal base of 𝐶𝑟(𝑆,𝐾) must in fact come from a regular

basis for the ring Int{𝑟}(𝑆,𝑅).
We then turn to the case of “locally analytic functions”. In [1], Amice con-

structed polynomial orthornormal bases for the 𝐾-Banach space 𝐿𝐴ℎ(𝑆,𝐾) of lo-
cally analytic functions of order ℎ on 𝑆 (to be defined in the next section) in the
case where 𝑆 is “well-distributed” in 𝐾 in a certain sense. Using 𝑃 -orderings of
order ℎ, we show in Section 4.2.1 that natural polynomial orthonormal bases for
locally analytic functions of order ℎ on 𝑆 can in fact be constructed for any compact
subset 𝑆 of 𝐾. The connection with integer-valued polynomials of modulus 𝜋ℎ, as
studied in Section 3.2, is again one of the main keys to the construction and its
proof. In Section 4.2.2, we show in fact that any regular polynomial orthonormal
base of 𝐿𝐴ℎ(𝑆,𝐾) must be a regular basis for the ring Int𝜋ℎ(𝑆,𝑅).

4.1. The Banach space of 𝑟-times continuously differentiable functions.
In this subsection, we consider continuously differentiable functions on arbitrary
compact subsets of local fields. The formulation of a notion of continuous differ-
entiability in the non-Archimedean setting turns out to be a bit more subtle than
in the Archimedean case if it is to have “desirable” properties. For example, if we
define a 𝐶1 (continuously differentiable) function simply as one having a continuous
derivative then, contrary to the Archimedean case, local invertibility of the function
does not necessarily hold even at a point having a nonzero derivative. In fact, there
exist differentiable functions 𝑓 : ℤ𝑝 → ℚ𝑝 such that 𝑓 ′(𝑥) = 1 for all 𝑥 ∈ ℤ𝑝 even
though 𝑓 is not injective in any neighborhood of 0 (see [25, Example 26.6])!
To regain some of these desirable properties—such as local invertibility—for con-

tinuously differentiable functions, it becomes necessary to strengthen the definition
of such functions. The most common method for accomplishing this is through the
notion of divided differences.
Let 𝑆 ⊂ 𝐾 again be a compact set without isolated points. We say that a

function 𝑓 : 𝑆 → 𝐾 is continuously differentiable2 if its divided difference function
Φ𝑓 : 𝑆 × 𝑆 ∖Δ→ 𝐾 (as defined by (7)) is extendable to a continuous function on
all of 𝑆 ×𝑆, where Δ ⊂ 𝑆 ×𝑆 denotes the diagonal {(𝑥, 𝑥) : 𝑥 ∈ 𝑆}. Of course, for
such a function 𝑓 we then have 𝑓 ′(𝑎) = Φ𝑓(𝑎, 𝑎) for any 𝑎 ∈ 𝑆. Moreover, a version
of local invertibility then holds for such functions 𝑓 (see, e.g., [25, Theorem 27.5]).
We note that, in the Archimedean case of functions 𝑓 : 𝐼 → ℝ (where 𝐼 is a

compact subset of ℝ without isolated points), this definition of continuous differen-
tiability in fact agrees with the usual definition, since the existence of a continuous
derivative at 𝑎 ∈ 𝐼 implies the existence of a continuous extension of Φ𝑓(𝑥, 𝑦) to
(𝑥, 𝑦) = (𝑎, 𝑎). As such an extension is not automatic in the non-Archimedean case,
it must be stated to exist explicitly.
More generally, we may define 𝐶𝑟 (or 𝑟-times continuously differentiable) func-

tions in terms of 𝑟-th divided differences:

Definition 16. Let 𝑆 be a compact subset of a local field 𝐾, having no isolated
points. A function 𝑓 : 𝑆 → 𝐾 is said to be a 𝐶𝑟 (or 𝑟-times continuously dif-
ferentiable) function if its 𝑟-th divided difference function Φ𝑟𝑓 : 𝑆𝑟+1 ∖ Δ → 𝐾
(as defined by (8)) is extendable to a continuous function on all of 𝑆𝑟+1; here
Δ denotes the “fat diagonal” of 𝑆𝑟+1, i.e., the set {(𝑥0, . . . , 𝑥𝑟) ∈ 𝑆𝑟+1 : 𝑥𝑖 =

2In the literature, some authors refer to this condition instead as “uniformly differentiable” or
“strictly differentiable”.
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𝑥𝑗 for some 𝑖 ∕= 𝑗}. The norm of such a function 𝑓 is given by ∥𝑓∥ = ∥𝑓∥𝐶𝑟(𝑆,𝐾) :=
max{∣𝑓 ∣, ∣Φ𝑓 ∣, . . . , ∣Φ𝑟𝑓 ∣}, where ∣Φ𝑞𝑓 ∣ denotes the supremum of the values of Φ𝑞𝑓
on its domain 𝑆𝑞+1 of definition.

The set 𝐶𝑟(𝑆,𝐾) of all 𝐶𝑟-functions on 𝑆, under the norm as given in Defini-
tion 16, forms a 𝐾-Banach space. Since it is known to possess countable dense
subsets, the question arises as to whether one can explicitly describe an orthonor-
mal base for 𝐶𝑟(𝑆,𝐾). Using the ideas of Sections 2 and 3, we show in Section 4.2.1
that natural polynomial orthonormal bases for 𝐶𝑟-functions on 𝑆 may be given for
any compact subset 𝑆 of 𝐾.
The constructions given involve only certain combinatorial properties of the set

𝑆, which are encoded in what we have termed “𝑟-removed 𝑃 -orderings” and “𝑟-
removed generalized factorials”.

4.1.1. Interpolation series for the spaces 𝐶𝑟(𝑆,𝐾). Let 𝑆 again be a compact subset
of a local field 𝐾 having no isolated points. Let 𝑅 be the valuation ring of 𝐾 and let
𝜋 be a uniformizer. Let Λ = {𝑎𝑖} be an 𝑟-removed 𝜋-ordering of 𝑆 and define the

𝑟-removed generalized binomial polynomials
(
𝑥
𝑛

){𝑟}
Λ

as in Section 3.1.1, (9). Then
the main result of this section is:

Theorem 17. The 𝑟-removed generalized binomial polynomials

(18)

(
𝑥

𝑛

){𝑟}

Λ

=
(𝑥− 𝑎0)(𝑥− 𝑎1) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑛−1)

𝑛!
{𝑟}
Λ

,

for 𝑛 = 0, 1, 2, . . ., form an orthonormal base for 𝐶𝑟(𝑆,𝐾).

We begin by proving Theorem 17 first for a special class of 𝑟-removed 𝜋-orderings.
Given an 𝑟-removed 𝜋-ordering Λ = {𝑎𝑖} and a nonnegative integer 𝑛, we say that
𝑎𝑛 is old (mod 𝜋𝑚) if 𝑎𝑛 ≡ 𝑎𝑗 (mod 𝜋𝑚) for some 𝑗 ∈ 𝐴𝑛; otherwise, we say that 𝑎𝑛
is new (mod 𝜋𝑚). (Recall 𝐴𝑛 = {1, . . . , 𝑛} ∖ {𝑛1, . . . , 𝑛𝑟}, where 𝑛1, . . . , 𝑛𝑟 denote
the 𝑟 indices removed at the 𝑛-th step of the 𝑟-removed 𝜋-ordering process.) We
say that an 𝑟-removed 𝜋-ordering Λ = {𝑎𝑖} is proper if: 1) 𝑎0 = 𝑎1 = ⋅ ⋅ ⋅ = 𝑎𝑟; and
2) for all 𝑚 and all 𝑛 > 𝑟, 𝑎𝑛 is chosen to be a new element (mod 𝜋𝑚) only when it
is not possible to choose 𝑎𝑛 to be old. (Thus, for example, the sequence 0, 0, 1, 1,
𝑝, 𝑝, 𝑝3+1, 2𝑝 forms the initial segment of a proper 1-removed 𝑝-ordering, whereas
the sequence 0, 0, 1, 1, 𝑝, 𝑝, 2𝑝, 𝑝3 + 1 does not.)
We note that, by construction, each element of 𝑆 occurs 𝑟+1 times in any proper

𝑟-removed 𝜋-ordering of 𝑆 (if it occurs at all). In particular, the first 𝑟+1 elements
of a proper 𝜋-ordering are all equal.
In the case that Λ is proper, we have the following weak analogue of Lucas’s

theorem for the generalized binomials
(
𝑥
𝑛

){𝑟}
Λ

and their first 𝑟 divided differences.

