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THE DE RHAM-WITT COMPLEX
AND p-ADIC VANISHING CYCLES

THOMAS GEISSER AND LARS HESSELHOLT

INTRODUCTION

Let V be a henselian discrete valuation ring with quotient field K of characteristic
0 and perfect residue field & of odd characteristic p. Let X be a smooth V-scheme of
relative dimension r, and let ¢ and j denote the inclusion of the special and generic
fibers, respectively, as in the cartesian diagram
i J

y ¢ X O U

Lo

Spec k &——— Spec V +—— Spec K.

The henselian local ring of X at a generic point of Y is a henselian discrete valu-
ation ring V whose residue field « is the non-perfect function field of a connected
component of Y. Let K be the quotient field of V.

We consider the ring Ox with the log-structure a: Mx — Ox determined by the
special fiber. The absolute de Rham-Witt complex of (X, Mx) [11}, 10] is defined
to be the universal Witt complex over (Ox, Mx) and is denoted

WnQ?X,Mx) - Wnﬂ?@x,]ux) .
It has a natural descending filtration by the differential graded ideals
Filyy WHQ?X,MX) C WTLQ?X,MX)

generated by W,,(m?Ox), if m = 2j is even, and by W,,(m?Ox) - dlog, Mx and by
W, (mI*t1Ox), if m = 2j + 1 is odd. Here and throughout m denotes the maximal
ideal of V. There is a natural isomorphism

F Wk x ) /1 Fil;, Wl x ary) — Wy

onto the classical de Rham-Witt complex of Bloch-Deligne-Illusie [I3] of the special
fiber, and there is a natural isomorphism

FWnQx aryy /1 Fil?, Wollx ) — Walllyary)
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onto the de Rham-Witt complex of Hyodo-Kato [12] of the special fiber with the
induced log-structure. (The latter was denoted by W,,o{. in op.cit.) But the full
complex WnQ’{X’ M) and its quotients by the higher terms of the filtration have
not been considered before. In Sect. [l below we evaluate the graded pieces for the
induced filtration of the reduced sheaves

B = " Waldx aae) [P WS x ap -

These are quasi-coherent E%-modules on the small étale site of Y which we analyze
as follows. A choice of local coordinates of an open neighborhood of X around
a point of Y determines a ring homomorphism 4,,: Oy — E? defined in the cor-
responding open neighborhood of Y. Hence, in this open neighborhood of Y, we
may consider the sheaves EZ and the graded pieces gri} EZ as quasi-coherent Oy-
modules. We show in Thm. below that both are free Oy-modules and give
an explicit basis. We note here that the rank of the free Oy-module EY is

1 n—1
rkOYEZ: <’I“+ >.e'zprs

q s=0

and that the length of the filtration is 2¢’ = 2pe/(p — 1). In Sect. 2l we use this
result to analyze the subsheaf M? of E{ that is fixed by the Frobenius map. The
sheaf MJ is defined to be the kernel of the map

R—F:E! - E7_,

and is a sheaf of abelian groups on the small étale site of Y in the étale topology.
The filtration of ¥ induces a filtration of M and in Thm. below we evaluate
the graded pieces gr{y M considered as sheaves of pro-abelian groups as n varies.
The result agrees with the calculation by Bloch-Kato [3, Cor. 1.4.1] of the graded
pieces gri} i* RYj, ,ugz’q of a corresponding filtration of the sheaf of p-adic vanishing
cycles. By combining the two results we obtain the following theorem.

Theorem A. Suppose pi,e C K. Then there is a natural exact sequence

- - Q -k v 1=F v
0= i"RIjuppd — "Wl /0" —— " W.QL /0" — 0

of sheaves of pro-abelian groups on the small étale site of Y in the étale topology.

We expect that Thm. [Alis valid also if K does not contain the pUth roots of unity.
More precisely, we expect that the terms in the sequence satisfy Galois descent
for the extension K (u,v)/K; compare [14, Thm. 1(1)]. At present, however, the
structure of the sheaves i*WnQ‘(ZX’ M) /p? is known only if K contains the p“th
roots of unity. It appears to be an important problem to determine the structure
of these sheaves in general.

We remark that Thm. [A] is not valid if the absolute de Rham-Witt complex is
replaced by the relative de Rham-Witt complex of Langer-Zink [18]. The reader is
referred to [§] for a comparison of the two complexes.

The algebraic K-theory with Z/p¥-coefficients of the field K was determined
in [10]. In the final Sect. Bl we combine Thm. [A] and the main results of [11} [10] to
extend this result to the field . Indeed we prove the following formula predicted
by the Beilinson-Lichtenbaum conjectures [I 2], [19].
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Theorem B. Suppose that p,» C K. Then the canonical map
KM (K) ® Sz/pe (k) — K (K, Z/pY)
is an tsomorphism.

The second tensor factor on the left-hand side is the symmetric algebra on the
Z/p’-module p,w, which is free of rank one, and the map of the statement takes a
generator ¢ € ppe to the associated Bott element by € Ko(KC,Z/p"). The Milnor
groups K (K)/pK}M(K) were evaluated by Kato in [15, Thm. 2(1)]. They are
concentrated in degrees 0 < ¢ < 7 + 2. Hence Thm. [B] shows in particular that the
algebraic K-groups K, (K,Z/p") are two-periodic above this range of degrees.

The results of this paper were reported in expository form in [9].

In this paper, a pro-object of a category C will be taken to mean a functor from
the set of positive integers, viewed as a category with one arrow from n+1 to n, to
C, and a strict map between pro-objects a natural transformation. A general map
between pro-objects X and Y of C is defined to be an element of

Homp,o —¢(X,Y) = lim colim Home (X, Y5).

We view objects of C as constant pro-objects of C. Throughout, the prime p is a
fixed odd prime. We abbreviate ¢” =¢/(p — 1) and ¢’ = pe/(p — 1).

