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RIGOROUS DERIVATION OF THE GROSS-PITAEVSKII

EQUATION WITH A LARGE INTERACTION POTENTIAL

LÁSZLÓ ERDŐS, BENJAMIN SCHLEIN, AND HORNG-TZER YAU

1. Introduction

We consider a bosonic system of 𝑁 particles with a repulsive interaction. The
states of the system are given by elements of the Hilbert space 𝐿2𝑠(ℝ

3𝑁 ), the
subspace of 𝐿2(ℝ3𝑁 ) consisting of permutation symmetric wave functions. We
are interested in describing the time evolution of special initial wave functions
𝜓𝑁 ∈ 𝐿2𝑠(ℝ

3𝑁 ) that exhibit complete Bose-Einstein condensation.
For a given wave function 𝜓𝑁 , we define the density matrix 𝛾𝑁 = ∣𝜓𝑁 ⟩⟨𝜓𝑁 ∣

associated with 𝜓𝑁 as the orthogonal projection onto 𝜓𝑁 . Moreover, for 𝑘 =

1, . . . , 𝑁 , we define the 𝑘-particle marginal density 𝛾
(𝑘)
𝑁 , associated with 𝜓𝑁 , by

taking the partial trace of 𝛾𝑁 over the last (𝑁 − 𝑘) variables. In other words, 𝛾
(𝑘)
𝑁

is defined as a positive trace-class operator on 𝐿2(ℝ3𝑘) with kernel given by

𝛾
(𝑘)
𝑁 (x𝑘;x

′
𝑘) =

∫
dx𝑁−𝑘 𝜓𝑁 (x𝑘,x𝑁−𝑘)𝜓𝑁 (x′

𝑘,x𝑁−𝑘) .

Here and in the following we use the notation x𝑘 = (𝑥1, . . . , 𝑥𝑘), x
′
𝑘 = (𝑥′1, . . . , 𝑥

′
𝑘),

and x𝑁−𝑘 = (𝑥𝑘+1, . . . , 𝑥𝑁 ); we will also denote x = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ). A sequence
{𝜓𝑁}𝑁∈ℕ, with 𝜓𝑁 ∈ 𝐿2𝑠(ℝ

3𝑁 ) for all 𝑁 , is said to exhibit complete Bose-Einstein
condensation in 𝜑 ∈ 𝐿2(ℝ3) if

(1.1) 𝛾
(1)
𝑁 → ∣𝜑⟩⟨𝜑∣ as 𝑁 → ∞

in the trace-norm topology (here and in the following ∣𝜑⟩⟨𝜑∣ indicates the orthogonal
projection onto 𝜑). Physically, complete Bose-Einstein condensation means that all
particles in the system, apart from a fraction vanishing as 𝑁 → ∞, are described
by the same one-particle wave function 𝜑, known as the condensate wave function.
Note that (1.1) implies that

(1.2) 𝛾
(𝑘)
𝑁 → ∣𝜑⟩⟨𝜑∣⊗𝑘

for all 𝑘 ≥ 1, as was first proven by Lieb and Seiringer in [18].
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The time-evolution of 𝑁 boson systems is governed by the Schrödinger equation

(1.3) 𝑖∂𝑡𝜓𝑁,𝑡 = 𝐻𝑁𝜓𝑁,𝑡

with the Hamiltonian operator

(1.4) 𝐻𝑁 =
𝑁∑
𝑗=1

−Δ𝑗 +
∑
𝑖<𝑗

𝑉𝑁 (𝑥𝑖 − 𝑥𝑗).

Here and in the following we will use the convention Δ𝑗 = Δ𝑥𝑗 and ∇𝑗 = ∇𝑥𝑗 .
We consider the scaling introduced by Lieb, Seiringer and Yngvason in [20] for the
interaction potential 𝑉𝑁 , i.e. we fix a nonnegative potential 𝑉 and then rescale it
by defining 𝑉𝑁 (𝑥) = 𝑁2𝑉 (𝑁𝑥). This scaling is chosen so that the scattering length
of 𝑉𝑁 is of the order 1/𝑁 .

We recall that the scattering length associated with a potential 𝑉 decaying
sufficiently fast at infinity (𝑉 has to be integrable at infinity) is defined through
the solution of the zero-energy scattering equation

(1.5)

(
−Δ +

1

2
𝑉

)
𝑓 = 0

with boundary condition 𝑓(𝑥) → 1 as ∣𝑥∣ → ∞. We usually write 𝑓 = 1 − 𝑤. The
scattering length of 𝑉 , which is a measure of the effective range of the interaction,
is defined by

𝑎0 = lim
∣𝑥∣→∞

∣𝑥∣𝑤(𝑥).

An equivalent definition of the scattering length is given by the formula

(1.6)

∫
d𝑥𝑉 (𝑥)(1 − 𝑤(𝑥)) = 8𝜋𝑎0 .

By these definitions, it is clear that if 𝑎0 denotes the scattering length of the poten-
tial 𝑉 , then the scattering length of the scaled potential 𝑉𝑁 is given by 𝑎 = 𝑎0/𝑁 .

Our main result is as follows. Suppose that the family of wave functions {𝜓𝑁}𝑁∈ℕ

exhibits complete Bose-Einstein condensation (1.1) with some 𝜑 ∈ 𝐻1(ℝ3) and as-
sume its energy per particle to be bounded (in the sense that ⟨𝜓𝑁 , 𝐻𝑁𝜓𝑁 ⟩ ≤ 𝐶𝑁
for all 𝑁). Denote by 𝜓𝑁,𝑡 the solution of the Schrödinger equation (1.3) with
initial data 𝜓𝑁,0 = 𝜓𝑁 . Under appropriate conditions on the potential 𝑉 , we show
that, for every time 𝑡 ∈ ℝ, the family {𝜓𝑁,𝑡}𝑁∈ℕ still exhibits complete condensa-
tion and that the condensate wave function evolves according to a cubic nonlinear
Schrödinger equation known as the Gross-Pitaevskii equation. In other words, if

𝛾
(1)
𝑁,𝑡 denotes the one-particle marginal density associated with 𝜓𝑁,𝑡, we prove that

(1.7) 𝛾
(1)
𝑁,𝑡 → ∣𝜑𝑡⟩⟨𝜑𝑡∣

as 𝑁 → ∞, where 𝜑𝑡 is determined by the nonlinear Gross-Pitaevskii equation

(1.8) 𝑖∂𝑡𝜑𝑡 = −Δ𝜑𝑡 + 8𝜋𝑎0∣𝜑𝑡∣2𝜑𝑡
with initial data 𝜑0 = 𝜑. The cubic nonlinear term expresses the local on-site
self-interaction of the condensate wave function. Due to the strongly localized
interaction, the many-body wave function develops a singular correlation structure
on the scale 1/𝑁 . As 𝑁 goes to infinity, this short scale structure produces the
scattering length as a coupling constant in the limiting Gross-Pitaevskii equation.
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This result gives a mathematical description of the dynamics of initial data
exhibiting complete Bose-Einstein condensation. The simplest example of such
initial data are product states 𝜓𝑁 = 𝜑⊗𝑁 for arbitrary 𝜑 ∈ 𝐿2(ℝ3). Physically
more interesting examples of complete Bose-Einstein condensates are the ground
states of trapped Bose gases. A trapped Bose gas in the Gross-Pitaevskii scaling is
an 𝑁 -boson system described by the Hamiltonian

(1.9) 𝐻trap𝑁 =

𝑁∑
𝑗=1

(−Δ𝑥𝑗 + 𝑉ext(𝑥𝑗)
)

+

𝑁∑
𝑖<𝑗

𝑉𝑁 (𝑥𝑖 − 𝑥𝑗) ,

where 𝑉ext(𝑥) ≥ 0 with 𝑉ext(𝑥) → ∞ as ∣𝑥∣ → ∞ is a confining potential. The
Hamiltonian (1.9) therefore describes a system of 𝑁 particles confined by the ex-
ternal potential 𝑉ext into a volume of order one, interacting through a potential
with effective range of the order 1/𝑁 . Since the typical distance between neighbor-
ing particles is of order 𝑁−1/3, and thus much bigger than the effective range of
the interaction, (1.9) describes a very dilute system.

In [20], Lieb, Seiringer and Yngvason studied the ground state energy 𝐸𝑁 of the
Hamiltonian (1.9) with a spherically symmetric interaction, 𝑉 (𝑥) = 𝑉 (∣𝑥∣), and
they proved that

lim
𝑁→∞

𝐸𝑁
𝑁

= min
𝜑∈𝐿2(ℝ3)

ℰGP(𝜑),

where ℰGP denotes the so-called Gross-Pitaevskii energy functional

ℰGP(𝜑) =

∫
d𝑥
(∣∇𝜑∣2 + 𝑉ext(𝑥)∣𝜑(𝑥)∣2 + 4𝜋𝑎0∣𝜑(𝑥)∣4) .

In [18], Lieb and Seiringer then proved that the ground state of (1.9) exhibits
complete Bose-Einstein condensation in the minimizer 𝜙𝐺𝑃 of the Gross-Pitaevskii
energy functional ℰGP. In other words, they proved that if 𝜓trap𝑁 denotes the ground

state vector of (1.9), then the corresponding one-particle marginal density 𝛾
(1)
𝑁,trap

satisfies

𝛾
(1)
𝑁,trap → ∣𝜙GP⟩⟨𝜙GP∣

as 𝑁 → ∞, in the trace-norm topology. A survey of results concerning the ground
state properties of the dilute bosonic gases can be found in [19].

Since 𝜓trap𝑁 describes a complete Bose-Einstein condensate, we can apply (1.7)
to study its time evolution with respect to the Hamiltonian (1.4); it follows that,

for every fixed 𝑡 ∈ ℝ, 𝑒−𝑖𝐻𝑁 𝑡𝜓trap𝑁 exhibits complete Bose-Einstein condensation in
the one-particle state described by the solution 𝜑𝑡 of the Gross-Pitaevskii equation
(1.8) with initial data 𝜙GP. This result gives the mathematical description of recent
experiments (initiated in [7, 3]) where the dynamics of Bose-Einstein condensates
have been observed.

We already proved (1.7) in [12] (some partial results were previously obtained
in [10]) under the assumption of a sufficiently weak potential 𝑉 . More precisely, in
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[12] we required the dimensionless parameter

(1.10) 𝜌 = sup
𝑥∈ℝ3

∣𝑥∣2𝑉 (𝑥) +

∫
d𝑥

∣𝑥∣𝑉 (𝑥)

to be sufficiently small. In the present paper, we remove this condition and consider
arbitrary repulsive potentials 𝑉 ≥ 0, with the fast decay property 𝑉 (𝑥) ≤ 𝐶⟨𝑥⟩−𝜎
for some 𝜎 > 5 (here ⟨𝑥⟩ = (1 + 𝑥2)1/2).

The removal of the smallness condition requires completely new ideas. The main
challenge in the derivation of the Gross-Pitaevskii equation is to identify and re-
solve the short scale correlation structure in the 𝑁 -body wave function. In [12]
we achieved this by locally factoring out the solution of the zero energy scattering
equation (1.5). This approach, however, is not sufficiently precise for a large in-
teraction potential. In the present paper we propose an intrinsic characterization
of the correlation structure in terms of the two-particle scattering wave operator.
More precisely, we prove that the action of the wave operator in the relative co-
ordinate 𝑥𝑖 − 𝑥𝑗 regularizes 𝜓𝑁,𝑡 in this variable. This regularity is essential to
control the convergence of the many-body interaction to the local on-site nonlin-
earity in the limiting equation (1.8). An a priori estimate leading to this regularity
will be obtained from the conservation of the second moment of the energy, i.e.
from ⟨𝜓𝑁,𝑡, 𝐻2𝑁𝜓𝑁,𝑡⟩ = ⟨𝜓𝑁 , 𝐻2𝑁𝜓𝑁 ⟩. This a priori bound, however, only controls
a specific combination of two derivatives, ∇𝑥𝑖 ⋅ ∇𝑥𝑗 , acting on the regularized wave
function. We thus need to establish a new Poincaré-type inequality involving only
this combination of derivatives. In the next section we discuss the main ideas of
our new approach.

2. Resolution of the correlation structure for large potential

As in [12], the general strategy of our proof is based on the study of solutions of

the BBGKY hierarchy of equations for the marginal densities 𝛾
(𝑘)
𝑁,𝑡 associated with

the solution of the 𝑁 -particle Schrödinger equation (1.3):

𝑖∂𝑡𝛾
(𝑘)
𝑁,𝑡 =

𝑘∑
𝑗=1

[
−Δ𝑗 , 𝛾

(𝑘)
𝑁,𝑡

]
+

𝑘∑
𝑖<𝑗

[
𝑉𝑁 (𝑥𝑖 − 𝑥𝑗), 𝛾

(𝑘)
𝑁,𝑡

]

+ (𝑁 − 𝑘)
𝑘∑
𝑗=1

Tr𝑘+1

[
𝑉𝑁 (𝑥𝑗 − 𝑥𝑘+1), 𝛾

(𝑘+1)
𝑁,𝑡

](2.1)

for 𝑘 = 1, . . . , 𝑁 . Here Tr𝑘+1 denotes the partial trace over the (𝑘+ 1)-th variable,

and we use the convention that 𝛾
(𝑘)
𝑁,𝑡 = 0 for 𝑘 = 𝑁 + 1. The main observation is

the fact that limit points {𝛾(𝑘)∞,𝑡}𝑘≥1 of the families {𝛾(𝑘)𝑁,𝑡}𝑁𝑘=1 (with respect to an

appropriate topology) are a solution of the infinite hierarchy of equations

(2.2) 𝑖∂𝑡𝛾
(𝑘)
∞,𝑡 =

𝑘∑
𝑗=1

[
−Δ𝑗 , 𝛾

(𝑘)
∞,𝑡
]

+ 8𝜋𝑎0

𝑘∑
𝑗=1

Tr𝑘+1

[
𝛿(𝑥𝑗 − 𝑥𝑘+1), 𝛾

(𝑘+1)
∞,𝑡
]
.
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It is easy to check that the product ansatz 𝛾
(𝑘)
∞,𝑡 = ∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘 satisfies (2.2) if and

only if 𝜑𝑡 solves the Gross-Pitaevskii equation (1.8). Therefore, to conclude the

proof of (1.7), it suffices to show that: 1) every limit point of the family {𝛾(𝑘)𝑁,𝑡}𝑁𝑘=1
is a solution of the infinite hierarchy (2.2), and 2) the solution to (2.2) is unique.
This strategy has already been used to derive the nonlinear Hartree equations for
the effective dynamics of so-called mean-field systems (see [27, 13, 4, 9]) to derive
the cubic nonlinear Schrödinger equation with different (and simpler) scalings of the
interaction potential (see [8, 11]) and to derive the nonlinear Schrödinger equation
in a one-dimensional setting (see [1, 2]). We remark that the first derivation of
the Hartree equation was obtained using a different method in [17, 14]. With this
method the speed of convergence was recently estimated in [25].

In all works based on the BBGKY hierarchy, the key step consists of finding an
appropriate norm and space of density matrices with which to work. On the one
hand, the topology has to be sufficiently strong to guarantee the convergence of
(2.1) to (2.2) and the space has to be sufficiently small to guarantee the uniqueness
of the solution to (2.2). On the other hand, the norm defining this space cannot be
too strong since we have to prove, via an a priori bound, that limit points of the

sequence 𝛾
(𝑘)
𝑁,𝑡 belong to this space.

In [12], we use an appropriate Poincaré-type inequality to prove the convergence
of (2.1) to (2.2). To do that, we need a control on a mixed Sobolev norm on

𝛾
(𝑘+1)
𝑁,𝑡 and 𝛾

(𝑘+1)
∞,𝑡 with at least two derivatives (note that the commutator with

the delta function in (2.2) is even ill-defined unless some regularity is known on

𝛾
(𝑘+1)
∞,𝑡 ). However, due to the singularity of the interaction potential, it turns out

that the solution of the Schrödinger equation 𝜓𝑁,𝑡 develops a short-scale correlation
structure, living on a length-scale 𝑂(1/𝑁), which causes the Sobolev norms with
two or more derivatives to blow up as 𝑁 → ∞.

Instead of considering derivatives of 𝜓𝑁,𝑡, we therefore prove an a priori bound of
the form

∫ ∣∇1∇2𝜙12,𝑁 (𝑡)∣2 ≤ 𝐶 on the 𝑁 -body function 𝜙12,𝑁 (𝑡) = 𝜓𝑁,𝑡/(1−𝑤12)
obtained from the original wave function after factoring out the singular short-scale
structure. Here 1 − 𝑤12 = 1 − 𝑤𝑁 (𝑥1 − 𝑥2), where 𝑓𝑁 = 1 − 𝑤𝑁 is the zero-
energy scattering solution to (−Δ+(1/2)𝑉𝑁)𝑓𝑁 = 0. Note that, by simple scaling,
𝑤𝑁 (𝑥) = 𝑤(𝑁𝑥), where 𝑓(𝑥) = 1−𝑤(𝑥) is the zero-energy scattering solution to the
unscaled equation (−Δ+(1/2)𝑉 )𝑓 = 0. It turns out that

∫ ∣∇1∇2𝜓𝑁,𝑡∣2 grows with
𝑁 , but

∫ ∣∇1∇2𝜙12,𝑁 (𝑡)∣2 remains bounded. Although 𝜓𝑁,𝑡 and 𝜙12,𝑁 (𝑡) behave
very differently in the mixed Sobolev norm, their difference in the 𝐿2-norm vanishes
in the 𝑁 → ∞ limit due to the scaling 𝑤𝑁 (𝑥) = 𝑤(𝑁𝑥). This allows us to obtain
control on the mixed Sobolev norm of 𝛾∞,𝑡, despite the fact that it is defined as
a limit of 𝛾𝑁,𝑡 only in the weak topology of trace class operators. Moreover, the
boundedness of

∫ ∣∇1∇2𝜙12,𝑁 (𝑡)∣2 explains the emergence of the scattering length
in (2.2).

The proof of
∫ ∣∇1∇2𝜙12,𝑁 (𝑡)∣2 ≤ 𝐶 relies on the conservation of 𝐻2𝑁 along the

time evolution and on the key inequality

(2.3) ⟨𝜓𝑁 , (𝐻𝑁 +𝑁)2𝜓𝑁 ⟩ ≥ 𝐶𝑁2
∫ ∣∣∣∣∇1∇2 𝜓𝑁

1 − 𝑤12

∣∣∣∣2 ,
valid for all 𝜓𝑁 ∈ 𝐿2𝑠(ℝ

3𝑁 ).
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To show the uniqueness of the solution of the infinite hierarchy (2.2), on the other

hand, more information on the limiting densities 𝛾
(𝑘)
∞,𝑡 is needed; more precisely,

uniqueness was proven in [11] under the assumption that

(2.4) Tr (1 − Δ1) . . . (1 − Δ𝑘)𝛾
(𝑘)
∞,𝑡 ≤ 𝐶𝑘

for all 𝑘 ≥ 1. Because of the singular short-scale structure characterizing the

solution of the Schrödinger equation for finite 𝑁 , the densities 𝛾
(𝑘)
𝑁,𝑡 do not satisfy

(2.4). To circumvent this problem, we derived in [12] a higher order energy estimate
of the form

(2.5) ⟨𝜓𝑁 , (𝐻𝑁 +𝑁)𝑘𝜓𝑁 ⟩ ≥ 𝐶𝑘𝑁𝑘
∫

dxΘ𝑘−1(x) ∣∇1 . . .∇𝑘𝜓𝑁 (x)∣2

for all 𝑘 ≥ 1, where Θ𝑘−1(x) is a cutoff function vanishing (up to exponentially
small contributions) in regions where a second particle comes close to 𝑥𝑗 , for some
𝑗 ≤ 𝑘 − 1 (see Section 7 for the precise definition of the cutoff). This higher
order energy estimate provides a control on the 𝐿2 norm of the mixed derivatives
∇1 . . .∇𝑘𝜓𝑁,𝑡 restricted on regions with no other particle close to 𝑥1, . . . , 𝑥𝑘−1.
Choosing Θ𝑘−1 to vanish in a sufficiently small volume, it was possible to remove
the cutoffs in the weak limit 𝑁 → ∞ and to obtain the a priori bounds (2.4) on

the limit points {𝛾(𝑘)∞,𝑡}𝑘≥1.
The estimates (2.3) and (2.5) were therefore the two main ingredients used in [12]

to control the singularity of the interaction potential 𝑉𝑁 and the singular short scale
structure of 𝜓𝑁,𝑡. In [12], both of these estimates heavily relied on the smallness
of the parameter 𝜌 introduced in (1.10). Therefore, although the general strategy
of the current paper is similar to the one used in [12], the removal of the smallness
condition on 𝜌 requires completely new ideas, which we now explain.

In [12], the energy estimate (2.3) was obtained from an identity of the form
(2.6)

⟨𝜓𝑁 , 𝐻2𝑁𝜓𝑁 ⟩=𝑁(𝑁−1)

∫
∣∇1∇2𝜙12∣2(1−𝑤12)2+𝑁(𝑁−1)

∫
∇1𝜙12⋅𝑔12∇2𝜙12+Ω ,

where 𝜙12 = 𝜓𝑁/(1 − 𝑤12). Here 𝑔12 is an explicit matrix involving the Hessian
of 𝑤12 and squares of its first derivatives, and Ω contains irrelevant terms. The
following bound is essentially optimal for the size of 𝑔12:

∣𝑔12∣ ≤ 𝐶𝜌

∣𝑥1 − 𝑥2∣2 .

The best strategy is then to estimate∫
∇1𝜙12 ⋅ 𝑔12∇2𝜙12 ≥ −𝐶𝜌

∫
1

∣𝑥1 − 𝑥2∣2
(∣∇1𝜙12∣2 + ∣∇2𝜙12∣2

)
≥ −𝐶𝜌

∫
∣∇1∇2𝜙12∣2 ,

(2.7)

where we used Hardy’s inequality in the last step. This term can be absorbed in
the first (positive) term in (2.6) only if 𝜌 is sufficiently small. A closer inspection
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of the structure of the terms in Ω reveals that, although some of them are positive,
they cannot compensate for the negative term (2.7). After estimating them from
below at the expense of adding lower order terms to 𝐻2𝑁 , we get the desired bound

(2.8)

∫
∣∇1∇2𝜙12∣2 ≤ 𝐶𝑁−2⟨𝜓𝑁 , (𝐻𝑁 +𝑁)2𝜓𝑁 ⟩ .

The first main idea of the current paper is to prove the following replacement
for (2.8) (see Proposition 5.2):

(2.9)

∫
∣∇1 ⋅ ∇2𝑊 ∗

12𝜓𝑁 ∣2 ≤ 𝐶𝑁−2⟨𝜓𝑁 , (𝐻𝑁 +𝑁)2𝜓𝑁 ⟩ ,

where 𝑊12 denotes the wave operator of the one particle Hamiltonian −Δ + 1
2𝑉𝑁

acting on the difference variable 𝑥1 − 𝑥2. Note two main differences between (2.8)
and (2.9). First, 𝑊 ∗

12𝜓𝑁 replaces the function 𝜙12,𝑁 = 𝜓𝑁/(1 − 𝑤12) that can be
considered as a first order approximation to 𝑊 ∗

12𝜓𝑁 . Second, instead of controlling
the full mixed second derivative, ∇1∇2, as in (2.8), the new bound controls only
∇1 ⋅∇2. Although the control on ∇1 ⋅∇2 is in general much weaker than the control
on ∇1∇2, in the radial direction of the relative coordinate 𝑥1 − 𝑥2 the new bound
is as strong as the former one.

Both differences cause substantial difficulties in proving that (2.1) indeed con-
verges to (2.2). First, instead of working with a relatively explicit function 𝑤12 and
using its fairly straighforward properties summarized in Lemma 5.1 of [12], now
analogous properties have to be established for the wave operator. Second, the lack
of the control on the full mixed second derivatives impedes using the Sobolev-type
operator inequality

𝑉 (𝑥1 − 𝑥2) ≤ 𝐶∥𝑉 ∥1(1 − Δ1)(1 − Δ2)

that was crucial in controlling many error terms. We have found a replacement for
this inequality (Lemma 10.1):

(2.10) 𝑉 (𝑥1 − 𝑥2) ≤ 𝐶∥𝑉 ∥1
(
(∇1 ⋅ ∇2)2 − Δ1 − Δ2 + 1

)
that uses only the ∇1 ⋅ ∇2 combination in the highest order term. Similarly to
Lemma 7.2 of [12], we are also able to improve (2.10) to a Poincaré-type inequality
⟨𝜑, (ℎ𝛼(𝑥1 − 𝑥2) − 𝛿(𝑥1 − 𝑥2))𝜓⟩ → 0 as 𝛼 → 0, where ℎ𝛼(𝑥) = 𝛼−3ℎ(𝑥/𝛼) (with∫
ℎ(𝑥)d𝑥 = 1) is an approximate Dirac delta function on the scale 𝛼 (see Lemma

10.2). This is necessary to control the convergence of (2.1) to (2.2).
The second main novelty of this paper is a proof for the higher order deriv-

ative estimates (2.5) in the large potential regime (Proposition 7.1). Although
the main conclusion is the same as Proposition 5.3 in [12], the proof does not re-
quire the smallness of 𝜌. The proof in [12] started from the trivial energy estimate∑𝑁
𝑗=1−Δ𝑗 ≤ 𝐻𝑁 and the estimate (2.8) on 𝐻2𝑁 , and it used an induction on the

exponent to pass from (𝐻𝑁+𝑁)𝑘 to (𝐻𝑁+𝑁)𝑘+2. The step-two induction allowed
us to start the induction estimate with

(2.11) (𝐻𝑁 +𝑁)𝑘+2 ≥ (𝐻𝑁 +𝑁)∇∗
1 . . .∇∗

𝑘Θ∇𝑘 . . .∇1(𝐻𝑁 +𝑁) ,

and then we commuted the two 𝐻𝑁 + 𝑁 factors through to the middle and used
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the (𝐻𝑁 + 𝑁)2 estimate (2.8). The weaker 𝐻2𝑁 estimate (2.9) however does not
allow us to regain control on full derivatives, so pursuing this path would, at best,
yield control on some complicated combinations of partial derivatives.

In this paper we establish higher order derivative estimates by a step-one induc-
tion, i.e. passing from (𝐻𝑁 +𝑁)𝑘 to (𝐻𝑁 +𝑁)𝑘+1. This eliminates using the 𝐻2𝑁
estimate with incomplete derivatives, but the price is that instead of (2.11) we have
to work with

(2.12) (𝐻𝑁 +𝑁)𝑘+1 ≥ (𝐻𝑁 +𝑁)1/2∇∗
1 . . .∇∗

𝑘Θ∇𝑘 . . .∇1(𝐻𝑁 + 𝑁)1/2

in the induction step, i.e. we have to commute the square root of the Hamiltonian
through the derivatives. The technical complications involved with the square root
turn out to be reasonably easily managable, so that this new method actually
provides a simpler proof than in [12] for the higher energy estimates even when 𝜌
is small.

Notation. Throughout the paper we will use the notation x = (𝑥1, . . . , 𝑥𝑁 ) ∈ ℝ
3𝑁 ,

and, for 𝑘 = 1, . . . , 𝑁 , x𝑘 = (𝑥1, . . . , 𝑥𝑘), x
′
𝑘 = (𝑥′1, . . . , 𝑥

′
𝑘) ∈ ℝ

3𝑘, and x𝑁−𝑘 =

(𝑥𝑘+1, . . . , 𝑥𝑁 ) ∈ ℝ
3(𝑁−𝑘). The notation ∥⋅∥ indicates the 𝐿2-norm if the argument

is a function, and it denotes the operator norm (from 𝐿2 to 𝐿2) if the argument
is an operator. For 1 ≤ 𝑝 ≤ ∞, ∥𝑓∥𝑝 indicates the 𝐿𝑝-norm of 𝑓 . Moreover, we
will use ∇𝑗 and Δ𝑗 as shorthand notation for ∇𝑥𝑗 and, respectively, Δ𝑥𝑗 . If 𝐴 is

an operator acting on 𝐿2(ℝ3𝑘), we will denote its kernel by 𝐴(x𝑘;x
′
𝑘). The letter

𝐶 denotes universal constants that may depend on 𝑉 and on the 𝐻1-norm of the
initial one particle wave function 𝜑, but is independent of 𝑁 .

3. Main theorem

The following theorem is the main result of this paper.