Lemma 18. Suppose Λ = {𝑎𝑖} is a proper 𝑟-removed 𝜋-ordering and that 𝑎𝑛 is

new (mod𝜋𝑚). Let 𝑓(𝑥) =
(
𝑥
𝑛

){𝑟}
Λ

. Then, for any 0 ≤ 𝑞 ≤ 𝑟, we have

Φ𝑞𝑓(𝑏0, . . . , 𝑏𝑞) ≡ Φ𝑞𝑓(𝑏′0, . . . , 𝑏
′
𝑞) (mod 𝜋)

whenever 𝑏𝑗 , 𝑏
′
𝑗 ∈ 𝑆 and 𝑏𝑗 ≡ 𝑏′𝑗 (mod 𝜋𝑚) for all 𝑗 ∈ {0, . . . , 𝑞}.

Proof. By (10), we have

(19) Φ𝑞𝑓(𝑏0, . . . , 𝑏𝑞) =
∑

𝒊=(𝑖1,...,𝑖𝑞)

0≤𝑖1<⋅⋅⋅<𝑖𝑞<𝑛

1

𝑛!
{𝑟}
Λ

∏
𝑘∈{0,...,𝑛−1}∖{𝑖1,...,𝑖𝑞}

(𝑏𝑚𝒊(𝑘) − 𝑎𝑘)
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and similarly,

(20) Φ𝑞𝑓(𝑏′0, . . . , 𝑏
′
𝑞) =

∑
𝒊=(𝑖1,...,𝑖𝑞)

0≤𝑖1<⋅⋅⋅<𝑖𝑞<𝑛

1

𝑛!
{𝑟}
Λ

∏
𝑘∈{0,...,𝑛−1}∖{𝑖1,...,𝑖𝑞}

(𝑏′𝑚′
𝒊(𝑘)

− 𝑎𝑘),

where the 𝑚′
𝒊(𝑘) are constructed in the analogous way using the 𝑏′𝑗 rather than the

𝑏𝑗 .
By (12), we see that each term in the sum on the right-hand side of (19) (or

of (20)) has a nonnegative valuation and is thus in 𝑅. Now such a term on the
right-hand side of (19) has a nonzero value modulo 𝜋 if and only if the inequalities
in (12) are actually equalities. Suppose this is the case for a particular term 𝑇𝒊

in (19) corresponding to the 𝑞-tuple 𝒊 = (𝑖1, . . . , 𝑖𝑞). Then if the inequalities in
(12) are equalities, we must have: (a) 𝑣(𝑏𝑚𝒊(𝑘) − 𝑎𝑘) = 𝑣(𝑏𝑚𝒊(𝑛) − 𝑎𝑘) for each
𝑘 ∈ {0, . . . , 𝑛− 1} ∖ {𝑖1, . . . , 𝑖𝑞}; and (b) the sequence 𝑎0, . . . , 𝑎𝑛−1, 𝑏𝑚𝒊(𝑛) forms the
first 𝑛 + 1 terms of an 𝑟-removed 𝜋-ordering Λ∗ of 𝑆. (Here, 𝑚𝒊(𝑛) again denotes
the unique element of {0, . . . , 𝑞} ∖ {𝑖1, . . . , 𝑖𝑞}.) Note that condition (b) implies
that the 𝑞-tuple 𝒊 = (𝑖1, . . . , 𝑖𝑞) can be extended to an 𝑟-tuple (𝑖1, . . . , 𝑖𝑟) with
𝑣(𝑏𝑚𝒊(𝑛) − 𝑎𝑖𝑘) = 0 for 𝑞 < 𝑘 ≤ 𝑟.
The fact that Λ∗ is also an 𝑟-removed 𝜋-ordering implies that 𝑏𝑚𝒊(𝑛) must be new

(mod 𝜋𝑚) in Λ∗; i.e., 𝑏𝑚𝒊(𝑛) ∕≡ 𝑎𝑘 (mod 𝜋𝑚) for all 𝑘 ∈ {0, . . . , 𝑛− 1} ∖ {𝑖1, . . . , 𝑖𝑞},
since otherwise Λ would not be proper either. Therefore, if each occurrence of
𝑏𝑚𝒊(𝑛) were to be replaced by 𝑏′𝑚𝒊(𝑛)

in the term 𝑇𝒊 in (19), then, since 𝑏𝑚𝒊(𝑛) − 𝑎𝑘
and 𝑏′𝑚𝒊(𝑛)

− 𝑎𝑘 have the same last nonzero 𝜋-adic digit for all 𝑘 ∈ {0, . . . , 𝑛− 1} ∖
{𝑖1, . . . , 𝑖𝑞}, the value of 𝑇𝒊 modulo 𝜋 would remain unchanged.
Furthermore, suppose each occurrence of the variable 𝑏𝑚𝒊(𝑘) were to be replaced

by 𝑏′𝑚𝒊(𝑘)
in the term 𝑇𝒊 in (19) for some set of 𝑘 ∈ {0, . . . , 𝑛−1}∖{𝑖1, . . . , 𝑖𝑞}. Then

by condition (a) and the properness of Λ∗, we have 𝑣(𝑏𝑚𝒊(𝑘)−𝑎𝑘) = 𝑣(𝑏𝑚𝒊(𝑛)−𝑎𝑘) <
𝑚, and hence 𝑏𝑚𝒊(𝑘) − 𝑎𝑘 and 𝑏′𝑚𝒊(𝑘)

− 𝑎𝑘 again have the same last nonzero 𝜋-adic

digit. Thus the value of 𝑇𝒊 modulo 𝜋 would again remain unchanged.
Finally, suppose a variable 𝑏𝑗 were changed to 𝑏′𝑗 in 𝑇𝒊, where 𝑗 is not of the

form 𝑚𝒊(𝑘) for any 𝑘 ∈ {0, . . . , 𝑛− 1} ∖ {𝑖1, . . . , 𝑖𝑞}. Then since the variable 𝑏𝑗 does
not even appear in the expression for 𝑇𝒊 in that case, the value of 𝑇𝒊 again would
not change.
The above arguments show, in particular, that for such a term 𝑇𝒊 in (19) that

is nonzero modulo 𝜋, the corresponding term 𝑇 ′
𝒊 in (20) involves the same indices

(i.e., 𝑚𝒊(𝑘) = 𝑚′
𝒊(𝑘) for all 𝑘). Furthermore, we have 𝑇𝒊 ≡ 𝑇 ′

𝒊 (mod 𝜋) for all such
𝒊. By interchanging 𝑏𝑗 and 𝑏′𝑗 in the above arguments we also see that, for each
term 𝑇 ′

𝒊 in (20) that is nonzero modulo 𝜋, the corresponding term 𝑇𝒊 in (19) is also
nonzero (mod 𝜋) and has the same value (mod 𝜋). We conclude that the terms
in (19) and (20) that are nonzero modulo 𝜋 correspond to the same indices 𝒊, and
they also share the same values (mod 𝜋). Meanwhile, the remaining terms in both
(19) and (20) must all be zero (mod 𝜋). The lemma follows. □

We are now ready to show that any 𝑓 in 𝐶𝑟(𝑆,𝐾) with ∥𝑓∥𝐶𝑟(𝑆,𝐾) ≤ 1 can be
expressed (mod 𝜋) as an 𝑅-linear combination of 𝑟-removed generalized binomial
polynomials. Moreover, this can be done in such a way so that the first 𝑟-divided
differences also agree (mod 𝜋):
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Lemma 19. Suppose that 𝑓 ∈ 𝐶𝑟(𝑆,𝐾) is a function with ∥𝑓∥𝐶𝑟(𝑆,𝐾) ≤ 1 such
that, for any 0 ≤ 𝑞 ≤ 𝑟, we have

Φ𝑞𝑓(𝑏0, . . . , 𝑏𝑞) ≡ Φ𝑞𝑓(𝑏′0, . . . , 𝑏
′
𝑞) (mod 𝜋)

whenever 𝑏𝑗 , 𝑏
′
𝑗 ∈ 𝑆 satisfy 𝑏𝑗 ≡ 𝑏′𝑗 (mod 𝜋𝑚) for all 𝑗 ∈ {0, . . . , 𝑞}. Let Λ = {𝑎𝑖}

be a proper 𝑟-removed 𝜋-ordering of 𝑆, and let 𝑇 be the set of 𝑛 such that 𝑎𝑛 is
new (mod𝜋𝑚). Then there exists a function ℎ : 𝑇 → 𝑅 such that if we set

𝑔(𝑥) =
∑
𝑛∈𝑇

ℎ(𝑛)

(
𝑥

𝑛

){𝑟}

Λ

,

then

Φ𝑞𝑓(𝑏0, . . . , 𝑏𝑞) ≡ Φ𝑞𝑔(𝑏0, . . . , 𝑏𝑞) (mod 𝜋)

for all 0 ≤ 𝑞 ≤ 𝑟 and all 𝑏0, . . . , 𝑏𝑞 ∈ 𝑆. Moreover, the values of ℎ(𝑛) are uniquely
determined modulo 𝜋.