This paper was written, in part, while the authors visited the University of
Tokyo. The second author also visited the Isaac Newton Institute of Mathematical
Sciences and Stanford University. We would like to express our sincere gratitude
for the financial support and the hospitality that we received. We are particularly
grateful to Viorel Costeanu for allowing us to include his proof of the Steinberg
relation in the de Rham-Witt complex as an appendix to this paper.

1. THE ABSOLUTE DE RHAM-WITT COMPLEX

1.1. We consider the de Rham-Witt complex of log-Z,)-algebras introduced in [10,
Sect. 3]; see also [1I]. It generalizes the de Rham-Witt complex of log-F,-algebras
of Hyodo-Kato [12].

A log-ring (A, M4) in the sense of [16] is a ring A (in a topos) with a pre-log-
structure defined to be a map of monoids a: My — (A, ) from a monoid M4 to
the underlying multiplicative monoid of A. A log-differential graded ring (D, Mp)
is a differential graded ring D, a pre-log-structure a: Mp — (D°,-), and a map
of monoids dlog: Mp — (D', +) that satisfies that d o dlog = 0 and that for all
x € Mp, da(z) = a(x)dlogx. Maps of log-rings and log-differential graded rings
are defined in the obvious way.

Let W;,(A) be the ring of Witt vectors of length n in A. If a: My — Ais a
pre-log-structure, then so is the composite

My 2 A — W,(A),

where the right-hand map is the multiplicative section a — [a], = (a,0,...,0). We
denote this log-ring by (W, (A), M4). By a Witt complex over (A, M4) we mean
the following structure:

(i) a pro-log-differential graded ring (E*, Mg) and a strict map of pro-log-rings

A (W.(A), My) — (E°, MEg);
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(ii) a strict map of pro-log-graded rings
F: (EY,Mg) — (E"_{,Mg)
such that F'A = AF and such that
Fdlog, M\a) = dlog,_; A(a), for all @ € My,
FdX\([a],) = M[a]n—1)P"d\([a],—1), for all a € 4;
(iii) a strict map of pro-graded modules over the pro-graded ring E*
V:F.E* | — E*

such that VA = AV, FV =p, and FdV =d.

A map of Witt complexes over (A, M) is a strict map of pro-log differential
graded rings which commutes with the maps A, F and V. We write R for the
structure map in the pro-system E7 and call it the restriction map. The definining

relations imply that dF = pFd and Vd = pdV, but in general there is no formula
for VF; see [11l Lemma 1.2.1]. The de Rham-Witt complex

W 40

is defined to be the initial Witt complex over (A, M4). The proof that it exists is
given in [II, Thm. A]. The proof also shows that the canonical map

A Qf — W07

(Wn(A),Ma) (A,Ma4)

is surjective. Hence, every element on the right-hand side can be written non-
uniquely as a differential ¢-form on (W,,(A), M4). The descending filtration of the
de Rham-Witt complex by the differential graded ideals

Fil® WnQ?A,MA =VW,_ SQ(A M T dVSansQ?A’MA)
is called the standard filtration. It satisfies
F(FIl' W QY ) CFIPT Woa QY ),
V(Fil* W, Qo)) € FIPT W0 Q) )
but, in general, it is not multiplicative. The restriction induces an isomorphism

Wy 1y 1/ Fil W, Q0 = W00

(A,Ma (A, M) (A,Ma)

1.2. Let X be as in the introduction. We recall from [I6] that the canonical
log-structure on X is given by the cartesian square of sheaves of monoids

Mx —— Ox

L

.0l — .0,
A choice of uniformizer 7 of V' gives rise to an isomorphism
0% x Ny = My
that takes (u,4) to w'u. In this case, the de Rham-Witt complex
W.Qx my)y = W Qo iy
has an additional filtration by the differential graded ideals
Fil{} Walkix iy
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generated by W, (m’Ox), if m = 2j is even, and by W, (m’Ox) - dlog, Mx and
W, (m/T10x), if m = 2j +1 is odd. Here m is the maximal ideal of V. We call this
filtration the U-filtration.

Lemma 1.2.1. The U-filtration is multiplicative and is preserved by the restriction,
Frobenius, and Verschiebung maps. Moreover, if X; = X Xspecv Spec(V/m?), if
ij: X; — X is the closed immersion, and if a: Mx, — Ox; is the induced pre-log
structure, then the canonical projection induces an isomorphism
. . 127 ~
GWaSlx vy /5 PG Walllx vy = W”Q?XJ,MX_»'
Proof. A functor which has a right adjoint preserves initial objects. Hence
; q % 3127 q _ q 127 q
Z;WnQ(XMX)/Z; Fil;/ W”Q(X,Mx) = W"Q(i’;ox,i;Mx)/ Fil}} W"Q(z‘;ox,i;Mx)'

Let (B, M) be alog-ring, let J C B be an ideal, and let (B, M) be the ring B = B/J
with the induced pre-log-structure given by the composition

a:M=M=%B2 B/

One shows as in [0, Lemma 2.4] that the canonical projection induces a surjection
WanB,M) - WnQ?B,M)

and that the kernel is equal to the differential graded ideal generated by the ideal

Wy (J) C W,(B). The lemma is a special case of this statement. O
Lemma 1.2.2. Let e be the ramification index of V and ¢’ =e/(p — 1). Then
PRI Woly ) C Rl erby o8 o forj >0,
pFily W00y, =Fil I w0l o forj=e".

Proof. By the definition of the U-filtration, it suffices to show that
pW, (M Ox) C Wn(tl"tmm{jJre’]"j}OX)7 for j > 0,
Wn(mj+e(9x) C an(ijX)7 fOI‘j > 6”.