Theorem 3.1. Suppose that 𝑉 ≥ 0, with 𝑉 (−𝑥) = 𝑉 (𝑥) and 𝑉 (𝑥) ≤ 𝐶⟨𝑥⟩−𝜎,
for some 𝜎 > 5 and for all 𝑥 ∈ ℝ

3. Assume that the family 𝜓𝑁 ∈ 𝐿2𝑠(ℝ
3𝑁 ), with

∥𝜓𝑁∥ = 1 for all 𝑁 , has finite energy per particle, in the sense that

(3.1) ⟨𝜓𝑁 , 𝐻𝑁𝜓𝑁 ⟩ ≤ 𝐶𝑁

and that it exhibits complete Bose-Einstein condensation in the sense that the one-

particle marginal 𝛾
(1)
𝑁 associated with 𝜓𝑁 satisfies

(3.2) 𝛾
(1)
𝑁 → ∣𝜑⟩⟨𝜑∣ in the trace norm topology as 𝑁 → ∞

for some 𝜑 ∈ 𝐻1(ℝ3). Then, for every 𝑘 ≥ 1 and 𝑡 ∈ ℝ, we have

𝛾
(𝑘)
𝑁,𝑡 → ∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘

as 𝑁 → ∞, in the trace norm. Here 𝜑𝑡 is the solution of the nonlinear Gross-
Pitaevskii equation

(3.3) 𝑖∂𝑡𝜑𝑡 = −Δ𝜑𝑡 + 8𝜋𝑎0∣𝜑𝑡∣2𝜑𝑡
with initial data 𝜑𝑡=0 = 𝜑.
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Remark. Note that the condition 𝑉 (𝑥) ≤ 𝐶⟨𝑥⟩−𝜎 for some 𝜎 > 5 and for all 𝑥 ∈ ℝ
3

is only required to apply the result of Yajima in [29], which guarantees that the
wave operator 𝑊 associated with the Hamiltonian 𝔥 = −Δ + (1/2)𝑉 maps 𝐿𝑝(ℝ3)
into itself, for all 1 ≤ 𝑝 ≤ ∞ (see Proposition 5.1). If one knows, by different means,
that ∥𝑊∥𝐿𝑝→𝐿𝑝 < ∞ (it suffices to know it for 𝑝 = 1 and 𝑝 = ∞), then it would
be enough to assume that 𝑉 ∈ 𝐿1(ℝ3, (1 + ∣𝑥∣2)d𝑥) ∩ 𝐿2(ℝ3, d𝑥).

Remark. Compared with our previous result in [12], here we do not require the
potential 𝑉 to be spherical symmetric (we only need that 𝑉 (−𝑥) = 𝑉 (𝑥)).

Remark. The fact that 𝜑 ∈ 𝐻1(ℝ3) does not need to be assumed separately, since
it already follows from the assumption (3.1).

To prove this theorem we will use an approximation argument and the following
theorem, which proves Theorem 3.1 for a smaller class of initial 𝑁 -particle wave
functions.

Theorem 3.2. Assume the same conditions on the potential 𝑉 as in Theorem 3.1.
Suppose moreover that ∣∇𝛼𝑉 (𝑥)∣ ≤ 𝐶 for all multi-indices 𝛼 with ∣𝛼∣ ≤ 2. Assume
that the family 𝜓𝑁 ∈ 𝐿2(ℝ3𝑁 ), with ∥𝜓𝑁∥ = 1, is such that

(3.4) ⟨𝜓𝑁 , 𝐻𝑘𝑁𝜓𝑁 ⟩ ≤ 𝐶𝑘𝑁𝑘

for all 𝑘 ∈ ℕ and that

(3.5) 𝛾
(1)
𝑁 → ∣𝜑⟩⟨𝜑∣ in the trace norm topology as 𝑁 → ∞

for some 𝜑 ∈ 𝐻1(ℝ3). Then, for every 𝑘 ≥ 1 and 𝑡 ∈ ℝ,

𝛾
(𝑘)
𝑁,𝑡 → ∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘

as 𝑁 → ∞, in the trace norm. Here 𝜑𝑡 is the solution of the nonlinear Gross-
Pitaevskii equation (3.3) with initial data 𝜑𝑡=0 = 𝜑.

4. Proof of the main theorem

In this section we present the proof of Theorem 3.2 and we show how it implies
Theorem 3.1, making use of several key propositions, whose proofs are deferred to
subsequent sections.

We start by defining an appropriate space of time-dependent density matrices.
To use the Arzela-Ascoli compactness argument, we will need to establish the con-
cept of uniform continuity in this space, thus we have to metrize the weak* topology.

Let 𝒦𝑘≡𝒦(𝐿2(ℝ3𝑘)) denote the space of compact operators on 𝐿2(ℝ3𝑘) equipped
with the operator norm topology and let ℒ1𝑘 ≡ ℒ1(𝐿2(ℝ3𝑘)) denote the space of
trace class operators on 𝐿2(ℝ3𝑘) equipped with the trace norm. It is well known
that ℒ1𝑘 is the dual of 𝒦𝑘. Since 𝒦𝑘 is separable, we can fix a dense countable

subset of the unit ball of 𝒦𝑘; we denote it by {𝐽 (𝑘)𝑖 }𝑖≥1 ∈ 𝒦𝑘, with ∥𝐽 (𝑘)𝑖 ∥ ≤ 1

for all 𝑖 ≥ 1. Using the operators 𝐽
(𝑘)
𝑖 we define the following metric on the space

ℒ1𝑘 ≡ ℒ1(𝐿2(ℝ3𝑘)): for 𝛾(𝑘), 𝛾(𝑘) ∈ ℒ1𝑘 we set

(4.1) 𝜂𝑘(𝛾
(𝑘), 𝛾(𝑘)) :=

∞∑
𝑖=1

2−𝑖
∣∣∣Tr 𝐽

(𝑘)
𝑖

(
𝛾(𝑘) − 𝛾(𝑘)

)∣∣∣ .
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Then the topology induced by the metric 𝜂𝑘 and the weak* topology are equivalent
on the unit ball of ℒ1𝑘 (see [26], Theorem 3.16) and hence on any ball of finite

radius as well. In other words, a uniformly bounded sequence 𝛾
(𝑘)
𝑁 ∈ ℒ1𝑘 converges

to 𝛾(𝑘) ∈ ℒ1𝑘 with respect to the weak* topology, if and only if 𝜂𝑘(𝛾
(𝑘)
𝑁 , 𝛾(𝑘)) → 0

as 𝑁 → ∞.
For a fixed 𝑇 > 0, let 𝐶([0, 𝑇 ],ℒ1𝑘) be the space of functions of 𝑡 ∈ [0, 𝑇 ] with

values in ℒ1𝑘 which are continuous with respect to the metric 𝜂𝑘. On 𝐶([0, 𝑇 ],ℒ1𝑘)
we define the metric

(4.2) 𝜂𝑘(𝛾
(𝑘)(⋅), 𝛾(𝑘)(⋅)) := sup

𝑡∈[0,𝑇 ]
𝜂𝑘(𝛾

(𝑘)(𝑡), 𝛾(𝑘)(𝑡)) .

Finally, we denote by 𝜏prod the topology on the space
⊕
𝑘≥1𝐶([0, 𝑇 ],ℒ1𝑘) given by

the product of the topologies generated by the metrics 𝜂𝑘 on 𝐶([0, 𝑇 ],ℒ1𝑘).
Proof of Theorem 3.2. The proof is divided in four steps.

Step 1. Compactness of Γ𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑘≥1. We fix 𝑇 > 0 and work on the interval

𝑡 ∈ [0, 𝑇 ]. Negative times can be handled analogously.

In Theorem 6.1 we show that the sequence Γ
(𝑘)
𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑘≥1∈

⊕
𝑘≥1𝐶([0, 𝑇 ],ℒ1𝑘)

is compact with respect to the product topology 𝜏prod defined above (we use the

convention that 𝛾
(𝑘)
𝑁,𝑡 = 0 if 𝑘 > 𝑁). It also follows from Theorem 6.1 that any

limit point Γ∞,𝑡 = {𝛾(𝑘)∞,𝑡}𝑘≥1 ∈ ⊕𝑘≥1𝐶([0, 𝑇 ],ℒ1𝑘) is such that, for every 𝑘 ≥ 1,

𝛾
(𝑘)
∞,𝑡 ≥ 0, and 𝛾

(𝑘)
∞,𝑡 is symmetric w.r.t. permutations.

Using higher order energy estimates from Proposition 7.1, we show in Theorem

7.3 that an arbitrary limit point Γ∞,𝑡 = {𝛾(𝑘)∞,𝑡}𝑘≥1 of the sequence Γ
(𝑘)
𝑁,𝑡 (with

respect to the topology 𝜏prod) is such that

(4.3) Tr (1 − Δ1) . . . (1 − Δ𝑘) 𝛾
(𝑘)
∞,𝑡 ≤ 𝐶𝑘

for every 𝑡 ∈ [0, 𝑇 ] and every 𝑘 ≥ 1.
Step 2. Convergence to the infinite hierarchy. In Theorem 8.1 we prove that

any limit point Γ∞,𝑡 = {𝛾(𝑘)∞,𝑡}𝑘≥1 ∈ ⊕𝑘≥1𝐶([0, 𝑇 ],ℒ1𝑘) of Γ𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑘≥1 with
respect to the product topology 𝜏prod is a solution of the infinite hierarchy of integral
equations (𝑘 = 1, 2, . . .)

(4.4) 𝛾
(𝑘)
∞,𝑡 = 𝒰 (𝑘)(𝑡)𝛾(𝑘)∞,0−8𝜋𝑖𝑎0

𝑘∑
𝑗=1

∫ 𝑡
0

d𝑠𝒰 (𝑘)(𝑡−𝑠)Tr𝑘+1

[
𝛿(𝑥𝑗 − 𝑥𝑘+1), 𝛾

(𝑘+1)
∞,𝑠
]

with initial data 𝛾
(𝑘)
∞,0 = ∣𝜑⟩⟨𝜑∣⊗𝑘 (where 𝜑 ∈ 𝐻1(ℝ3) has been introduced in (3.5)).

Here Tr𝑘+1 denotes the partial trace over the (𝑘+ 1)-th particle, and 𝒰 (𝑘)(𝑡) is the
free evolution whose action on 𝑘-particle density matrices is given by

(4.5) 𝒰 (𝑘)(𝑡)𝛾(𝑘) := 𝑒𝑖𝑡
∑𝑘

𝑗=1Δ𝑗𝛾(𝑘)𝑒−𝑖𝑡
∑𝑘

𝑗=1Δ𝑗 .

We remark next that the family of factorized densities,

(4.6) 𝛾
(𝑘)
𝑡 = ∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘,

is a solution of the infinite hierarchy (4.4) if 𝜑𝑡 is the solution of the nonlin-
ear Gross-Pitaevskii equation (3.3) with initial data 𝜑𝑡=0 = 𝜑. The nonlinear
Schrödinger equation (3.3) is well-posed in 𝐻1(ℝ3), and it conserves the energy,
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ℰ(𝜑) := 1
2

∫ ∣∇𝜑∣2 + 4𝜋𝑎0
∫ ∣𝜑∣4. From 𝜑 ∈ 𝐻1(ℝ3), we thus obtain that 𝜑𝑡 ∈

𝐻1(ℝ3) for every 𝑡 ∈ ℝ, with a uniformly bounded 𝐻1-norm. Therefore

(4.7) Tr (1 − Δ1) . . . (1 − Δ𝑘)∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘 ≤ ∥𝜑𝑡∥𝑘𝐻1 ≤ 𝐶𝑘

for all 𝑡 ∈ ℝ and a constant 𝐶 only depending on the 𝐻1-norm of 𝜑. For the well-
posedness of the subcritical nonlinear Schrödinger equation (3.3) in 𝐻1, see, e.g.,
[21]. We remark that the well-posedness has been established even for the critical
(quintic) nonlinear Schrödinger equation in [15, 16, 28] for small data and in [5, 6]
for large data.

Step 3. Uniqueness of the solution to the infinite hierarchy. In Section 9 of [11]
we proved the following theorem, which states the uniqueness of solution to the
infinite hierarchy (4.4) in the space of densities satisfying the a priori bound (4.3).
The proof of this theorem is based on a diagrammatic expansion of the solution of
(4.4). Remark that the uniqueness of the infinite hierarchy in a different space of
densities was proven in [22].

Theorem 4.1 (Theorem 9.1 of [11]). Suppose Γ = {𝛾(𝑘)}𝑘≥1 ∈ ⊕𝑘≥1 ℒ1𝑘 is such
that

(4.8) Tr (1 − Δ1) . . . (1 − Δ𝑘)𝛾
(𝑘) ≤ 𝐶𝑘 .

Then, for any fixed 𝑇 > 0, there exists at most one solution Γ𝑡 = {𝛾(𝑘)𝑡 }𝑘≥1 ∈⊕
𝑘≥1𝐶([0, 𝑇 ],ℒ1𝑘) of (4.4) such that

(4.9) Tr (1 − Δ1) . . . (1 − Δ𝑘)𝛾
(𝑘)
𝑡 ≤ 𝐶𝑘

for all 𝑡 ∈ [0, 𝑇 ] and for all 𝑘 ≥ 1.

Step 4. Conclusion of the proof. From Step 2 and Step 3 it follows that the

sequence Γ𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑘≥1 ∈ ⊕𝑘≥1𝐶([0, 𝑇 ],ℒ1𝑘) is convergent with respect to
the product topology 𝜏prod; in fact a compact sequence with only one limit point

is always convergent. Since the family of densities Γ𝑡 = {𝛾(𝑘)𝑡 }𝑘≥1 defined in (4.6)
satisfies (4.7) and is a solution of (4.4), it follows that Γ𝑁,𝑡 → Γ𝑡 w.r.t. the topology

𝜏prod. In particular this implies that, for every fixed 𝑘 ≥ 1 and 𝑡 ∈ [0, 𝑇 ], 𝛾
(𝑘)
𝑁,𝑡 →

∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘 with respect to the weak* topology of ℒ1𝑘, and thus, by a standard
argument, also in the trace-norm topology. This completes the proof of Theorem
3.2. □

Next we prove Theorem 3.1. To this end we have to combine Theorem 3.2
with an approximation argument for the initial 𝑁 -particle wave function, which is
needed to make sure that the energy condition (3.4) is satisfied. This argument
was already used in [12]; we present it here for completeness.

Proof of Theorem 3.1. We assume here that, as in Theorem 3.2, the interaction
potential 𝑉 is such that ∣∇𝛼𝑉 (𝑥)∣ ≤ 𝐶 for all multi-indices 𝛼 with ∣𝛼∣ ≤ 2. We
show how to remove this condition in Appendix B.

Fix 𝜅 > 0 and 𝜒 ∈ 𝐶∞
0 (ℝ), with 0 ≤ 𝜒 ≤ 1, 𝜒(𝑠) = 1, for 0 ≤ 𝑠 ≤ 1, and

𝜒(𝑠) = 0 if 𝑠 ≥ 2. We define the regularized initial wave function

𝜓𝑁 :=
𝜒(𝜅𝐻𝑁/𝑁)𝜓𝑁
∥𝜒(𝜅𝐻𝑁/𝑁)𝜓𝑁∥ ,
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and we denote by 𝜓𝑁,𝑡 the solution of the Schrödinger equation (1.3) with initial

data 𝜓𝑁 . Denote by Γ̃𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}∞𝑘=1 the family of marginal densities associated

with 𝜓𝑁,𝑡. By convention, we set 𝛾
(𝑘)
𝑁,𝑡 := 0 if 𝑘 > 𝑁 . The tilde in the notation

indicates the dependence on the cutoff parameter 𝜅. In Proposition 9.1, part i), we
prove that

(4.10) ⟨𝜓𝑁,𝑡, 𝐻𝑘𝑁𝜓𝑁,𝑡⟩ ≤ 𝐶𝑘𝑁𝑘

if 𝜅 > 0 is sufficiently small (the constant 𝐶 depends on 𝜅). Moreover, in part iii)
of Proposition 9.1, we show that, for every 𝐽 (𝑘) ∈ 𝒦𝑘,
(4.11) Tr 𝐽 (𝑘)

(
𝛾
(𝑘)
𝑁 − ∣𝜑⟩⟨𝜑∣⊗𝑘

)
→ 0

as 𝑁 → ∞. From (4.10) and (4.11), the assumptions (3.4) and (3.5) of Theorem 3.2

are satisfied by the regularized wave function 𝜓𝑁 and by the regularized marginal

densities 𝛾
(𝑘)
𝑁,𝑡. Applying Theorem 3.2, we obtain that, for every 𝑡 ∈ ℝ and 𝑘 ≥ 1,

(4.12) 𝛾
(𝑘)
𝑁,𝑡 → ∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘 ,

where 𝜑𝑡 is the solution of (3.3) with initial data 𝜑𝑡=0 = 𝜑.

It remains to prove that the densities 𝛾
(𝑘)
𝑁,𝑡 associated with the original wave

function 𝜓𝑁,𝑡 (without cutoff 𝜅) converge and have the same limit as the regularized

densities 𝛾
(𝑘)
𝑁,𝑡. This follows from Proposition 9.1, part ii), where we prove that

∥𝜓𝑁,𝑡 − 𝜓𝑁,𝑡∥ = ∥𝜓𝑁 − 𝜓𝑁∥ ≤ 𝐶𝜅1/2 ,

for a constant 𝐶 independent of 𝑁 and 𝜅. This implies that, for every 𝐽 (𝑘) ∈ 𝒦𝑘,
we have

(4.13)
∣∣∣Tr 𝐽 (𝑘)

(
𝛾
(𝑘)
𝑁,𝑡 − 𝛾

(𝑘)
𝑁,𝑡

) ∣∣∣ ≤ 𝐶∥𝐽 (𝑘)∥𝜅1/2 .

Therefore, for every fixed 𝑘 ≥ 1, 𝑡 ∈ ℝ, 𝐽 (𝑘) ∈ 𝒦𝑘, we have∣∣∣Tr 𝐽 (𝑘)
(
𝛾
(𝑘)
𝑁,𝑡 − ∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘

) ∣∣∣
≤
∣∣∣Tr 𝐽 (𝑘)

(
𝛾
(𝑘)
𝑁,𝑡 − 𝛾

(𝑘)
𝑁,𝑡

) ∣∣∣+ ∣∣∣Tr 𝐽 (𝑘)
(
𝛾
(𝑘)
𝑁,𝑡 − ∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘

) ∣∣∣
≤ 𝐶 ∥𝐽 (𝑘)∥𝜅1/2 +

∣∣∣Tr 𝐽 (𝑘)
(
𝛾
(𝑘)
𝑁,𝑡 − ∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘

) ∣∣∣ .
(4.14)

Since 𝜅 > 0 was arbitrary, it follows from (4.12) that the l.h.s. of (4.14) converges to

zero as 𝑁 → ∞. This implies that, for arbitrary 𝑘 ≥ 1 and 𝑡 ∈ ℝ, 𝛾
(𝑘)
𝑁,𝑡 → ∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘

in the weak* topology of ℒ1𝑘, and thus also in the trace-norm topology. This
completes the proof of Theorem 3.2. □

5. The wave operator and a priori bounds on 𝛾
(𝑘)
𝑁,𝑡

In order to derive a priori bounds for the marginal densities 𝛾
(𝑘)
𝑁,𝑡, we need to

introduce wave operators. We denote by 𝑊 and 𝑊𝑁 the wave operators associated
with the one-particle Hamiltonian 𝔥 = −Δ + (1/2)𝑉 (𝑥) and, respectively, 𝔥𝑁 =
−Δ+(1/2)𝑉𝑁 (𝑥), with 𝑉𝑁 (𝑥) = 𝑁2𝑉 (𝑁𝑥). The existence of these wave operators
and their most important properties are stated in the following proposition (we
denote by 𝑠− lim the limit in the strong operator topology).
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Proposition 5.1. Suppose 𝑉 ≥ 0, with 𝑉 ∈ 𝐿1(ℝ3). Then:

i) (Existence of the wave operator). The limit

𝑊 = 𝑠− lim
𝑡→∞ 𝑒𝑖𝔥𝑡𝑒𝑖Δ𝑡

exists.
ii) (Completeness of the wave operator). 𝑊 is a unitary operator on 𝐿2(ℝ3)

with

𝑊 ∗ = 𝑊−1 = 𝑠− lim
𝑡→∞ 𝑒−𝑖Δ𝑡𝑒−𝑖𝔥𝑡 .

iii) (Intertwining relations). On 𝐷(𝔥) = 𝐷(−Δ), we have

(5.1) 𝑊 ∗𝔥𝑊 = −Δ.

iv) (Yajima’s bounds). Suppose moreover that 𝑉 (𝑥) ≤ 𝐶⟨𝑥⟩−𝜎 for some 𝜎 > 5.
Then, for every 1 ≤ 𝑝 ≤ ∞, 𝑊 and 𝑊 ∗ map 𝐿𝑝(ℝ3) into 𝐿𝑝(ℝ3), and

∥𝑊∥𝐿𝑝→𝐿𝑝 < ∞ for all 1 ≤ 𝑝 ≤ ∞ .

v) (Rescaled wave operator). If 𝔥𝑁 =−Δ+(1/2)𝑉𝑁 (𝑥) with 𝑉𝑁 (𝑥)=𝑁2𝑉 (𝑁𝑥),
then the limit

𝑊𝑁 = 𝑠− lim
𝑡→∞ 𝑒𝑖𝔥𝑁 𝑡𝑒𝑖Δ𝑡

exists and defines a unitary operator 𝑊𝑁 on 𝐿2(ℝ3) with

𝑊 ∗
𝑁 = 𝑊−1

𝑁 = 𝑠− lim
𝑡→∞ 𝑒−𝑖Δ𝑡𝑒−𝑖𝔥𝑁 𝑡.

The wave operator 𝑊𝑁 satisfies the intertwining relations

𝑊 ∗
𝑁𝔥𝑁𝑊𝑁 = −Δ .

Moreover, the kernel of 𝑊𝑁 is given by

𝑊𝑁 (𝑥; 𝑦) = 𝑁3𝑊 (𝑁𝑥;𝑁𝑦) and 𝑊 ∗
𝑁 (𝑥; 𝑦) = 𝑁3𝑊 ∗(𝑁𝑥;𝑁𝑦),

where 𝑊 (𝑥; 𝑦) and 𝑊 ∗(𝑥; 𝑦) denote the kernels of 𝑊 and 𝑊 ∗. In particu-
lar, it follows that, for every 1 ≤ 𝑝 ≤ ∞, the norms

∥𝑊𝑁∥𝐿𝑝→𝐿𝑝 = ∥𝑊∥𝐿𝑝→𝐿𝑝 < ∞ and ∥𝑊 ∗
𝑁∥𝐿𝑝→𝐿𝑝 = ∥𝑊 ∗∥𝐿𝑝→𝐿𝑝 < ∞

are finite and independent of 𝑁 .

Proof. The proof of i), ii), and iii) can be found in [24]. Part iv) is proven in [30, 29].
Part v) follows by simple scaling arguments. □

In the following we will denote by 𝑊(𝑖,𝑗) and, respectively, by 𝑊𝑁,(𝑖,𝑗), the wave
operators 𝑊 and 𝑊𝑁 acting only on the relative variable 𝑥𝑗 − 𝑥𝑖. In other words,
the action of 𝑊(𝑖,𝑗) on an 𝑁 -particle wave function 𝜓𝑁 ∈ 𝐿2(ℝ3𝑁 ) is given by(

𝑊(𝑖,𝑗)𝜓𝑁
)
(x) =

∫
d𝑣 𝑊 (𝑥𝑗 − 𝑥𝑖; 𝑣)

× 𝜓𝑁

(
𝑥1, . . . ,

𝑥𝑖 + 𝑥𝑗
2

+
𝑣

2
, . . . ,

𝑥𝑖 + 𝑥𝑗
2

− 𝑣

2
, . . . , 𝑥𝑁

)(5.2)

if 𝑗 < 𝑖 (the formula for 𝑖 > 𝑗 is similar). Here 𝑊 (𝑥; 𝑦) is the kernel of the
wave operator 𝑊 . An analogous formula holds for the rescaled wave operator 𝑊𝑁 .
Similarly, we define 𝑊 ∗

(𝑖,𝑗) and 𝑊 ∗
𝑁,(𝑖,𝑗).

Using the wave operators, we have the following energy estimate.
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Proposition 5.2. Suppose 𝑉 ≥ 0, 𝑉 ∈ 𝐿1(ℝ3) and 𝑉 (𝑥) = 𝑉 (−𝑥) for all 𝑥 ∈ ℝ
3.

Then we have, for every 𝑖 ∕= 𝑗,

(5.3) ⟨𝜓𝑁 , 𝐻2𝑁𝜓𝑁 ⟩ ≥ 𝐶𝑁2
∫

dx
∣∣∣(∇𝑖 ⋅ ∇𝑗)2𝑊 ∗

𝑁,(𝑖,𝑗)𝜓𝑁

∣∣∣2 ,
where 𝑊 ∗

𝑁,(𝑖,𝑗) denotes the wave operator 𝑊 ∗
𝑁 defined in Proposition 5.1 acting on

the variable 𝑣 = 𝑥𝑗 − 𝑥𝑖 (defined similarly to (5.2)).

Proof. We define, for 𝑗 = 1, . . . , 𝑁 ,

ℎ𝑗 = −Δ𝑗 +
1

2

∑
𝑖 ∕=𝑗

𝑉𝑁 (𝑥𝑖 − 𝑥𝑗).

Then we have 𝐻𝑁 =
∑𝑁
𝑗=1 ℎ𝑗 , and thus

⟨𝜓𝑁 , 𝐻2𝑁 𝜓𝑁 ⟩ ≥ 𝑁(𝑁 − 1)⟨𝜓𝑁 , ℎ1ℎ2𝜓𝑁 ⟩

= 𝑁(𝑁 − 1)

〈
𝜓𝑁 ,

⎛⎝−Δ1 +
1

2

∑
𝑖 ∕=1

𝑉𝑁 (𝑥𝑖 − 𝑥1)

⎞⎠
×
⎛⎝−Δ2 +

1

2

∑
𝑗 ∕=2

𝑉𝑁 (𝑥𝑗 − 𝑥2)

⎞⎠𝜓𝑁〉

≥ 𝑁(𝑁 − 1)

〈
𝜓𝑁 ,

(
−Δ1 +

1

2
𝑉𝑁 (𝑥1 − 𝑥2)

)
×
(
−Δ2 +

1

2
𝑉𝑁 (𝑥1 − 𝑥2)

)
𝜓𝑁

〉
.

(5.4)

Now we define the new variables

𝑢 =
𝑥1 + 𝑥2

2
and 𝑣 = 𝑥1 − 𝑥2 .

Then we have

∇1 =
1

2
∇𝑢 + ∇𝑣 and ∇2 =

1

2
∇𝑢 −∇𝑣,

and thus

Δ1 =
1

4
Δ𝑢 + Δ𝑣 + ∇𝑢 ⋅ ∇𝑣 and Δ2 =

1

4
Δ𝑢 + Δ𝑣 −∇𝑢 ⋅ ∇𝑣 .

We set

ℎ𝑣 = −Δ𝑣 +
1

2
𝑉𝑁 (𝑣) .

Then

⟨𝜓𝑁 , 𝐻2𝑁 𝜓𝑁 ⟩

≥ 𝑁(𝑁 − 1)

〈
𝜓𝑁 ,

(
−1

4
Δ𝑢 + ℎ𝑣 + ∇𝑢 ⋅ ∇𝑣

)(
−1

4
Δ𝑢 + ℎ𝑣 −∇𝑢 ⋅ ∇𝑣

)
𝜓𝑁

〉
= 𝑁(𝑁 − 1)

〈
𝜓𝑁 ,

[(
−1

4
Δ𝑢 + ℎ𝑣

)2
− (∇𝑢 ⋅ ∇𝑣)2 +

1

2
∇𝑢 ⋅ (∇𝑉𝑁 (𝑣))

]
𝜓𝑁

〉
.

(5.5)
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Next we note that

⟨𝜓𝑁 ,∇𝑢 ⋅ ∇𝑉𝑁 (𝑣)𝜓𝑁 ⟩ =

∫
d𝑢d𝑣 𝜓𝑁 (𝑢+ 𝑣/2, 𝑢− 𝑣/2,x𝑁−2)∇𝑉𝑁 (𝑣)

⋅ ∇𝑢𝜓𝑁 (𝑢+ 𝑣/2, 𝑢− 𝑣/2,x𝑁−2) = 0 .
(5.6)

In fact, by the permutation symmetry, 𝜓𝑁 (𝑥1, 𝑥2,x𝑁−2) = 𝜓𝑁 (𝑥2, 𝑥1,x𝑁−2). This
implies, in the 𝑢, 𝑣-coordinates, that

𝜓𝑁 (𝑢+ 𝑣/2, 𝑢− 𝑣/2,x𝑁−2) = 𝜓𝑁 (𝑢− 𝑣/2, 𝑢 + 𝑣/2,x𝑁−2)

and also that ∇𝑢𝜓𝑁 (𝑢+ 𝑣/2, 𝑢− 𝑣/2,x𝑁−2) = ∇𝑢𝜓𝑁 (𝑢− 𝑣/2, 𝑢+ 𝑣/2,x𝑁−2). On
the other hand (∇𝑉𝑁 ) (−𝑣) = − (∇𝑉𝑁 ) (𝑣). Therefore, the integrand in (5.6) is
antisymmetric w.r.t. the change of variables 𝑣 → −𝑣, and the integral vanishes.

Also using the fact that

(∇𝑢 ⋅ ∇𝑣)2 ≤ (−Δ𝑢) (−Δ𝑣) ≤ (−Δ𝑢) ℎ𝑣 ,

it follows from (5.5) that

(5.7) ⟨𝜓𝑁 , 𝐻2𝑁 𝜓𝑁 ⟩ ≥ 𝑁(𝑁 − 1)

〈
𝜓𝑁 ,

(
−1

4
Δ𝑢 − ℎ𝑣

)2
𝜓𝑁

〉
.

Next we make use of the wave operator 𝑊𝑁 defined in Proposition 5.1, acting on
the variable 𝑣 = 𝑥2 − 𝑥1. By the intertwining relations (5.1), we find

(5.8) ⟨𝜓𝑁 , 𝐻2𝑁 𝜓𝑁 ⟩ ≥ 𝑁(𝑁 − 1)

〈
𝑊 ∗
𝑁,(1,2)𝜓𝑁 ,

(
1

4
Δ𝑢 − Δ𝑣

)2
𝑊 ∗
𝑁,(1,2)𝜓𝑁

〉
.