Proof. Let 𝑓 be as in the lemma. By the assumption on 𝑓 and the definition of 𝑇 ,
it is clear that the values of Φ𝑞𝑓 (mod 𝜋) on 𝑆𝑞+1, for all 0 ≤ 𝑞 ≤ 𝑟, are completely
determined by the values of Φ𝑞𝑓 (mod 𝜋) on elements of the form (𝑎𝑚0

, . . . , 𝑎𝑚𝑞
)

where 𝑚0, . . . ,𝑚𝑞 ∈ 𝑇 .
We claim that the values of Φ𝑞𝑓 (mod 𝜋) on such elements (and thus also on

𝑆𝑞+1) for all 0 ≤ 𝑞 ≤ 𝑟 are in fact completely determined by just the values of

(21) 𝑓(𝑎0), Φ𝑓(𝑎1, 𝑎0), . . . , Φ𝑟−1𝑓(𝑎𝑟−1, . . . , 𝑎0) (mod 𝜋)

and of

(22) Φ𝑟𝑓(𝑎𝑛, 𝑎𝑛1
, . . . , 𝑎𝑛𝑟

) (mod 𝜋)

for 𝑛 ∈ 𝑇 − {0, . . . , 𝑟 − 1}. Moreover, for any chosen values of these ∣𝑇 ∣ divided
differences in (21) and (22), there exists a function 𝑓 ∈ 𝐶𝑟(𝑆,𝐾) having this set of
∣𝑇 ∣ divided differences (mod 𝜋).
To prove the claim, consider a specific divided difference Φ𝑞𝑓(𝑎𝑚0

, . . . , 𝑎𝑚𝑞
),

where 𝑚𝑖 ∈ 𝑇 for all 𝑖. Since each element 𝑎 ∈ 𝑆 occurs 𝑟 + 1 times in a
proper 𝑟-removed 𝜋-ordering (if it occurs at all), we may assume without loss of
generality that 𝑚0, 𝑚1, . . ., 𝑚𝑞 are distinct integers in 𝑇 . We wish to express
Φ𝑞𝑓(𝑎𝑚0

, . . . , 𝑎𝑚𝑞
) (mod 𝜋) in terms of the ∣𝑇 ∣ divided differences modulo 𝜋 listed

in (21) and (22).
For convenience, we may renumber the 𝑎𝑚𝑖

if necessary so that 𝑚0 is equal
to 𝑛 = max𝑖{𝑚𝑖}. If 𝑛 = 𝑚0 < 𝑟, then Φ𝑞𝑓(𝑎𝑚0

, . . . , 𝑎𝑚𝑞
) already appears in

the list (21) and we are done. Hence we may assume 𝑛 ≥ 𝑟. In that case, we
may then renumber 𝑚1, . . . ,𝑚𝑞 and 𝑛1, . . . , 𝑛𝑟 so that 𝑎𝑚0

= 𝑎𝑛, 𝑎𝑚1
= 𝑎𝑛1

, . . .,
𝑎𝑚𝑘

= 𝑎𝑛𝑘
, but {𝑚𝑘+1, . . . ,𝑚𝑞}∩{𝑛𝑘+1, . . . , 𝑛𝑟} = ∅ and 𝑣(𝑎𝑛−𝑎𝑚𝑖

) ≤ 𝑣(𝑎𝑛−𝑎𝑛𝑖
)

for 𝑘 + 1 ≤ 𝑖 ≤ 𝑞. The latter condition is possible to arrange because the sequence
{𝑎𝑖} is an 𝑟-removed 𝜋-ordering of 𝑆, so the valuations 𝑣(𝑎𝑛−𝑎𝑛1

), . . . , 𝑣(𝑎𝑛−𝑎𝑛𝑟
)

are the 𝑟 highest among all valuations of the form 𝑣(𝑎𝑛 − 𝑎𝑗) where 𝑗 < 𝑛.
With these new numberings, we now prove that we can express Φ𝑞𝑓(𝑎𝑚0

, . . . , 𝑎𝑚𝑞
)

(mod 𝜋) in terms of the ∣𝑇 ∣ divided differences (mod 𝜋) in (21) and (22) by induction
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on 𝑚0 = 𝑛. First, setting also 𝑛0 = 𝑛, we have the following algebraic identity:

Φ𝑞𝑓(𝑎𝑛, 𝑎𝑚1
, . . . , 𝑎𝑚𝑞

)

=

𝑞∑
𝑖=0

𝑎𝑛𝑖
− 𝑎𝑚𝑖

𝑎𝑛 − 𝑎𝑚𝑖

𝑞∏
𝑗=𝑖+1

𝑎𝑛 − 𝑎𝑛𝑗

𝑎𝑛 − 𝑎𝑚𝑗

Φ𝑞𝑓(𝑎𝑚1
, . . . , 𝑎𝑚𝑖

, 𝑎𝑛𝑖
, . . . , 𝑎𝑛𝑞

).
(23)

This identity, once discovered, is elementary to prove by induction on 𝑞. Indeed,
the identity for 𝑞 = 0 simply states that Φ0𝑓(𝑎𝑛) = Φ0𝑓(𝑎𝑛), while the identity for
general 𝑞 > 0 can be deduced from the identity for 𝑞 − 1 through the observation
that Φ𝑞𝑓(𝑎𝑛, 𝑎𝑚1

, . . . , 𝑎𝑚𝑞
) = Φ𝑞−1𝑔(𝑎𝑛, 𝑎𝑚2

, . . . , 𝑎𝑚𝑞
), where 𝑔(𝑥) = Φ1𝑓(𝑎𝑚1

, 𝑥).
We now note that the terms in the sum on the right-hand side of (23), from

𝑖 = 1 to 𝑖 = 𝑘, are each equal to zero, while the remaining nonzero terms in the
sum each must have nonnegative valuation. Indeed, 𝑣(𝑎𝑛 − 𝑎𝑚𝑗

) ≤ 𝑣(𝑎𝑛 − 𝑎𝑛𝑗
) by

assumption, and similarly we have 𝑣(𝑎𝑛 − 𝑎𝑚𝑖
) = min{𝑣(𝑎𝑛 − 𝑎𝑚𝑖

), 𝑣(𝑎𝑛 − 𝑎𝑛𝑖
)} ≤

𝑣(𝑎𝑛𝑖
− 𝑎𝑚𝑖

) by the ultrametric triangle inequality. By the induction hypothesis,
Φ𝑞𝑓(𝑎𝑚1

, . . . , 𝑎𝑚𝑖
, 𝑎𝑛𝑖

, . . . , 𝑎𝑛𝑞
) is determined modulo 𝜋 by the ∣𝑇 ∣ divided differ-

ences (mod 𝜋) in (21) and (22), since 𝑚1, . . . ,𝑚𝑞 and 𝑛1, . . . , 𝑛𝑟 are all less than
𝑚0 = 𝑛. We conclude that the sum in (23) is well defined (mod 𝜋) once the values
in (21) and (22) are fixed, and hence Φ𝑞𝑓(𝑎𝑛, 𝑎𝑚1

, . . . , 𝑎𝑚𝑞
) is also now determined,

proving the claim.
To see that this claim proves the lemma, we note that ℎ uniquely determines the

set of divided differences in (21) and (22) by Lemma 18. Conversely, given an 𝑓
satisfying the conditions of the lemma, the values of ℎ (modulo 𝜋) can be uniquely
recovered from 𝑓 using the recursive formula
(24)

ℎ(𝑛) ≡ Φ𝑟𝑓(𝑎𝑛, 𝑎𝑛1
, . . . , 𝑎𝑛𝑟

)−
∑
𝑖∈𝑇
𝑖<𝑛

ℎ(𝑖)Φ𝑟

(
𝑥

𝑖

){𝑟}

Λ

(𝑎𝑛, 𝑎𝑛1
, . . . , 𝑎𝑛𝑟

) (mod 𝜋);

this recursive formula holds because we have:

Φ𝑟

(
𝑥

𝑗

){𝑟}

Λ

(𝑎𝑛, 𝑎𝑛1
, . . . , 𝑎𝑛𝑟

) =

{
1 if 𝑗 = 𝑛,
0 if 𝑗 > 𝑛.

Thus every 𝑓 is represented by exactly one ℎ (mod 𝜋), and the proof is complete. □

We may now give a proof of Theorem 17 in the case when Λ is proper.