Let 7 be a uniformizer of V' with minimal polynomial ¢ + pf(x) and recall from
the proof of [I0, Prop. 3.1.5] that [7]¢ + 0([7])V (1) is contained in pW,,(Ox). The
second inclusion follows by iterated use of this congruence. Finally, we recall from
the proof of [I0, Lemma 3.1.1] that p is congruent to [p] +V (1) modulo pV W, (Ox).
The first inclusion follows by induction, since p has valuation e. O

The map dlog,,: Mx — WnQ(lX M) gives rise to a map of graded rings
TZ(M)gcp) - WanX,MX)
from the tensor algebra of the group completion of the monoid Mx. There is a
descending filtration of the left-hand side by graded ideals
Fily} T (M),
which corresponds to the U-filtration on the right-hand side. To define it, we first
choose a uniformizer 7 of V' such that we have the isomorphism
O% X Z = M§

that takes (u,4) to m'u. We define Filj} T7(M$) to be Ty(M§P), if m = 0, and to
be the graded ideal generated by (1+m/Ox) x {0} € M, if m = 2j and j > 0, by
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(1+mOx) xZ C MY, if m =1, and by (1+m?Ox) x {0} @ {1} x Z C MF @ M
and (1+m/™Ox) x {0} c M, if m=2j+1and j > 1.

Lemma 1.2.3. Let x be a local section of m?Ox. Then

dlog,(1+z)= Y dVe(

0<s<n

modulo Filj Y w, Q%X Mi)-

Proof. We first show that if R is a ring and € R, then

1+ z], n= Z V(]

0<s<n

modulo the ideal W,,((z%)) C W,,(R). By naturality, we may assume that R = Z|z].
If we write [1 4+ z],, — [1], = (a0, a1,...,an—1), then the statement we wish to show
is that as = x modulo (2?), for all 0 < s < n. The statement for s = 0 is clear. We
consider the ghost coordinate

s s s—1
(1+z)P —1=af +pdy + - +p '’ | +pas.

The left-hand side is equivalent to p®x modulo (22), and the right-hand side, in-
ductively, is equivalent to p*a, modulo (22). It follows that a, is equivalent to =
modulo (2?) as desired. If z is a local section of m/Ox, we may conclude that

1+ 2], n= Z V([
0<s<n

modulo W, (m?’Ox). Differentiating this congruence we find that
d[1+2l,)= > dVi([z]n-s)

0<s<n

modulo Fil;ljj WnQ%X M) It remains to show that the left-hand side is congruent
to dlog, (1 + «) modulo Fil‘;]j WHQ%X’MX). By definition, we have

[1+4 z],dlog, (14 x) =d([1 + x],),

and [1+ ], is a unit in W,,(Ox /m* Ox). Therefore, it will suffice to show that the
product ([1 4 ], — [1],)d([1 + x],,) is congruent to zero modulo Fil}/ W, Q(X M)
But this is so, since the two factors lie in Fll W, QE‘X M) and since the U-filtration
is multiplicative. O

Lemma [[:2.3] determines the value of the map dlog,, modulo higher filtration on
Fily} T (M§P), for m > 2. Moreover, there is a commutative square

- JEU— dlog,, ., kT
i Mip/l Fll%] M}é{})—>z WnQ%X,MX)/Z Fll?] WTLQ%X7MX)

| |

dlog,,
Migfp Wh Q(Y My)

where the right-hand vertical map is an isomorphism by an argument similar to the
proof of Lemma [[.2.71
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1.3.  We recall from [I1, Lemma 7.1.2] that the sheaf

W"Q?X,Mx) = WnQ?KMX)/anQ‘(IX’MX)

is a quasi-coherent sheaf of W,,(Ox)-modules on the small étale site of X. Since
this sheaf is supported on Y, we may as well consider the sheaf

B} =" WaQx ary)

of quasi-coherent i*W,,(Ox)-modules on Y. We show that, Zariski locally, the
sheaf EZ has a non-canonical structure of a quasi-coherent Oy-module. Let ¢ be
the absolute Frobenius on Y.

Lemma 1.3.1. Let 1, ...,z be local coordinates of an open neighborhood in X of
a point of Y, and let T1,...,T, be the corresponding local coordinates on Y. Then
there is, in the corresponding open neighborhood of Y, a strict map of pro-rings

§: Oy — i*W.(Ox)
such that 6,(Z;) = [x;]n, 1 < i < r, and such that Fé, = d,_1¢.
Proof. The ring homomorphism
W (k) z, ... 2] = W(k)[x1,. ..,z
given by the Frobenius on W (k) and by f(z;) = 2%, 1 < i < r, is a lifting of the
Frobenius on k[Z1,...,Z,]. It determines a ring homomorphism

sprW(k)xe, ..., z] = Wo(W(k)[z1,...,2.])

that is characterized by wjsy = f7, 0 < j < n, and, after reduction modulo p, a
ring homomorphism

S¢: k[T, ..., 2] = Wa(W(k)[21,...,2.]).
We compose this map with the ring homomorphisms
Wo(W(E)[z1,. .. 2.]) = Wo(V]zy, ..., 2,]) — Wo(Ox)

induced from the unique ring homomorphism W (k) — V that induces the identity
on residue fields and the chosen ring homomorphism g: Vizy,...,z,] — Ox to get
the top horizontal map in the following diagram:

k[jla"'wf?”] t—g>Wn(0X)

>
_ -
g - Pn
~
-

The right-hand vertical map is the composition of the restriction of Witt vec-
tors with kernel VWn(OX) and the canonical projection Ox — Oy with kernel
mOx /pOx. Since both ideals are nilpotent, and since the left-hand vertical map
is étale, there exists a unique ring homomorphism