In terms of the coordinates 𝑥1 and 𝑥2, we have ∇1 ⋅∇2 = (1/4)Δ𝑢−Δ𝑣. Therefore,
by the permutation symmetry, the bound (5.8) implies (5.3). □

Proposition 5.2 implies strong a priori bounds on the solution of the 𝑁 -particle
Schrödinger equation.

Proposition 5.3. Suppose that 𝑉 ≥ 0, 𝑉 ∈ 𝐿1(ℝ3), and 𝑉 (−𝑥) = 𝑉 (𝑥) for all
𝑥 ∈ ℝ

3. Let 𝜓𝑁,𝑡 be the solution of the Schrödinger equation (1.3), with initial data

satisfying assumption (3.4) (with 𝑘 = 2) of Theorem 3.2, and let {𝛾(𝑘)𝑁,𝑡}𝑁𝑘=1 be the
marginals associated with 𝜓𝑁,𝑡. Then, for every 1 ≤ 𝑗 ≤ 𝑁 , we have

⟨𝜓𝑁,𝑡, (1 − Δ𝑗)𝜓𝑁,𝑡⟩ ≤ 𝐶, and thus Tr (1 − Δ𝑗)𝛾
(𝑘)
𝑁,𝑡 ≤ 𝐶

for every 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑁 (and for a constant 𝐶 which only depends on the initial
data 𝜓𝑁 through the constant on the r.h.s. of (3.4)). Moreover, for any 𝑖 ∕= 𝑗,〈

𝑊 ∗
𝑁,(𝑖,𝑗)𝜓𝑁,𝑡,

(
(∇𝑖 ⋅ ∇𝑗)2 − Δ𝑖 − Δ𝑗 + 1

)
𝑊 ∗
𝑁,(𝑖,𝑗)𝜓𝑁,𝑡

〉
≤ 𝐶

uniformly in 𝑁 ≥ 1 and in 𝑡 ∈ ℝ. Here 𝑊𝑁,(𝑖,𝑗) denotes the wave operator 𝑊𝑁
defined in Proposition 5.1 acting on the variable 𝑥𝑗 − 𝑥𝑖. In terms of density
matrices, we obtain the a priori bounds

Tr
(
(∇𝑖 ⋅ ∇𝑗)2 − Δ𝑖 − Δ𝑗 + 1

)
𝑊 ∗
𝑁,(𝑖,𝑗)𝛾

(𝑘)
𝑁,𝑡𝑊𝑁,(𝑖,𝑗) ≤ 𝐶

uniformly in 𝑁 ≥ 1 and in 𝑡 ∈ ℝ and for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 (with a slight abuse
of notation, we denote here by 𝑊𝑁,(𝑖,𝑗) and 𝑊 ∗

𝑁,(𝑖,𝑗) the operators acting on the

𝑘-particle space 𝐿2(ℝ3𝑘)).
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Proof. The first bound follows simply by the symmetry of the wave function, by
energy conservation, and by the condition 𝑉 ≥ 0. To prove the second bound, we
compute

⟨𝑊 ∗
𝑁,(𝑖,𝑗)𝜓𝑁,𝑡,

(
(∇𝑖 ⋅ ∇𝑗)2 − Δ𝑖 − Δ𝑗 + 1

)
𝑊 ∗
𝑁,(𝑖,𝑗)𝜓𝑁,𝑡⟩

= ⟨𝑊 ∗
𝑁,(1,2)𝜓𝑁,𝑡, (∇1 ⋅ ∇2)2𝑊 ∗

𝑁,(1,2)𝜓𝑁,𝑡⟩
+ ⟨𝑊 ∗

𝑁,(1,2)𝜓𝑁,𝑡, (−Δ1 − Δ2)𝑊
∗
𝑁,(1,2)𝜓𝑁,𝑡⟩ + 1 .

(5.9)

The first term on the r.h.s. of the last equation can be bounded by

⟨𝑊 ∗
𝑁,(1,2)𝜓𝑁,𝑡, (∇1 ⋅ ∇2)2𝑊 ∗

𝑁,(1,2)𝜓𝑁,𝑡⟩ ≤ 𝐶𝑁−2⟨𝜓𝑁,𝑡, 𝐻2𝑁𝜓𝑁,𝑡⟩
= 𝐶𝑁−2⟨𝜓𝑁,0, 𝐻2𝑁𝜓𝑁,0⟩ ≤ 𝐶

(5.10)

using Proposition 5.2 and (3.4). The second term on the r.h.s. of (5.9) is estimated
by

⟨𝑊 ∗
𝑁,(1,2)𝜓𝑁,𝑡, (−Δ1 − Δ2)𝑊

∗
𝑁,(1,2)𝜓𝑁,𝑡⟩

= 2

〈
𝑊 ∗
𝑁,(1,2)𝜓𝑁,𝑡,

(
−Δ𝑥1−𝑥2 −

1

4
Δ(𝑥1+𝑥2)/2

)
𝑊 ∗
𝑁,(1,2)𝜓𝑁,𝑡

〉
= 2

〈
𝜓𝑁,𝑡,

(
−Δ𝑥1−𝑥2 +

1

2
𝑉𝑁 (𝑥1 − 𝑥2) − 1

4
Δ(𝑥1+𝑥2)/2

)
𝜓𝑁,𝑡

〉
= ⟨𝜓𝑁,𝑡, (−Δ𝑥1 − Δ𝑥2 + 𝑉𝑁 (𝑥1 − 𝑥2))𝜓𝑁,𝑡⟩
≤ 2

𝑁
⟨𝜓𝑁,𝑡, 𝐻𝑁𝜓𝑁,𝑡⟩ =

2

𝑁
⟨𝜓𝑁,0, 𝐻𝑁𝜓𝑁,0⟩ ≤ 𝐶 .

(5.11)

□

6. Compactness

In this section we prove the compactness of the sequence Γ𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑘≥1 w.r.t.

the topology 𝜏prod (defined in Section 4).

Theorem 6.1. Let the assumptions of Theorem 3.2 be satisfied and fix an arbitrary
𝑇 > 0. Then the sequence Γ𝑁,𝑡 ∈

⊕
𝑘≥1𝐶([0, 𝑇 ],ℒ1𝑘) is compact with respect to the

product topology 𝜏prod generated by the metrics 𝜂𝑘 (defined in Section 4). For any

limit point Γ∞,𝑡 = {𝛾(𝑘)∞,𝑡}𝑘≥1, 𝛾(𝑘)∞,𝑡 is symmetric w.r.t. permutations, 𝛾
(𝑘)
∞,𝑡 ≥ 0,

and

(6.1) Tr 𝛾
(𝑘)
∞,𝑡 ≤ 1

for every 𝑘 ≥ 1.

Proof. By a standard argument it is enough to prove the compactness of 𝛾
(𝑘)
𝑁,𝑡 for

fixed 𝑘 ≥ 1 with respect to the metric 𝜂𝑘. To this end, it is enough to show

the equicontinuity of 𝛾
(𝑘)
𝑁,𝑡 with respect to the metric 𝜂𝑘. A useful criterium for

equicontinuity is given by the following lemma, whose proof can be found in [11,
Proposition 9.2].

Lemma 6.2. Fix 𝑘 ∈ ℕ and 𝑇 > 0. A sequence 𝛾
(𝑘)
𝑁,𝑡 ∈ ℒ1𝑘, 𝑁 = 𝑘, 𝑘 + 1, . . .,

with 𝛾
(𝑘)
𝑁,𝑡 ≥ 0 and Tr 𝛾

(𝑘)
𝑁,𝑡 = 1 for all 𝑡 ∈ [0, 𝑇 ] and 𝑁 ≥ 𝑘, is equicontinuous in

𝐶([0, 𝑇 ],ℒ1𝑘) with respect to the metric 𝜂𝑘, if and only if there exists a dense subset
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𝒥𝑘 of 𝒦𝑘 such that for any 𝐽 (𝑘) ∈ 𝒥𝑘 and for every 𝜀 > 0 there exists a 𝛿 > 0 such
that

(6.2) sup
𝑁≥1

∣∣∣Tr 𝐽 (𝑘) (𝛾(𝑘)𝑁,𝑡 − 𝛾
(𝑘)
𝑁,𝑠

) ∣∣∣ ≤ 𝜀

for all 𝑡, 𝑠 ∈ [0, 𝑇 ] with ∣𝑡− 𝑠∣ ≤ 𝛿.

We prove (6.2) for all 𝐽 (𝑘) ∈ 𝒦𝑘 such that ∣∣∣𝐽 (𝑘)∣∣∣ < ∞, where we introduced the
norm

∣∣∣𝐽 (𝑘)∣∣∣ = sup
x𝑘,x′

𝑘

⟨𝑥1⟩4 . . . ⟨𝑥𝑘⟩4⟨𝑥′1⟩4 . . . ⟨𝑥′𝑘⟩4

×
⎛⎝∣𝐽 (𝑘)(x′

𝑘;x𝑘)∣ +
𝑘∑
𝑗=1

(
∣∇𝑥𝑗𝐽 (𝑘)(x′

𝑘;x𝑘)∣ + ∣∇𝑥′𝑗𝐽 (𝑘)(x′
𝑘;x𝑘)∣
)⎞⎠ .

(6.3)

It is simple to check that the set of 𝐽 (𝑘) ∈ 𝒦𝑘 for which ∣∣∣𝐽 (𝑘)∣∣∣ < ∞ is dense in 𝒦𝑘.
Rewriting the BBGKY hierarchy (2.1) in integral form and multiplying with an

arbitrary observable 𝐽 (𝑘) ∈ 𝒦𝑘 with ∣∣∣𝐽 (𝑘)∣∣∣ < ∞, we obtain that, for any 𝑟 ≤ 𝑡,

∣∣∣Tr 𝐽 (𝑘)
(
𝛾
(𝑘)
𝑁,𝑡 − 𝛾

(𝑘)
𝑁,𝑟

) ∣∣∣ ≤ 𝑘∑
𝑗=1

∫ 𝑡
𝑟

d𝑠
∣∣∣Tr 𝐽 (𝑘)[−Δ𝑗 , 𝛾

(𝑘)
𝑁,𝑠]
∣∣∣

+
𝑘∑
𝑖<𝑗

∫ 𝑡
𝑟

d𝑠
∣∣∣Tr 𝐽 (𝑘)[𝑉𝑁 (𝑥𝑖 − 𝑥𝑗), 𝛾

(𝑘)
𝑁,𝑠]
∣∣∣

+

(
1− 𝑘

𝑁

) 𝑘∑
𝑗=1

∫ 𝑡
𝑟

d𝑠
∣∣∣Tr 𝐽 (𝑘)

[
𝑁𝑉𝑁 (𝑥𝑗 − 𝑥𝑘+1), 𝛾

(𝑘+1)
𝑁,𝑠

]∣∣∣.

(6.4)

To control the first term on the r.h.s. of the last equation, we observe that, using
the notation 𝑆𝑗 = (1 − Δ𝑗)

1/2, we have∣∣∣Tr 𝐽 (𝑘)[−Δ𝑗 , 𝛾
(𝑘)
𝑁,𝑠]
∣∣∣ = ∣∣∣Tr

(
𝑆−1
𝑗 𝐽 (𝑘)𝑆𝑗 − 𝑆𝑗𝐽

(𝑘)𝑆−1
𝑗

)
𝑆𝑗𝛾

(𝑘)
𝑁,𝑠𝑆𝑗

∣∣∣
≤
(∥∥∥𝑆−1

𝑗 𝐽 (𝑘)𝑆𝑗

∥∥∥+ ∥∥∥𝑆𝑗𝐽 (𝑘)𝑆−1
𝑗

∥∥∥)Tr(1 − Δ𝑗)𝛾
(𝑘)
𝑁,𝑠

≤ 𝐶∣∣∣𝐽 (𝑘)∣∣∣ .

(6.5)

Here we used the fact that, by Proposition 5.3,

sup
𝑠∈ℝ

Tr(1 − Δ𝑗)𝛾
(𝑘)
𝑁,𝑠 ≤ 𝐶

uniformly in 𝑁 .
To bound the second term on the r.h.s. of (6.4), we decompose

𝛾
(𝑘)
𝑁,𝑠 =
∑
ℓ

𝜆
(𝑘)
ℓ ∣𝜉(𝑘)ℓ ⟩⟨𝜉(𝑘)ℓ ∣

for 𝜉
(𝑘)
ℓ ∈ 𝐿2(ℝ3𝑘), with ∥𝜉(𝑘)ℓ ∥ = 1, 𝜆

(𝑘)
ℓ > 0, and

∑
ℓ 𝜆
(𝑘)
ℓ = 1 (here we omitted the

dependence of 𝜉
(𝑘)
ℓ and 𝜆

(𝑘)
ℓ on 𝑁, 𝑠 from the notation). Then we find, for example
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for the term with 𝑖 = 1, 𝑗 = 2,

Tr 𝐽 (𝑘)𝑉𝑁 (𝑥1 − 𝑥2)𝛾
(𝑘)
𝑁,𝑠

=
∑
ℓ

𝜆
(𝑘)
ℓ

∫
dx𝑘 dx′

𝑘 𝐽
(𝑘)(x′

𝑘;x𝑘)𝑉𝑁 (𝑥1 − 𝑥2)𝜉
(𝑘)
ℓ (x𝑘)𝜉

(𝑘)

ℓ (x′
𝑘).

(6.6)

Denoting by 𝑊𝑁 the wave operator associated with the Hamiltonian 𝔥𝑁 = −Δ +
(1/2)𝑉𝑁 (𝑥), and by 𝑊𝑁,(𝑖,𝑗) the wave operator 𝑊𝑁 acting on the variable 𝑥𝑗 − 𝑥𝑖
(as defined in (5.2)), we can estimate (introducing the new variables 𝑢 = (𝑥1+𝑥2)/2
and 𝑣 = 𝑥1 − 𝑥2)∣∣∣ ∫ dx𝑘 dx′

𝑘𝐽
(𝑘)(x′

𝑘;x𝑘)𝑉𝑁 (𝑥1 − 𝑥2)𝜉
(𝑘)
ℓ (x𝑘)𝜉

(𝑘)

ℓ (x′
𝑘)
∣∣∣

=
∣∣∣ ∫ d𝑢d𝑣d𝑥3 . . . d𝑥𝑘dx

′
𝑘 𝐽

(𝑘)(x′
𝑘;𝑢+ 𝑣/2, 𝑢− 𝑣/2, 𝑥3, . . . , 𝑥𝑘)

× 𝑉𝑁 (𝑣)𝜉
(𝑘)
ℓ (𝑢+ 𝑣/2, 𝑢− 𝑣/2, 𝑥3, . . . , 𝑥𝑘) 𝜉

(𝑘)

ℓ (x′
𝑘)
∣∣∣

≤
∫

d𝑢d𝑣d𝑥3 . . .d𝑥𝑘dx
′
𝑘

∣∣∣𝐽 (𝑘)(x′
𝑘;𝑢+ 𝑣/2, 𝑢− 𝑣/2, 𝑥3, . . . , 𝑥𝑘)

− 𝐽 (𝑘)(x′
𝑘;𝑢, 𝑢, 𝑥3, . . . , 𝑥𝑘)

∣∣∣
× 𝑉𝑁 (𝑣)∣𝜉(𝑘)ℓ (𝑢+ 𝑣/2, 𝑢− 𝑣/2, 𝑥3, . . . , 𝑥𝑘)∣ ∣𝜉(𝑘)ℓ (x′

𝑘)∣

+

∫
d𝑢d𝑣d𝑥3 . . . d𝑥𝑘dx

′
𝑘 ∣𝐽 (𝑘)(x′

𝑘;𝑢, 𝑢, 𝑥3, . . . , 𝑥𝑘)∣ ∣(𝑊 ∗
𝑁𝑉𝑁 )(𝑣)∣

×
∣∣∣(𝑊 ∗

𝑁,(1,2)𝜉
(𝑘)
ℓ

)
(𝑢+ 𝑣/2, 𝑢− 𝑣/2, 𝑥3, . . . , 𝑥𝑘)

∣∣∣ ∣𝜉(𝑘)ℓ (x′
𝑘)∣,

where in the last line we used the 𝐿2-unitarity of the wave operator in the 𝑣-variable
(before taking the absolute value inside the integral). Hence∣∣∣ ∫ dx𝑘 dx′

𝑘𝐽
(𝑘)(x′

𝑘;x𝑘)𝑉𝑁 (𝑥1 − 𝑥2)𝜉
(𝑘)
ℓ (x𝑘)𝜉

(𝑘)

ℓ (x′
𝑘)
∣∣∣

≤
2∑
𝑗=1

∫
d𝑢d𝑣d𝑥3 . . .d𝑥𝑘dx

′
𝑘

∫ 1
0

d𝜏 ∣∇𝑥𝑗𝐽 (𝑘)(x′
𝑘;𝑢+

𝜏𝑣

2
, 𝑢− 𝜏𝑣

2
, 𝑥3, ..., 𝑥𝑘)∣

× ∣𝑣∣𝑉𝑁 (𝑣)∣𝜉(𝑘)ℓ (x′
𝑘)∣2

+

2∑
𝑗=1

∫
d𝑢d𝑣d𝑥3 . . . d𝑥𝑘dx

′
𝑘

∫ 1
0

d𝜏 ∣∇𝑥𝑗𝐽 (𝑘)(x′
𝑘;𝑢+

𝜏𝑣

2
, 𝑢− 𝜏𝑣

2
, 𝑥3, ..., 𝑥𝑘)∣

× ∣𝑣∣𝑉𝑁 (𝑣)∣𝜉(𝑘)ℓ (𝑢+ 𝑣/2, 𝑢− 𝑣/2, 𝑥3, . . . , 𝑥𝑘)∣2

+

∫
d𝑢d𝑣d𝑥3 . . .d𝑥𝑘dx

′
𝑘 ∣𝐽 (𝑘)(x′

𝑘;𝑢, 𝑢, 𝑥3, . . . , 𝑥𝑘)∣ ∣(𝑊 ∗
𝑁𝑉𝑁 )(𝑣)∣ ∣𝜉(𝑘)ℓ (x′

𝑘)∣2

+

∫
d𝑢d𝑣d𝑥3 . . .d𝑥𝑘dx

′
𝑘 ∣𝐽 (𝑘)(x′

𝑘;𝑢, 𝑢, 𝑥3, . . . , 𝑥𝑘)∣ ∣(𝑊 ∗
𝑁𝑉𝑁 )(𝑣)∣

×
∣∣∣(𝑊 ∗

𝑁,(1,2)𝜉
(𝑘)
ℓ

)
(𝑢+ 𝑣/2, 𝑢− 𝑣/2, 𝑥3, . . . , 𝑥𝑘)

∣∣∣2 .
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Using the norm defined in (6.3), we find

∣∣∣ ∫ dx𝑘 dx′
𝑘𝐽
(𝑘)(x′

𝑘;x𝑘)𝑉𝑁 (𝑥1 − 𝑥2)𝜉
(𝑘)
ℓ (x𝑘)𝜉

(𝑘)

ℓ (x′
𝑘)
∣∣∣

≤𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣ ∥𝜉(𝑘)ℓ ∥2
∫

d𝑣 ∣𝑣∣𝑉𝑁 (𝑣)

+ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣
∫

d𝑣d𝑢d𝑥3 . . .d𝑥𝑁 ∣𝑣∣𝑉𝑁 (𝑣) ∣𝜉(𝑘)ℓ (𝑢+ 𝑣/2, 𝑢− 𝑣/2, 𝑥3, . . . , 𝑥𝑘)∣2

+ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣ ∥𝜉(𝑘)ℓ ∥2
∫

d𝑣 ∣(𝑊 ∗
𝑁𝑉𝑁 )(𝑣)∣

+ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣
∫

d𝑢d𝑣d𝑥3 . . .d𝑥𝑘 ∣(𝑊 ∗
𝑁𝑉𝑁 )(𝑣)∣

×
∣∣∣(𝑊 ∗

𝑁,(1,2)𝜉
(𝑘)
ℓ

)
(𝑢+ 𝑣/2, 𝑢− 𝑣/2, 𝑥3, . . . , 𝑥𝑘)

∣∣∣2 .

(6.7)

Since, by scaling ∥ ∣𝑣∣𝑉𝑁 ∥1 ≤ 𝐶𝑁−2 and ∥ ∣𝑣∣𝑉𝑁 ∥3/2 ≤ 𝐶𝑁−1 and since ∥𝑊 ∗
𝑁𝑉𝑁∥1

≤ 𝐶∥𝑉𝑁∥1 ≤ 𝐶𝑁−1 (by the Yajima’s bounds in part v) of Proposition 5.1), we
conclude that∣∣∣ ∫ dx𝑘 dx′

𝑘𝐽
(𝑘)(x′

𝑘;x𝑘)𝑉𝑁 (𝑥1 − 𝑥2)𝜉
(𝑘)
ℓ (x𝑘)𝜉

(𝑘)

ℓ (x′
𝑘)
∣∣∣

≤ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣
𝑁

〈
𝑊 ∗
𝑁,(1,2)𝜉

(𝑘)
ℓ ,
(
(∇1 ⋅ ∇2)2 − Δ1 − Δ2 + 1

)
𝑊 ∗
𝑁,(1,2)𝜉

(𝑘)
ℓ

〉(6.8)

for a 𝑘-dependent constant 𝐶𝑘. Here we used Lemma 10.1 to bound the last term

on the r.h.s. of (6.7), and, by the Sobolev inequality ∥𝜉(𝑘)ℓ ∥𝐿6
𝑣
≤ 𝐶∥∇𝑣𝜉(𝑘)ℓ ∥𝐿2

𝑣
we

used ∫
d𝑢d𝑥3 . . .d𝑥𝑘d𝑣 ∣𝑣∣𝑉𝑁 (𝑣)∣𝜉(𝑘)ℓ (𝑢+ 𝑣/2, 𝑢− 𝑣/2, 𝑥3, . . . , 𝑥𝑘)∣2

≤ ∥∣𝑣∣𝑉𝑁∥3/2
∫

d𝑢d𝑥3 . . .d𝑥𝑘d𝑣 ∣∇𝑣𝜉(𝑘)ℓ (𝑢+
𝑣

2
, 𝑢− 𝑣

2
, 𝑥3, ..., 𝑥𝑘)∣2

≤ 𝐶𝑁−1
〈
𝜉
(𝑘)
ℓ , (−Δ𝑣) 𝜉

(𝑘)
ℓ

〉
≤ 𝐶𝑁−1

〈
𝜉
(𝑘)
ℓ , (−Δ𝑣 + (1/2)𝑉𝑁 (𝑣)) 𝜉

(𝑘)
ℓ

〉
≤ 𝐶𝑁−1

〈
𝑊 ∗
𝑁,(1,2)𝜉

(𝑘)
ℓ , (−Δ1 − Δ2)𝑊

∗
𝑁,(1,2)𝜉

(𝑘)
ℓ

〉
(6.9)

to bound the second term on the r.h.s. of (6.7) (applying the intertwining relations
(5.1) and adding a positive term −Δ𝑢 as in (5.11)). From (6.6), (6.8), and from
Proposition 5.3 we obtain that∣∣∣Tr 𝐽 (𝑘) 𝑉𝑁 (𝑥1 − 𝑥2)𝛾

(𝑘)
𝑁,𝑠

∣∣∣
≤ 𝐶𝑘∣∣∣𝐽 (𝑘)∣∣∣

𝑁
Tr
(
(∇1 ⋅ ∇2)2 − Δ1 − Δ2 + 1

)
𝑊 ∗
𝑁,(1,2)𝛾

(𝑘)
𝑁,𝑠𝑊𝑁,(1,2)

≤ 𝐶𝑘∣∣∣𝐽 (𝑘)∣∣∣
𝑁

(6.10)
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for all 𝑠 ∈ ℝ and a constant 𝐶𝑘 only depending on 𝑘 (and on the constant appearing
on the r.h.s. of (3.4)). Similarly to (6.10), we can also show that

(6.11)
∣∣∣Tr 𝐽 (𝑘) 𝛾

(𝑘)
𝑁,𝑠𝑉𝑁 (𝑥1 − 𝑥2)

∣∣∣ ≤ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣
𝑁

.

Since (6.10) and (6.11) remain valid for all summands in the second term on the
r.h.s. of (6.4), we obtain that, for all 𝑘 ∈ ℕ, for all 𝑡 ∈ [0, 𝑇 ] and for all 𝐽 (𝑘) ∈ 𝒦𝑘
with ∣∣∣𝐽 (𝑘)∣∣∣ < ∞,

(6.12)

𝑘∑
𝑖<𝑗

∣∣∣Tr 𝐽 (𝑘)
[
𝑉𝑁 (𝑥𝑖 − 𝑥𝑗), 𝛾

(𝑘)
𝑁,𝑠

] ∣∣∣ ≤ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣
𝑁

for all 𝑠 ∈ ℝ.
Also the third term on the r.h.s. of (6.4) can be bounded similarly. In fact, again

using the decomposition 𝛾
(𝑘+1)
𝑁,𝑠 =

∑
ℓ 𝜆
(𝑘+1)
ℓ ∣𝜉(𝑘+1)ℓ ⟩⟨𝜉(𝑘+1)ℓ ∣ we have, for example

considering the term with 𝑗 = 1,

Tr 𝐽 (𝑘)𝑁 𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝛾
(𝑘+1)
𝑁,𝑠

=
∑
ℓ

𝜆
(𝑘+1)
ℓ

∫
dx𝑘 dx′

𝑘d𝑥𝑘+1 𝐽
(𝑘)(x′

𝑘;x𝑘)𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)

× 𝜉
(𝑘+1)
ℓ (x𝑘, 𝑥𝑘+1)𝜉

(𝑘+1)

ℓ (x′
𝑘, 𝑥𝑘+1) .

(6.13)

The absolute value of the ℓ-th summand can be estimated by

∣∣∣ ∫ dx𝑘 dx′
𝑘d𝑥𝑘+1 𝐽

(𝑘)(x′
𝑘;x𝑘)𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝜉

(𝑘+1)
ℓ (x𝑘, 𝑥𝑘+1)𝜉

(𝑘+1)

ℓ (x′
𝑘, 𝑥𝑘+1)

∣∣∣
≤
∫

d𝑢d𝑣d𝑥2 . . .d𝑥𝑘dx
′
𝑘𝑁𝑉𝑁 (𝑣) ∣𝜉(𝑘+1)ℓ (𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)∣

×
∣∣∣𝐽 (𝑘)(x′

𝑘;𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘)𝜉
(𝑘+1)

ℓ (x′
𝑘, 𝑢− 𝑣/2)

−𝐽 (𝑘)(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

ℓ (x′
𝑘, 𝑢)
∣∣∣

+

∫
d𝑢d𝑣d𝑥2 . . . d𝑥𝑘dx

′
𝑘𝑁 ∣(𝑊 ∗

𝑁𝑉𝑁 )(𝑣)∣ ∣𝐽 (𝑘)(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)∣

× ∣𝜉(𝑘+1)ℓ (x′
𝑘, 𝑢)∣
∣∣∣(𝑊 ∗

𝑁,(1,𝑘+1)𝜉
(𝑘+1)
ℓ

)
(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

∣∣∣
= I + II .

(6.14)
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Here

I =

∫
d𝑢d𝑣d𝑥2 . . . d𝑥𝑘dx

′
𝑘𝑁𝑉𝑁 (𝑣) ∣𝜉(𝑘+1)ℓ (𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)∣

×
∣∣∣∣∫ 1
0

d𝜏
d

d𝜏

[
𝐽 (𝑘)(x′

𝑘;𝑢+
𝜏𝑣

2
, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

ℓ (x′
𝑘, 𝑢− 𝜏𝑣

2
)
]∣∣∣∣

≤
∫

d𝑢d𝑣d𝑥2 . . . d𝑥𝑘dx
′
𝑘

∫ 1
0

d𝜏 𝑁𝑉𝑁 (𝑣)∣𝑣∣ ∣𝜉(𝑘+1)ℓ (𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)∣

×
(
∣∇𝑥1𝐽 (𝑘)(x′

𝑘;𝑢+
𝜏𝑣

2
, 𝑥2, . . . , 𝑥𝑘)∣ ∣𝜉(𝑘+1)ℓ (x′

𝑘, 𝑢− 𝜏𝑣

2
)∣

+∣𝐽 (𝑘)(x′
𝑘;𝑢+

𝜏𝑣

2
, 𝑥2, . . . , 𝑥𝑘)∣∣∇𝑥𝑘+1

𝜉
(𝑘+1)
ℓ (x′

𝑘, 𝑢− 𝜏𝑣

2
)∣
)
.

(6.15)

Through a weighted Schwarz inequality, we find

I ≤
∫

d𝑢d𝑣d𝑥2 . . . d𝑥𝑘dx
′
𝑘

∫ 1
0

d𝜏 𝑁𝑉𝑁 (𝑣)∣𝑣∣ ∣∇𝑥1𝐽 (𝑘)(x′
𝑘;𝑢+

𝜏𝑣

2
, 𝑥2, . . . , 𝑥𝑘)∣

×
(
𝑁−1/2 ∣𝜉(𝑘+1)ℓ (𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)∣2

+𝑁1/2∣𝜉(𝑘+1)ℓ (x′
𝑘, 𝑢− 𝜏𝑣

2
)∣2
)

+

∫
d𝑢d𝑣d𝑥2 . . .d𝑥𝑘dx

′
𝑘

∫ 1
0

d𝜏 𝑁𝑉𝑁 (𝑣)∣𝑣∣ ∣𝐽 (𝑘)(x′
𝑘;𝑢+

𝜏𝑣

2
, 𝑥2, . . . , 𝑥𝑘)∣

×
(
𝑁−1/2 ∣𝜉(𝑘+1)ℓ (𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)∣2

+𝑁1/2 ∣∇𝑥𝑘+1
𝜉
(𝑘+1)
ℓ (x′

𝑘, 𝑢− 𝜏𝑣

2
)∣2
)
.