Proof of Theorem 17 for proper Λ. Let 𝑓 ∈ 𝐶𝑟(𝑆,𝐾) be a function. We first wish
to show that 𝑓 has a unique expansion as

𝑓(𝑥) =

∞∑
𝑛=0

𝑐𝑛

(
𝑥

𝑛

){𝑟}

Λ

,

where 𝑐𝑛 tends to zero as 𝑛 tends to infinity. Since 𝑆 is compact, we may rescale
𝑆 and 𝑓 if necessary and assume that 𝑆 ⊂ 𝑅 and ∥𝑓∥ ≤ 1, i.e., the values of all the
𝑞-th divided differences of 𝑓 on 𝑆 lie in 𝑅 for 0 ≤ 𝑞 ≤ 𝑟.
As at the end of the proof of Lemma 19, uniqueness of the 𝑐𝑛 follows by noting

that the 𝑐𝑛 can be computed recursively from the values of 𝑓 at the 𝑎𝑖 via the
formula

(25) 𝑐𝑛 = Φ𝑟𝑓(𝑎𝑛, 𝑎𝑛1
, . . . , 𝑎𝑛𝑟

)−
𝑛−1∑
𝑖=0

𝑐𝑖Φ
𝑟

(
𝑥

𝑖

){𝑟}

Λ

(𝑎𝑛, 𝑎𝑛1
, . . . , 𝑎𝑛𝑟

).
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To prove existence, it suffices to show that there exists a sequence 𝑐𝑛 with finitely
many nonzero terms such that if we set

𝑔(𝑥) =
∑

𝑐𝑛

(
𝑥

𝑛

){𝑟}

Λ

,

then

Φ𝑞𝑓(𝑏0, . . . , 𝑏𝑞) ≡ Φ𝑞𝑔(𝑏0, . . . , 𝑏𝑞) (mod 𝜋)

for all 0 ≤ 𝑞 ≤ 𝑟 and all (𝑏0, . . . , 𝑏𝑞) ∈ 𝑆𝑞+1, since we can then apply the same

reasoning to [𝑓(𝑥) −∑
𝑐𝑛
(
𝑥
𝑛

){𝑟}
Λ
]/𝜋, and so on. By the assumption 𝑓 ∈ 𝐶𝑟(𝑆,𝐾),

we know that the functions 𝑓 , Φ𝑓 , . . . , Φ𝑟𝑓 are 𝜋-adically continuous on 𝑆, 𝑆2,
. . . , 𝑆𝑟+1, respectively, and so 𝑓 must satisfy the conditions of Lemma 19 for some
𝑚. In this case, setting 𝑐𝑛 = ℎ(𝑛) for 𝑛 ∈ 𝑇 and 𝑐𝑛 = 0 otherwise furnishes the
desired sequence.
To complete the proof of Theorem 17 for proper 𝜋-orderings Λ, we need only

verify property (ii) of Definition 15. Because of property (i), it again suffices to check

(ii) on finite linear combinations 𝑣 = 𝑓(𝑥) =
∑𝑁

𝑛=0 𝑐𝑛
(
𝑥
𝑛

)
Λ,ℎ
. Since ∥(𝑥𝑛){𝑟}Λ

∥ = 1

for all 𝑛 by construction, we clearly have ∥𝑓∥ ≤ sup𝑛≥0{∣𝑐𝑛∣}. To show equality,

suppose ∥𝑓∥ < ∣𝑐𝑛∣ for some 𝑛, and let 𝑘 be the integer such that ∥𝑓∥ = ∣𝜋𝑘∣. Then
𝑓/𝜋𝑘 must be in Int{𝑟}(𝑆,𝑅); however, in its expansion as

𝑓(𝑥)

𝜋𝑘
=

𝑁∑
𝑛=0

𝑐𝑛
𝜋𝑘

(
𝑥

𝑛

){𝑟}

Λ

,

we see that not every coefficient 𝑐𝑛
𝜋𝑘 is in 𝑅, contradicting Theorem 7. We conclude

∥𝑓∥ = sup𝑛≥0{∣𝑐𝑛∣}, and the proof is complete. □

We may now also deduce Theorem 17 for arbitrary 𝜋-orderings, which we turn
to next.

4.1.2. Correspondence between 𝐶𝑟(𝑆,𝐾) and Int{𝑟}(𝑆,𝑅). Having constructed a
regular polynomial orthonormal base for 𝐶𝑟(𝑆,𝐾), we may now describe all such
bases for 𝐶𝑟(𝑆,𝐾). The key is to note the precise relationship between 𝐶𝑟(𝑆,𝐾)

and the ring Int{𝑟}(𝑆,𝑅).
We begin with the following general proposition describing orthonormal bases of

𝐾-Banach spaces and the associated 𝑅-modules spanned by them:

Proposition 20. Let ℬ be any 𝐾-Banach space, and suppose ℬ has an orthonormal
base given by 𝑓0, 𝑓1, . . . . Let ℐ ⊂ ℬ denote the 𝑅-module spanned by the 𝑓𝑖, and let
𝑉 be the 𝐾-vector space ℐ ⊗𝐾. Then every other orthonormal base of ℬ spanning
𝑉 as a 𝐾-vector space is of the form 𝑔0, 𝑔1, . . . , where the 𝑔𝑖 form an 𝑅-basis of
the 𝑅-module ℐ. Moreover, we have
(26) ℐ = {𝑓 ∈ 𝑉 : ∥𝑓∥ ≤ 1}.
Proof. Let 𝑓0, 𝑓1, . . . and ℐ be as defined in the proposition, and suppose 𝑔0, 𝑔1, . . .
is any other 𝑅-basis of ℐ. By assumption, for any ℎ ∈ ℬ there exists a unique
sequence 𝑏𝑚 → 0 such that

(27) ℎ =

∞∑
𝑚=0

𝑏𝑚𝑓𝑚.



984 MANJUL BHARGAVA

To show property (i) of Definition 15, we wish to show that there exists a sequence
𝑐𝑛 → 0 such that

(28) ℎ =

∞∑
𝑛=0

𝑐𝑛𝑔𝑛.

Since both the 𝑓𝑖 and 𝑔𝑖 form 𝑅-bases of ℐ, there exist transformations 𝑇 = (𝑡𝑚𝑛)
and 𝑈 = (𝑢𝑛𝑚) over 𝑅 such that

𝑓𝑚 =

∞∑
𝑛=0

𝑡𝑚𝑛𝑔𝑛 and 𝑔𝑛 =

∞∑
𝑚=0

𝑢𝑛𝑚𝑓𝑚.

In particular, these summations each contain only finitely many nonzero terms;
i.e., there exist integers 𝑁(𝑚) and 𝑀(𝑛) such that 𝑡𝑚𝑛 = 0 for all 𝑛 ≥ 𝑁(𝑚) and
𝑢𝑛𝑚 = 0 for all 𝑚 ≥ 𝑀(𝑛). Define 𝑐𝑛 by the formula

𝑐𝑛 =

∞∑
𝑚=0

𝑏𝑚𝑡𝑚𝑛;

the series converges for every 𝑛 since 𝑡𝑚𝑛 ∈ 𝑅 and 𝑏𝑚 → 0. Moreover, for any
nonnegative integer 𝑖, there exists𝑀 such that 𝜋𝑖 divides 𝑏𝑚 for 𝑚 ≥ 𝑀 , and there
exists 𝑁 such that 𝑡1𝑛 = ⋅ ⋅ ⋅ = 𝑡𝑀𝑛 = 0 for 𝑛 ≥ 𝑁 . Hence 𝜋𝑖 divides 𝑐𝑛 for 𝑛 ≥ 𝑁 ,
and so 𝑐𝑛 → 0.
To demonstrate (28), it suffices to verify that the two sides of the equality agree

modulo 𝜋𝑖 for all nonnegative integers 𝑖. With notation as in the preceding para-
graph, we have

𝑓 =
∞∑

𝑚=0

𝑏𝑚𝑓𝑚 ≡
𝑀∑

𝑚=0

𝑏𝑚

∞∑
𝑛=0

𝑡𝑚𝑛𝑔𝑛 =
𝑀∑

𝑚=0

𝑁∑
𝑛=0

𝑏𝑚𝑡𝑚𝑛𝑔𝑛 (mod 𝜋𝑖).

On the other hand,

∞∑
𝑛=0

𝑐𝑛𝑔𝑛 ≡
𝑁∑
𝑛=0

𝑔𝑛

∞∑
𝑚=0

𝑏𝑚𝑡𝑚𝑛 ≡
𝑁∑
𝑛=0

𝑀∑
𝑚=0

𝑏𝑚𝑡𝑚𝑛𝑔𝑛 (mod 𝜋𝑖),

and (28) follows.
To prove property (ii) of Definition 15, we first prove the equality (26). Let

ℐ ′ = {𝑓 ∈ 𝑉 : ∥𝑓∥ ≤ 1}. Since 𝑓0, 𝑓1, . . . form an orthonormal base for ℬ, we have
∥𝑓𝑖∥ = 1 for all 𝑖 and hence ℐ ⊂ ℐ ′. To see ℐ = ℐ ′, let 𝑓 ∈ ℐ ′ be any element.
Then since 𝑓 ∈ 𝑉 , there exists a sequence 𝑑𝑚 in 𝐾 such that 𝑓 =

∑𝑀
𝑚=0 𝑑𝑚𝑓𝑚.