5n: Oy — Wn(OX)

making the above diagram commute. Moreover, one immediately verifies that
RS, = 6,1 and that 0,(Z;) = [zi]n, 1 < @ < r, as stated. It remains to show
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that F',, = 0,_1p, or equivalently, that the right-hand square in the following
diagram commutes:

g 6’!1

k[-fla a-fr] OY Wn(OX)
l@ l@ lF
_ Sy
k[, | — Oy —=5 W,_1(Ox)

Since the outer square commutes, and since the left-hand square is cocartesian, it
follows that there exists a map 4;,_;: Oy — W,,_ 1(Ox) that makes the right-hand
square commute. To show that 6/, _; = d,,_1, it will suffice to show that

38! -
OY n—1 Wn_l(OX) Pn—1 OY

is the identity map. This, in turn, follows from the calculation

Pn-1F00g = ©Pnong = g,

since the left-hand square of the diagram above is cocartesian. O

Proposition 1.3.2. The sheaf E¢ = i*W, Q(X Mx) has, Zariski locally on'Y, the
structure of a free Oy -module of rank

n—1
rko, El = <T + 1>e . Zprs.

q s=0
Proof. We consider the sheaf E? with the Zariski locally defined Oy-module struc-
ture given by Lemma [[L3.1l The statement of the proposition is unchanged by étale
extensions, so we may assume that X = Aj,. We prove the proposition in this case
by induction on r. The basic case r = 0 follows from [10, Prop. 3.4.1]. In the induc-
tion step we use [I1, Thm. B] which shows that the Oyr-module i*W,, Q) (AT

My )
is the base-change along AT — A}, of the (’)Ar 1- module v

n—1
i*WQ(AT i @@ @ F(i* W, SQ(AT o, 1))
s= 10<g<p

s qg—1
@ZWQAT1M7 1)@@ @ FX ("W Q(A” 1MT1))
s=1 0<j<p*

where the index 0 < j < p® is required to not be divisible by p. By induction and
by Lemma [[.3.7] this module has rank

n—1 n—1 n—1l—s
r _ s— _ -
( ) ce- (Zp(r 1)t + Z(ps —p l)p(r 1)s Z p(r l)t)
q t=0 s=1 t=0
r n—1 n—1 n—1l—s
+ (q B 1) ce- <Zp(r—1)t + Z(ps _ ps—l)p(r—l)s Z p(r—l)t)’
t=0 s=1 t=0

and since

(5o e Q) e=(0)
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it remains to show that

n—1 n—1 n—1l—s n—1
Zp(r—l)t + Z(ps _ ps—1>p(7'—1)s Z p(r—l)t — Zprs.
t=0 s=1 t=0 s=0

To see this, we rewrite the first summand on the left-hand side as

n—2
1 +pr71 Zp('rfl)t7
t=0

and rewrite the sth summand on the left-hand side as

n—(s+1)—1 n—s—1
st +p7'(s+1)—1 Z p('r'—l)t _p'r's—l Z p(r—l)t.
t=0 t=0
The statement follows. O

Definition 1.3.3. Two local sections w and w’ of E4 are similar if there exists a
unit v € k* such that whenever both w and w’ are local sections of Filj} EZ, then
w —u-w' is a local section of Filf} ™ E9. We write w = «’ if w and ' are similar.

We note that if w and w’ are similar, then so are R(w) and R(w'), F(w) and
F(v'), d(w) and d(w'), and V(w) and V(w’). Let 7 be a uniformizer of V. Then
by the proof of [10, Prop. 3.1.5], the following similarity holds in the ring E9:

[7]5 = V(1)

In the statements and proofs of Prop.[[L3.4land Thm.[T.3.5 below we shall abbreviate
[x] = [z],, and dlogx = dlog,, .

Proposition 1.3.4. Let x1,...,x, be local coordinates of an open neighborhood of
X around a point of Y. Then in the corresponding open neighborhood of Y the
sheaf B4 = i*W"Ql(JX,MX) is a free Oy -module with a basis given as follows. Let
0<s<n,let0<iy,...,0. <p® and let 0 < j < e.

(i) If not all iy,, 1 < m <1, are zero, let v =min{v,(i1),...,vp(ir),vp(j —€)};
if v < vp(iy), for all 1 <m < r, then the local sections

VE([z]) .. [z) " [n) dlog @, - . . dlog 2y, ),
dVe([zi]™ .. [z,) " [7) d1og T, ... dlog Ty, ),
where 1 <mq < --- <mg <7 (resp. 1 <my < -+ < mg_1 < 1), form a basis.

If v = v, (i), for some 1 < m < r, let m be mazimal with this property; then the
local sections

VE([za])™ .. [z) " [rP dlog @, - . . dlog zp,,),
VE([za])™ .. ) 7P dlog T, - . . dlog Ty, dlogT),
dV3([zi]™ .. [2,) (7} d1og T, . .. dlog Ty, ),
dV3([z1]™ .. [z, [7) d1og Ty, . .. d1OG Ty, _,dlogT),
where 1 <my < - <mg <71 (resp. 1 <my < --- <mg—1 <7, resp. 1 <my <

<o <mg_g < 1), and where all m; # m form a basis.
(i) If all i, 1 < m < 7, are zero, the local sections

V([P dlog zpm, .. .dlogzm,),



10 THOMAS GEISSER AND LARS HESSELHOLT

where 1 <my < --- <mg <1, and if s > vp(j — €'), the local sections
dV3([n)?dlog @, . ..dlog Tpm,_,),
where 1 <my < - <mg_1 <7, and if s <vp(j —¢€'), the local sections
Ve([r[dlog Ty, . ..dlog z,,, ,dlogm),
where 1 <my < -+ <mg_1 <1, form a basis.

Proof. Let T'? be the set of local sections of EZ listed in the statement. It is clear
that the cardinality of this set is equal to

r r n—1 r+1 n—1
+ )e~ Pt = ( )e~ pe.