Extracting the observable from the integral (after integrating some of its variables
and taking the supremum over the other), and using Sobolev inequalities where
needed, we find

I ≤ 𝐶𝑘𝑁
1/2∥∣𝑣∣𝑉𝑁∥3/2 ∣∣∣𝐽 (𝑘)∣∣∣

×
∫

d𝑢d𝑣d𝑥2 . . .d𝑥𝑘∣∇𝑣𝜉(𝑘+1)ℓ (𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)∣2

+ 𝐶𝑘𝑁
3/2∥∣𝑣∣𝑉𝑁∥1 ∣∣∣𝐽 (𝑘)∣∣∣

(
∥𝜉(𝑘)ℓ ∥2 +

∫
d𝑢dx′

𝑘 ∣∇𝑘+1𝜉(𝑘+1)ℓ (x′
𝑘, 𝑢)∣2
)

≤ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣
𝑁1/2

〈
𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
ℓ , (−Δ1 − Δ𝑘+1 + 1)𝑊 ∗

𝑁,(1,𝑘+1)𝜉
(𝑘+1)
ℓ

〉
.

(6.16)

In the last line we proceeded similarly to (6.9) for the two terms with derivatives,
using the bounds ∥∣𝑣∣𝑉𝑁∥3/2 ≤ 𝐶𝑁−1 and ∥∣𝑣∣𝑉𝑁∥1 ≤ 𝐶𝑁−2.
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As for the second term on the r.h.s. of (6.14), we can bound it by applying a
Schwarz inequality and Lemma 10.1 by

II ≤
∫

d𝑢d𝑣d𝑥2 . . .d𝑥𝑘dx
′
𝑘, 𝑁 ∣(𝑊 ∗

𝑁𝑉𝑁 )(𝑣)∣ ∣𝐽 (𝑘)(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)∣∣𝜉(𝑘+1)ℓ (x′

𝑘, 𝑢)∣2

+

∫
d𝑢d𝑣d𝑥2 . . . d𝑥𝑘dx

′
𝑘𝑁 ∣(𝑊 ∗

𝑁𝑉𝑁 )(𝑣)∣ ∣𝐽 (𝑘)(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)∣

×
∣∣∣(𝑊 ∗

𝑁,(1,𝑘+1)𝜉
(𝑘+1)
ℓ

)
(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

∣∣∣2
≤ 𝐶𝑘𝑁 ∣∣∣𝐽 (𝑘)∣∣∣ ∥𝑊 ∗

𝑁𝑉𝑁∥1
×
〈
𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘)
ℓ ,
[
(∇1 ⋅ ∇𝑘+1)2 − Δ1 − Δ𝑘+1 + 1

]
𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘)
ℓ

〉
.

Since, by Yajima’s bounds (Proposition 5.1, part v)), ∥𝑊 ∗
𝑁𝑉𝑁∥1 ≤ 𝐶∥𝑉𝑁∥1 ≤

𝐶𝑁−1, it follows that

II ≤ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣
〈
𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘)
ℓ ,
[
(∇1 ⋅ ∇𝑘+1)2 − Δ1 − Δ𝑘+1 + 1

]
𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘)
ℓ

〉
.

Inserting this and (6.16) into the r.h.s. of (6.14), it follows from (6.13) after resum-
ming over ℓ that

∣∣∣Tr𝐽 (𝑘)𝑁 𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝛾
(𝑘+1)
𝑁,𝑠

∣∣∣
≤ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣Tr

(
(∇1 ⋅ ∇𝑘+1)2 − Δ1 − Δ𝑘+1 + 1

)
𝑊 ∗
𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠 𝑊𝑁,(1,𝑘+1)

≤ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣

for all 𝑠 ∈ ℝ (in the last line we used Proposition 5.3). Since the same bounds
remain valid if we replace 𝑥1 with an arbitrary 𝑥𝑗 , 𝑗 = 2, . . . 𝑘 (and also if the

potential lies on the right of the marginal density 𝛾
(𝑘+1)
𝑁,𝑠 ), it follows that

(6.17)
𝑘∑
𝑗=1

∣∣∣Tr 𝐽 (𝑘)
[
𝑁𝑉𝑁 (𝑥𝑗 − 𝑥𝑘+1), 𝛾

(𝑘+1)
𝑁,𝑠

] ∣∣∣ ≤ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣ .

From (6.4), (6.5), (6.12), and (6.17), it follows that

∣∣∣Tr 𝐽 (𝑘)
(
𝛾
(𝑘)
𝑁,𝑡 − 𝛾

(𝑘)
𝑁,𝑟

) ∣∣∣ ≤ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣ ∣𝑡− 𝑠∣ .

This implies (6.2) and thus the equicontinuity of the sequence Γ𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑁𝑘=1
with respect to the metric 𝜏prod.

The proof of the fact that 𝛾
(𝑘)
∞,𝑡 is symmetric w.r.t. permutations, that it is

nonnegative and such that Tr 𝛾
(𝑘)
∞,𝑡 ≤ 1 can be found in [12, Theorem 6.1]. □
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7. Higher order a priori estimates on the limit points Γ∞,𝑡

The goal of this section is to establish strong a priori bounds for the limit points

Γ∞,𝑡 of the sequence Γ𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑁𝑘=1. As we did in [12], we will obtain strong
a priori estimates on Γ∞,𝑡 by proving higher order energy estimates, which compare
the expectation of powers of the Hamiltonian ⟨𝜓𝑁 , 𝐻𝑘𝑁𝜓𝑁 ⟩ with certain Sobolev
norms of the 𝑁 -particle wave function 𝜓𝑁 . It turns out that the expectation of
powers of the Hamiltonian can only control the Sobolev norms of 𝜓𝑁 in appropriate
regions of the configuration space. To characterize these regions, we introduce the
same cutoffs we used in [12]. For a given length scale ℓ > 0 (in our analysis, we will
need that 𝑁−1/2 ≪ ℓ ≪ 𝑁−1/3), we set

(7.1) ℎ(𝑥) := 𝑒−
√

𝑥2+ℓ2

ℓ .

Note that ℎ ≃ 0 if ∣𝑥∣ ≫ ℓ, and ℎ ≃ 𝑒−1 if ∣𝑥∣ ≪ ℓ. For 𝑖 = 1, . . . , 𝑁 we define the
cutoff function

(7.2) 𝜃𝑖(x) := exp

⎛⎝− 1

ℓ𝜀

∑
𝑗 ∕=𝑖

ℎ(𝑥𝑖 − 𝑥𝑗)

⎞⎠
for some 𝜀 > 0. Note that 𝜃𝑖(x) is exponentially small if there is at least one other
particle at distance of order ℓ from 𝑥𝑖, while 𝜃𝑖(x) is exponentially close to 1 if there
is no other particle near 𝑥𝑖 (on the length scale ℓ). Next we define

(7.3) 𝜃
(𝑛)
𝑖 (x) := 𝜃𝑖(x)2

𝑛

= exp

⎛⎝−2𝑛

ℓ𝜀

∑
𝑗 ∕=𝑖

ℎ(𝑥𝑖 − 𝑥𝑗)

⎞⎠
and their cumulative versions, for 𝑛, 𝑘 ∈ ℕ,

(7.4) Θ
(𝑛)
𝑘 (x) := 𝜃

(𝑛)
1 (x) . . . 𝜃

(𝑛)
𝑘 (x) = exp

⎛⎝−2𝑛

ℓ𝜀

∑
𝑖≤𝑘

∑
𝑗 ∕=𝑖

ℎ(𝑥𝑖 − 𝑥𝑗)

⎞⎠ .

To cover all cases in one formula, we introduce the notation Θ
(𝑛)
𝑘 = 1 for any 𝑘 ≤ 0,

𝑛 ∈ ℕ. Some important properties of the function Θ
(𝑛)
𝑘 , used throughout the proof

of Proposition 7.1, are collected, for completeness, in Lemma A.1.

Proposition 7.1. Suppose that 𝑉 ≥ 0, with ∣∇𝛼𝑉 (𝑥)∣ ≤ 𝐶 for all ∣𝛼∣ ≤ 2. Let
𝜓 ∈ 𝐿2𝑠(ℝ

3𝑁 ) be a function symmetric in all its variables. Suppose that ℓ ≫ 𝑁−1/2

(in the sense that there exists 𝛿 > 0 with 𝑁1/2ℓ ≥ 𝑁𝛿). There exists 𝐶0 > 0 such
that for every integer 𝑘 ≥ 1 there exists 𝑁0 = 𝑁0(𝑘) such that

(7.5) ⟨𝜓, (𝐻𝑁 +𝑁)𝑘𝜓⟩ ≥ 𝐶𝑘0𝑁
𝑘

∫
dx Θ

(𝑘)
𝑘−1(x) ∣∇1 . . .∇𝑘𝜓(x)∣2

for all 𝑁 ≥ 𝑁0.
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Proof. We use induction over 𝑘. For 𝑘 = 1 the statement follows directly from
𝑉𝑁 ≥ 0, since on the symmetric subspace

(7.6) 𝐻𝑁 +𝑁 ≥
𝑁∑
𝑖=1

∇∗
𝑖∇𝑖 = 𝑁∇∗

𝑗∇𝑗

for any fixed 𝑗 = 1, 2, . . . , 𝑁 . We will present the 𝑘 = 2 case in detail and then
comment on the general case. Set 𝑇 = 𝐻𝑁 + 𝑁 ≥ 0 for brevity and use the
induction hypothesis

𝑇 2 ≥ 𝐶0𝑁𝑇 1/2∇∗
1∇1𝑇 1/2

≥ 𝐶0𝑁𝑇 1/2∇∗
1𝜃
4
1∇1𝑇 1/2

≥ 1

2
𝐶0𝑁∇∗

1𝑇
1/2𝜃41𝑇

1/2∇1 − 𝐶0𝑁 [𝑇 1/2,∇1]∗𝜃41[𝑇 1/2,∇1]

≥ 1

4
𝐶0𝑁∇∗

1𝜃
2
1𝑇𝜃

2
1∇1 − 𝐶0𝑁∇∗

1[𝑇
1/2, 𝜃21]

∗[𝑇 1/2, 𝜃21]∇1
− 𝐶0𝑁 [𝑇 1/2,∇1]∗𝜃41[𝑇 1/2,∇1].

(7.7)

In the first term we use the fact that 𝐻𝑁 +𝑁 ≥∑𝑁𝑗=2∇∗
𝑗∇𝑗 to obtain

1

4
𝐶0𝑁∇∗

1𝜃
2
1𝑇𝜃

2
1∇1 ≥

1

4
𝐶0𝑁(𝑁 − 1)∇∗

1𝜃
2
1∇∗

2∇2𝜃21∇1

≥ 1

8
𝐶0𝑁

2∇∗
1∇∗

2𝜃
4
1∇2∇1 − 𝐶0𝑁

2∇∗
1[∇2, 𝜃21]∗[∇2, 𝜃21]∇1

(7.8)

for all 𝑁 large enough. Since Θ
(2)
1 = 𝜃41, we would obtain (7.5) for 𝑘 = 2 with

𝐶0 < 1/8 once we show that the commutator terms in (7.7) and (7.8) are negligible.
The commutator in (7.8) on symmetric functions can be estimated by

𝐶0𝑁
2∇∗

1[∇2, 𝜃21]∗[∇2, 𝜃21]∇1 =
𝐶0𝑁

2

𝑁 − 1

𝑁∑
𝑗=2

∇∗
1(∇𝑗𝜃21)2∇1

≤ 𝑂(ℓ−2𝑁−1)𝑁2∇∗
1∇1 ≤ 𝑂(ℓ−2𝑁−1)𝑇 2 = 𝑜(1)𝑇 2,

(7.9)

where we used (A.1), recalling that 𝜃21 = Θ
(1)
1 , and where we also used 𝑇 ≥ 𝑁 and

(7.6).
To estimate the two commutators in (7.7), we express

(7.10) [𝑇 1/2, 𝐴] =
1

𝜋

∫ ∞

0

1

𝑇 + 𝑠
[𝐴, 𝑇 ]

1

𝑇 + 𝑠
𝑠1/2d𝑠

for any operator 𝐴.
To estimate the first commutator term in (7.7) we note that, by Schwarz in-

equality,

[𝑇 1/2, 𝜃21]
∗[𝑇 1/2, 𝜃21] ≤ 𝐶 (log𝐾)

∫ 𝐾
0

1

𝑇 + 𝑠
[𝜃21, 𝑇 ]∗

1

(𝑇 + 𝑠)2
[𝜃21, 𝑇 ]

1

𝑇 + 𝑠
⟨𝑠⟩2 d𝑠

+ 𝐶

∫ ∞

𝐾

1

𝑇 + 𝑠
[𝜃21, 𝑇 ]∗

1

(𝑇 + 𝑠)2
[𝜃21, 𝑇 ]

1

𝑇 + 𝑠
⟨𝑠⟩5/2 d𝑠,

(7.11)
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where 𝐾 = exp(𝑁𝜀) for some 𝜀 > 0. Estimating (𝑇 + 𝑠)−2 ≤ ⟨𝑠⟩−2 (using 𝑇 ≥ 𝑁),
we have

𝑁∇∗
1[𝑇

1/2, 𝜃21]
∗[𝑇 1/2, 𝜃21]∇1 ≤ 𝑐𝑁1+𝜀

∫ 𝐾
0

∇∗
1

1

𝑇 + 𝑠
[𝑇, 𝜃21]

∗[𝑇, 𝜃21]
1

𝑇 + 𝑠
∇1 d𝑠

+ 𝑐𝑁

∫ ∞

𝐾

∇∗
1

1

𝑇 + 𝑠
[𝑇, 𝜃21]

∗[𝑇, 𝜃21]
1

𝑇 + 𝑠
∇1 ⟨𝑠⟩1/2 d𝑠 ,

(7.12)

and we can estimate

[𝑇, 𝜃21]
∗[𝑇, 𝜃21] =

∑
𝑖,𝑗

(
2∇∗
𝑗 ⋅ (∇𝑗𝜃21) + (Δ𝑗𝜃

2
1)
)(

2(∇𝑖𝜃21) ⋅ ∇𝑖 + (Δ𝑖𝜃
2
1)
)

≤ 𝑐
∑
𝑖,𝑗

[
∇∗
𝑗 ⋅ (∇𝑗𝜃21)(∇𝑖𝜃21) ⋅ ∇𝑖

+ ∇∗
𝑖 ⋅ ∣Δ𝑗𝜃21∣∇𝑖 + ∣∇𝑖𝜃21∣∣Δ𝑗𝜃21∣∣∇𝑖𝜃21∣ + ∣Δ𝑖𝜃21∣∣Δ𝑗𝜃21∣

]
≤ 𝑐
∑
𝑖,𝑗

∇∗
𝑖 ⋅
(∣∇𝑗𝜃21∣2 + ∣Δ𝑗𝜃21∣

)∇𝑖 + 𝑐
(∑
𝑖

∣Δ𝑖𝜃21∣
)2

≤ 𝑐ℓ−2
∑
𝑖

∇∗
𝑖 ⋅ ∇𝑖 + 𝑐ℓ−4 ≤ 𝑐ℓ−2𝑇

(7.13)

by using (A.1) and (A.2) and the fact that 𝜃21 = Θ
(1)
1 . Thus, the first commutator

term in (7.7) is estimated as

𝑁∇∗
1[𝑇

1/2, 𝜃21]
∗[𝑇 1/2, 𝜃21]∇1 ≤ 𝑂(𝑁1+𝜀ℓ−2)

∫ 𝐾
0

∇∗
1

1

𝑇 + 𝑠
𝑇

1

𝑇 + 𝑠
∇1d𝑠

+𝑂(𝑁ℓ−2)
∫ ∞

𝐾

∇∗
1

1

𝑇 + 𝑠
𝑇

1

𝑇 + 𝑠
∇1 ⟨𝑠⟩1/2 d𝑠

≤ 𝑂(𝑁1+𝜀ℓ−2)∇∗
1∇1 + 𝑂(𝑁ℓ−2𝐾−1/2)∇∗

1 𝑇 ∇1
≤ 𝑂(𝑁𝜀ℓ−2)𝑇 + 𝑜(1)𝑇 2

≤ 𝑜(1)𝑇 2

(7.14)

if we choose 𝜀 > 0 so small that ℓ−2 ≪ 𝑁1−𝜀. When estimating the term ∇∗
1𝑇∇1

in the last step, we could afford estimating any commutators, since 𝐾−1/2 is expo-
nentially small:

∇∗
1𝑇∇1 =

1

𝑁

∑
𝑗

∇∗
𝑗𝑇∇𝑗 =

1

𝑁

∑
𝑗

[
(−Δ𝑗)𝑇 −∇∗

𝑗 ⋅
∑
𝑖

(∇𝑉𝑁 )(𝑥𝑗 − 𝑥𝑖)
]

= 𝑁−1𝑇 2 −𝑁−1∑
𝑖𝑗

[
𝑉𝑁 (𝑥𝑖 − 𝑥𝑗)𝑇 −∇∗

𝑗 ⋅ (∇𝑉𝑁 )(𝑥𝑗 − 𝑥𝑖)
]

≤ 2𝑁−1𝑇 2 +𝑂(𝑁8)

using the fact that ∣𝑉𝑁 (𝑥)∣ ≤ 𝐶𝑁2 and ∣∇𝑉𝑁 (𝑥)∣ ≤ 𝐶𝑁3 for all 𝑥 ∈ ℝ
3.
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Finally, we estimate the second commutator term in (7.7) by again using the
Schwarz inequality in (7.10), but this time we do not split the integration:

[𝑇 1/2,∇1]∗𝜃41[𝑇 1/2,∇1]

≤ 𝑐

∫ ∞

0

1

𝑇 + 𝑠
[∇1, 𝑇 ]∗

1

𝑇 + 𝑠
𝜃41

1

𝑇 + 𝑠
[∇1, 𝑇 ]

1

𝑇 + 𝑠
⟨𝑠⟩5/2d𝑠

≤ 𝑐𝑁
∑
𝑖 ∕=1

∫ ∞

0

1

𝑇 + 𝑠
(∇𝑉𝑁 )(𝑥1 − 𝑥𝑖)

1

𝑇 + 𝑠
𝜃41

1

𝑇 + 𝑠

× (∇𝑉𝑁 )(𝑥1 − 𝑥𝑖)
1

𝑇 + 𝑠
⟨𝑠⟩5/2d𝑠

(7.15)

where we used [∇1, 𝑇 ] =
∑
𝑖 ∕=1(∇𝑉𝑁 )(𝑥1 − 𝑥𝑖).

Since 𝑇0 =
∑
𝑗 −Δ𝑗 +𝑁 is a positivity preserving operator and 𝑉 ≥ 0, 𝑇 is also

positivity preserving and its resolvent kernel satisfies

1

𝑇 + 𝑠
(x;y) ≤ 1

𝑇0 + 𝑠
(x;y),

and thus

𝐼 :=
∥∥∥(∇𝑉𝑁 )(𝑥1 − 𝑥𝑖)

1

𝑇 + 𝑠
𝜃41

1

𝑇 + 𝑠
(∇𝑉𝑁 )(𝑥1 − 𝑥𝑖)

∥∥∥
≤
∥∥∥ ∣(∇𝑉𝑁 )(𝑥1 − 𝑥𝑖)∣ 1

𝑇0 + 𝑠
𝑒−4ℓ

−𝜀ℎ(𝑥1−𝑥𝑖) 1

𝑇0 + 𝑠
∣(∇𝑉𝑁 )(𝑥1 − 𝑥𝑖)∣

∥∥∥ ,(7.16)

where we also estimated 𝜃1 by keeping only one summand in its definition (7.2).
Introducing the variable 𝑦 = 𝑥1 − 𝑥𝑖 and observing that

𝐿2(ℝ3𝑁 , dx) ≃ 𝐿2(ℝ3, d𝑦;𝐿2(ℝ3(𝑁−1), d𝑧d𝑥2 . . . d̂𝑥𝑖 . . .d𝑥𝑁 ))

(where the hat means that the variable 𝑥𝑖 is omitted), we obtain that

𝐼 ≤ sup
𝑀≥0

∥∥∥∣(∇𝑉𝑁 )(𝑦)∣ 1

−Δ𝑦 +𝑀 +𝑁 + 𝑠
𝑒−4ℓ

−𝜀ℎ(𝑦) 1

Δ𝑦 +𝑀 +𝑁 + 𝑠
∣(∇𝑉𝑁 )(𝑦)∣

∥∥∥
≤ sup
𝑀≥0

∥∥∥∣(∇𝑉𝑁 )(𝑦)∣ 1

−Δ𝑦 +𝑀 + 𝑁 + 𝑠
𝑒−4ℓ

−𝜀ℎ(𝑦) 1

Δ𝑦 +𝑀 +𝑁 + 𝑠
∣(∇𝑉𝑁 )(𝑦)∣

∥∥∥
HS

where the norms on the last two lines are, respectively, the operator norm and the
Hilbert-Schmidt norm of an operator over 𝐿2(ℝ3, d𝑦). The last equation implies
that

𝐼 ≤
∫

d𝑦d𝑦′𝑒−4ℓ
−𝜀ℎ(𝑦)
∣∣∣ 1

Δ +𝑀 +𝑁 + 𝑠
(𝑦, 𝑦′)
∣∣∣2∣∇𝑉𝑁 (𝑦′)∣2

≤
∫

d𝑦d𝑦′𝑒−4ℓ
−𝜀ℎ(𝑦) 𝑒

−2√𝑁+𝑠∣𝑦−𝑦′∣

∣𝑦 − 𝑦′∣2 ∣∇𝑉𝑁 (𝑦′)∣2

≤ 𝑂(𝑒−ℓ
−𝜀

),

(7.17)

since ℎ ≈ 𝑒−1 on the support of 𝑉𝑁 . We will use this bound for 𝑠 ≤ 𝐾 := exp(𝑐ℓ−𝜀)
with a sufficiently small 𝑐 > 0. From (7.16), we also have the trivial bound

(7.18) 𝐼 ≤ 𝑁6

⟨𝑠⟩2
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that will be used for large 𝑠. Inserting these estimates into (7.15), we have

[𝑇 1/2,∇1]∗𝜃41[𝑇 1/2,∇1] ≤ 𝑂(𝑁2𝑒−ℓ
−𝜀

)

∫ 𝐾
0

⟨𝑠⟩5/2d𝑠
(𝑇 + 𝑠)2

+𝑂(𝑁8)

∫ ∞

𝐾

⟨𝑠⟩1/2d𝑠
(𝑇 + 𝑠)2

= 𝑂(𝑒−𝑐ℓ
−𝜀

),

i.e. this commutator term is subexponentially small in 𝑁 , and this completes the
proof of (7.5) for 𝑘 = 2.

The proof for general 𝑘 > 2 follows the same pattern as for 𝑘 = 2. Introduce the
notation

𝐷𝑘 = ∇1∇2 . . .∇𝑘 .
We recall the summation convention: for any operator 𝐴, we denote

𝐷∗
𝑘𝐴𝐷𝑘 :=

3∑
𝛼1=1

. . .

3∑
𝛼𝑘=1

∇∗
𝑥1,𝛼1

. . .∇∗
𝑥𝑘,𝛼𝑘

𝐴∇𝑥𝑘,𝛼𝑘
. . .∇𝑥1,𝛼1

,

where 𝑥𝑗 = (𝑥𝑗,1, 𝑥𝑗,2, 𝑥𝑗,3) are the three coordinates of 𝑥𝑗 ∈ ℝ
3.

Using the induction hypothesis, Θ
(𝑘)
𝑘−1 ≥ [Θ

(𝑘)
𝑘 ]2 = Θ

(𝑘+1)
𝑘 and (7.6) we obtain,

similarly to (7.7) and (7.8),

𝑇 𝑘+1 ≥ 𝐶𝑘0𝑁
𝑘𝑇 1/2𝐷∗

𝑘Θ
(𝑘)
𝑘−1𝐷𝑘𝑇

1/2

≥ 𝐶𝑘0𝑁
𝑘𝑇 1/2𝐷∗

𝑘[Θ
(𝑘)
𝑘 ]2𝐷𝑘𝑇

1/2

≥ 1

8
𝐶𝑘0𝑁

𝑘+1𝐷∗
𝑘+1Θ

(𝑘+1)
𝑘 𝐷𝑘+1 − 𝐶𝑘0𝑁

𝑘𝐷∗
𝑘[𝑇

1/2,Θ
(𝑘)
𝑘 ]∗[𝑇 1/2,Θ(𝑘)𝑘 ]𝐷𝑘

− 𝐶𝑘0𝑁
𝑘[𝑇 1/2, 𝐷𝑘]

∗Θ(𝑘+1)𝑘 [𝑇 1/2, 𝐷𝑘]

− 𝐶𝑘0𝑁
𝑘+1𝐷∗

𝑘[∇𝑘+1,Θ(𝑘)𝑘 ]∗[∇𝑘+1,Θ(𝑘)𝑘 ]𝐷𝑘,

(7.19)

for all 𝑁 sufficiently large (depending on 𝑘). The first term gives the desired result
if 𝐶0 < 1/8; in the sequel we show that all three commutator terms are negligible.

The first commutator in (7.19) is estimated exactly as the first commutator in

(7.7), after replacing 𝜃21 = Θ
(1)
1 with Θ

(𝑘)
𝑘 . The estimates (7.11) are (7.12) are

identical for 𝑘 > 1 as well. In the key estimate (7.13), the only properties we used

regarding 𝜃21 = Θ
(1)
1 from Lemma A.1 were those that hold for Θ

(𝑘)
𝑘 as well.

The last commutator in (7.19) can be estimated similarly to (7.9) by using (A.1):

𝐶𝑘0𝑁
𝑘+1𝐷∗

𝑘[∇𝑘+1,Θ(𝑘)𝑘 ]∗[∇𝑘+1,Θ(𝑘)𝑘 ]𝐷𝑘 =
𝐶𝑘0𝑁

𝑘+1

𝑁 − 𝑘

𝑁∑
𝑗=𝑘+1

𝐷∗
𝑘(∇𝑗Θ(𝑘)𝑘 )2𝐷𝑘

≤ 𝑂(ℓ−2𝑁−1)𝑁𝑘+1𝐷∗
𝑘Θ

(𝑘−1)
𝑘 𝐷𝑘

≤ 𝑂𝑘(ℓ
−2𝑁−1)𝑁𝑇 𝑘 = 𝑜𝑘(1)𝑇 𝑘+1

(7.20)

by the induction hypothesis and 𝑇 ≥ 𝑁 (here we use the notation 𝑓 = 𝑜𝑘(𝑔) if
𝑓/𝑔 → 0 as 𝑁 → ∞ for fixed 𝑘; analogously for 𝑓 = 𝑂𝑘(𝑔)).

Finally, the estimate of the second commutator in (7.19) is similar to that of the
second commutator in (7.7), but more commutators need to be computed. Similarly
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to (7.15) and taking the permutation symmetry into account, we have

[𝑇 1/2, 𝐷𝑘]
∗Θ(𝑘+1)𝑘 [𝑇 1/2, 𝐷𝑘]

≤ 𝐶𝑘𝑁
∑
𝑖 ∕=𝑘

∫ ∞

0

1

𝑇 + 𝑠
𝐷∗
𝑘−1(∇𝑉𝑁 )(𝑥𝑘 − 𝑥𝑖)

1

𝑇 + 𝑠
Θ
(𝑘+1)
𝑘

× 1

𝑇 + 𝑠
(∇𝑉𝑁 )(𝑥𝑘 − 𝑥𝑖)𝐷𝑘−1

1

𝑇 + 𝑠
⟨𝑠⟩5/2d𝑠

+ 𝐶𝑘

∫ ∞

0

1

𝑇 + 𝑠
𝐷∗
𝑘−2(∇2𝑉𝑁 )(𝑥𝑘 − 𝑥𝑘−1)

1

𝑇 + 𝑠
Θ
(𝑘+1)
𝑘

× 1

𝑇 + 𝑠
(∇2𝑉𝑁 )(𝑥𝑘 − 𝑥𝑘−1)𝐷𝑘−2

1

𝑇 + 𝑠
⟨𝑠⟩5/2d𝑠

(7.21)

We will need the following lemma whose proof is postponed.

Lemma 7.2. Let 𝜓 ∈ 𝐿2𝑠(ℝ
3𝑁 ) be a function symmetric in all its variables and let

𝛿 > 0. Choose a strictly increasing sequence of positive constants {𝑐𝑘}𝑘≥1. Then
for every integer 𝑘 ≥ 1 there exists 𝑁0 = 𝑁0(𝑘, 𝛿) such that

(7.22) ⟨𝜓, (𝐻𝑁 +𝑁)𝑘𝜓⟩ ≥ 𝑒−𝑐𝑘𝑁
𝛿

∫
dx ∣∇1 . . .∇𝑘𝜓(x)∣2

for all 𝑁 ≥ 𝑁0.

We demonstrate the estimate of the first term in (7.21); the second one is similar.

Using Θ
(𝑘+1)
𝑘 ≤ 𝑒−ℓ

−𝜀ℎ(𝑥𝑘−𝑥𝑖), we obtain, similarly to (7.16)–(7.18) that

𝐼 :=

∥∥∥∥∥(∇𝑉𝑁 )(𝑥𝑘 − 𝑥𝑖)
1

𝑇 + 𝑠
Θ
(𝑘+1)
𝑘

1

𝑇 + 𝑠
(∇𝑉𝑁 )(𝑥𝑘 − 𝑥𝑖)

∥∥∥∥∥ ≤ 𝑂(𝑒−ℓ
−𝜀

)

and also

𝐼 ≤ 𝑁6

⟨𝑠⟩2 .