Now since the 𝑓𝑖 form an orthonormal base of ℬ, we have max{∣𝑑𝑚∣} = ∥𝑓∥ ≤ 1,
and hence 𝑑𝑚 ∈ 𝑅 for all 𝑚. It follows that 𝑓 ∈ ℐ, and thus ℐ = ℐ ′, as desired.
Finally, we show that the elements 𝑔𝑛 satisfy property (ii) of Definition 15.

Because of property (i), it suffices to check property (ii) on finite linear combinations

ℎ(𝑥) =
∑𝑁

𝑛=0 𝑐𝑛𝑔𝑛(𝑥). We wish to show that 𝑐 = max{∣𝑐𝑛∣} is equal to ∥ℎ∥. Since
the 𝑔𝑛 are in ℐ = ℐ ′, clearly ∥ℎ∥ ≤ 𝑐. Now suppose ∥ℎ∥ < 𝑐, so that ∥ℎ∥ < ∣𝑐𝑛∣ for
some 𝑛, and let 𝑘 be the integer such that ∥ℎ∥ = ∣𝜋𝑘∣. Then the function ℎ(𝑥)/𝜋𝑘

is in ℐ, due to (26); however, in the expansion of ℎ(𝑥)/𝜋𝑘 as
ℎ(𝑥)

𝜋𝑘
=

𝑁∑
𝑛=0

𝑐𝑛
𝜋𝑘

𝑔𝑛
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we see that not every coefficient 𝑐𝑛
𝜋𝑘 is in 𝑅, contradicting the fact that the 𝑔𝑖 form

an 𝑅-basis of ℐ. It follows that ∥ℎ∥ = 𝑐, yielding property (ii) for the 𝑔𝑖. Thus the
𝑔𝑖 form an orthonormal base for ℬ, and this is the desired conclusion. □

In the case of Theorem 17, we have 𝑉 = 𝐾[𝑥], ℬ = 𝐶𝑟(𝑆,𝐾), and ℐ =

Int{𝑟}(𝑆,𝑅). Proposition 20 now immediately gives:

Theorem 21. Let 𝑆 be a compact subset of 𝐾 without isolated points, and let
𝑓0, 𝑓1, . . . be a sequence of polynomials in 𝐾[𝑥] such that deg(𝑓𝑖) = 𝑖. Then the
sequence 𝑓0, 𝑓1, . . . forms an orthonormal base for the 𝐾-Banach space 𝐶𝑟(𝑆,𝐾) if

and only if it forms an 𝑅-basis for the ring Int{𝑟}(𝑆,𝑅).

Although the theorem above describes all regular polynomial orthonormal bases

of 𝐶𝑟(𝑆,𝐾) in terms of Int{𝑟}(𝑆,𝑅), the bases {(𝑥𝑛){𝑟}Λ
} constructed in the previous

section are very special; namely, they are useful for interpolation of functions due to
the recursive formula (25). As a consequence, for these bases, if a sum of the type∑∞

𝑛=0 𝑐𝑛{
(
𝑥
𝑛

){𝑟}
Λ

} converges pointwise to an element of 𝐶𝑟(𝑆,𝐾), then it actually

converges to that element (i.e., with respect to the much stronger 𝐶𝑟(𝑆,𝐾) norm)!
This follows directly from the proof of Theorem 17. We note that this special
property does not necessarily hold true for general bases of 𝐶𝑟(𝑆,𝐾) (see, e.g.,
the construction in [7] for examples of this phenomenon). This property is enjoyed
by these special bases due to the structure of 𝑟-removed 𝜋-orderings. We end by
combining Remark 9 with Theorem 21 to obtain:

Theorem 22. Let 𝑆 be a compact subset of 𝐾 without isolated points, let {𝑎𝑖} be
a sequence of elements in 𝑆, and let {𝛽𝑖} be a nonzero sequence in 𝐾. Then the
polynomials

(𝑥− 𝑎0)(𝑥− 𝑎1) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑛−1)

𝛽𝑛
, 𝑛 = 0, 1, 2, . . . ,

form an orthonormal base of 𝐶𝑟(𝑆,𝐾) if and only if {𝑎𝑖} is an 𝑟-removed 𝜋-ordering

of 𝑆 and (𝛽𝑛) = (𝑛!
{𝑟}
Λ ) as ideals in 𝑅.

4.2. The Banach space of locally analytic functions of order ℎ. Rather
than considering conditions of continuous differentiability as in Section 4.1, we may
instead consider the other important notion of smoothness that plays a central role
in Archimedean analysis, namely that of (local) analyticity. In non-Archimedean
analysis too, the context of the particular problem often dictates which notion—
differentiability or analyticity—is the more useful.
Let 𝐾 again denote a local field with valuation ring 𝑅 and uniformizer 𝜋. Let

𝑎 ∈ 𝐾, let 𝜌 = ∣𝜋∣ℎ for some integer ℎ, and let 𝐵(𝑎, 𝜌) denote the closed ball with
center 𝑎 and radius 𝜌.

Definition 23. A function 𝑓 ∈ 𝐶(𝐵(𝑎, 𝜌),𝐾) is analytic on 𝐵(𝑎, 𝜌) if 𝑓 can be
expanded as a power series

𝑓(𝑥) =
∞∑
𝑛=0

𝑐𝑛

(
𝑥− 𝑎

𝜋ℎ

)𝑛

which converges for all 𝑥 ∈ 𝐵(𝑎, 𝜌) (equivalently, lim𝑛→∞ 𝑐𝑛 = 0). The norm of
such a function 𝑓 is given by ∥𝑓∥𝐵(𝑎,𝜌) := sup𝑛≥0{∣𝑐𝑛∣}.
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It can be shown that the expansion property, the radius of convergence, and the
norm of 𝑓 in Definition 23 do not depend on the choice of 𝑎 in the ball 𝐵(𝑎, 𝜌)
(see [25, Theorem 25.5]). It follows that the notion of “analytic continuation” as in
Archimedean analysis does not quite make sense in the non-Archimedean scenario.
This motivates the definition of a locally analytic function on a compact subset 𝑆
of 𝐾, which means a function 𝑓 : 𝑆 → 𝐾 such that for every 𝑎 ∈ 𝑆, there is a
neighborhood 𝑈 of 𝑎 such that 𝑓 extends to an analytic function on 𝑈 .
Since 𝑆 is compact, there is a uniform ℎ that will work for all 𝑎 ∈ 𝑆. Such a

function is then called locally analytic of order ℎ. Let us assume from here onward
that 𝑆 is compact and has no isolated points. Then we have:

Definition 24. A function 𝑓 : 𝑆 → 𝐾 is locally analytic of order ℎ if for every
𝑎 ∈ 𝑆, 𝑓 ∣𝐵(𝑎,∣𝜋∣ℎ)∩𝑆 is extendable to an analytic function on all of 𝐵(𝑎, ∣𝜋∣ℎ). The
norm of such a function 𝑓 is given by ∥𝑓∥ = ∥𝑓∥𝐿𝐴ℎ(𝑆,𝐾) := sup𝑎∈𝑆{∥𝑓∥𝐵(𝑎,∣𝜋ℎ∣)}.

If 𝑆 has no isolated points (as we have assumed), then any extension of 𝑓 : 𝑆 → 𝐾
into a ball 𝐵(𝑎, 𝜌) for 𝑎 ∈ 𝑆 must be unique if it exists (see [25]). Hence, in
particular, the norm of a locally analytic function 𝑓 : 𝑆 → 𝐾 of order ℎ is well
defined. The space 𝐿𝐴ℎ(𝑆,𝐾) of locally analytic functions of order ℎ from 𝑆 to
𝐾 under this norm is easily seen to be a 𝐾-Banach space. One can also easily see
that this 𝐾-Banach space has a countable dense subset, implying the existence of
an orthonormal base. The goal of the next section is the construction of an explicit
(polynomial) orthonormal base for 𝐿𝐴ℎ(𝑆,𝐾).

4.2.1. Interpolation series for the space 𝐿𝐴ℎ(𝑆,𝐾). Let 𝑆 again be a compact sub-
set of a local field 𝐾 having no isolated points. Let 𝑅 be the valuation ring of 𝐾
and let 𝜋 be a uniformizer. Let Λ = {𝑎𝑖} be a 𝜋-ordering of 𝑆 of order ℎ and define
the generalized binomial polynomials

(
𝑥
𝑛

)
Λ,ℎ

of order ℎ as in Section 3.2.2, (13). In

this section, we prove the following theorem:

Theorem 25. The generalized binomial polynomials

(29)

(
𝑥

𝑛

)
Λ,ℎ

=
(𝑥− 𝑎0)(𝑥− 𝑎1) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑛−1)

𝑛!𝑆,ℎ
,

𝑛 = 0, 1, 2, . . ., form an orthonormal base for 𝐿𝐴ℎ(𝑆,𝐾).