(Gl = ()%
Hence, by Prop. [[32)] it suffices to show that T'? generates EZ as an Oy-module.
To do this, we first show that a larger set T4’ of local sections generates EI as
an Oy-module and then show that the elements of the complement I'?’ N\ T'¢ can
be expressed as Oy-linear combinations of elements of I'Y. It will suffice to show
that the elements of I'?’ \ I'? are similar in the sense of Def. [[33] to Oy-linear

combinations of the elements of I'?. Indeed, the U-filtration of EY is finite.
We define '’ to be the set consisting of the local sections

VE([za])™ ... [z) " [7P dlog 2, . .. dlog zp,),
dVE([z1]™ .. [2,) (7} d1og Zom, ... dlog Ty, ),
Vo([za])™ ... [z) " [7P dlog 2y, . .. dlog y,, dlogT),
dVE([z1]™ .. [z, 7} d1og Tpm, . .. dlog Ty, ,dlogT),

where 0 < s < n, where 0 < i1,...,%, < p°®, where 0 < j < e, and where 1 < m; <
e <mg <r(resp. 1 <my < - <mgog Kryresp. L <Kmy < - <mg_g < T).
We also consider the larger set I'2” of local sections defined similarly except that
the indices 71, ...,%, are allowed to take all non-negative integer values. We claim
that the set T'2” generates EY as a sheaf of k-vector spaces. Indeed, the case n =1
is standard and the general case follows by an induction argument based on the
exact sequence

FiI" B > B L BT 0
and the surjective map
vl paqvr Bl BN S RN RS,

Here the latter map is a k-linear map since k is a perfect field. Next, iterated use
of the relations

s

Vi([zm]” - w) = [zm] - Vo (W),
AVE([xm])? - w) = [Tm] - dVE (W) + [2] - VE(dlog z,, - w)
shows that the local sections in I'?” N\ T'Z can be expressed as Oy-linear combina-
tions of the local sections in I'?’. Hence T'?" generates E? as an Oy-module. We

proceed to show that the elements of I'?'~\T'¢ are similar to Oy-linear combinations
of elements of I'? by considering several cases.
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First, let 0 < s < n, let 0 < 41,...,%. < p°, and let 0 < j < e. We assume that
not all ¢, are zero and that all 4,, satisty vp(im) > vp(j — €’) = v. Then the local
sections of the form

VE([za]™ ... [z,]""d1og T, - .. dlog 2y, dlogT),
AV ([z1]'r ... [2,])"" dlog Ty, ... dlog Tp, ,dlog ),

where 1 <my < -+ <mg_1 <7 (resp. 1 <my < -+ < my_g < 1), are elements of
I'?9’\T'2. We will argue that the top elements are similar to Oy-linear combinations
of elements of I'Y; the bottom elements are treated analogously. We note that

0 < v < s and define s’ = s —v. We also define i/, = p~Vi,,, 1 < m < r, and

) =r G+ el 5= ))

Then iterated use of the similarity [7]® = V(1) shows that

j'=p"j+te

1
s’

VE([za])™ .. ] [r) dlog @, - .. dlog 2y, dlog T)
=V ([e) .. [ ) 7 dlog z, . .. dlog @y, dlogT).

The integers i/, 1 < m < r, are all divisible by p, and the integer j is not divisible
by p. Therefore, since d is a derivation, we conclude that

VE ([z1) .. [, [7) dlog @, . . . dlog Ty, dlog)
=Vd([z1] .. [x,]) 7} dlog @, . .. dlog zpm, ),

which is equal to zero, since s’ = s —v > 0 and Vd = pdV.

We next let 0 < s < n, let 0 <iq,...,4 < p®, and let 0 < j < e, and assume
that not all 4, are zero. We further let 1 < m < r be maximal with the property
that vy, (i) = min{vy(i1),...,vp(i,)} and assume that v = v,(i) < v(5 — €).
Then the local sections

VE([za])™ .. [z) " [r)P dlog 2y, - .. dlog zp,,),

VE([za])™ ... [z) " [r)P dlog p, . .. dlog zy,, ,dlogT),
dVE([z1]™ .. [2,) (1) d1og T, . .. dlog Ty, ),
dVE([z1]™ .. [z, [7) d1og Ty, . .. d1og Ty, ,dlogT),

where 1 <my < --- <mg<r (resp. I<m <~ <myg—1 <r,resp. 1 <my <
-+ < mg_2 < 1), and where some m; = m, are elements of 'Y’ N\ T'?. We again
argue that the top elements are similar to Oy-linear combinations of elements of I'¢;
the remaining elements are treated analogously. The integers v satisfy 0 < v < s,
and we define §', 7}, and j’ as above such that we have the similarity

VE([zd]™ .. [z [n) dlog @, - .. dlog zp,)
= VSI([:El]i/l AL [w]j/dlog T, ... dlogay,,).
We claim that this local section is similar to the local section

Z iy - VE([x]™ .. [x] " [r) dlog xedlog x, - . . c@m ...dlogxy,,)
L#m

+ 5 VE([x]" . []) 7 [7) dlog Td log Ty, - . - c@m ...dlogxy,,)
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and hence similar to an Oy-linear combination of elements of I'Y as desired. Here
the term dlog x,, is omitted. Indeed, on the one hand, the local section

Vd([a1) . ) (1) dlog @, - .. dlog @, . . dlog )

is equal to zero, since s’ > 0 and Vd = pdV, and on the other hand, this local
section is equal to the sum

Z i -V ([e1) . [ (1) dlog zedlog T, - . . (@m ... dlog zy,,)
1<e<r

+ 5V ([ ) ) dlogwdlog:cml...c@m...dlogxmq)

since d is a derivation. The individual summands in this sum are similar to the
corresponding summands in the sum

Z iy - VE([z1]™ ... [z, [7]?dlog xed log 20y, . - .c@m ...dlog zy,,)
1<eLr

+ 5 V(1] .. [z,) [7) dlog 7d1og T, . .. dlog z,, . .. dlog Trm,)

from which the desired similarity follows since 4/, is not divisible by p.
Finally, let 0 < s <nm and let 0 < j <e. If s <wvp(j — €'), the local sections

dVe([r)dlog xpy, .. .dlogxy,,_,),
where 1 <my < --- <mg_1 <r,and if s > v,(j — €’), the local sections
Ve([r) dlog Ty, . .. d1og Ty, _,dlogm),

where 1 <my < -+ <mg_q1 <, are elements of 'Y’ N\ T'?. In the former case, let

) =G e ).