Let 𝐾 := exp(𝑐ℓ−𝜀) with a sufficiently small 𝑐 > 0. Choosing a sufficiently small 𝛿,
so that 𝑁𝛿 ≪ ℓ−𝜀, by using (7.22) we have∫ ∞

0

1

𝑇 + 𝑠
𝐷∗
𝑘−1(∇𝑉𝑁 )(𝑥𝑘 − 𝑥𝑖)

1

𝑇 + 𝑠
Θ
(𝑘+1)
𝑘

× 1

𝑇 + 𝑠
(∇𝑉𝑁 )(𝑥𝑘 − 𝑥𝑖)𝐷𝑘−1

1

𝑇 + 𝑠
⟨𝑠⟩5/2d𝑠

≤ 𝑂(𝑒−ℓ
−𝜀+𝑐𝑘−1𝑁

𝛿

)

∫ 𝐾
0

𝑇 𝑘−1

(𝑇 + 𝑠)2
⟨𝑠⟩5/2d𝑠

+𝑂(𝑒𝑐𝑘−1𝑁
𝛿

)

∫ ∞

𝐾

𝑇 𝑘−1

(𝑇 + 𝑠)2
𝑁6

⟨𝑠⟩2 ⟨𝑠⟩
5/2d𝑠

≤ 𝑂(𝑒−𝑐
′ℓ−𝜀

)𝑇 𝑘−1 ≤ 𝑜(1)𝑇 𝑘+1.

(7.23)

This completes the proof of Proposition 7.1. □

Proof of Lemma 7.2. We proceed by a step-two induction on 𝑘; for 𝑘 = 1 the claim
follows from (7.6). We now consider the 𝑘 = 2 case. Similarly to (5.4), but also
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keeping the ℎ2𝑗 terms in the expansion of 𝐻2𝑁 , we find

𝑇 2 ≥ 𝑁(𝑁 − 1)
(
− Δ1 +

1

2
𝑉𝑁 (𝑥1 − 𝑥2)

)(
− Δ2 +

1

2
𝑉𝑁 (𝑥1 − 𝑥2)

)
+𝑁
(
− Δ1 +

1

2
𝑉𝑁 (𝑥1 − 𝑥2)

)2
≥ (𝑁2/2)

(
𝐷∗
2𝐷2 − 2∇∗

1∇1 − 2∇∗
2∇2 − 4∥∇𝑉𝑁∥2∞

)
+𝑁
(
(∇∗
1∇1)2 − 2∇∗

1∇1 − 4∥∇𝑉𝑁∥2∞
)

≥ (𝑁2/2)𝐷∗
2𝐷2 +𝑁(∇∗

1∇1)2 − 𝐶𝑁2∇∗
1∇1 − 𝐶𝑁8

≥ (𝑁2/2)𝐷∗
2𝐷2 −𝑂(𝑁8).

(7.24)

Combining this bound with 𝑇 2 ≥ 𝑁2, it follows that

(7.25) 𝑇 2 ≥ 𝑐𝑁−4𝐷∗
2𝐷2

for a sufficiently small positive 𝑐.
Now we show how to go from 𝑘 to 𝑘 + 2. By the induction hypothesis, we have

(7.26) 𝑇 𝑘+2 ≥ 𝑒−𝑐𝑘𝑁
𝛿

𝑇𝐷∗
𝑘𝐷𝑘𝑇 ≥ 𝑒−𝑐𝑘𝑁

𝛿
(1

2
𝐷∗
𝑘𝑇
2𝐷𝑘 − 2[𝐷𝑘, 𝑇 ]∗[𝐷𝑘, 𝑇 ]

)
.

In the first term we can use (7.25) in the form 𝑇 2 ≥ 𝑐𝑁−4∇∗
𝑘+1∇∗

𝑘+2∇𝑘+2∇𝑘+1,
which holds for all 𝑁 large enough. (Because of the factors 𝐷𝑘, we only have
symmetry on the last 𝑁 − 𝑘 variables. This means that instead of (7.24), we are
going to obtain 𝑇 2 ≥ (𝑁 − 𝑘)(𝑁 − 𝑘 − 1)Δ𝑘+1Δ𝑘+2 ≥ (𝑁2/2)Δ𝑘+1Δ𝑘+2 for all 𝑁
large enough.)

The commutator term, after several Schwarz inequalities, can be estimated as

[𝐷𝑘, 𝑇 ]∗[𝐷𝑘, 𝑇 ] ≤ 𝐶𝑘

(
𝑁2𝐷∗

𝑘−1∥∇𝑉𝑁∥2𝐷𝑘−1 +𝐷∗
𝑘−2∥∇2𝑉𝑁∥2𝐷𝑘−2

)
≤ 𝐶𝑘𝑁

8
(
𝐷∗
𝑘−1𝐷𝑘−1 +𝐷∗

𝑘−2𝐷𝑘−2
)

≤ 𝐶𝑘𝑁
8 𝑒𝑐𝑘−1𝑁

𝛿

𝑇 𝑘−1 ≤ 𝐶𝑘𝑁
8 𝑒𝑐𝑘−1𝑁

𝛿

𝑇 𝑘+2 ,

(7.27)

where we used the induction hypothesis for 𝑘 − 1 and 𝑘 − 2 and, by convention,
𝐷𝑚 = 1 for 𝑚 ≤ 0. Inserting this estimate into (7.26), we obtain

𝑇 𝑘+2 ≥ 𝑐𝑁−4𝑒−𝑐𝑘𝑁
𝛿

𝐷∗
𝑘+2𝐷𝑘+2 − 𝐶𝑘𝑁

8𝑒−(𝑐𝑘−𝑐𝑘−1)𝑁
𝛿

𝑇 𝑘+2 .

Since 𝑐𝑘 is strictly increasing, we obtain (7.22) for 𝑘 + 2.
Actually the proof shows that a sufficiently large 𝑘-dependent negative power,

𝑁−𝛽𝑘 , would suffice on the r.h.s. of (7.22) instead of the subexponentially small
prefactor. □

The higher order energy estimates proved in Proposition 7.1 are used to show

the following strong a priori estimates on the limit points Γ∞,𝑡 = {𝛾(𝑘)∞,𝑡}𝑘≥1 of the
sequence Γ𝑁,𝑡.
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Theorem 7.3. Suppose that the assumptions of Theorem 3.2 are satisfied and fix

𝑇 > 0. Assume moreover that Γ
(𝑘)
∞,𝑡 = {𝛾(𝑘)∞,𝑡}𝑘≥1 ∈ ⊕𝑘≥1𝐶([0, 𝑇 ],ℒ1𝑘) is a limit

point of the sequence Γ𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑁𝑘=1 with respect to the topology 𝜏prod. Then

(7.28) Tr (1 − Δ1) . . . (1 − Δ𝑘)𝛾
(𝑘)
∞,𝑡 ≤ 𝐶𝑘

for all 𝑘 ≥ 1 and 𝑡 ∈ [0, 𝑇 ].

Proof. Theorem 7.3 follows from the higher order energy estimates of Theorem 7.1.
The proof of this fact can be found in [12, Proposition 6.3]. □

8. Convergence to the infinite hierarchy

In order to prove Theorem 3.2, we need to prove the convergence of the BBGKY
hierarchy towards a hierarchy of infinitely many equations. In the argument, we
will make use of the a priori bounds from Proposition 5.3 and Theorem 7.3 for
𝑘 = 2.

Theorem 8.1. Suppose that the assumptions of Theorem 3.2 are satisfied and fix

𝑇 > 0. Suppose that Γ∞,𝑡 = {𝛾(𝑘)∞,𝑡}𝑘≥1 ∈ ⊕𝑘≥1 𝐶([0, 𝑇 ],ℒ1𝑘) is a limit point of

Γ𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑁𝑘=1 with respect to the topology 𝜏prod. Then Γ∞,𝑡 is a solution to the
infinite hierarchy

(8.1) 𝛾
(𝑘)
∞,𝑡 = 𝒰 (𝑘)(𝑡)𝛾(𝑘)∞,0−8𝜋𝑎0𝑖

𝑘∑
𝑗=1

∫ 𝑡
0

d𝑠𝒰 (𝑘)(𝑡−𝑠)Tr𝑘+1

[
𝛿(𝑥𝑗 − 𝑥𝑘+1), 𝛾

(𝑘+1)
∞,𝑠
]

with initial data 𝛾
(𝑘)
∞,0 = ∣𝜑⟩⟨𝜑∣⊗𝑘. Here 𝒰 (𝑘)(𝑡) denotes the free evolution of 𝑘

particles defined in (4.5).

Proof. Fix 𝑘 ≥ 1. Passing to an appropriate subsequence, we can assume that, for
every 𝐽 (𝑘) ∈ 𝒦𝑘,
(8.2) sup

𝑡∈[0,𝑇 ]
Tr 𝐽 (𝑘)

(
𝛾
(𝑘)
𝑁,𝑡 − 𝛾

(𝑘)
∞,𝑡
)
→ 0 as 𝑁 → ∞ .

We will prove (8.1) by testing the limit point against a certain class of observables
that is dense in 𝒦𝑘. To characterize the class of observables we are going to consider,
we define, for an arbitrary integer 𝑘 ≥ 1,

Ω𝑘 :=
𝑘∏
𝑗=1

(⟨𝑥𝑗⟩ + ⟨𝑖∇𝑗⟩) .

We will consider 𝐽 (𝑘) ∈ 𝒦𝑘 such that

(8.3)
∥∥∥Ω7𝑘𝐽 (𝑘)Ω7𝑘∥∥∥

HS
< ∞,

where ∥𝐴∥HS denotes the Hilbert-Schmidt norm of the operator 𝐴. Note that
the set of observables 𝐽 (𝑘) satisfying the condition (8.3) is a dense subset of 𝒦𝑘.
Moreover, using the fact that 𝑒𝑖Δ𝑗𝑡⟨𝑥𝑗⟩𝑒−𝑖Δ𝑗𝑡 = ⟨𝑥𝑗 − 𝑖𝑡∇𝑗⟩, it follows that

(8.4)
∥∥∥Ω7𝑘 𝒰 (𝑘)(𝑡)𝐽 (𝑘)Ω7𝑘∥∥∥

HS
≤ 𝐶 (1 + ∣𝑡∣)7

∥∥∥Ω7𝑘 𝐽 (𝑘)Ω7𝑘∥∥∥
HS

.

Note also that, with the norm ∣∣∣𝐽 (𝑘)∣∣∣ defined in (6.3), we have

(8.5) ∣∣∣𝐽 (𝑘)∣∣∣ ≤ 𝐶𝑘

∥∥∥Ω7𝑘 𝐽 (𝑘)Ω7𝑘∥∥∥
HS
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for a constant 𝐶𝑘 only depending on 𝑘 (see [12], Eq. (7.8)). Combining (8.4) with
(8.5), we also have

(8.6) ∣∣∣𝒰 (𝑘)(𝑡)𝐽 (𝑘)∣∣∣ ≤ 𝐶𝑘 (1 + ∣𝑡∣)7
∥∥∥Ω7𝑘 𝐽 (𝑘)Ω7𝑘∥∥∥

HS
.

In order to prove Theorem 8.1 it is enough to show that, for every 𝐽 (𝑘) ∈ 𝒦𝑘
satisfying (8.3),

(8.7) Tr 𝐽 (𝑘)𝛾
(𝑘)
∞,0 = Tr 𝐽 (𝑘)∣𝜑⟩⟨𝜑∣⊗𝑘

and

Tr 𝐽 (𝑘)𝛾
(𝑘)
∞,𝑡 = Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡)𝛾(𝑘)∞,0

− 8𝜋𝑎0𝑖

𝑘∑
𝑗=1

∫ 𝑡
0

d𝑠Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)
[
𝛿(𝑥𝑗 − 𝑥𝑘+1), 𝛾

(𝑘+1)
∞,𝑠
](8.8)

for all 𝑡 ∈ [0, 𝑇 ].
The relation (8.7) follows from the assumption (3.5) and from (8.2).
In order to prove (8.8), we fix 𝑡 ∈ [0, 𝑇 ], we rewrite the BBGKY hierarchy (2.1)

in integral form and we test it against the observable 𝐽 (𝑘). We obtain

Tr 𝐽 (𝑘) 𝛾
(𝑘)
𝑁,𝑡 = Tr 𝐽 (𝑘) 𝒰 (𝑘)(𝑡)𝛾(𝑘)𝑁,0−𝑖

𝑘∑
𝑖<𝑗

∫ 𝑡
0

d𝑠Tr 𝐽 (𝑘) 𝒰 (𝑘)(𝑡−𝑠)[𝑉𝑁 (𝑥𝑖 − 𝑥𝑗), 𝛾
(𝑘)
𝑁,𝑠]

− 𝑖(𝑁 − 𝑘)

𝑘∑
𝑗=1

∫ 𝑡
0

d𝑠Tr𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)[𝑉𝑁 (𝑥𝑗 − 𝑥𝑘+1), 𝛾
(𝑘+1)
𝑁,𝑠 ] .

(8.9)

From (8.2) it follows immediately that

(8.10) Tr 𝐽 (𝑘) 𝛾
(𝑘)
𝑁,𝑡 → Tr 𝐽 (𝑘)𝛾

(𝑘)
∞,𝑡

and also that, as 𝑁 → ∞,

(8.11) Tr 𝐽 (𝑘) 𝒰 (𝑘)(𝑡)𝛾(𝑘)𝑁,0 = Tr
(
𝒰 (𝑘)(−𝑡)𝐽 (𝑘)

)
𝛾
(𝑘)
𝑁,0

→ Tr
(
𝒰 (𝑘)(−𝑡)𝐽 (𝑘)

)
𝛾
(𝑘)
∞,0 = Tr 𝐽 (𝑘) 𝒰 (𝑘)(𝑡)𝛾(𝑘)∞,0 .

Here we used the fact that, if 𝐽 (𝑘) ∈ 𝒦𝑘, then also 𝒰 (𝑘)(−𝑡)𝐽 (𝑘) ∈ 𝒦𝑘.
Next we consider the second term on the r.h.s. of (8.9) and we prove that it

converges to zero, as 𝑁 → ∞. To this end, we note that, setting 𝐽
(𝑘)
𝑡 = 𝒰 (𝑘)(𝑡)𝐽 (𝑘),

we have

𝑘∑
𝑖<𝑗

Tr 𝐽 (𝑘) 𝒰 (𝑘)(𝑡− 𝑠)[𝑉𝑁 (𝑥𝑖 − 𝑥𝑗), 𝛾
(𝑘)
𝑁,𝑠] =

𝑘∑
𝑖<𝑗

Tr 𝐽
(𝑘)
𝑠−𝑡 [𝑉𝑁 (𝑥𝑖 − 𝑥𝑗), 𝛾

(𝑘)
𝑁,𝑠],

and therefore, from (6.12) and (8.6), we obtain that

𝑘∑
𝑖<𝑗

∣∣∣Tr 𝐽 (𝑘) 𝒰 (𝑘)(𝑡−𝑠)[𝑉𝑁 (𝑥𝑖−𝑥𝑗), 𝛾(𝑘)𝑁,𝑠]
∣∣∣ ≤ 𝐶𝑘 ∣∣∣𝐽 (𝑘)𝑠−𝑡∣∣∣

𝑁
≤ 𝐶𝑘(1 + 𝑇 7)∥Ω7𝑘𝐽 (𝑘)Ω7𝑘∥HS

𝑁
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for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 . This implies that for all 𝑘 ∈ ℕ, for all 𝑡 ∈ [0, 𝑇 ] and for all
𝐽 (𝑘) such that (8.3) is true,

(8.12)

𝑘∑
𝑖<𝑗

∫ 𝑡
0

d𝑠Tr 𝐽 (𝑘) 𝒰 (𝑘)(𝑡− 𝑠)
[
𝑉𝑁 (𝑥𝑖 − 𝑥𝑗), 𝛾

(𝑘)
𝑁,𝑠

]
→ 0

as 𝑁 → ∞.
Finally we consider the last term on the r.h.s. of (8.9). First of all, we observe

that, for every 𝑘 ∈ ℕ, 𝑡 ∈ [0, 𝑇 ] and 𝐽 (𝑘) ∈ 𝒦𝑘 such that (8.3) is satisfied, we have

(8.13) 𝑘

𝑘∑
𝑗=1

∫ 𝑡
0

d𝑠Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)
[
𝑉𝑁 (𝑥𝑗 − 𝑥𝑘+1), 𝛾

(𝑘+1)
𝑁,𝑠

]
→ 0

as 𝑁 → ∞. This follows (similarly to (8.12)) from (6.17), and from the bound
(8.6).

It remains to show that, for every fixed 𝑘 ∈ ℕ, 𝑡 ∈ [0, 𝑇 ], and for every 𝐽 (𝑘) ∈ 𝒦𝑘
with (8.3)

𝑁

𝑘∑
𝑗=1

∫ 𝑡
0

d𝑠Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)[𝑉𝑁 (𝑥𝑗 − 𝑥𝑘+1), 𝛾
(𝑘+1)
𝑁,𝑠 ]

→ 8𝜋𝑎0

𝑘∑
𝑗=1

∫ 𝑡
0

d𝑠Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)[𝛿(𝑥𝑗 − 𝑥𝑘+1), 𝛾
(𝑘+1)
∞,𝑠 ]

(8.14)

as 𝑁 → ∞. To prove (8.14), we fix 𝑠 ∈ [0, 𝑡], and we consider, for example, the
contribution with 𝑗 = 1. We write

Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝛾
(𝑘+1)
𝑁,𝑠

= Tr 𝐽
(𝑘)
𝑠−𝑡𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝑊𝑁,(1,𝑘+1)𝑊

∗
𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠 ,

(8.15)

where 𝑊𝑁,(1,𝑘+1) denotes the wave operator associated with the Hamiltonian −Δ+
(1/2)𝑉𝑁 acting only on the variable 𝑥𝑘+1 − 𝑥1 (as defined in (5.2)). Therefore, if
we choose a probability density ℎ ∈ 𝐿1(ℝ3), with ℎ ≥ 0,

∫
d𝑥ℎ(𝑥) = 1, and we

denote ℎ𝛼(𝑥) = 𝛼−3ℎ(𝑥/𝛼) for all 𝛼 > 0, we have

∣∣∣Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝛾
(𝑘+1)
𝑁,𝑠

− 8𝜋𝑎0Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)𝛿(𝑥1 − 𝑥𝑘+1)𝛾
(𝑘+1)
∞,𝑠
∣∣∣

≤
∣∣∣Tr 𝐽

(𝑘)
𝑠−𝑡
[
𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝑊𝑁,(1,𝑘+1) − 8𝜋𝑎0 𝛿(𝑥1 − 𝑥𝑘+1)

]
𝑊 ∗
𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

∣∣∣
+ 8𝜋𝑎0

∣∣∣Tr 𝐽
(𝑘)
𝑠−𝑡 [𝛿(𝑥1 − 𝑥𝑘+1) − ℎ𝛼(𝑥1 − 𝑥𝑘+1)]𝑊

∗
𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

∣∣∣
+ 8𝜋𝑎0

∣∣∣Tr 𝐽
(𝑘)
𝑠−𝑡 ℎ𝛼(𝑥1 − 𝑥𝑘+1) (𝑊 ∗

𝑁,(1,𝑘+1) − 1)𝛾
(𝑘+1)
𝑁,𝑠

∣∣∣
+ 8𝜋𝑎0

∣∣∣Tr 𝐽
(𝑘)
𝑠−𝑡 ℎ𝛼(𝑥1 − 𝑥𝑘+1)

(
𝛾
(𝑘+1)
𝑁,𝑠 − 𝛾(𝑘+1)∞,𝑠

) ∣∣∣
+ 8𝜋𝑎0

∣∣∣Tr 𝐽
(𝑘)
𝑠−𝑡 [ℎ𝛼(𝑥1 − 𝑥𝑘+1) − 𝛿(𝑥1 − 𝑥𝑘+1)] 𝛾

(𝑘+1)
∞,𝑠
∣∣∣.

(8.16)
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Here we insert the wave operator 𝑊𝑁,(1,𝑘+1), because we only have a priori bounds

on the quantity 𝑊 ∗
𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠 . Then we replace 𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝑊𝑁,(1,𝑘+1)

by 8𝜋𝑎0𝛿(𝑥1 − 𝑥𝑘+1). Afterwards, in order to remove the inverse wave operator

𝑊 ∗
𝑁,(1,𝑘+1) and to take the limit 𝛾

(𝑘+1)
𝑁,𝑠 → 𝛾

(𝑘+1)
∞,𝑠 , we need to replace the 𝛿-function

by the bounded potential ℎ𝛼 independent of 𝑁 . At the end, ℎ𝛼 is changed back to
the 𝛿-function.

In Lemma 8.2 and Lemma 8.3 we prove that, for every 𝑘 ∈ ℕ, for every 0 ≤ 𝑠 ≤
𝑡 ≤ 𝑇 , and for every 𝐽 (𝑘) ∈ 𝒦𝑘 with (8.3),
(8.17)∣∣∣Tr 𝐽

(𝑘)
𝑠−𝑡
[
𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝑊𝑁,(1,𝑘+1) − 8𝜋𝑎0 𝛿(𝑥1 − 𝑥𝑘+1)

]
𝑊 ∗
𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

∣∣∣→ 0

as 𝑁 → ∞ and that

(8.18)
∣∣∣Tr 𝐽

(𝑘)
𝑠−𝑡 [𝛿(𝑥1 − 𝑥𝑘+1) − ℎ𝛼(𝑥1 − 𝑥𝑘+1)]𝑊

∗
𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

∣∣∣→ 0

as 𝛼 → 0, uniformly in 𝑁 .
As for the third term on the r.h.s. of (8.16) we remark that, for fixed 𝑘 ∈ ℕ,

𝑠 ∈ [0, 𝑇 ], 𝐽 (𝑘) ∈ 𝒦𝑘 and 𝛼 > 0,

(8.19)
∣∣∣Tr 𝐽

(𝑘)
𝑠−𝑡 ℎ𝛼(𝑥1 − 𝑥𝑘+1)(𝑊

∗
𝑁,(1,𝑘+1) − 1)𝛾

(𝑘+1)
𝑁,𝑠

∣∣∣→ 0

as 𝑁 → ∞. In fact, for the bounded operator 𝐴 = 𝐽
(𝑘)
𝑠−𝑡 ℎ𝛼(𝑥1 − 𝑥𝑘+1), we can use

the spectral decomposition 𝛾
(𝑘+1)
𝑁,𝑠 =

∑
𝑗 𝜆𝑗 ∣𝜉(𝑘+1)𝑗 ⟩⟨𝜉(𝑘+1)𝑗 ∣ with

∑
𝑗 𝜆𝑗 = 1, 𝜆𝑗 > 0,

∥𝜉(𝑘+1)𝑗 ∥ = 1, and estimate

∣∣∣Tr 𝐴 (𝑊 ∗
𝑁,(1,𝑘+1) − 1) 𝛾

(𝑘+1)
𝑁,𝑠

∣∣∣ ≤ ∥𝐴∥
∑
𝑗

𝜆𝑗∥(𝑊 ∗
𝑁,(1,𝑘+1) − 1)𝜉

(𝑘+1)
𝑗 ∥2

≤ 𝐶∥𝐴∥𝑁−1/3 Tr(1 − Δ1 − Δ𝑘+1)𝛾
(𝑘+1)
𝑁,𝑠

≤ 𝐶∥𝐴∥𝑁2/3⟨𝜓𝑁,𝑠, (𝐻𝑁 + 𝑁)𝜓𝑁,𝑠⟩ ≤ 𝐶∥𝐴∥𝑁−1/3

(8.20)

by the energy conservation and (3.1). From the first to the second line we used
Lemma 8.5. Since the operator 𝐴 is bounded for any fixed 𝐽 (𝑘) and 𝛼 > 0, we
obtain (8.19).

To control the fourth term on the r.h.s. of (8.16) we observe that, for arbitrary
𝛿 > 0,

Tr 𝐽
(𝑘)
𝑠−𝑡 ℎ𝛼(𝑥1 − 𝑥𝑘+1)

(
𝛾
(𝑘+1)
𝑁,𝑠 − 𝛾(𝑘+1)∞,𝑠

)
= Tr 𝐽

(𝑘)
𝑠−𝑡 ℎ𝛼(𝑥1 − 𝑥𝑘+1)

1

1 + 𝛿(1 − Δ𝑘+1)1/2

(
𝛾
(𝑘+1)
𝑁,𝑠 − 𝛾(𝑘+1)∞,𝑠

)
+ Tr 𝐽

(𝑘)
𝑠−𝑡 ℎ𝛼(𝑥1 − 𝑥𝑘+1)

(
1 − 1

1 + 𝛿(1 − Δ𝑘+1)1/2

)(
𝛾
(𝑘+1)
𝑁,𝑠 − 𝛾(𝑘+1)∞,𝑠

)
.

(8.21)

The first term on the r.h.s. of the last equation converges to zero, as 𝑁 → ∞, for
every fixed 𝛿, 𝛼 > 0. This follows from assumption (8.2) and from the observation

that 𝐽
(𝑘)
𝑠−𝑡ℎ𝛼(𝑥1 − 𝑥𝑘+1)(1 + 𝛿(1−Δ𝑘+1))

−1 is a compact operator on 𝐿2(ℝ3(𝑘+1)).
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As for the second term, we notice that it can be bounded by∣∣∣Tr 𝐽
(𝑘)
𝑠−𝑡 ℎ𝛼(𝑥1 − 𝑥𝑘+1)

(
1 − 1

1 + 𝛿 (1 − Δ𝑘+1)
1/2

)(
𝛾
(𝑘+1)
𝑁,𝑠 − 𝛾(𝑘+1)∞,𝑠

) ∣∣∣
≤ 𝛿∥𝐽 (𝑘)∥ ∥ℎ𝛼∥∞Tr

∣∣∣(1 − Δ𝑘+1)
1/2
(
𝛾
(𝑘+1)
𝑁,𝑠 − 𝛾(𝑘+1)∞,𝑠

) ∣∣∣
≤ 𝛿𝛼−3∥𝐽 (𝑘)∥∥ℎ∥∞

(
Tr (1 − Δ𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠 + Tr (1 − Δ𝑘+1)𝛾

(𝑘+1)
∞,𝑠
)

≤ 𝐶𝛿𝛼−3

(8.22)

uniformly in 𝑁 . Choosing, for example, 𝛿 = 𝛼4, it follows that

(8.23)
∣∣∣Tr 𝐽

(𝑘)
𝑠−𝑡 ℎ𝛼(𝑥1 − 𝑥𝑘+1)

(
𝛾
(𝑘+1)
𝑁,𝑠 − 𝛾(𝑘+1)∞,𝑠

) ∣∣∣ ≤ 𝜂(𝛼,𝑁) + 𝐶𝛼

where 𝜂(𝛼,𝑁) → 0 as 𝑁 → ∞, for every fixed 𝛼 > 0, and where the constant 𝐶
only depends on 𝐽 (𝑘).

Finally, using Lemma 10.3 and Theorem 7.3, the last term on the r.h.s. of (8.16)
can be controlled by∣∣∣Tr 𝐽

(𝑘)
𝑠−𝑡 [ℎ𝛼(𝑥1 − 𝑥𝑘+1) − 𝛿(𝑥1 − 𝑥𝑘+1)] 𝛾

(𝑘+1)
∞,𝑠
∣∣∣

≤ 𝐶𝛼1/2 ∣∣∣𝐽 (𝑘)𝑠−𝑡∣∣∣Tr (1 − Δ1)(1 − Δ𝑘+1)𝛾
(𝑘+1)
∞,𝑠

≤ 𝐶(𝑘, 𝑇, 𝐽 (𝑘))𝛼1/2 .

(8.24)

From (8.16), (8.17), (8.18), (8.19), (8.23), and (8.24) it follows that, for every
𝑘 ≥ 1, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 , and 𝐽 (𝑘) ∈ 𝒦𝑘 with (8.3),

(8.25)
∣∣∣Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

− 8𝜋𝑎0Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)𝛿(𝑥1 − 𝑥𝑘+1)𝛾
(𝑘+1)
∞,𝑠
∣∣∣→ 0

as 𝑁 → ∞. Similarly to (8.25), we can also prove that

(8.26)
∣∣∣Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)𝛾

(𝑘+1)
𝑁,𝑠 𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)

− 8𝜋𝑎0Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)𝛾(𝑘+1)∞,𝑠 𝛿(𝑥1 − 𝑥𝑘+1)
∣∣∣→ 0

as 𝑁 → ∞. Since (8.25) and (8.26) remain valid if we replace 𝑥1 by any 𝑥𝑗 ,
𝑗 = 2, . . . , 𝑘, in the potentials, it follows that, for every 𝑘 ≥ 1, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 , and
𝐽 (𝑘) ∈ 𝒦𝑘 with (8.3),∣∣∣ 𝑘∑

𝑗=1

(
Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)

[
𝑁𝑉𝑁 (𝑥𝑗 − 𝑥𝑘+1), 𝛾

(𝑘+1)
𝑁,𝑠

]
− 8𝜋𝑎0Tr 𝐽 (𝑘)𝒰 (𝑘)(𝑡− 𝑠)

[
𝛿(𝑥𝑗 − 𝑥𝑘+1), 𝛾

(𝑘+1)
∞,𝑠
] )∣∣∣→ 0

(8.27)

as 𝑁 → ∞. From (6.17) (with 𝐽 (𝑘) replaced by 𝒰 (𝑘)(𝑠− 𝑡)𝐽 (𝑘), using the fact that
∣∣∣𝒰 (𝑘)(𝑠−𝑡)𝐽 (𝑘)∣∣∣ ≤ 𝐶𝑇 for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 ) and from an estimate similar to (6.17)

but with 𝛾
(𝑘+1)
𝑁,𝑠 replaced by 𝛾

(𝑘+1)
∞,𝑠 and 𝑁𝑉𝑁 (𝑥𝑗 − 𝑥𝑘+1) replaced by 𝛿(𝑥𝑗 − 𝑥𝑘+1),

we can now apply the dominated convergence theorem to conclude (8.14). □
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The following lemmas are important ingredients in the proof of Theorem 8.1.