To prove Theorem 25, we begin by observing that the space 𝐿𝐴ℎ(𝑆,𝐾) has an
obvious orthonormal base as follows. Let 𝑇0 denote the set of all 𝑛 such that the
residue class of 𝑎𝑛 modulo 𝜋ℎ does not occur in {𝑎0, 𝑎1, . . . , 𝑎𝑛−1}. Define the
functions {Ξ𝑘,𝑖}𝑘≥0,𝑖∈𝑇0

by

Ξ𝑘,𝑖 =

{ (
𝑥−𝑎𝑖

𝜋ℎ

)𝑘
if 𝑥 ∈ 𝐵(𝑎𝑖, ∣𝜋∣ℎ);

0 if 𝑥 /∈ 𝐵(𝑎𝑖, ∣𝜋∣ℎ).

Then clearly the Ξ𝑘,𝑖 form an orthonormal base for 𝐿𝐴ℎ(𝑆,𝐾). We prove Theo-
rem 25 by molding this rather ludicrous basis into our generalized binomial poly-
nomial basis (13).



𝑃 -ORDERINGS, POLYNOMIAL RINGS, AND ULTRAMETRIC ANALYSIS 987

We first prove Theorem 25 for a special class of 𝜋-orderings. For a 𝜋-ordering
{𝑎𝑖} of 𝑆 of order ℎ, the repetition value of 𝑎𝑛 modulo 𝜋ℎ is the number of times
the residue class of 𝑎𝑛 (mod 𝜋ℎ) occurs in the set {𝑎0, 𝑎1, . . . , 𝑎𝑛−1}. A 𝜋-ordering
Λ = {𝑎𝑖} of order ℎ is proper if for each 𝑛, the element 𝑎𝑛 is chosen to have the
highest possible repetition value modulo 𝜋ℎ. For example, 0, 1, 𝑝, 𝑝3 + 1, 2𝑝 forms
the initial segment of a proper 𝑝-ordering of order 2, whereas a 𝑝-ordering of order 2
having initial segment 0, 1, 𝑝, 2𝑝, 𝑝3 + 1 is not proper.
Generalizing 𝑇0, let 𝑇𝑘 denote the set of all 𝑛 such that the repetition value of

𝑎𝑛 modulo 𝜋ℎ is 𝑘. The following lemma illustrates why the notion of proper is so
useful.

Lemma 26. Assume Λ = {𝑎𝑖} is proper, and let 𝑚,𝑛 ∈ 𝑇𝑘. Then modulo 𝜋,

(30) 𝑃𝑚,𝑛(𝑋) =

(
𝜋ℎ𝑋 + 𝑎𝑚

𝑛

)
Λ,ℎ

is identically zero if 𝑚 < 𝑛, is a monic polynomial in 𝑋 of degree 𝑘 if 𝑚 = 𝑛, and
is either identically zero or a monic polynomial in 𝑋 of degree at most 𝑘 if 𝑚 > 𝑛.

Proof. The 𝜋-valuation of 𝑃𝑚,𝑛 is equal to

(31)

𝑛−1∑
𝑖=0

min(ℎ, 𝑣(𝑎𝑚 − 𝑎𝑖))−
𝑛−1∑
𝑖=0

min(ℎ, 𝑣(𝑎𝑛 − 𝑎𝑖)),

which is always nonnegative by the very construction of the 𝜋-ordering {𝑎𝑖} of order
ℎ. If 𝑚 < 𝑛, then the fact that the element 𝑎𝑛 (of repetition value 𝑘) was chosen
at the 𝑛-th step rather than 𝑎𝑚 (which would have had repetition value ≥ 𝑘 + 1)

indicates that
∑𝑛−1

𝑖=0 min(ℎ, 𝑣(𝑎𝑚−𝑎𝑖)) >
∑𝑛−1

𝑖=0 min(ℎ, 𝑣(𝑎𝑛−𝑎𝑖)). Hence if𝑚 < 𝑛,
then the 𝜋-valuation of 𝑃𝑚,𝑛 is positive and so 𝑃𝑚,𝑛 vanishes modulo 𝜋.
If 𝑚 = 𝑛, then expression (31) shows that the 𝜋-valuation of 𝑃𝑚,𝑛 is zero. We

may write

(32) 𝑃𝑚,𝑛(𝑋) =

𝑛−1∏
𝑖=0

(
𝜋ℎ𝑋 + 𝑎𝑚 − 𝑎𝑖
𝜋min(ℎ,𝑣(𝑎𝑚−𝑎𝑖))

)
,

where each of the factors on the right side is integral and of 𝜋-valuation zero. It is
clear from this factorization that, modulo 𝜋, the polynomial 𝑃𝑚,𝑛 is monic and its
degree is simply the number of factors for which ℎ = min(ℎ, 𝑣(𝑎𝑚 − 𝑎𝑖)). This is
the repetition value of 𝑎𝑚 modulo 𝜋ℎ, namely, 𝑘.
Finally, if 𝑚 > 𝑛, then the 𝜋-valuation (31) of 𝑃𝑚,𝑛 is either zero or positive. If

it is positive, then 𝑃𝑚,𝑛 vanishes modulo 𝜋; if it is zero, then (32) again gives an
expression for 𝑃𝑚,𝑛 and so the identical argument to the case 𝑚 = 𝑛 then shows
that, modulo 𝜋, 𝑃𝑚,𝑛 is a monic polynomial of degree at most 𝑘. This is the desired
conclusion. □

Let ℰ𝑚 denote the 𝑅-submodule of 𝐿𝐴ℎ(𝑆,𝐾) spanned by {Ξ𝑘,𝑖}0≤𝑘≤𝑚, 𝑖∈𝑇0
,

and denote by ℰ̄𝑚 the 𝑅/𝜋𝑅-vector space of functions in ℰ𝑚 reduced modulo 𝜋.
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Then Lemmas 26 implies the following:

Corollary 27. Assume the 𝜋-ordering Λ is proper. If 𝜙 : 𝑆 → 𝑅/𝜋𝑅 is a function

in ℰ̄𝑘, then there is a unique function 𝜏 :
∪𝑘

𝑖=0 𝑇𝑖 → 𝑅/𝜋𝑅 such that

(33) 𝜙(𝑥) =
𝑘∑

𝑖=0

∑
𝑛∈𝑇𝑖

𝜏 (𝑛)

(
𝑥

𝑛

)
Λ,ℎ

.

Proof. Every 𝜏 gives rise to a unique 𝜙. On the other hand, we claim that every 𝜙
is represented by a unique 𝜏 . Indeed, since 𝜙 ∈ ℰ̄𝑘, for any 𝑚 ≥ 0 we may write

(34) 𝜙(𝜋ℎ𝑋 + 𝑎𝑚) =
𝑘∑

𝑗=0

𝑐𝑚,𝑗𝑋
𝑗

for some set of constants 𝑐𝑚,𝑗 in 𝑅/𝜋𝑅. Let us further write

(35) 𝑃𝑚,𝑛(𝑋) =

(
𝜋ℎ𝑋 + 𝑎𝑚

𝑛

)
Λ,ℎ

=

𝑛∑
𝑗=0

𝑏𝑚,𝑛,𝑗𝑋
𝑗

where 𝑏𝑚,𝑛,𝑗 ∈ 𝑅. If 𝑚,𝑛 ∈ 𝑇𝑖, then Lemma 26 implies that 𝑏𝑚,𝑛,𝑖 is 0 (mod 𝜋) for
𝑛 > 𝑚 and is a unit in 𝑅 for 𝑛 = 𝑚. Furthermore, if 𝑚 ∈ 𝑇𝑖 and 𝑛 ∈ 𝑇𝑗 where
𝑗 < 𝑖, then Lemma 26 again implies that 𝑏𝑚,𝑛,𝑖 = 0, since 𝑃𝑚,𝑛(𝑋) is of degree
strictly smaller than 𝑖 in that case. Hence, by equating the coefficients of 𝑋𝑖 in
(33), using the expansions (34) and (35), we find that the value of 𝜏 (𝑚) ∈ 𝑅/𝜋𝑅
for 𝑚 ∈ 𝑇𝑖 is uniquely determined from 𝜙 by the recursive formula

(36) 𝜏 (𝑚) = 𝑐𝑚,𝑖 −
∑
𝑛∈𝑇𝑖
𝑛<𝑚

𝜏 (𝑛) 𝑏𝑚,𝑛,𝑖 −
∑
𝑛∈𝑇𝑗

𝑗>𝑖

𝜏 (𝑛) 𝑏𝑚,𝑛,𝑖;

i.e., 𝜏 (𝑚) is determined from the values of 𝜏 (𝑛) for 𝑛 < 𝑚 (𝑛 ∈ 𝑇𝑖) and for 𝑛 ∈ 𝑇𝑗
(𝑗 > 𝑖). Thus every 𝜙 is represented by exactly one 𝜏 . □

Proof of Theorem 25 for proper Λ. First, we wish to show that any 𝑓 ∈ 𝐿𝐴ℎ(𝑆,𝐾)
can be expressed uniquely in the form