We then have the similarity
dVi([n)/dlog zp, ...dlogz,, ) =j" - V*([r}/dlog zm, ...dlogz,,, ,dlogn),

which shows that these elements are similar to Oy -linear combinations of elements
of I'?. In the latter case, we let v = v,(j — €’) and define s’ = s — v and
—v U
)= p -1 o —wv( -1
i'=p ]+€(p7,171) p (]+p€(p71))-

Then s’ > 0 and since Vd = pdV the similarity
Vo([rfdlog zpm, . ..dlog Ty, dlogm) = Vs/d([ﬂj/dlog:cm1 .dlog Xy, )

shows that these elements of I'?’ \T'? are similar to zero. This completes the proof

of the proposition. O
Theorem 1.3.5. For 0 < j < €, let v be the unique integer such that
p—v -1 ) p—(v+1) -1
() <i<e (0
Let x1,...,x, be local coordinates of an open neighborhood on X around a point of

Y. Then, in the corresponding open neighborhood of Y, the sheaf

B} =T WaSQx aro) /P Wy ar)

has the following structure.
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(i) If 0 < v < n, then grU E1 is a free Oy -module with a basis given as follows. If
p does not divide j (resp. if p dwzdes i), let0<s<n—wv, andlet0 < iy,..., 0 <p°
(resp. let 0 < iy,...,i. < p® not all divisible by p); let 1 < m < r be ma:z;imal with
im not divisible by p. Then the local sections

Vo([z] . [z 7 dlog Ty, - . . dlog xyy,),
dVe([z1]™ ... [z, [r) dlog Ty - .. dlog xm;ﬂ),
where 1 <my < -+ <mg <7 and 1 <my < <mq 1 < r, and where all m;
and m}, are different from m, together with the local sections
(7} dlog Ty, ... d10g T, ,
where 1 <my < --- <mg <1, form a basis.

(ii) If 0 < v < n, then gr2j+l Ef is a free Oy-module with a basis given as
follows. Let 0 < s < n—w, and let 0 < i1,...,1, < p° not all divisible by p; let
1 <m < r be maximal with i, not divisible by p. Then the local sections

VE([za])™ .. [z) " [7) dlog T, - . . dlog @y, dlog ),
dVe([z1]™ .. [z, [7) d1og Ty . . . dlog T _,dlog ),

where 1 <my < -~ <mg_1 <randl<m) < - < mq 9 < 1, and where all m;
and m}, are dzﬁerent from m, together with the local sections

[} dlog @y, ... dlog Ty, _,dlogT,

where 1 <my < -+ <mg_1 <1, form a basis.
(iii) If n < v or zfe' < j, then Fil?f El =0.

Proof. Let 32 and I'? denote the sets of local sections of EY listed in the state-
ments of Thm. and of Prop. [L34] respectively. We first construct a bijection
f: T4 = 4 with the property that w and f(w) are similar in the sense of Def. [L3.3}
This proves that ¥¢ is an Oy-module basis of EY.

Let 0<s<mn,let 0<idq,...,4, <p® and let 0 < j < e. We let

v =min{s, v,(i1),...,vp(ir), vp(j — €)}
and define s’ = s — v, i}, = p~ Vi, and
g piyflif . p’ —1 vy ’ ’
i=p ”J+€(p_1_1)fp ”(J+pe(p_1))—p YG—e€)+e.
Then 0 < s’ <n—wv, 0< i, <p*,and j' is an integer that satisfies
pro1 Y-
() i <ol

The number j’ is an integer since j' € Z[3] and v,(j') > 0.

Conversely, let 0 < j' < €/, and let v be the unique mteger glven by the above
pair of inequalities. Also let O <s <n—wvand0<i,... < p° be given. We
define s = s’ + v, 4, = p¥il,, and

) T’

p -1 p’'—1
p_l—l)) p"J' pe(p )
Then v < s < n, 0 < i, < p°, and j is an integer and 0 < j < e. We define the
bijection f: 'Y — X4 by considering several cases. In each case the similarity of w
and f(w) follows by iterated use of the similarity [7]°¢ = V(1).

J=p"0"—e =p"(j' =€)+ ¢
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First, suppose that not all ¢,,, 1 < m < r, are equal to zero and that v < vp(im),
for all 1 < m < r. Then f takes the local sections

Vo([za])™ ... [z )" [r) dlog 2y, . .. dlog zp,),
dVe([z1])™ ... [z, 7 dlog 2y, ... dlog Ty 1),

where 1 <my < --- <my <7 (resp. 1 <my < -+ < my_1 < 1), to the similar
local sections

V¥ ([21) .. [z, [7) dlog 2, . . . dlog Tm, )

AV ([z1] .. [, ) [7]) dlog xp, . .. dlog T, ).

We note that 0 < s’ <n — v, that all ¢/, 1 < m < r, are divisible by p and that j’
is not divisible by p.