Lemma 8.2. Under the same assumptions as Theorem 8.1 and using the notation

𝐽
(𝑘)
𝑡 = 𝒰 (𝑘)(𝑡)𝐽 (𝑘), we have, for every 𝑘 ≥ 1, ℓ = 1, . . . , 𝑘, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 , 𝐽 (𝑘) ∈ 𝒦𝑘

such that (8.3) is satisfied,

∣∣∣Tr 𝐽 (𝑘)𝑠−𝑡 [𝑁𝑉𝑁 (𝑥ℓ − 𝑥𝑘+1)𝑊𝑁,(ℓ,𝑘+1) − 8𝜋𝑎0 𝛿(𝑥ℓ − 𝑥𝑘+1)
]
𝑊 ∗
𝑁,(ℓ,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

∣∣∣→ 0

as 𝑁 → ∞.

Proof. We fix ℓ = 1. Decomposing 𝛾
(𝑘+1)
𝑁,𝑠 =

∑
𝑗 𝜆𝑗 ∣𝜉(𝑘+1)𝑗 ⟩⟨𝜉(𝑘+1)𝑗 ∣ and introducing

the variables 𝑢 = (𝑥1 + 𝑥𝑘+1)/2 and 𝑣 = 𝑥1 − 𝑥𝑘+1, we find

Tr 𝐽
(𝑘)
𝑠−𝑡𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

=
∑
𝑗

𝜆𝑗

∫
d𝑢d𝑣d𝑥2 . . . d𝑥𝑘dx

′
𝑘𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘)𝑁𝑉𝑁 (𝑣)

× 𝜉
(𝑘+1)
𝑗 (𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2) 𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢− 𝑣/2).

(8.28)

The potential 𝑉𝑁 (𝑣) forces 𝑣 to be of order 1/𝑁 . Using this fact, we are going to

remove the 𝑣-dependence from the observable and from the wave function 𝜉
(𝑘+1)

𝑗 .

After removing this 𝑣-dependence, we introduce the wave operator using its 𝐿2-
unitarity. We find

(8.29)

Tr 𝐽
(𝑘)
𝑠−𝑡𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

=
∑
𝑗

𝜆𝑗

∫
d𝑢d𝑣d𝑥2...d𝑥𝑘dx

′
𝑘𝑁𝑉𝑁 (𝑣) 𝜉

(𝑘+1)
𝑗 (𝑢+ 𝑣/2, 𝑥2, ..., 𝑥𝑘, 𝑢− 𝑣/2)

×
[
𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢− 𝑣/2)

−𝐽 (𝑘)𝑠−𝑡(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)
]

+
∑
𝑗

𝜆𝑗

∫
d𝑢d𝑣d𝑥2...d𝑥𝑘dx

′
𝑘𝑁(𝑊 ∗

𝑁𝑉𝑁 )(𝑣) 𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢, 𝑥2, ..., 𝑥𝑘) 𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)

×
[
(𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, ..., 𝑥𝑘, 𝑢− 𝑣/2)

−(𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢, 𝑥2, ..., 𝑥𝑘, 𝑢)

]
+
∑
𝑗

𝜆𝑗

(∫
d𝑣 (𝑊 ∗

𝑁𝑉𝑁 )(𝑣)

)∫
d𝑢d𝑥2 . . .d𝑥𝑘dx

′
𝑘 𝐽

(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)

× 𝜉
(𝑘+1)

𝑗 (x′
𝑘, 𝑢)(𝑊 ∗

𝑁,(1,𝑘+1)𝜉
(𝑘+1)
𝑗 )(𝑢, 𝑥2, . . . , 𝑥𝑘, 𝑢).
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From Lemma 8.4, we know that∫
d𝑣 𝑁(𝑊 ∗

𝑁𝑉𝑁 )(𝑣) = 8𝜋𝑎0 .

Therefore, from (8.29), we obtain that

(8.30)∣∣∣Tr 𝐽
(𝑘)
𝑠−𝑡
[
𝑁𝑉𝑁 (𝑥1 − 𝑥𝑘+1)𝑊𝑁,(1,𝑘+1) − 8𝜋𝑎0 𝛿(𝑥1 − 𝑥𝑘+1)

]
𝑊 ∗
𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

∣∣∣
≤
∑
𝑗

𝜆𝑗

∫
d𝑢d𝑣d𝑥2 . . .d𝑥𝑘dx

′
𝑘𝑁𝑉𝑁 (𝑣) ∣𝜉(𝑘+1)𝑗 (𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)∣

×
∣∣∣𝐽 (𝑘)𝑠−𝑡(x′

𝑘;𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘)𝜉
(𝑘+1)

𝑗 (x′
𝑘, 𝑢− 𝑣/2)

− 𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)
∣∣∣

+
∑
𝑗

𝜆𝑗

∣∣∣∫ d𝑢d𝑣d𝑥2 . . .d𝑥𝑘dx
′
𝑘𝑁(𝑊 ∗

𝑁𝑉𝑁 )(𝑣)𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)

×
[
(𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

−(𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢, 𝑥2, . . . , 𝑥𝑘, 𝑢)

] ∣∣∣
=:
∑
𝑗

𝜆𝑗 (I𝑗 + II𝑗) .

The terms I𝑗 can be bounded exactly like the term I on the r.h.s. of (6.14), after

replacing 𝐽 (𝑘) by 𝐽
(𝑘)
𝑠−𝑡. Following the steps (6.15)-(6.16), we find that

(8.31)
∑
𝑗

𝜆𝑗 I𝑗 ≤
𝐶𝑘 ∣∣∣𝐽 (𝑘)𝑠−𝑡∣∣∣
𝑁1/2

Tr (−Δ1 − Δ𝑘+1 + 1)𝑊 ∗
𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠 𝑊𝑁,(1,𝑘+1),

which converges to zero as 𝑁 → ∞ for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 and all observables 𝐽 (𝑘)

satisfying (8.3) (here we used the a priori estimate given in Proposition 5.3 and the
observation (8.6)).

Next, we consider the second term on the r.h.s. of (8.30):

II𝑗 =
∣∣∣ ∫ d𝑢d𝑣d𝑥2 . . . d𝑥𝑘dx

′
𝑘 𝐽

(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)

(8.32)

× (𝑁3(𝑊 ∗𝑉 )(𝑁𝑣) − 𝛿(𝑣)
)
(𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

∣∣∣ .
To control this contribution, we first insert a cutoff 𝜒(𝑣); this will allow us to apply
Lemma 10.2 to bound the integral over 𝑢 and 𝑣. To this end, we choose a function
𝜒 ∈ 𝐶∞

0 (ℝ3) such that 0 ≤ 𝜒(𝑥) ≤ 1, 𝜒(𝑥) = 1 for ∣𝑥∣ ≤ 1 and 𝜒(𝑥) = 0 for ∣𝑥∣ ≥ 2,
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and we put �̄� = 1 − 𝜒. Using 𝜒, we decompose the r.h.s. of (8.32) in two parts:

II𝑗 ≤
∣∣∣ ∫ d𝑢d𝑣d𝑥2 . . .d𝑥𝑘dx

′
𝑘 𝐽

(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)𝜒(𝑣)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)

× [𝑁3(𝑊 ∗𝑉 )(𝑁𝑣) − 𝛿(𝑣)
]
(𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

∣∣∣
+
∣∣∣ ∫ d𝑢d𝑣d𝑥2 . . .d𝑥𝑘dx

′
𝑘 𝐽

(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)�̄�(𝑣)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)

×𝑁3(𝑊 ∗𝑉 )(𝑁𝑣)(𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

∣∣∣
=: A𝑗 + B𝑗 .

(8.33)

The term B𝑗 can be bounded by

B𝑗 ≤
∫

d𝑢d𝑣d𝑥2 . . .d𝑥𝑘dx
′
𝑘

∣∣∣𝐽 (𝑘)𝑠−𝑡(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)

∣∣∣ �̄�(𝑣)𝑁3(𝑊 ∗𝑉 )(𝑁𝑣)

×
(
∣𝜉(𝑘+1)𝑗 (x′

𝑘, 𝑢)∣2 +
∣∣∣(𝑊 ∗

𝑁,(1,𝑘+1)𝜉
(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

∣∣∣2)
≤ ∥𝜉(𝑘+1)𝑗 ∥2

(
sup
𝑢,x′

𝑘

∫
d𝑥2 . . .d𝑥𝑘

∣∣∣𝐽 (𝑘)𝑠−𝑡(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)

∣∣∣) ∫
∣𝑣∣≥𝑁

∣(𝑊 ∗𝑉 )(𝑣)∣d𝑣

+

(
sup
x𝑘

∫
dx′
𝑘

∣∣∣𝐽 (𝑘)𝑠−𝑡(x′
𝑘;x𝑘)
∣∣∣)

×
∫

d𝑥1 . . . d𝑥𝑘+1�̄�(𝑥1 − 𝑥𝑘+1)𝑁
3(𝑊 ∗𝑉 )(𝑁(𝑥1 − 𝑥𝑘+1))

×
∣∣∣(𝑊 ∗

𝑁,(1,𝑘+1)𝜉
(𝑘+1)
𝑗 )(x𝑘, 𝑥𝑘+1)

∣∣∣2.
From Lemma 10.1, we obtain

(8.34)
∑
𝑗

𝜆𝑗 B𝑗 ≤ 𝐶(𝑘, 𝑇, 𝐽 (𝑘))

(∫
∣𝑣∣≥𝑁

d𝑣 ∣(𝑊 ∗𝑉 )(𝑣)∣
)

×
(
Tr
(
(∇1 ⋅ ∇2)2 − Δ1 − Δ2 + 1

)
𝑊𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠 𝑊 ∗

𝑁,(1,𝑘+1)

)
→ 0

as 𝑁 → ∞. Here we used Proposition 5.3 and the fact that, since 𝑊 ∗𝑉 ∈ 𝐿1(ℝ3),

∫
∣𝑥∣>𝑁

∣𝑊 ∗𝑉 (𝑥)∣d𝑥 → 0 as 𝑁 → ∞.

As for the term A𝑗 on the r.h.s. of (8.33), Lemma 10.2 implies that there exists
a sequence 𝛿𝑁 → 0 as 𝑁 → ∞ (𝛿𝑁 corresponds to the sequence 𝛽1/𝑁 defined in
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Lemma 10.2, with 𝑉 replaced by 𝑊 ∗𝑉 ) such that

A𝑗 ≤ 𝛿𝑁

∫
d𝑥2 . . . d𝑥𝑘dx

′
𝑘

×
(∫

d𝑢d𝑣
∣∣∣ ((Δ𝑢 − Δ𝑣)

2 − Δ𝑢 − Δ𝑣 + 1
)1/2

×
(
𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗

)
(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

∣∣∣2)1/2
×
(∫

d𝑢d𝑣
∣∣∣(1 − Δ𝑢 + Δ2𝑣)

1/2𝜒(𝑣) 𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)
∣∣∣2)1/2

≤ 𝛿𝑁∥𝜒∥𝐻2

∫
d𝑥2 . . .d𝑥𝑘dx

′
𝑘

(∫
d𝑢
∣∣∣(1 − Δ𝑢)

1/2𝜉
(𝑘+1)

𝑗 (x′
𝑘, 𝑢)
∣∣∣2)1/2

× sup
𝑢

[∣∣∣𝐽 (𝑘)𝑠−𝑡(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)

∣∣∣+ ∣∣∣∇𝑢 𝐽 (𝑘)𝑠−𝑡(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)

∣∣∣]
×
(∫

d𝑢d𝑣
∣∣∣ ((Δ𝑢 − Δ𝑣)

2 − Δ𝑢 − Δ𝑣 + 1
)1/2

×
(
𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗

)
(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

∣∣∣2)1/2.

(8.35)

With a Schwarz inequality, we find

A𝑗 ≤ 𝛿𝑁∥𝜒∥𝐻2

∫
d𝑥2 . . .d𝑥𝑘dx

′
𝑘

× sup
𝑢

[∣∣∣𝐽 (𝑘)𝑠−𝑡(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)

∣∣∣+ ∣∣∣∇𝑢 𝐽 (𝑘)𝑠−𝑡(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)

∣∣∣]
×
(∫

d𝑢
∣∣∣(1 − Δ𝑢)

1/2𝜉
(𝑘+1)

𝑗 (x′
𝑘, 𝑢)
∣∣∣2

+

∫
d𝑢d𝑣
∣∣∣ ((Δ𝑢 − Δ𝑣)

2 − Δ𝑢 − Δ𝑣 + 1
)1/2

×
(
𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗

)
(𝑢+ 𝑣/2, 𝑥2, ..., 𝑥𝑘, 𝑢− 𝑣/2)

∣∣∣2)
≤ 𝐶(𝑘, 𝑇, 𝐽 (𝑘)) 𝛿𝑁

(
⟨𝜉(𝑘+1)𝑗 , (1 − Δ𝑢)𝜉

(𝑘+1)
𝑗 ⟩

+⟨𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 ,
(
(∇1 ⋅ ∇𝑘+1)2 − Δ1 − Δ𝑘+1 + 1

)
𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 ⟩
)
.

(8.36)

From Lemma 10.2 and Proposition 5.3, we find

(8.37)
∑
𝑗

𝜆𝑗 A𝑗 ≤ 𝐶𝛿𝑁 → 0 as 𝑁 → ∞,

and this, with (8.34), implies that∑
𝑗

𝜆𝑗II𝑗 → 0 as 𝑁 → ∞ .

Together with (8.31) and (8.30), this concludes the proof of the lemma. □
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Lemma 8.3. Under the same conditions as in Theorem 8.1, we have, for every
𝑘 ≥ 1, ℓ = 1, . . . , 𝑘, 0 ≤ 𝑠 ≤ 𝑇 , and 𝐽 (𝑘) ∈ 𝒦𝑘 satisfying (8.3),∣∣∣Tr 𝐽 (𝑘)𝑠−𝑡 [𝛿(𝑥ℓ − 𝑥𝑘+1) − ℎ𝛼(𝑥ℓ − 𝑥𝑘+1)]𝑊

∗
𝑁,(ℓ,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

∣∣∣→ 0

as 𝛼 → 0, uniformly in 𝑁 . Here we use the notation 𝐽
(𝑘)
𝑡 = 𝒰 (𝑘)(𝑡)𝐽 (𝑘).

Proof. We fix ℓ = 1. Using the decomposition 𝛾
(𝑘+1)
𝑁,𝑠 =

∑
𝑗 𝜆𝑗 ∣𝜉(𝑘+1)𝑗 ⟩⟨𝜉(𝑘+1)𝑗 ∣, we

find that∣∣∣Tr 𝐽
(𝑘)
𝑠−𝑡 [𝛿(𝑥1 − 𝑥𝑘+1) − ℎ𝛼(𝑥1 − 𝑥𝑘+1)]𝑊

∗
𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

∣∣∣
≤
∑
𝑗

𝜆𝑗

∣∣∣ ∫ d𝑢d𝑣d𝑥2 . . . d𝑥𝑘dx
′
𝑘 𝐽

(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘) [𝛿(𝑣) − ℎ𝛼(𝑣)]

× 𝜉
(𝑘+1)

𝑗 (x′
𝑘, 𝑢− 𝑣/2)(𝑊 ∗

𝑁,(1,𝑘+1)𝜉
(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

∣∣∣
≤
∑
𝑗

𝜆𝑗

∣∣∣ ∫ d𝑢d𝑣d𝑥2 . . . d𝑥𝑘dx
′
𝑘 ℎ𝛼(𝑣)

×
[
𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢− 𝑣/2)

× (𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

− 𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)(𝑊 ∗

𝑁,(1,𝑘+1)𝜉
(𝑘+1)
𝑗 )(𝑢, 𝑥2, . . . , 𝑥𝑘, 𝑢)

] ∣∣∣ .
Similarly to (8.29), we first replace 𝑣 by 0 in 𝐽

(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘,

𝑢− 𝑣/2) and then in (𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2). We obtain

∣∣∣Tr 𝐽
(𝑘)
𝑠−𝑡 [𝛿(𝑥1 − 𝑥𝑘+1) − ℎ𝛼(𝑥1 − 𝑥𝑘+1)]𝑊

∗
𝑁,(1,𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

∣∣∣
≤
∑
𝑗

𝜆𝑗

∣∣∣ ∫ d𝑢d𝑣d𝑥2 . . .d𝑥𝑘dx
′
𝑘 ℎ𝛼(𝑣)

× (𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

×
[
𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢− 𝑣/2)

−𝐽 (𝑘)𝑠−𝑡(x′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)
] ∣∣∣

+
∑
𝑗

𝜆𝑗

∣∣∣ ∫ d𝑢d𝑣d𝑥2 . . .d𝑥𝑘dx
′
𝑘 ℎ𝛼(𝑣) 𝐽

(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)

×
[
(𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

−(𝑊 ∗
𝑁,(1,𝑘+1)𝜉

(𝑘+1)
𝑗 )(𝑢, 𝑥2, . . . , 𝑥𝑘, 𝑢)

] ∣∣∣
=:
∑
𝑗

𝜆𝑗 (III𝑗 + IV𝑗) .

(8.38)
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To bound the first term, we expand the difference in an integral[
𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢− 𝑣/2)

− 𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢)
]

=

∫ 1/2
0

d𝑟 𝑣 ⋅ ∇1𝐽 (𝑘)𝑠−𝑡(x′
𝑘;𝑢+ 𝑟𝑣, 𝑥2, . . . , 𝑥𝑘)𝜉

(𝑘+1)

𝑗 (x′
𝑘, 𝑢− 𝑟𝑣)

−
∫ 1/2
0

d𝑟 𝐽
(𝑘)
𝑠−𝑡(x

′
𝑘;𝑢+ 𝑟𝑣, 𝑥2, . . . , 𝑥𝑘)𝑣 ⋅ ∇𝑘+1𝜉(𝑘+1)𝑗 (x′

𝑘, 𝑢− 𝑟𝑣)

(8.39)

and we obtain that

III𝑗 ≤
∫

d𝑢d𝑣d𝑥2 . . .d𝑥𝑘dx
′
𝑘

∫ 1/2
0

d𝑟 ℎ𝛼(𝑣)∣𝑣∣

×
∣∣∣(𝑊 ∗

𝑁𝜉
(𝑘+1)
𝑗 )(𝑢+ 𝑣/2, 𝑥2, . . . , 𝑥𝑘, 𝑢− 𝑣/2)

∣∣∣
×
(∣∣∣∇1𝐽 (𝑘)𝑠−𝑡(x′

𝑘;𝑢+ 𝑟𝑣, 𝑥2, . . . , 𝑥𝑘)
∣∣∣∣𝜉(𝑘+1)𝑗 (x′

𝑘, 𝑢− 𝑟𝑣)∣

+
∣∣∣𝐽 (𝑘)𝑠−𝑡(x′

𝑘;𝑢+ 𝑟𝑣, 𝑥2, . . . , 𝑥𝑘)
∣∣∣∣∣∣∇𝑘+1𝜉(𝑘+1)𝑗 (x′

𝑘, 𝑢− 𝑟𝑣)
∣∣∣) ,

(8.40)

which implies that∑
𝑗

𝜆𝑗 III𝑗 ≤ 𝛼 𝐶(𝑘, 𝑇, 𝐽 (𝑘))
(
Tr (1 − Δ𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

+Tr
(
(∇1 ⋅ ∇𝑘+1)2 − Δ1 − Δ𝑘+1 + 1

)
𝛾
(𝑘+1)
𝑁,𝑠

)
≤ 𝐶 𝛼.

The terms IV𝑗 can be estimated similarly to the terms II𝑗 considered in (8.32). In
particular, analogously to (8.34) and (8.37), we also find∑
𝑗

𝜆𝑗 IV𝑗 ≤ 𝐶(𝑘, 𝑇, 𝐽 (𝑘)) 𝛽𝛼

(
Tr (1 − Δ𝑘+1)𝛾

(𝑘+1)
𝑁,𝑠

+Tr
(
(∇1 ⋅ ∇𝑘+1)2 − Δ1 − Δ𝑘+1 + 1

)
𝛾
(𝑘+1)
𝑁,𝑠

)
≤ 𝐶𝛽𝛼,

where 𝛽𝛼 → 0 as 𝛼 → 0 uniformly in 𝑁 (the sequence 𝛽𝛼 comes from Lemma 10.2,
with 𝑉 replaced by ℎ). This concludes the proof of the lemma. □

Lemma 8.4. Suppose that 𝑉 ≥ 0, with 𝑉 (𝑥) ≤ 𝐶⟨𝑥⟩−𝜎 for some 𝜎 > 5 (this
implies, in particular, that 𝑉 ∈ 𝐿1(ℝ3) ∩ 𝐿2(ℝ3) and thus that 𝑉 is in the Rollnik
class of potentials). Let 𝑊 denote the wave operator (as defined in Proposition 5.1)
associated with the Hamiltonian 𝔥 = −Δ + (1/2)𝑉 (𝑥). Then∫

d𝑥 (𝑊 ∗𝑉 )(𝑥) = 8𝜋𝑎0,

where 𝑎0 is the scattering length of the potential 𝑉 .

Proof. First of all, we observe that, under the assumption that 𝑉 ≥ 0 and 𝑉 (𝑥) ≤
𝐶⟨𝑥⟩−𝜎, for some 𝜎 > 5, the operator 𝔥 = −Δ + (1/2)𝑉 cannot have a zero
energy resonance (recall that a zero-energy resonance of 𝔥 is a solution 𝜑 of (−Δ +
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(1/2)𝑉 )𝜑 = 0 such that ∣𝜑(𝑥)∣ ≤ 𝐶/∣𝑥∣ for all 𝑥 ∈ ℝ
3); this can be proven using

the maximum principle. We will make use of this observation in the proof of this
lemma.

Next, we note that, since 𝑊 ∗ maps 𝐿1(ℝ3) into 𝐿1(ℝ3) (see Proposition 5.1),
we have that (𝑊 ∗𝑉 ) ∈ 𝐿1(ℝ3), and thus∫

d𝑥 (𝑊 ∗𝑉 )(𝑥) = lim
𝜀→0

∫
d𝑥 (𝑊 ∗𝑉 )(𝑥) 𝜒𝜀(𝑥) = lim

𝜀→0

∫
d𝑥𝑉 (𝑥)(𝑊𝜒𝜀)(𝑥)(8.41)

with

𝜒𝜀(𝑥) =
1

1 + 𝜀𝑥2
.

We expand 𝑊𝜒𝜀 in terms of solutions 𝜑(𝑥, 𝑘) of the Lippman-Schwinger equation

(8.42) 𝜑(𝑥, 𝑘) = 𝑒𝑖𝑘⋅𝑥 − 1

8𝜋

∫
d𝑦

𝑒𝑖∣𝑘∣∣𝑥−𝑦∣

∣𝑥− 𝑦∣ 𝑉 (𝑦)𝜑(𝑦, 𝑘) .

It follows from [24, Theorem XI.41, a)] that Eq. (8.42) has a unique solution
𝜑(𝑥, 𝑘), such that 𝜑(𝑥, 𝑘)𝑉 1/2(𝑥) ∈ 𝐿2(ℝ3), for all 𝑘 ∈ ℝ

3 such that 𝑘2 ∕∈ ℰ , for an
exceptional set ℰ with Lebesgue measure zero. The set ℰ consists of all values of
𝑘2 for which zero is an eigenvalue of the operator

(8.43) 𝑀∣𝑘∣ = 1 +
1

2
𝑉 1/2

1

−Δ − 𝑘2
𝑉 1/2 .

From the observation that the operator 𝔥 = −Δ + (1/2)𝑉 does not have a zero
energy resonance, it follows immediately that 0 ∕∈ ℰ . In fact, if 𝑀0𝜓 = 0 for some
𝜓 ∈ 𝐿2(ℝ3), then

𝜓(𝑥) = −1

2
𝑉 1/2(𝑥)

∫
d𝑦

1

∣𝑥− 𝑦∣𝑉
1/2(𝑦)𝜓(𝑦) ,

which implies that 𝜓(𝑥)/𝑉 1/2(𝑥) ≤ 𝐶/∣𝑥∣ for ∣𝑥∣ ≫ 1 and thus that 𝜑(𝑥) :=
𝜓(𝑥)/𝑉 1/2(𝑥) is a zero-energy resonance solution of (−Δ + (1/2)𝑉 )𝜑 = 0. Since
𝑀0 is a nonnegative Fredholm operator with no eigenvalue at zero, it follows that
there exists 𝜆 > 0 with 𝜎(𝑀0) ⊂ (𝜆,∞) (here 𝜎(𝑀0) indicates the spectrum of
𝑀0). Since moreover 𝑀∣𝑘∣ −𝑀0 is a compact operator with kernel

(8.44)
(
𝑀∣𝑘∣ −𝑀0

)
(𝑥; 𝑦) =

1

2
𝑉 1/2(𝑥)

𝑒𝑖∣𝑘∣∣𝑥−𝑦∣ − 1

∣𝑥− 𝑦∣ 𝑉 1/2(𝑦),

we obtain that

∥𝑀∣𝑘∣ −𝑀0∥2HS =
1

4

∫
d𝑥d𝑦 𝑉 (𝑥)𝑉 (𝑦)

∣∣𝑒𝑖∣𝑘∣∣𝑥−𝑦∣ − 1
∣∣2

∣𝑥− 𝑦∣2 ≤ ∣𝑘∣2∥𝑉 ∥2𝐿1

4
(8.45)

and thus that there exists 𝜅 > 0 such that 𝜎(𝑀∣𝑘∣) ⊂ (𝜆/2,∞) for all ∣𝑘∣ ≤ 𝜅. In
particular it follows that

(8.46) ∥𝑀−1
∣𝑘∣ ∥ ≤ 2/𝜆 for all 𝑘 ∈ ℝ

3 with ∣𝑘∣ ≤ 𝜅.

From [24, Theorem XI.41, e)] we also find

(𝑊𝜒𝜀)(𝑥) = L.I.M. (2𝜋)−3/2
∫

d𝑘 𝜑(𝑥, 𝑘)𝜒𝜀(𝑘) = L.I.M.

∫
d𝑘 𝜑(𝑥, 𝑘)

𝑒−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀 ,

(8.47)
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where L.I.M. denotes the 𝐿2-limit as 𝑀 → ∞ and 𝛿 → 0 of the integral over
{𝑘 ∈ ℝ

3 : ∣𝑘∣ ≤ 𝑀 and dist (𝑘2, ℰ) > 𝛿}. Inserting (8.47) on the r.h.s. of (8.41), we
find (recalling that 𝜅 > 0 is chosen such that (8.46) holds true)∫

d𝑥 (𝑊 ∗𝑉 )(𝑥) 𝜒𝜀(𝑥) =

∫
∣𝑘∣>𝜅

d𝑥d𝑘 𝑉 (𝑥)𝜑(𝑥, 𝑘)
𝑒−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀

+

∫
∣𝑘∣≤𝜅

d𝑥d𝑘 𝑉 (𝑥)𝜑(𝑥, 𝑘)
𝑒−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀 .

(8.48)

The first term on the r.h.s. of (8.48) can be controlled by∣∣∣∣∣
∫
∣𝑘∣>𝜅

d𝑥d𝑘 𝑉 (𝑥)𝜑(𝑥, 𝑘)
𝑒−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀

∣∣∣∣∣ =
∣∣∣∣∣
∫
∣𝑘∣>𝜅

d𝑘 𝑉 ♯(𝑘)
𝑒−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀

∣∣∣∣∣
≤ 𝐶 ∥𝑉 ♯∥𝐿2

(∫
∣𝑘∣≥𝜅

d𝑘
𝑒−2∣𝑘∣/

√
𝜀

∣𝑘∣2𝜀2
)1/2

≤ 𝐶∥𝑉 ∥𝐿2

𝑒−𝜅/(2
√
𝜀)

𝜀3/4
→ 0,

(8.49)

as 𝜀 → 0. Here we introduced the function

𝑉 ♯(𝑘) = l.i.m.(2𝜋)−3/2
∫

d𝑥𝑉 (𝑥)𝜑(𝑥, 𝑘),

where l.i.m. denotes the 𝐿2-limit of the integral over ∣𝑥∣ ≤ 𝑀 as 𝑀 → ∞. The
existence of 𝑉 ♯ for 𝑉 ∈ 𝐿2(ℝ3) and the fact that ∥𝑉 ♯∥𝐿2 ≤ ∥𝑉 ∥𝐿2 (actually, in our
case, ∥𝑉 ♯∥𝐿2 = ∥𝑉 ∥𝐿2) are proven in [24, Theorem IX.41]. As for the second term
on the r.h.s. of (8.48), we have

∫
∣𝑘∣≤𝜅

d𝑘d𝑥𝑉 (𝑥)𝜑(𝑥, 𝑘)
𝑒−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀 =

∫
∣𝑘∣≤𝜅

d𝑘d𝑥𝑉 (𝑥)𝜑(𝑥, 0)
𝑒−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀

+

∫
∣𝑘∣≤𝜅

d𝑘d𝑥𝑉 (𝑥) (𝜑(𝑥, 𝑘)−𝜑(𝑥, 0))
𝑒−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀
=
(
1 − (1 + 𝜅𝜀−1/2)𝑒−𝜅𝜀

−1/2
)∫

d𝑥𝑉 (𝑥)𝜑(𝑥, 0)

+

∫
∣𝑘∣≤𝜅

d𝑘d𝑥𝑉 (𝑥) (𝜑(𝑥, 𝑘)−𝜑(𝑥, 0))
𝑒−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀 .

(8.50)

Using the fact that 𝜑(𝑥, 0) is the solution of the zero energy scattering equation

(−Δ + (1/2)𝑉 (𝑥))𝜑(𝑥, 0) = 0

with the boundary condition 𝜑(𝑥, 0) → 1 as ∣𝑥∣ → ∞, it follows that (see (1.6))

(8.51)

∫
d𝑥𝑉 (𝑥)𝜑(𝑥, 0) = 8𝜋𝑎0 .

To bound the second term on the r.h.s. of (8.50), we define

𝜓𝑘(𝑥) = 𝑉 1/2(𝑥)𝜑(𝑥, 𝑘)
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and we observe that, from the Lippman-Schwinger equation (8.42),

𝜓𝑘(𝑥) − 𝜓0(𝑥) = 𝑉 1/2(𝑥)
(
𝑒𝑖𝑘⋅𝑥 − 1

)
− 1

8𝜋

∫
d𝑦𝑉 1/2(𝑥)

𝑒𝑖∣𝑘∣∣𝑥−𝑦∣

∣𝑥− 𝑦∣ 𝑉
1/2(𝑦) (𝜓𝑘(𝑦) − 𝜓0(𝑦))

− 1

8𝜋

∫
d𝑦𝑉 1/2(𝑥)

𝑒𝑖∣𝑘∣∣𝑥−𝑦∣ − 1

∣𝑥− 𝑦∣ 𝑉 1/2(𝑦)𝜓0(𝑦) ,

(8.52)

which implies that (with 𝑀∣𝑘∣ defined in (8.43))[
𝑀∣𝑘∣ (𝜓𝑘 − 𝜓0)

]
(𝑥)

= 𝑉 1/2(𝑥)
(
𝑒𝑖𝑘⋅𝑥 − 1

)− 1

4𝜋

∫
d𝑦𝑉 1/2(𝑥)

𝑒𝑖∣𝑘∣∣𝑥−𝑦∣ − 1

∣𝑥− 𝑦∣ 𝑉 1/2(𝑦)𝜓0(𝑦) .
(8.53)

By (8.46), we have

∥∥∥𝜓𝑘 − 𝜓0

∥∥∥
𝐿2

≤ 𝐶

(∥∥∥𝑉 1/2(𝑥)
(
𝑒𝑖𝑘⋅𝑥 − 1

) ∥∥∥
𝐿2

+ ∥𝑉 1/2∥𝐿2 ∣𝑘∣
∫

𝑉 1/2(𝑦)∣𝜓0(𝑦)∣
)

≤ 𝐶∣𝑘∣
(
∥∣𝑥∣2𝑉 ∥1/2𝐿1 + ∥𝑉 ∥3/2𝐿1

)
≤ 𝐶∣𝑘∣ .

(8.54)

Therefore, the second term on the r.h.s. of (8.50) can be bounded by∣∣∣ ∫
∣𝑘∣≤𝜅

d𝑘d𝑥𝑉 (𝑥) (𝜑(𝑥, 𝑘) − 𝜑(𝑥, 0))
𝑒−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀
∣∣∣

≤
∫
∣𝑘∣≤𝜅

d𝑘d𝑥𝑉 1/2(𝑥) ∣𝜓𝑘(𝑥) − 𝜓0(𝑥)∣ 𝑒
−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀

≤ ∥𝑉 ∥1/2𝐿1

∫
∣𝑘∣≤𝜅

d𝑘 ∥𝜓𝑘 − 𝜓0∥𝐿2

𝑒−∣𝑘∣/√𝜀

4𝜋∣𝑘∣𝜀

≤ 𝐶∥𝑉 ∥1/2𝐿1

∫
∣𝑘∣≤𝜅

d𝑘
𝑒−∣𝑘∣/√𝜀

𝜀

≤ 𝐶𝜀1/2,

(8.55)

and thus it converges to zero as 𝜀 → 0. The last equation, together with (8.41),
(8.48), (8.49), (8.50), and (8.51), concludes the proof of the lemma. □

Lemma 8.5. Suppose that 𝑉 ≥ 0 and 𝑉 (𝑥) ≤ 𝐶⟨𝑥⟩−𝜎, for some 𝜎 ≥ 5. Then, for
every 𝑔 ∈ 𝐿2(ℝ3, d𝑥), we have∥∥∥ (𝑊𝑁 − 1) 𝑔

∥∥∥ ≤ 𝐶𝑁−1/6∥𝑔∥𝐻1 .

Proof. Let 𝔥𝑁 = −Δ + (1/2)𝑉𝑁 (𝑥). Since

𝑊𝑁 = 𝑠− lim
𝑡→∞ 𝑒𝑖𝔥𝑁 𝑡𝑒𝑖Δ𝑡,

it is enough to prove that

(8.56) sup
𝑡∈ℝ

∥∥(𝑒−𝑖𝔥𝑁 𝑡 − 𝑒𝑖Δ𝑡
)
𝑔
∥∥ ≤ 𝐶𝑁−1/6∥𝑔∥𝐻1 .
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Note that

d

d𝑡

∥∥(𝑒−𝑖𝔥𝑁 𝑡 − 𝑒𝑖Δ𝑡
)
𝑔
∥∥2 = 2Im ⟨𝑒−𝑖𝔥𝑁 𝑡𝑔, 𝑉𝑁 (𝑥)𝑒𝑖Δ𝑡𝑔⟩,

which implies that

(8.57)
∥∥(𝑒−𝑖𝔥𝑁 𝑡 − 𝑒𝑖Δ𝑡

)
𝑔
∥∥2 ≤ 2

∫ 𝑡
0

d𝑠
∣∣⟨𝑒−𝑖𝔥𝑁𝑠𝑔, 𝑉𝑁 (𝑥)𝑒𝑖Δ𝑠𝑔⟩∣∣ .

Next we observe that∣∣⟨𝑒−𝑖𝔥𝑁𝑠𝑔, 𝑉𝑁 (𝑥)𝑒𝑖Δ𝑠𝑔⟩∣∣ ≤ ∥𝑒−𝑖𝔥𝑁𝑠𝑔∥∞ ∥𝑒𝑖Δ𝑠𝑔∥∞ ∥𝑉𝑁∥1
≤ ∥𝑉 ∥1 ∥𝑔∥21 ∥𝑊∥∞→∞ ∥𝑊 ∗∥1→1

𝑁𝑠3
,

(8.58)

where we used the fact that

∥𝑊𝑁∥𝑝→𝑝 = ∥𝑊∥𝑝→𝑝
for every 𝑁 and 1 ≤ 𝑝 ≤ ∞. For small 𝑠 we need a different estimate of the
integrand on the r.h.s. of (8.57). To this end we remark that∣∣⟨𝑒−𝑖𝔥𝑁𝑠𝑔, 𝑉𝑁 (𝑥)𝑒𝑖Δ𝑠𝑔⟩∣∣ ≤ ⟨𝑒𝑖𝔥𝑁𝑠𝑔, 𝑉𝑁 (𝑥)𝑒𝑖𝔥𝑁𝑠𝑔⟩1/2 ⟨𝑒𝑖Δ𝑠𝑔, 𝑉𝑁 (𝑥)𝑒𝑖Δ𝑠𝑔⟩

≤ 𝐶 ∥𝑉𝑁∥3/2∥∇𝑒𝑖𝔥𝑁𝑠𝑔∥∥∇𝑒𝑖Δ𝑠𝑔∥
≤ 𝐶 ∥𝑉 ∥3/2(1 + ∥𝑉 ∥3/2)1/2 ∥𝑔∥2𝐻1 ,

(8.59)

where we used the fact that ∥𝑉𝑁∥3/2 = ∥𝑉 ∥3/2 and we estimated

∥∇𝑒𝑖𝔥𝑁𝑠𝑔∥2 = ⟨𝑒𝑖𝔥𝑁𝑠𝑔,−Δ𝑒𝑖𝔥𝑁𝑠𝑔⟩ ≤ ⟨𝑔, 𝔥𝑁𝑔⟩ ≤ (1 + ∥𝑉 ∥3/2)∥𝑔∥2𝐻1 .

Combining (8.58) and (8.59), we obtain from (8.57)∥∥(𝑒−𝑖𝔥𝑁 𝑡 − 𝑒𝑖Δ𝑡
)
𝑔
∥∥2 ≤ 2

∫ 𝑁−𝛼

0

d𝑠 ∥𝑉 ∥3/2(1 + ∥𝑉 ∥3/2)1/2 ∥𝑔∥2𝐻1

+ 2

∫ 𝑡
𝑁−𝛼

d𝑠
∥𝑉 ∥1 ∥𝑔∥2𝐻1 ∥𝑊∥∞→∞ ∥𝑊 ∗∥1→1

𝑁𝑠3

≤
(
𝐶1𝑁

−𝛼 + 𝐶2𝑁
2𝛼−1
)
∥𝑔∥2𝐻1

(8.60)

for every 𝑡 ∈ ℝ. Choosing 𝛼 = 1/3, we obtain (8.56). □

9. Approximation of the initial data

In this section we show how to regularize the initial wave function 𝜓𝑁 given in
Theorem 3.2.

Proposition 9.1. Suppose that 𝜓𝑁 ∈ 𝐿2(ℝ3𝑁 ) with ∥𝜓𝑁∥ = 1 is a family of
𝑁-particle wave functions with

(9.1) ⟨𝜓𝑁 , 𝐻𝑁𝜓𝑁 ⟩ ≤ 𝐶𝑁

and with one-particle marginal density 𝛾
(1)
𝑁 such that

(9.2) 𝛾
(1)
𝑁 → ∣𝜑⟩⟨𝜑∣ as 𝑁 → ∞

for a 𝜑 ∈ 𝐻1(ℝ3). For 𝜅 > 0 we define

(9.3) 𝜓𝑁 :=
𝜒(𝜅𝐻𝑁/𝑁)𝜓𝑁
∥𝜒(𝜅𝐻𝑁/𝑁)𝜓𝑁∥ .



RIGOROUS DERIVATION OF THE GROSS-PITAEVSKII EQUATION 1143

Here 𝜒 ∈ 𝐶∞
0 (ℝ) is a cutoff function such that 0 ≤ 𝜒 ≤ 1, 𝜒(𝑠) = 1 for 0 ≤ 𝑠 ≤ 1

and 𝜒(𝑠) = 0 for 𝑠 ≥ 2. We denote by 𝛾
(𝑘)
𝑁 , for 𝑘 = 1, . . . , 𝑁 , the marginal densities

associated with 𝜓𝑁 .

i) For every integer 𝑘 ≥ 1 we have

(9.4) ⟨𝜓𝑁 , 𝐻𝑘𝑁 𝜓𝑁 ⟩ ≤ 2𝑘𝑁𝑘

𝜅𝑘
.

ii) We have

sup
𝑁

∥𝜓𝑁 − 𝜓𝑁∥ ≤ 𝐶𝜅1/2 .

iii) For 𝜅 > 0 small enough and for every fixed 𝑘 ≥ 1 we have

(9.5) lim
𝑁→∞

Tr
∣∣∣𝛾(𝑘)𝑁 − ∣𝜑⟩⟨𝜑∣⊗𝑘

∣∣∣ = 0 .

Proof. For the proof of part i) and ii), see [12, Proposition 8.1]. To prove iii), we
begin by noticing (see (1.2)) that it is enough to show that

lim
𝑁→∞

Tr
∣∣∣𝛾(1)𝑁 − ∣𝜑⟩⟨𝜑∣

∣∣∣ = 0 .

Moreover, since the limiting density is an orthogonal projection, trace-norm con-
vergence is equivalent to weak* convergence. In other words, it is enough to prove
that, for every compact operator 𝐽 (1) ∈ 𝒦1 and for every 𝜀 > 0, there exists
𝑁0 = 𝑁0(𝐽

(1), 𝜀) such that

(9.6)
∣∣∣Tr 𝐽 (1)

(
𝛾
(1)
𝑁 − ∣𝜑⟩⟨𝜑∣

) ∣∣∣ ≤ 𝜀

for 𝑁 > 𝑁0. To show (9.6), we start by observing that, from (9.2), there exists a

sequence 𝜉
(𝑁−1)
𝑁 ∈ 𝐿2(ℝ3(𝑁−1)) with ∥𝜉(𝑁−1)

𝑁 ∥ = 1 such that

(9.7) ∥𝜓𝑁 − 𝜑⊗ 𝜉
(𝑁−1)
𝑁 ∥ → 0 as 𝑁 → ∞ .

This was proven by Alessandro Michelangeli in [23] using the following argument.
Choose an orthonormal basis {𝑓𝑖}𝑖≥1 of 𝐿2(ℝ3) with 𝑓1 = 𝜑. Also choose an

orthonormal basis {𝑔𝑗}𝑗≥1 of 𝐿2(ℝ3(𝑁−1)). Then one can write

𝜓𝑁 =
∑
𝑖𝑗

𝛼
(𝑁)
𝑖𝑗 𝑓𝑖 ⊗ 𝑔𝑗

and

∣𝜓𝑁 ⟩⟨𝜓𝑁 ∣ =
∑
𝑖,𝑗,𝑖′,𝑗′

𝛼
(𝑁)
𝑖,𝑗 𝛼

(𝑁)
𝑖′,𝑗′ ∣𝑓𝑖⟩⟨𝑓𝑖′ ∣ ⊗ ∣𝑔𝑗⟩⟨𝑔𝑗′ ∣ .

This implies that

𝛾
(1)
𝑁 =
∑
𝑗

⎛⎝∣𝛼(𝑁)1,𝑗 ∣2∣𝜑⟩⟨𝜑∣ + 𝛼
(𝑁)
1,𝑗

∑
𝑖 ∕=1

𝛼
(𝑁)
𝑖,𝑗 ∣𝜑⟩⟨𝑓𝑖∣

+𝛼
(𝑁)
1,𝑗

∑
𝑖 ∕=1

𝛼
(𝑁)
𝑖,𝑗 ∣𝑓𝑖⟩⟨𝜑∣ +

∑
𝑖,𝑖′ ∕=1

𝛼
(𝑁)
𝑖,𝑗 𝛼

(𝑁)
𝑖′,𝑗 ∣𝑓𝑖⟩⟨𝑓𝑖′ ∣

⎞⎠
and therefore, using (9.2), that ∑

𝑗

∣𝛼(𝑁)1,𝑗 ∣2 → 1
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as 𝑁 → ∞. Thus, putting 𝜉
(𝑁−1)
𝑁 =

∑
𝑗 𝛼

(𝑁)
1,𝑗 𝑔𝑗 , we get

∥𝜓𝑁 − 𝜑⊗ 𝜉
(𝑁−1)
𝑁 ∥2 =

∑
𝑗

∑
𝑖 ∕=1

∣𝛼(𝑁)𝑖,𝑗 ∣2 = 1 −
∑
𝑗

∣𝛼(𝑁)1,𝑗 ∣2 → 0

as 𝑁 → ∞. It is then simple to check that 𝜉
(𝑁−1)
𝑁 = 𝜉

(𝑁−1)
𝑁 /∥𝜉(𝑁−1)

𝑁 ∥ satisfies
(9.7).

On the other hand, there exists 𝜑∗ ∈ 𝐻2(ℝ3) with ∥𝜑∗∥ = 1 and such that

∥𝜑− 𝜑∗∥ ≤ 𝜀

32∥𝐽 (1)∥ .

Let Ξ = 𝜒(𝜅𝐻𝑁/𝑁). Then

∥(Ξ − 1)𝜓𝑁∥2 ≤ 𝜅

𝑁
⟨𝜓𝑁 , 𝐻𝑁𝜓𝑁 ⟩ ≤ 𝐶𝜅

independently of 𝑁 . Therefore, choosing 𝜅 > 0 so small that ∥Ξ𝜓𝑁∥ ≥ 1/2, we find∥∥∥∥∥∥ Ξ𝜓𝑁
∥Ξ𝜓𝑁∥ −

Ξ
(
𝜑∗ ⊗ 𝜉

(𝑁−1)
𝑁

)
∥Ξ
(
𝜑∗ ⊗ 𝜉

(𝑁−1)
𝑁

)
∥

∥∥∥∥∥∥ ≤ 2

∥Ξ𝜓𝑁∥
∥∥∥Ξ(𝜓𝑁 − 𝜑∗ ⊗ 𝜉

(𝑁−1)
𝑁

)∥∥∥
≤ 4
∥∥∥𝜓𝑁 − 𝜑∗ ⊗ 𝜉

(𝑁−1)
𝑁

∥∥∥
≤ 4
∥∥∥𝜓𝑁 − 𝜑⊗ 𝜉

(𝑁−1)
𝑁

∥∥∥+ 4∥𝜑− 𝜑∗∥
≤ 𝜀

6∥𝐽 (1)∥

(9.8)

for all 𝑁 sufficiently large. Next we define the Hamiltonian

(9.9) �̂�𝑁 := −
𝑁∑
𝑗=2

Δ𝑗 +
𝑁∑

1<𝑖<𝑗

𝑉𝑁 (𝑥𝑖 − 𝑥𝑗) .

Note that �̂�𝑁 acts only on the last 𝑁−1 variables. We set Ξ̂ := 𝜒(𝜅�̂�𝑁/𝑁). Then
we claim that, if 𝜀 > 0 is small enough,∥∥∥ Ξ𝜓𝑁

∥Ξ𝜓𝑁∥ −
Ξ̂
(
𝜑∗ ⊗ 𝜉

(𝑁−1)
𝑁

)
∥Ξ̂
(
𝜑∗ ⊗ 𝜉

(𝑁−1)
𝑁

)
∥

∥∥∥ ≤ 𝜀

3∥𝐽 (1)∥(9.10)

for 𝑁 sufficiently large. The proof of (9.10) can be found in [12, Proposition 8.1].
To get (9.6) we define

𝜓𝑁 :=
Ξ̂
(
𝜑∗ ⊗ 𝜉

(𝑁−1)
𝑁

)
∥Ξ̂
(
𝜑∗ ⊗ 𝜉

(𝑁−1)
𝑁

)
∥

= 𝜑∗ ⊗ Ξ̂𝜉
(𝑁−1)
𝑁

∥Ξ̂𝜉(𝑁−1)
𝑁 ∥

,

where we used the fact that Ξ̂ acts only on the last 𝑁 − 1 variables and the fact
that ∥𝜑∗∥ = 1. Define

𝛾
(1)
𝑁 (𝑥1;𝑥

′
1) :=

∫
dx𝑁−1 𝜓𝑁 (𝑥1,x𝑁−𝑘)𝜓𝑁 (𝑥′1,x𝑁−𝑘) .

Note that 𝜓𝑁 is not symmetric in all variables, but it is symmetric in the last 𝑁−1

variables. In particular, 𝛾
(1)
𝑁 is a density matrix and clearly 𝛾

(1)
𝑁 = ∣𝜑∗⟩⟨𝜑∗∣. There-

fore, since ∥𝜓𝑁 − 𝜓𝑁∥ ≤ 𝜀/(3∥𝐽 (1)∥) by (9.10) and since ∥𝜑− 𝜑∗∥ ≤ 𝜀/(32∥𝐽 (1)∥),
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we have ∣∣∣Tr 𝐽 (1)
(
𝛾
(1)
𝑁 − ∣𝜑⟩⟨𝜑∣

) ∣∣∣ ≤ ∣∣∣Tr 𝐽 (1)
(
𝛾
(1)
𝑁 − ∣𝜑∗⟩⟨𝜑∗∣

) ∣∣∣
+
∣∣∣Tr 𝐽 (1) (∣𝜑∗⟩⟨𝜑∗∣ − ∣𝜑⟩⟨𝜑∣)

∣∣∣
≤ 2∥𝐽 (1)∥ ∥𝜓𝑁 − 𝜓𝑁∥ + 2∥𝐽 (1)∥ ∥𝜑− 𝜑∗∥ ≤ 𝜀

(9.11)

for 𝑁 sufficiently large (for arbitrary 𝜅, 𝜀 > 0 small enough). This proves (9.6). □

10. Poincaré-Sobolev type inequalities

In the proof of the convergence we need to estimate potentials converging to a
delta function, and their difference to a normalized 𝛿-function. To this end we make
use of the following three lemmas.

Lemma 10.1. Suppose 𝑉 ∈ 𝐿1(ℝ3). Then

∣⟨𝜑, 𝑉 (𝑥1 − 𝑥2)𝜓⟩∣ ≤ 𝐶∥𝑉 ∥1 ⟨𝜓,
(
(∇1 ⋅ ∇2)2 − Δ1 − Δ2 + 1

)
𝜓⟩1/2

× ⟨𝜑, ((∇1 ⋅ ∇2)2 − Δ1 − Δ2 + 1
)
𝜑⟩1/2

(10.1)

for every 𝜓, 𝜑 ∈ 𝐿2(ℝ6, d𝑥1, d𝑥2).

Proof. Switching to Fourier space, we find

⟨𝜑, 𝑉 (𝑥1 − 𝑥2)𝜓⟩ =

∫
d𝑝1d𝑝2d𝑞1d𝑞2 𝜑(𝑝1, 𝑝2)𝜓(𝑞1, 𝑞2)

× 𝑉 (𝑞1 − 𝑝1) 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2) .

(10.2)

Therefore, by a weighted Schwarz inequality,

∣∣∣⟨𝜑, 𝑉 (𝑥1 − 𝑥2)𝜓⟩
∣∣∣

≤ ∥𝑉 ∥∞
(∫

d𝑝1d𝑝2d𝑞1d𝑞2
(𝑝1 ⋅ 𝑝2)2 + 𝑝21 + 𝑝22 + 1

(𝑞1 ⋅ 𝑞2)2 + 𝑞21 + 𝑞22 + 1

× ∣𝜑(𝑝1, 𝑝2)∣2𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

)1/2
×
(∫

d𝑝1d𝑝2d𝑞1d𝑞2
(𝑞1 ⋅ 𝑞2)2 + 𝑞21 + 𝑞22 + 1

(𝑝1 ⋅ 𝑝2)2 + 𝑝21 + 𝑝22 + 1
∣𝜓(𝑞1, 𝑞2)∣2 𝛿(𝑝1+𝑝2−𝑞1−𝑞2)

)
1/2

≤ ∥𝑉 ∥1
(

sup
𝑝

∫
d𝑞

1

(𝑞 ⋅ (𝑝− 𝑞))2 + 𝑞2 + (𝑝− 𝑞)2 + 1

)
×〈𝜓,((∇1 ⋅ ∇2)2−Δ1−Δ2+1

)
𝜓
〉1/2 〈

𝜑,
(
(∇1 ⋅ ∇2)2 − Δ1 − Δ2 + 1

)
𝜑
〉1/2

.

(10.3)

The lemma will then follow from

(10.4) sup
𝑝∈ℝ3

∫
d𝑞

1

(𝑞 ⋅ (𝑝− 𝑞))2 + 𝑞2 + (𝑝− 𝑞)2 + 1
< ∞ .
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To prove (10.4), we proceed as follows:∫
d𝑞

1

(𝑞 ⋅ (𝑝− 𝑞))2 + 𝑞2 + (𝑝− 𝑞)2 + 1

=

∫
∣𝑞− 𝑝

2 ∣>∣𝑝∣
d𝑞

1((
𝑞 − 𝑝

2

)2 − 𝑝2

4

)2
+ 𝑞2 + (𝑝− 𝑞)2 + 1

+

∫
∣𝑞− 𝑝

2 ∣<∣𝑝∣
d𝑞

1((
𝑞 − 𝑝

2

)2 − 𝑝2

4

)2
+ 𝑞2 + (𝑝− 𝑞)2 + 1

.

(10.5)

The first term on the r.h.s. of the last equation is bounded by

∫
∣𝑞− 𝑝

2 ∣>∣𝑝∣
d𝑞

1((
𝑞 − 𝑝

2

)2 − 𝑝2

4

)2
+ 𝑞2 + (𝑝− 𝑞)2 + 1

≤
∫
∣𝑞− 𝑝

2 ∣>∣𝑝∣
d𝑞

1
9
16

∣∣𝑞 − 𝑝
2

∣∣4 + 1

≤ 16

9

∫
ℝ3

d𝑞
1

∣𝑞∣4 + 1
< ∞ ,

(10.6)

uniformly in 𝑝 ∈ ℝ
3. As for the second term on the r.h.s. of (10.5), we observe that∫

∣𝑞− 𝑝
2 ∣<∣𝑝∣

d𝑞
1((

𝑞 − 𝑝
2

)2 − 𝑝2

4

)2
+ 𝑞2 + (𝑝− 𝑞)2 + 1

=

∫
∣𝑥∣<∣𝑝∣

d𝑥
1(

𝑥2 − 𝑝2

4

)2
+
(
𝑥+ 𝑝

2

)2
+
(
𝑥− 𝑝

2

)2
+ 1

= 4𝜋

∫ ∣𝑝∣

0

d𝑟
𝑟2(

𝑟2 − ∣𝑝∣2
4

)2
+ 2𝑟2 + ∣𝑝∣2

2 + 1

≤ 𝐶∣𝑝∣2
∫ ∣𝑝∣/2

−∣𝑝∣/2
d𝑟

1

𝑟2 (𝑟 + ∣𝑝∣)2 +
(
𝑟 + ∣𝑝∣

2

)2
+ ∣𝑝∣2

4 + 1

≤ 𝐶

∫ ∣𝑝∣/2

−∣𝑝∣/2
d𝑟

1

𝑟2 + 1
≤ 𝐶

∫
ℝ

d𝑟
1

𝑟2 + 1
< ∞,

(10.7)

uniformly in 𝑝. □

Lemma 10.2. Suppose 𝑉 ∈ 𝐿1(ℝ3) with
∫
𝑉 (𝑥)d𝑥 = 1. For 𝛼 > 0 , let 𝑉𝛼(𝑥) =

𝛼−3𝑉 (𝑥/𝛼). Then there exists a sequence 𝛽𝛼 with 𝛽𝛼 → 0 as 𝛼 → 0 such that

∣⟨𝜑, (𝑉𝛼(𝑥1 − 𝑥2) − 𝛿(𝑥1 − 𝑥2))𝜓⟩∣
≤ 𝐶𝛽𝛼 ⟨𝜓,

(
(∇1 ⋅ ∇2)2 − Δ1 − Δ2 + 1

)
𝜓⟩1/2

× ⟨𝜑, ((∇1 −∇2)4 + (∇1 + ∇2)2 + 1
)
𝜑⟩1/2,

(10.8)

for all 𝜑, 𝜓 ∈ 𝐿2(ℝ6).

Proof. Switching to Fourier space we find〈
𝜑,
(
𝑉𝛼(𝑥1 − 𝑥2) − 𝛿(𝑥1 − 𝑥2)

)
𝜓
〉

= I + II ,
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where we defined

I =

∫
∣𝑥⋅(𝑝1−𝑞1)∣<𝛼−1/2

d𝑝1d𝑝2d𝑞1d𝑞2d𝑥𝑉 (𝑥)𝜑(𝑝1, 𝑝2)

×
(
𝑒𝑖𝛼𝑥⋅(𝑝1−𝑞1) − 1

)
𝜓(𝑞1, 𝑞2)𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2),

II =

∫
∣𝑥⋅(𝑝1−𝑞1)∣≥𝛼−1/2

d𝑝1d𝑝2d𝑞1d𝑞2d𝑥𝑉 (𝑥)𝜑(𝑝1, 𝑝2)

×
(
𝑒𝑖𝛼𝑥⋅(𝑝1−𝑞1) − 1

)
𝜓(𝑞1, 𝑞2)𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2) .

(10.9)

To bound the first term we use the fact that ∣𝑒𝑖𝜅 − 1∣ ≤ ∣𝜅∣, for 𝜅 ∈ ℝ, and we
observe that

∣I∣ ≤ 𝛼1/2∥𝑉 ∥1
∫

d𝑝1d𝑝2d𝑞1d𝑞2

√∣𝑝1 − 𝑝2∣4 + (𝑝1 + 𝑝2)2 + 1√
(𝑞1 ⋅ 𝑞2)2 + 𝑞21 + 𝑞22 + 1

∣𝜑(𝑝1, 𝑝2)∣

×
√

(𝑞1 ⋅ 𝑞2)2 + 𝑞21 + 𝑞22 + 1√∣𝑝1 − 𝑝2∣4 + (𝑝1 + 𝑝2)2 + 1
∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2).