∑∞
𝑛=0 𝑐𝑛

(
𝑥
𝑛

)
Λ,ℎ
, where 𝑐𝑛 → 0 as 𝑛 → ∞. To

see this, it suffices to assume ∥𝑓∥ ≤ 1 (by scaling 𝑓 by an element of 𝑅 if necessary)
and to show that there exists a unique sequence 𝑐𝑛 (mod 𝜋) with finitely many
nonzero terms such that, as polynomials in 𝑋, we have

𝑓(𝜋ℎ𝑋 + 𝑎𝑚) ≡
∞∑
𝑛=0

𝑐𝑛

(
𝜋ℎ𝑋 + 𝑎𝑚

𝑛

)
Λ,ℎ

(mod 𝜋)

for all𝑚 ∈ 𝑇0, since we can then apply the same reasoning to [𝑓(𝑥)−
∑

𝑐𝑛
(
𝑥
𝑛

)
Λ,ℎ
]/𝜋,

and so on. Now since 𝑓 ∈ 𝐿𝐴ℎ(𝑆,𝐾), the reduction 𝑓 of 𝑓 modulo 𝜋 is contained
in ℰ̄𝑘 for sufficiently large 𝑘, and so the previous lemma implies the existence of
such a sequence 𝑐𝑛 modulo 𝜋.
The uniqueness of the sequence {𝑐𝑛} follows from the observation that the 𝑐𝑚

can be computed recursively from 𝑓 , as follows. Since 𝑓 ∈ 𝐿𝐴ℎ(𝑆,𝐾), we may
write

(37) 𝑓(𝜋ℎ𝑋 + 𝑎𝑚) =

∞∑
𝑛=0

𝑐𝑛𝑃𝑚,𝑛(𝑋) =

∞∑
𝑖=0

𝑐𝑚,𝑖𝑋
𝑖
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for some constants 𝑐𝑚,𝑖 ∈ 𝑅 determined by 𝑓 . Suppose, furthermore, that

𝑃𝑚,𝑛(𝑋) =

𝑛∑
𝑗=0

𝑏𝑚,𝑛,𝑗𝑋
𝑗 ,

where 𝑏𝑚,𝑛,𝑗 ∈ 𝐾. If 𝑚 ∈ 𝑇𝑘, then, as observed in the proof of Theorem 12,
𝑏𝑚,𝑛,𝑘 = 0 for 𝑛 > 𝑚 and is a unit in 𝑅 for 𝑛 = 𝑚. Hence, equating the coefficients
of 𝑋𝑘 in (37) above, we obtain

𝑚∑
𝑛=0

𝑐𝑛𝑏𝑚,𝑛,𝑘 = 𝑐𝑚,𝑘 ⇒ 𝑐𝑚 =
𝑐𝑚,𝑘 −

∑𝑚−1
𝑛=0 𝑐𝑛𝑏𝑚,𝑛,𝑘

𝑏𝑚,𝑚,𝑘
,

and thus the 𝑐𝑚 are indeed uniquely determined by the function 𝑓 ∈ 𝐿𝐴ℎ(𝑆,𝐾).
To complete the proof of Theorem 25 for proper 𝜋-orderings Λ, we need only

verify that the generalized binomial polynomials
(
𝑥
𝑛

)
Λ,ℎ

satisfy property (ii) of Def-

inition 15. Because of property (i), it suffices to check (ii) on finite linear combina-

tions 𝑣 = 𝑓(𝑥) =
∑𝑁

𝑛=0 𝑐𝑛
(
𝑥
𝑛

)
Λ,ℎ
. Since ∥(𝑥𝑛)Λ,ℎ∥ = 1 for all 𝑛 by construction, we

clearly have ∥𝑓∥ ≤ sup𝑛≥0{∣𝑐𝑛∣}. To show equality, suppose ∥𝑓∥ < ∣𝑐𝑛∣ for some 𝑛,

and let 𝑘 be the integer such that ∥𝑓∥ = ∣𝜋∣𝑘. Then 𝑓/𝜋𝑘 is in Int𝜋ℎ(𝑆,𝑅), but in
its expansion as

𝑓(𝑥)

𝜋𝑘
=

𝑁∑
𝑛=0

𝑐𝑛
𝜋𝑘

(
𝑥

𝑛

)
,

we see that 𝑐𝑛
𝜋𝑘 /∈ 𝑅 for some 𝑛, contradicting Theorem 12. We conclude that

∥𝑓∥ = sup𝑛≥0{∣𝑐𝑛∣}, and the proof is complete. □

We show how Theorem 25 follows for general 𝜋-orderings of order ℎ in the next
subsection.
As a final remark, we note that all the theorems in this section remain true when

ℎ =∞ and “locally analytic of order ℎ” is replaced by “continuous”; these results
were treated earlier in [4] and [7]. Thus, in a sense, “continuous” may naturally be
considered equivalent to the phrase “locally analytic of order ∞”.

4.2.2. Correspondence between 𝐿𝐴ℎ(𝑆,𝐾) and Int𝜋ℎ(𝑆,𝑅). Applying Proposition
20 again, we obtain the following theorem relating bases of the space 𝐿𝐴ℎ(𝑆,𝐾)
with those of the ring Int𝜋ℎ(𝑆,𝑅):

Theorem 28. Let 𝑆 be a nonempty compact subset of 𝐾 without isolated points,
and let 𝑓0, 𝑓1, . . . be a sequence of polynomials spanning the polynomial ring 𝐾[𝑥] as
a 𝐾-vector space. Then the sequence 𝑓0, 𝑓1, . . . forms an orthonormal base for the
𝐾-Banach space 𝐿𝐴ℎ(𝑆,𝐾) if and only if it is an 𝑅-basis for the ring Int𝜋ℎ(𝑆,𝑅)
of 𝑅-valued polynomials of modulus 𝜋ℎ.

In particular, Theorem 28 now implies Theorem 25 for any 𝜋-ordering of order ℎ.
Theorem 28 makes precise the relationship between 𝐿𝐴ℎ(𝑆,𝐾) and Int𝜋ℎ(𝑆,𝑅)

and describes all possible regular polynomial orthonormal bases of 𝐿𝐴ℎ(𝑆,𝐾) in
terms of this relationship. Nevertheless, there is again something very special about
the bases {(𝑥𝑛)Λ,ℎ} constructed in Section 4.2.1. Namely, these bases are useful for
the interpolation of functions, due to the recursive formula (36). As a consequence,
for these special bases, if a sum of the type

∑∞
𝑛=0 𝑐𝑛{

(
𝑥
𝑛

)
Λ,ℎ

} converges pointwise
to an element of 𝐿𝐴ℎ(𝑆,𝐾), then it actually converges to that element (i.e., with
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respect to the much stronger 𝐿𝐴ℎ(𝑆,𝐾) norm)! This follows directly from the
proof of Theorem 25. We note that this special property does not necessarily hold
true for general bases of 𝐿𝐴ℎ(𝑆,𝐾) (see [7] for a method for constructing examples
of this phenomenon). This remarkable property is enjoyed by these special bases
due to the combinatorial properties of proper 𝜋-orderings of order ℎ. We end by
combining Remark 13 with Theorem 28 to obtain:

Theorem 29. Let 𝑆 be any compact subset of 𝐾, let {𝑎𝑖} be any sequence of
elements in 𝑆, and let {𝛽𝑖} be any nonzero sequence in 𝐾. Then the polynomials

(𝑥− 𝑎0)(𝑥− 𝑎1) ⋅ ⋅ ⋅ (𝑥− 𝑎𝑛−1)

𝛽𝑛
, 𝑛 = 0, 1, 2, . . . ,

form an orthonormal base of 𝐿𝐴ℎ(𝑆,𝐾) if and only if {𝑎𝑖} is a 𝜋-ordering of 𝑆 of
order ℎ and (𝛽𝑛) = (𝑛!𝑆,ℎ) as ideals in 𝑅.