Next, suppose that not all 4,,,, 1 < m < r, are zero and that v = v, (i,,), for
some 1 < m < r. Let m be maximal with this property. Then f takes the local
sections

([x1] ... [z,])" [r)/dlog Ty, - . . dlog T, ),
VE([za])™ .. ) [r)P dlog @, - . . dlog Ty, dlogT),
dVe([zi]™ ... [x,] 7P dlog 2y, ... dlog Timg_y)s
dVe([zi]™ ... [x.] 7 dlog 2y, ... dlog Ty, _,dlogT),

where 1 <m; < --- <mg <1 (resp. 1 < my < --- <mg—1 <ryresp. 1 <my <
-+ < mg_g < 1), and where all m; # m, to the similar local sections

Ve ([aa] . []
Ve ([aa] ..

77 dlog T, .- .dlogxy,,),

717 d1og zpm, ...dlog Ty, dlogm),
(] ) (0] dlog @, - .. dlog @m, ),

[xl]ill . [xr]i; [ﬂj/dlog T, ... dloga,,, _,dlogm).

We note that 0 < s’ < n — v, that ¢/, is not divisible by p, and that j* may or may
not be divisible by p.
Next, if all 4,,, 1 < m < r, are zero and if v < s, then f takes the local sections

Ve([rfdlog zpm, . ..dlog T, ),
dVi([r)/dlog zp, ...dlog T, ,),

where 1 <mq < -+ <mg <7 (resp. 1 <my < -+ < my_1 < 7) to the similar local
sections

V¥ ([7)7 dlog p, . . .dlog Tm,)s
dv® ([x) dlog zp, . . . dlog Ty y)-

We note that 0 < s’ < n — v and that j’ is not divisible by p.
Finally, if all 4,,, 1 < m < r, are zero and if v = s, then f takes the local sections

VE([r[ dlog Zp, ...dlog zm,),
VE([r) dlog Ty, ... d1og Tp,,_,dlog ),



THE DE RHAM-WITT COMPLEX AND p-ADIC VANISHING CYCLES 15

where 1 <mq < -+ <mg <7 (resp. 1 <my < -+ < my_1 < 1) to the similar local
sections

[7)7 dlog @, .. .dlog zp,,,

[7)7 d1og Zpm, . .. dlog T, dlogT.
The integer j' may or may not be divisible by p. This completes the definition of
the map f: 'Y — X4. It is clear that f is a bijection.

It remains to show that the U-filtration of EY is as stated. Let A™? C E{ be the
sub-Oy-module generated by those elements of ¥4 that are listed in the statement
of the theorem as having U-filtration greater than or equal to m. It is then clear that
A™e C U™ = Filf} EZ and we must show that also U7 C A™49. We recall that if
m = 2j (resp. if m = 2j+1), then U™* is the differential graded ideal generated by
P Wo(m?Ox) C i*W,(Ox) (resp. by i*W,,(m/Ox) - dlog Mx C i*W"Q%X,MX) and
W (miT10x) C i*W,(Ox)). So it suffices to show that i*W,,(m’Ox) C A%0,
that the product takes A™9® Am'd o Am+m/’q+ql, and that the differential takes
A™1 to A™9t1 The second statement is verified by explicitly calculating the
products of basis elements of A™% and A4 in a manner similar to [IT, Sect. 4],
and the last statement is immediate. We verify the first statement.

One sees as in the proof of Prop. [[3.4] that U%° = i*W,,(m/Ox) is generated
as an Oy-module by the local sections

V(][] [7]),

where 0 < s < n, 0 < 41,...,% < p°, and 7 < a < j + e. Iterated use of the
similarity [7]¢ = V(1) shows that the generators with ¢ < a < j + e are equal to
zero. For the remaining generators we again let

v =min{s, v,(i1),...,vp(ir), vp(a —€')}
and define s’ = s —v, i/, = p Vi, and o’ =p~Y(a — ') + €. Then
VE([z]™ e ] [0]) =V (fea]™ - [ ] 7 [7])
and hence the local sections on the right-hand side generate U%/"? as an Oy-module.
Here 0 < s’ <n—wv, 0<d),...,i, <p®,and j < d <€, and if s > 0, then not
all of 41,...,4, and a’ are divisible by p. These local sections are all contained in
A23:0 and hence U%0 C A%70 as desired. O

Addendum 1.3.6. There is a natural exact sequence

0 — W, Q% 25 Wy ) 5 W08 — 0.
Proof. The map j, is induced by the canonical map from X with the trivial log-
structure to X with the canonical log-structure. To construct the map 0 we first

show that the map

-1
ot Wl @ W08 — Wo0f,

that to (w,w’) assigns w+w’dlog,, 7 is an isomorphism. Since the statement is local
for the étale topology, it suffices to consider Y = Aj.. This case follows inductively
from the trivial case r = 0 since the domain and target for Y = A are given by
the same formula [, Thm. B] in terms of the domain and target for Y = Azfl.
We now define 0 to be the composite map

. I —1 -1
i W”Q?X7Mx) — WnQ((IxMy) — W08 e W% — W, 0%,
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where the left-hand map is the canonical projection and where the right-hand map
is the projection onto the second summand. We note that 0 is independent of the
choice of uniformizer since f(w,w’) = fur(w + w'dlog, u,w"). It also is clear from
the definition that the composite J o j, is equal to zero.

Let x1, ..., x, be local coordinates of an open neighborhood on X around a point
of Y, and let Z1,..., T, be the corresponding local coordinates on Y. Lemma [[.31]
allows us to view the sequence of the statement as a sequence of Oy-modules, and
Thm. gives a basis of the middle term. The map 0 takes

O(V*([z1]™ ... [z,]"dlog Ty, . ..dlog xy,, ,dlogT))
=V3([z1]" ... [&])"dlog Zp, . ..d1og Tpm, ,),
(Vs ([w1])™ ... [z ] dlog Ty, - - . legwmq,z dlog))
=dV*([z1]" ... [z,]"d1og Ty, . ..dlog Ty, ),
and annihilates all remaining basis elements. One shows, in a manner similar to the
proof of Prop. that, Zariski locally on Y, the sheaves i*W, Q% and Wanfl

with the Oy-module structure given by Lemma [[.3.1] are free and that their ranks
satisfy the equation

Sk TT T —1 Sk TT
rko, ¢ Wan( +rko, Wan, =r1ko, @ WnQ((ZX7MX).