(10.10)

With a Schwarz inequality, we obtain that

∣I∣ ≤ 𝛼1/2∥𝑉 ∥1
(∫

d𝑝1d𝑝2d𝑞1d𝑞2
∣𝑝1 − 𝑝2∣4 + (𝑝1 + 𝑝2)

2 + 1

(𝑞1 ⋅ 𝑞2)2 + 𝑞21 + 𝑞22 + 1

× ∣𝜑(𝑝1, 𝑝2)∣2 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)
)1/2

×
(∫

d𝑝1d𝑝2d𝑞1d𝑞2

√
(𝑞1 ⋅ 𝑞2)2 + 𝑞21 + 𝑞22 + 1√∣𝑝1 − 𝑝2∣4 + (𝑝1 + 𝑝2)2 + 1

× ∣𝜓(𝑞1, 𝑞2)∣2 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)
)1/2

≤ 𝛼1/2∥𝑉 ∥1
〈
𝜑,
(
(∇1 −∇2)4 + (∇1 + ∇2)2 + 1

)
𝜑
〉1/2

×
〈
𝜓,
(
(∇1 ⋅ ∇2)2 − Δ1 − Δ2 + 1

)
𝜓
〉1/2

×
(

sup
𝑝∈ℝ3

∫
d𝑞

∣𝑞 − 𝑝∣4 + 𝑝2 + 1

)1/2

×
(

sup
𝑞∈ℝ3

∫
d𝑝

(𝑝 ⋅ (𝑞 − 𝑝))2 + 𝑝2 + (𝑞 − 𝑝)2 + 1

)1/2
.

From

sup
𝑝∈ℝ3

∫
d𝑞

∣𝑞 − 𝑝∣4 + 𝑝2 + 1
≤
∫

d𝑞

∣𝑞∣4 + 1
< ∞

and (10.4) it follows that

∣I∣ ≤ 𝐶𝛼1/2
〈
𝜑,
(
(∇1 −∇2)4 + (∇1 + ∇2)2 + 1

)
𝜑
〉1/2

×
〈
𝜓,
(
(∇1 ⋅ ∇2)2 − Δ1 − Δ2 + 1

)
𝜓
〉1/2

.

(10.11)
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In order to control the second term in (10.9), we bound it by

∣II∣ ≤ 2

∫
∣𝑥⋅(𝑝1−𝑞1)∣≥𝛼−1/2

d𝑝1d𝑝2d𝑞1d𝑞2d𝑥 ∣𝑉 (𝑥)∣ ∣𝜑(𝑝1, 𝑝2)∣

× ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

≤ 2

∫
∣𝑥∣≥𝛼−1/4

d𝑝1d𝑝2d𝑞1d𝑞2d𝑥 ∣𝑉 (𝑥)∣ ∣𝜑(𝑝1, 𝑝2)∣

× ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

+ 2

∫
∣𝑝1−𝑞1∣≥𝛼−1/4

d𝑝1d𝑝2d𝑞1d𝑞2d𝑥 ∣𝑉 (𝑥)∣ ∣𝜑(𝑝1, 𝑝2)∣

× ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

≤ 𝛽1,𝛼

∫
d𝑝1d𝑝2d𝑞1d𝑞2 ∣𝜑(𝑝1, 𝑝2)∣ ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

+ 2∥𝑉 ∥1
∫
∣𝑝1−𝑞1∣≥𝛼−1/4

d𝑝1d𝑝2d𝑞1d𝑞2 ∣𝜑(𝑝1, 𝑝2)∣

× ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

≤ 𝛽1,𝛼
〈
𝜑,
(
(∇1 −∇2)4 + (∇1 + ∇2)2 + 1

)
𝜑
〉1/2

× 〈𝜓, ((∇1 ⋅ ∇2)4 − Δ1 − Δ2 + 1
)
𝜓
〉1/2

+ 2∥𝑉 ∥1
∫
∣𝑝1−𝑞1∣≥𝛼−1/4

d𝑝1d𝑝2d𝑞1d𝑞2∣𝜑(𝑝1, 𝑝2)∣ ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1+𝑝2−𝑞1−𝑞2) ,

(10.12)

where we defined

𝛽1,𝛼 = 2

∫
∣𝑥∣≥𝛼−1/4

∣𝑉 (𝑥)∣

and we bounded the first integral analogously as we did with the integral in (10.10).
Note that 𝛽1,𝛼 → 0 as 𝛼 → 0, because 𝑉 ∈ 𝐿1(ℝ3). We still need to control the
last integral on the r.h.s. of the last equation. To this end, we observe that

∫
∣𝑝1−𝑞1∣≥𝛼−1/4

d𝑝1d𝑝2d𝑞1d𝑞2 ∣𝜑(𝑝1, 𝑝2)∣ ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

≤ 2

∫
∣𝑞1∣≥𝛼−1/4/8

d𝑝1d𝑝2d𝑞1d𝑞2 ∣𝜑(𝑝1, 𝑝2)∣ ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

+

∫
∣𝑞2∣≥𝛼−1/4/8

d𝑝1d𝑝2d𝑞1d𝑞2 ∣𝜑(𝑝1, 𝑝2)∣ ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

+

∫
∣𝑝1∣≥𝛼−1/4/2

∣𝑞1+𝑞2∣≤𝛼−1/4/4

d𝑝1d𝑝2d𝑞1d𝑞2 ∣𝜑(𝑝1, 𝑝2)∣ ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2) .

(10.13)
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The first two terms can be bounded by∫
∣𝑞𝑗 ∣≥𝛼−1/4/8

d𝑝1d𝑝2d𝑞1d𝑞2 ∣𝜑(𝑝1, 𝑝2)∣ ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

≤ 𝐶𝛼1/12
〈
𝜑,
(
(∇1 −∇2)4 + (∇1 + ∇2)2 + 1

)
𝜑
〉1/2

× 〈𝜓, ((∇1 ⋅ ∇2)4 − Δ1 − Δ2 + 1
)
𝜓
〉1/2

(10.14)

which holds for both 𝑗 = 1, 2 and for a universal constant 𝐶, independent of 𝛼, 𝜑, 𝜓.
To show (10.14) note that, proceeding as in (10.10) (for example for 𝑗 = 1), we
have

∫
∣𝑞1∣≥𝛼−1/4/8

d𝑝1d𝑝2d𝑞1d𝑞2 ∣𝜑(𝑝1, 𝑝2)∣ ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

≤ 〈𝜑, ((∇1 −∇2)4+(∇1 + ∇2)2 + 1
)
𝜑
〉1/2 〈

𝜓,
(
(∇1 ⋅ ∇2)4 − Δ1 − Δ2 + 1

)
𝜓
〉1/2

×
(

sup
𝑞∈ℝ3

∫
d𝑝

(𝑝 ⋅ (𝑞 − 𝑝))2 + 𝑝2 + (𝑞 − 𝑝)2 + 1

)1/2

×
(

sup
𝑝∈ℝ3

∫
∣𝑞∣≥𝛼−1/4/8

d𝑞

∣𝑞 − 𝑝∣4 + 𝑝2 + 1

)1/2
,

(10.15)

and thus (10.14) follows from (10.4) and

sup
𝑝∈ℝ3

∫
∣𝑞∣≥𝛼−1/4/8

d𝑞

∣𝑞 − 𝑝∣4 + 𝑝2 + 1

≤ (8𝛼1/4)1/3 sup
𝑝∈ℝ3

∫
d𝑞

∣𝑞∣1/3
∣𝑞 − 𝑝∣4 + 𝑝2 + 1

≤ (8𝛼1/4)1/3

(
sup
𝑞,𝑝∈ℝ3

∣𝑞 + 𝑝∣1/3
(∣𝑞∣4 + 𝑝2 + 1)1/6

) ∫
d𝑞

(∣𝑞∣4 + 1)5/6

≤ 𝐶𝛼1/12 .

(10.16)

As for the last term on the r.h.s. of (10.13), we note that

∫
∣𝑝1∣≥𝛼−1/4/2

∣𝑞1+𝑞2∣≤𝛼−1/4/4

d𝑝1d𝑝2d𝑞1d𝑞2 ∣𝜑(𝑝1, 𝑝2)∣ ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

≤ 〈𝜑, ((∇1 −∇2)4 + (∇1 + ∇2)2 + 1
)
𝜑
〉1/2 〈

𝜓,
(
(∇1 ⋅ ∇2)4 − Δ1 − Δ2 + 1

)
𝜓
〉1/2

×
(

sup
𝑝∈ℝ3

∫
d𝑞

∣𝑞 − 𝑝∣4 + 𝑝2 + 1

)1/2

×
(

sup
𝑞

∫
∣𝑝∣≥2∣𝑞∣

∣𝑝∣≥𝛼−1/4/2

d𝑝

(𝑝 ⋅ (𝑞 − 𝑝))2 + 𝑝2 + (𝑞 − 𝑝)2 + 1

)1/2
.

(10.17)
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Since

∫
∣𝑝∣≥2∣𝑞∣

∣𝑝∣≥𝛼−1/4/2

d𝑝

(𝑝 ⋅ (𝑞 − 𝑝))2 + 𝑝2 + (𝑞 − 𝑝)2 + 1

≤ (2𝛼1/4)1/3
∫
∣𝑝∣≥2∣𝑞∣

d𝑝
∣𝑝∣1/3((

𝑝− 𝑞
2

)2 − 𝑞2

4

)2
+ 𝑝2 + (𝑞 − 𝑝)2 + 1

≤ 𝐶𝛼1/12
∫
∣𝑝∣≥∣𝑞∣

d𝑝

∣∣𝑝+ 𝑞
2

∣∣1/2(
𝑝2 − 𝑞2

4

)2
+ 𝑝2 + 𝑞2

4 + 1

≤ 𝐶𝛼1/12
∫

d𝑝
∣𝑝∣1/2

9
16 ∣𝑝∣4 + 1

≤ 𝐶𝛼1/12 ,

(10.18)

it follows that the last term on the r.h.s. of (10.13) is bounded by∫
∣𝑝1∣≥𝛼−1/4/2

∣𝑞1+𝑞2∣≤𝛼−1/4/2

d𝑝1d𝑝2d𝑞1d𝑞2 ∣𝜑(𝑝1, 𝑝2)∣ ∣𝜓(𝑞1, 𝑞2)∣ 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

≤ 𝐶𝛼1/12
〈
𝜑,
(
(∇1 −∇2)4 + (∇1 + ∇2)2 + 1

)
𝜑
〉1/2

× 〈𝜓, ((∇1 ⋅ ∇2)4 − Δ1 − Δ2 + 1
)
𝜓
〉1/2

.

(10.19)

From the last equation, (10.14), (10.13), and (10.12), it follows that

∣II∣ ≤ 𝐶(𝛽1,𝛼 + 𝛼1/12)

× 〈𝜑, ((∇1 −∇2)4 + (∇1 + ∇2)2 + 1
)
𝜑
〉1/2

× 〈𝜓, ((∇1 ⋅ ∇2)4 − Δ1 − Δ2 + 1
)
𝜓
〉1/2

.

This together with (10.11), implies (10.8) with 𝛽𝛼 = 𝐶(𝛽1,𝛼 + 𝛼1/12 + 𝛼1/2). □

When dealing with the limit points 𝛾
(𝑘)
∞,𝑡, for which we have stronger a priori

estimates, we will make use of the following lemma, whose proof can be found in
[11] (Lemma 8.2).

Lemma 10.3. Suppose that 𝛿𝛼(𝑥) is a function satisfying

0 ≤ 𝛿𝛼(𝑥) ≤ 𝐶𝛼−31(∣𝑥∣ ≤ 𝛼)

and
∫
𝛿𝛼(𝑥)d𝑥 = 1 (for example 𝛿𝛼(𝑥) = 𝛼−3𝑔(𝑥/𝛼), for a bounded probability

density 𝑔(𝑥) supported in {𝑥 : ∣𝑥∣ ≤ 1}). Moreover, for 𝐽 (𝑘) ∈ 𝒦𝑘 and for 𝑗 =
1, . . . , 𝑘, we define the norm

∣∣∣𝐽 (𝑘)∣∣∣𝑗 := sup
x𝑘,x′

𝑘

⟨𝑥1⟩4 . . . ⟨𝑥𝑘⟩4⟨𝑥′1⟩4 . . . ⟨𝑥′𝑘⟩4

×
(
∣𝐽 (𝑘)(x𝑘;x′

𝑘)∣ + ∣∇𝑥𝑗𝐽 (𝑘)(x𝑘;x′
𝑘)∣ + ∣∇𝑥′𝑗𝐽 (𝑘)(x𝑘;x′

𝑘)∣
)(10.20)
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and 𝑆𝑗 = (1−Δ𝑥𝑗 ) (here ⟨𝑥⟩2 := 1 + 𝑥2). Then if 𝛾(𝑘+1)(x𝑘+1;x
′
𝑘+1) is the kernel

of a density matrix on 𝐿2(ℝ3(𝑘+1)), we have, for any 𝑗 ≤ 𝑘,

∣∣∣ ∫ dx𝑘+1dx
′
𝑘+1 𝐽

(𝑘)(x𝑘;x
′
𝑘)
(
𝛿𝛼1

(𝑥𝑘+1 − 𝑥′𝑘+1)𝛿𝛼2
(𝑥𝑗 − 𝑥𝑘+1)

−𝛿(𝑥𝑘+1 − 𝑥′𝑘+1)𝛿(𝑥𝑗 − 𝑥𝑘+1)
)
𝛾(𝑘+1)(x𝑘+1;x

′
𝑘+1)
∣∣∣

≤ 𝐶𝑘 ∣∣∣𝐽 (𝑘)∣∣∣𝑗 (𝛼1 +
√
𝛼2) Tr ∣𝑆𝑗𝑆𝑘+1𝛾(𝑘+1)𝑆𝑗𝑆𝑘+1∣ .

(10.21)

The same bound holds if 𝑥𝑗 is replaced with 𝑥′𝑗 in (10.21) by symmetry.

Appendix A. Properties of the cutoff function 𝜃
(𝑛)
𝑖

Recall the cutoff functions Θ
(𝑛)
𝑘 = Θ

(𝑛)
𝑘 (x) defined for 𝑘 = 1, . . . , 𝑁 and 𝑛 ∈ ℕ

in Eq. (7.4). In the following lemma, whose proof can be found in [12, Appendix
A], we collect some of their important properties which were used in the energy
estimate, Proposition 7.1.

Lemma A.1. i) The functions Θ
(𝑛)
𝑘 are monotonic in both indices; that is,

for any 𝑛, 𝑘 ∈ ℕ,

Θ
(𝑛)
𝑘+1 ≤ Θ

(𝑛)
𝑘 ≤ 1 , Θ

(𝑛+1)
𝑘 ≤ Θ

(𝑛)
𝑘 ≤ 1 .

Moreover, Θ
(𝑛)
𝑘 is permutation symmetric in the first 𝑘 and the last 𝑁 − 𝑘

variables.
ii) For every 𝑘 = 1, . . . , 𝑁 and 𝑛 ∈ ℕ, we have

𝑁∑
𝑗=1

∣∣∣∇𝑗Θ(𝑛)𝑘 ∣∣∣2
Θ
(𝑛)
𝑘

≤ 𝐶ℓ−2Θ(𝑛−1)𝑘 .(A.1)

iii) For every fixed 𝑘 = 1, . . . , 𝑁 and 𝑛 ∈ ℕ we have∑
𝑖,𝑗

∣∣∣∇𝑖∇𝑗Θ(𝑛)𝑘 ∣∣∣ ≤ 𝐶ℓ−2Θ(𝑛−1)𝑘 .(A.2)

Appendix B. Removal of the assumption on derivatives of 𝑉

The goal of this appendix is to explain how the assumption

(B.3) ∣∇𝛼𝑉 (𝑥)∣ ≤ 𝐶 for all 𝑥 ∈ ℝ
3, ∣𝛼∣ ≤ 2

in Theorem 3.1 can be removed. The main observation is that (B.3) is only used
in the proof of the higher order energy estimate, Proposition 7.1, in the form
∥∇𝑉𝑁∥∞ ≤ 𝐶𝑁3, ∥∇2𝑉𝑁∥∞ ≤ 𝐶𝑁4. More precisely, the estimate on ∥∇𝑉𝑁∥∞ is
first used in the study of the third term on the r.h.s. of (7.19) (the third term on
the r.h.s. of (7.7) in the case 𝑘 = 2); namely the term containing the commutator
[𝑇 1/2, 𝐷𝑘] = [(𝐻𝑁 + 𝑁)1/2,∇1 . . .∇𝑘]. Bounds on the first and second derivatives
are also used in the proof of Lemma 7.2. However, in both cases, the final estimates
turn out to be subexponentially small in 𝑁 (see (7.23) and (7.27)). For this rea-
son, the proof of Proposition 7.1 remains unchanged if, instead of (B.3), we allow
𝑉 = 𝑉 (𝑁) to depend on 𝑁 and only assume

(B.4) ∥∇𝛼𝑉 (𝑁)∥∞ ≤ 𝑒𝑐𝑁
𝜅

, ∣𝛼∣ ≤ 2,
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for some sufficiently small 𝜅 > 0.
More precisely, suppose that the potential 𝑉 ≥ 0 satisfies 𝑉 (𝑥) ≤ 𝐶⟨𝑥⟩−𝜎 for

some 𝜎 > 5, with no assumptions on the derivatives ∇𝛼𝑉 , for ∣𝛼∣ ≥ 1. Then
consider the evolution 𝜓𝑁,𝑡 = 𝑒−𝑖𝐻𝑁 𝑡𝜓𝑁 of an initial 𝑁 -body wave function 𝜓𝑁
satisfying the two assumptions (3.1) and (3.2), with respect to the evolution gen-
erated by the Hamiltonian

𝐻𝑁 =

𝑁∑
𝑗=1

−Δ𝑗 +

𝑁∑
𝑖<𝑗

𝑉𝑁 (𝑥𝑖 − 𝑥𝑗)

with 𝑉𝑁 (𝑥) = 𝑁2𝑉 (𝑁𝑥). As in Theorem 3.1 we claim that, for every fixed 𝑡 ∈ ℝ

and every 𝑘 ≥ 1, the 𝑘-particle marginal 𝛾
(𝑘)
𝑁,𝑡 associated with 𝜓𝑁,𝑡 is such that

(B.5) 𝛾
(𝑘)
𝑁,𝑡 → ∣𝜑𝑡⟩⟨𝜑𝑡∣⊗𝑘

as 𝑁 → ∞, w.r.t. to the trace-norm topology.
To prove (B.5) we can assume, without loss of generality, that the initial data

𝜓𝑁 is such that

(B.6) ⟨𝜓𝑁 , 𝐻𝑘𝑁𝜓𝑁 ⟩ ≤ 𝐶𝑘𝑁𝑘 .

In fact, if this is not the case, we can use the argument outlined in Section 4 (in
the proof of Theorem 3.1) and based on the analysis of Section 9 (which does not
use any assumption on the derivatives of 𝑉 ) to approximate 𝜓𝑁 .

From Theorem 6.1 it follows that the sequence Γ
(𝑘)
𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑘≥1 is compact

with respect to the product topology 𝜏prod defined in Section 4. If we could prove,

similarly to Theorem 7.3, that an arbitrary limit point Γ∞,𝑡 = {𝛾(𝑘)∞,𝑡}𝑘≥1 satisfies
the a priori estimates (7.28), it would follow from Theorem 8.1 that Γ∞,𝑡 is a
solution to the infinite hierarchy (4.4) and, by the uniqueness result of Theorem 4.1,
we could conclude the proof of (B.5) using the same strategy outlined in Section 4.

To prove that every limit point Γ∞,𝑡 satisfies the a priori estimates (7.28), we

introduce a potential 𝑉 (𝑁) = 𝑉 ∗𝜈(𝑁), where 𝜈(𝑁)(𝑥) = (const) 𝑒3𝑁
𝜅/2 exp(−𝑒𝑁𝜅

𝑥2)
with some sufficiently small 𝜅 > 0 (here the constant is chosen so that

∫
d𝑥 𝜈(𝑁)(𝑥)

= 1), and we consider the evolution 𝜓𝑁,𝑡 = 𝑒−𝑖𝐻𝑁 𝑡𝜓𝑁 of the initial data 𝜓𝑁 with
respect to the modified Hamiltonian

�̃�𝑁 = −
𝑁∑
𝑗=1

Δ𝑗 +

𝑁∑
𝑖<𝑗

𝑁2𝑉 (𝑁)(𝑁(𝑥𝑖 − 𝑥𝑗)) .

The potential 𝑉 (𝑁) satisfies the bounds ∥∇𝛼𝑉 (𝑁)∥𝐿∞ ≤ 𝐶𝑒∣𝛼∣𝑁
𝜅/2 for all ∣𝛼∣ ≤ 2.

As we remarked above, this very weak control on the 𝐿∞ norm of ∇𝛼𝑉 (𝑁) is enough
to prove Proposition 7.1. Therefore, it follows from Theorem 7.3 that for any fixed

𝑡 ∈ ℝ every limit point Γ̃∞,𝑡 = {𝛾(𝑘)∞,𝑡}𝑘≥1 of the sequence Γ̃𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑁𝑘=1 (w.r.t.

to the product of the weak* topologies) satisfies the bound

(B.7) Tr (1 − Δ1) . . . (1 − Δ𝑘)𝛾
(𝑘)
∞,𝑡 ≤ 𝐶𝑘

for all 𝑘 ≥ 1. To show that a limit point Γ∞,𝑡 = {𝛾(𝑘)∞,𝑡}𝑘≥1 of the original sequence

Γ𝑁,𝑡 = {𝛾(𝑘)𝑁,𝑡}𝑘≥1 also satisfies this bound, it is therefore enough to prove that, for
every fixed 𝑡 ∈ ℝ,

(B.8) ∥𝜓𝑁,𝑡 − 𝜓𝑁,𝑡∥ → 0
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as 𝑁 → ∞. In fact (B.8) immediately implies that every limit point 𝛾
(𝑘)
∞,𝑡 of 𝛾

(𝑘)
𝑁,𝑡 is

also a limit point of the sequence 𝛾
(𝑘)
𝑁,𝑡 and therefore satisfies (B.7).

To verify (B.8), we observe that

d

d𝑡

∥∥∥𝜓𝑁,𝑡 − 𝜓𝑁,𝑡

∥∥∥2
= 2 Im ⟨𝜓𝑁,𝑡,

(
𝐻𝑁 − �̃�𝑁

)
𝜓𝑁,𝑡⟩

= 𝑁3(𝑁 − 1) Im ⟨𝜓𝑁,𝑡, (𝑉 ∗ (𝛿 − 𝜈𝑁 )) (𝑁(𝑥1 − 𝑥2))𝜓𝑁,𝑡⟩

= 𝑁3(𝑁 − 1) Im

∫
dxd𝑦 𝜓𝑁,𝑡(x)𝑉 (𝑦)(𝛿 − 𝜈(𝑁))(𝑁(𝑥1 − 𝑥2) − 𝑦)𝜓𝑁,𝑡(x)

= (𝑁 − 1) Im

∫
d𝑦 𝑉 (𝑦)

∫
dx 𝜓𝑁,𝑡(x) (𝛿 − 𝜈𝑁 )(𝑥1 − 𝑥2 − 𝑦/𝑁)𝜓𝑁,𝑡(x) ,

(B.9)

where we defined 𝜈𝑁 (𝑥)=𝑁3𝜈(𝑁)(𝑁𝑥) (this implies that 𝜈𝑁 (𝑥) = (const)𝑁3𝑒3𝑁
𝜅/2

⋅ 𝑒−𝑁2 𝑒𝑁
𝜅
𝑥2 is still normalized with ∥𝜈𝑁∥1 = 1). Therefore

∣∣∣ d
d𝑡

∥∥∥𝜓𝑁,𝑡 − 𝜓𝑁,𝑡

∥∥∥2∣∣∣ ≤ 𝐶𝑁∥𝑉 ∥1 sup
𝑦∈ℝ3

∣∣∣⟨𝜓𝑁,𝑡, (𝛿𝑦 − 𝜈𝑁,𝑦) (𝑥1 − 𝑥2)𝜓𝑁,𝑡⟩
∣∣∣(B.10)

with 𝛿𝑦(𝑥) = 𝛿(𝑥− 𝑦) and 𝜈𝑁,𝑦(𝑥) = 𝜈𝑁 (𝑥− 𝑦). It is simple to check that

sup
𝑦∈ℝ3

∣∣∣⟨𝜓𝑁,𝑡, (𝛿𝑦 − 𝜈𝑁,𝑦) (𝑥1 − 𝑥2)𝜓𝑁,𝑡⟩
∣∣∣

≤ 𝐶𝑒−
𝑁𝜅

8 ⟨𝜓𝑁,𝑡, (1 − Δ1)(1 − Δ2)𝜓𝑁,𝑡⟩1/2⟨𝜓𝑁,𝑡, (1 − Δ1)(1 − Δ2)𝜓𝑁,𝑡⟩1/2 .

(B.11)

In fact, (B.11) can be proven using the Fourier representation

⟨𝜓𝑁,𝑡, (𝛿𝑦−𝜈𝑁,𝑦)(𝑥1 − 𝑥2)𝜓𝑁,𝑡⟩

=

∫
dp𝑁−2 d𝑝1d𝑝2d𝑞1d𝑞2 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)𝑒

𝑖 𝑦⋅(𝑝1−𝑞1)

×
(
1 − 𝑒−𝑁

−2𝑒−𝑁𝜅
(𝑝1−𝑞1)2/4

)
×
√

(𝑝21 + 1)(𝑝22 + 1)√
(𝑞21 + 1)(𝑞22 + 1)

𝜓𝑁,𝑡(𝑝1, 𝑝2,p𝑁−2)

×
√

(𝑞21 + 1)(𝑞22 + 1)√
(𝑝21 + 1)(𝑝22 + 1)

ˆ̃
𝜓𝑁,𝑡(𝑞1, 𝑞2,p𝑁−2)

(B.12)
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with p𝑁−2 = (𝑝3, . . . , 𝑝𝑁 ). Using the fact that ∣1−𝑒−𝑎∣ ≤ 𝐶𝑎1/4 for 𝑎 > 0, applying

a Schwarz inequality, and changing variables 𝑞 → 𝑝 in
ˆ̃
𝜓𝑁,𝑡, we obtain

sup
𝑦∈ℝ3

∣∣∣⟨𝜓𝑁,𝑡, (𝛿𝑦 − 𝜈𝑁,𝑦)(𝑥1 − 𝑥2)𝜓𝑁,𝑡⟩
∣∣∣

≤ 𝐶𝑒−
𝑁𝜅

8

∫
dp𝑁−2d𝑝1d𝑝2d𝑞1d𝑞2 𝛿(𝑝1 + 𝑝2 − 𝑞1 − 𝑞2)

∣𝑞1∣1/2 + 1

(𝑞21 + 1)(𝑞22 + 1)

× (𝑝21 + 1)(𝑝22 + 1)

(
𝛽∣𝜓𝑁,𝑡(𝑝1, 𝑝2,p𝑁−2)∣2

+𝛽−1∣ˆ̃𝜓𝑁,𝑡(𝑝1, 𝑝2,p𝑁−2)∣2
)

(B.13)

for every 𝛽 > 0. This implies (B.11) because

(B.14) sup
𝑝∈ℝ3

∫
d𝑞

∣𝑞∣1/2 + 1

(1 + 𝑞2)(1 + (𝑞 − 𝑝)2)
< ∞ .

To bound the expectations of (1−Δ1)(1−Δ2) on the r.h.s. of (B.11) we observe
that, as an operator inequality on 𝐿2𝑠(ℝ

3𝑁 ), we have

(𝐻𝑁 +𝑁)2 =

⎛⎝ 𝑁∑
𝑗=1

(1 − Δ𝑗) +
∑
𝑖<𝑗

𝑉𝑁 (𝑥𝑖 − 𝑥𝑗)

⎞⎠2

≥ 1

2

⎛⎝ 𝑁∑
𝑗=1

(1 − Δ𝑗)

⎞⎠2 − 2

⎛⎝∑
𝑖<𝑗

𝑉𝑁 (𝑥𝑖 − 𝑥𝑗)

⎞⎠2
≥ 𝑁(𝑁 − 1)(1 − Δ1)(1 − Δ2) −𝑁8∥𝑉 ∥∞

(B.15)

which, by (B.6), implies that

⟨𝜓𝑁,𝑡, (1 − Δ1)(1 − Δ2)𝜓𝑁,𝑡⟩ ≤
〈
𝜓𝑁,𝑡,

(
(𝐻𝑁 +𝑁)2 + 𝐶𝑁8

𝑁(𝑁 − 1)

)
𝜓𝑁,𝑡

〉
=

〈
𝜓𝑁 ,

(
(𝐻𝑁 +𝑁)2 + 𝐶𝑁8

𝑁(𝑁 − 1)

)
𝜓𝑁

〉
≤ 𝐶𝑁6 .

(B.16)

Using (B.6) and a Schwarz inequality similar to (B.15) to compare 𝐻2𝑁 and �̃�2𝑁 , it
is simple to check that

⟨𝜓𝑁 , �̃�2𝑁𝜓𝑁 ⟩ ≤ 𝐶𝑁8,

and therefore, proceeding analogously to (B.15) and (B.16), we also obtain that

(B.17) ⟨𝜓𝑁,𝑡, (1 − Δ1)(1 − Δ2)𝜓𝑁,𝑡⟩ ≤ 𝐶𝑁6 .

Inserting (B.16) and (B.17) into (B.11), and using (B.10), we find∣∣∣ d
d𝑡

∥∥∥𝜓𝑁,𝑡 − 𝜓𝑁,𝑡∥2
∣∣∣ ≤ 𝐶𝑒−𝑐𝑁

𝜅

for some 𝑐 > 0, which implies that

(B.18)
∥∥∥𝜓𝑁,𝑡 − 𝜓𝑁,𝑡

∥∥∥ ≤ 𝐶𝑡1/2𝑒−𝑐𝑁
𝜅 → 0

as 𝑁 → ∞, for every fixed 𝑡 ∈ ℝ. This completes the proof of (B.8).
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