5. Conclusions and further results

Let 𝐾 again denote a local field having valuation ring 𝑅, and let 𝑆 be any
compact subset of 𝐾 without isolated points. Suppose ℬ is a 𝐾-Banach space of
continuous functions 𝑓 : 𝑆 → 𝐾 whose norm function is bounded below by the usual
supremum norm on 𝐶(𝑆,𝐾), and suppose that ℬ has an orthonormal base 𝑓0, 𝑓1, . . .
of polynomials in 𝐾[𝑥], where 𝑓𝑑 has degree 𝑑. Then the polynomials 𝑓𝑖 span an
𝑅-module ℐ, which must necessarily be an 𝑅-submodule of the ring Int(𝑆,𝑅) of
𝑅-valued polynomials on 𝑆. The argument of the proof of Proposition 20 implies
that if 𝑔0, 𝑔1, . . . is any other orthonormal polynomial base for ℬ, then 𝑔0, 𝑔1, . . .
must span this same 𝑅-module ℐ. Conversely, if 𝑔0, 𝑔1, . . . is any regular 𝑅-basis
for ℐ, then the 𝑔𝑖 form an orthonormal base for ℬ. Thus there is a correspondence
between bases for ℐ and bases for ℬ.
If, moreover, the 𝐾-Banach space ℬ is also a 𝐾-Banach algebra, then the 𝑅-

module ℐ becomes a ring of “integer-valued” (i.e., 𝑅-valued) polynomial mappings
on 𝑆. This was precisely the case with the 𝐾-Banach spaces ℬ considered in this
article. For ℬ = 𝐿𝐴ℎ(𝑆,𝐾), we found ℐ = Int𝜋ℎ(𝑆,𝑅); and for ℬ = 𝐶𝑟(𝑆,𝐾), we

showed that ℐ = Int{𝑟}(𝑆,𝑅).
It is an interesting question as to how this correspondence might manifest itself

for other natural spaces of functions defined on subsets of local fields. It is also
an interesting problem to investigate how the function-theoretic aspects of the 𝐾-
Banach spaces ℬ are related to the ring-theoretic properties of the corresponding
rings ℐ of integer-valued polynomials. For example, one thing that one immediately
observes is that stronger conditions of analyticity yield “smaller” rings of integer-
valued polynomials. For example, we have recently shown in joint work (see [6])
that the ring Int𝜋ℎ(𝑆,𝑅) is finitely generated as an algebra over 𝑅, while the ring

Int{𝑟}(𝑆,𝑅) is not. This reflects the fact that conditions of analyticity are indeed
quite a bit stronger than those of continuous differentiability (as is true also in the
Archimedean case).
Given the ideas of Sections 2–4, one further example of such a correspondence

that we may consider, between 𝐾-Banach spaces and rings of integer-valued poly-
nomials, is the following.
Let 𝐷 be a Dedekind domain, 𝑆 ⊂ 𝐷 a subset, and 𝑃 any prime ideal of 𝐷.

We have considered two distinct types of 𝑃 -orderings in Section 2, namely: a)
𝑃 -orderings of order ℎ, and b) 𝑟-removed 𝑃 -orderings. There is no reason not to
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combine the two notions, namely to consider “𝑟-removed 𝑃 -orderings of order ℎ”.
More precisely, an 𝑟-removed 𝑃 -ordering of 𝑆 of order ℎ is a sequence 𝑎0, 𝑎1, . . . of
elements in 𝑆 constructed inductively to minimize the value of

(38)
∑
𝑖∈𝐴𝑛

min(ℎ, 𝑣𝑃 (𝑎𝑛 − 𝑎𝑖)),

where the sum is over any set 𝐴𝑛 of 𝑛 − 𝑟 elements in {0, . . . , 𝑛 − 1} minimizing
(38).
We thereby obtain what we term the associated 𝑟-removed 𝑝-sequence of order

ℎ of 𝑆, denoted {𝜈{𝑟}
𝑘 (𝑆, 𝑃, ℎ)}:

(39) 𝜈
{𝑟}
𝑘 (𝑆, 𝑃, ℎ) = 𝑃

∑
𝑖∈𝐴𝑛

min(ℎ,𝑣𝑃 (𝑎𝑘−𝑎𝑖)).

Note that the case 𝑟 = 0 coincides with 𝑃 -orderings (resp. 𝑃 -sequences) of order
ℎ, while the case ℎ =∞ coincides with 𝑟-removed 𝑃 -orderings (resp. 𝑃 -sequences).

The associated 𝑃 -sequence {𝜈{𝑟}
𝑘 (𝑆, 𝑃, ℎ)} gives invariants of the set 𝑆 for each

choice of (ℎ, 𝑟). We have:

Theorem 30. The associated 𝑟-removed 𝑃 -sequence {𝜈{𝑟}
𝑘 (𝑆, 𝑃, ℎ)} of 𝑆 of order

ℎ is independent of the choice of 𝑟-removed 𝑃 -ordering of order ℎ.

Now suppose 𝐷 = 𝑅 is a discrete valuation domain with uniformizer 𝜋 and
quotient field 𝐾 and let 𝑆 ⊂ 𝑅 be any subset without isolated points. An 𝑟-
removed 𝜋-ordering Λ of 𝑆 of order ℎ yields 𝑟-removed generalized polynomials(
𝑥
𝑛

){𝑟}
Λ,ℎ

of order ℎ, defined by

(
𝑥

𝑛

){𝑟}

Λ,ℎ

=

∏𝑛−1
𝑖=0 (𝑥− 𝑎𝑖)

𝑛!
{𝑟}
𝑆,ℎ

,

where
𝑛!

{𝑟}
𝑆,ℎ = 𝜋

∑
𝑖∈𝐴𝑛

min(ℎ,𝑣(𝑎𝑛−𝑎𝑖)).

Finally, let Int
{𝑟}
𝜋ℎ (𝑆,𝑅) denote the ring of all polynomials 𝑓 ∈ 𝐾[𝑥] whose

𝑞-th divided differences for 𝑞 = 0, 1, . . . , 𝑟 are 𝑅-valued polynomials on 𝑆𝑞+1 with
modulus 𝜋ℎ. Also, let 𝐶𝑟

ℎ(𝑆,𝐾) denote the 𝐾-Banach space consisting of those
continuous functions 𝑓 : 𝑆 → 𝐾 whose 𝑞-th divided differences for 𝑞 = 0, 1, . . . , 𝑟
extend to locally analytic functions of order ℎ on 𝑆𝑞+1.
We may now combine all the main theorems of this paper into the following,

giving one final generalization of the Pólya-Mahler theorems:

Theorem 31. Let Λ be an 𝑟-removed 𝜋-ordering of 𝑆 of order ℎ. Then the corre-

sponding generalized binomial polynomials
(
𝑥
𝑛

){𝑟}
Λ,ℎ

form a regular basis for the ring

Int
{𝑟}
𝜋ℎ (𝑆,𝑅) of integer-valued polynomials, and (when 𝑆 is compact) also form an

orthonormal base for the 𝐾-Banach space 𝐶𝑟
ℎ(𝑆,𝐾) of smooth functions on 𝑆.

Again, one shows in the analogous manner that if 𝑓0, 𝑓1, . . . is a sequence of
polynomials in 𝐾[𝑥] with deg(𝑓𝑑) = 𝑑, then it forms an orthonormal basis for

𝐶𝑟
ℎ(𝑆,𝐾) if and only if it simultaneously forms a regular basis for Int

{𝑟}
𝜋ℎ (𝑆,𝑅).

One finds, as in [6], that the latter ring is also finitely generated whenever ℎ is
finite.
All these results are proven by directly combining the techniques used, through-

out Sections 3 and 4, for the subscripts ℎ and superscripts {𝑟}. The global version
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of the regular basis theorem for Int
{𝑟}
ℳ (𝑆,𝐷) may be proven just as in Section 3.1.2.

We decided not to prove the results of this paper directly in this generality because
it would not have significantly shortened the treatment, and because in the primary
applications in the literature the basic notions of local analyticity and continuous
differentiability tend to appear separately and in different contexts; it is thus de-
sirable to see the techniques required in each case separately. However, we thought
we should at least state the result in a combined way here, not only because of
its inherent interest, but in case someone may find the combined result of use in
applications in the future.
Theorem 31 also now implies Theorem 1: the product of two polynomials 𝑓, 𝑔 in

the ring Int
{𝑟}
𝜋ℎ (𝑆,𝑅), having degrees 𝑘 and ℓ, respectively, will yield a degree 𝑘+ ℓ

polynomial 𝑓𝑔 ∈ Int
{𝑟}
𝜋ℎ (𝑆,𝑅). Choosing 𝑓 and 𝑔 to have denominators 𝑘!

{𝑟}
𝑆,ℎ and

ℓ!
{𝑟}
𝑆,ℎ, respectively, then yields Theorem 1.
Lastly, we note that all results in this paper proven for a discrete valuation ring

𝑅 (Theorems 1–4, 7, 12, 17, 20–22, 25, 28, 30, and 31) hold equally well in any
rank-one valuation domain 𝑅 so long as 𝑆 is assumed to be compact (or that its
closure is compact, in the case of Theorems 1–4, 7, 12, and 30). This is because
the 𝑟-removed 𝜋-ordering of order ℎ construction is still well defined and valid in
this generality. For ordinary 𝜋-orderings, this has been explained by Cahen and
Chabert in [10] and [11]; the same reasoning applies in general. One must simply
replace all occurrences of 𝜋𝛼 in the proofs by 𝜋𝛼, where 𝜋𝛼 ∈ 𝑅 denotes an element
with valuation 𝛼 (since now not all valuations can be achieved by taking powers of
a fixed uniformizer 𝜋). Otherwise, all proofs are essentially identical.
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[23] G. Pólya, Über ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo 40 (1915) 1-16.
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