This completes the proof. (I
1.4. We end this section with the following result on the structure of the higher

torsion in the de Rham-Witt complex. The proof we give here uses the cyclotomic
trace; see [9]. It would be desirable to have a purely algebraic proof.

Proposition 1.4.1. If p,v C K, then for all 0 <m < v and all ¢ > 0, multiplica-
tion by p™ induces an isomorphism of sheaves of pro-abelian groups

1 0 ~ m
W'Q[(JX,Mx) =gr, W.Q?X7MX) — gr, W‘Q((IX,MX)'

Proof. We must show that for all 0 < m < v and all ¢ > 0, the following sequence
of sheaves of pro-abelian groups on the small étale site of X is exact:

0— W0 ) /p £, Wl /pmtt B W /P — 0.

This is equivalent to the statement that for all 0 < m < v and all ¢, s > 0, the
following sequence of pro-abelian groups is exact:

0— WL ®us® — WOLS S @usi, — W% @usi — 0,

We need only show that the left-hand map is a monomorphism of pro-abelian
groups. To this end we recall that for all 0 < m < v and all ¢ > 0, [I1, Thm. E]
gives an isomorphism of pro-abelian groups

—2 ~ .
@ W.Q((ZXJS/IX) ® ugfb — TR, (X|Xk;p,Z/p™).
s=0
In particular, for all 0 < m < v and ¢ > 0, the map induced from the reduction

TR, (X|Xk;p, Z/p"™ ) — TR(X|Xk:p, Z/p™)
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is an epimorphism of pro-abelian groups. It follows that the long-exact coefficient
sequence breaks up into short-exact sequences of pro-abelian groups:

0 — TR, (X|Xr;p, Z/p) — TR, (X|Xk;p, Z/p" ) — TR (X|Xk;p, Z/p™) — 0.
The proposition follows. O
2. p-ADIC VANISHING CYCLES

2.1. Let (i*W,Qf ))F:1 and (i*WnQ‘(]X ay)) F=1 denote the kernel and coker-

(X,Mx
nel, respectively, of the map
R—F:i*W, Q(XM )y~ i*Wn,lQ?XMX)

of sheaves of abelian groups on the small étale site of Y. We consider these sheaves
both in the Nisnevich topology and the étale topology. The U-filtration is preserved
by R— F and hence induces filtrations of the kernel and cokernel sheaves. We begin
with the following observation.

Lemma 2.1.1. Suppose that m > 2. Then, for all integers n and q, the map

R—F: Filf Wl ) — Filg W, 100

is a surjective map of pre-sheaves of abelian groups on the small étale site of Y.
Proof. We consider the case m = 2j; the case m = 2j + 1 is similar. It suf-
fices to show that if ao,...,a, and ag, ..., :1 ; are local sections of Ox such that
ordy (a;) > j and ordy (a] ) > j, for some 0 < i < ¢ and 0 < 7' < ¢ — 1, then the
following local sections are in the image of R — F":

Vo [ao]n—ldV51 [al]n—l ...dV?e [aq]n—la

Vo [ao]n_ldvsl [al]n_l ... .dVSa-1 [aq_l]n_ldlogn_l .

Indeed, every local section of Filj} W, _ 1QqX M) is a sum of such elements. We
now use that since j > 1, the following series converge:

Z Ft VSO ao n+th ! [al]nth ...dV?%e [aq]nth),
t=0

Z Ft a() n+th [al]n_H L. dV Bt [aq_l]n+tdlogn+t 71').
t>0

The images by R— F' of the sums of these series are equal to the given elements. [

Let Q%’log C QF be the subsheaf generated locally for the étale topology on Y
by the local sections of the form dlogy; ...dlogy,. If y is a local section of Oy,
we denote by ¢ any lifting of y to a local section of i*Ox.

Theorem 2.1.2. The sheaf M = (i*W. QgX M )) =1 of pro-abelian groups on the

small €tale site of Y has the following structure.
(i) There is an isomorphism

P00 1o, Zoard, M2 (resp. py: Q‘{,ﬁ;g = griy M)
that to dlogy; ...dlogy, (resp. dlogyi ...dlogy,—1) assigns dlogd ...dlogy,
(resp. dlog i ...dlog §4—1dlogm).
(ii) If 0 < j < €', and if p does not divide j (resp. if p divides j), there is an
isomorphism

~ ~

po: QU /BQET Zogrdl MO (resp. poj: QL /ZQETH S grd) MY)
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that to adlogy; ...dlogy,—1 assigns dlog(1+ wa)dlog i . ..dloggs—1.
(iii) If 0 < j < €, there is an isomorphism

P2j+1" Qg;z/ZQ§1f2 = gr2j+1 M1

that takes adlogy; . dlog Yg—2 to dlog(l+mia)dlog, ... dlog §,—odlogm.
(iv) If ¢ < g, then Fil?) MY is equal to zero.

Proof. Tt follows from Prop. [B.1.] and from [3, Sect. 4] that the maps p,, of the
statement are well-defined strict maps of sheaves of pro-abelian groups. We first
consider the statement (i). We abbreviate £ = i*W,, Q( X My) @8 before. It follows
from Lemma [2.1.1] that there is an exact sequence of sheaves of abelian groups

q R—F
-

0 — M2/Fil}, M? — E9/Filf, B4 E?_|/Filf, EY

n—1-

Moreover, Lemma [[2.1] identifies the middle and right-hand terms with the re-
duction modulo p of the de Rham-Witt complex of (Y, My ). Hence, we have an
isomorphism of sheaves of pro-abelian groups

M2/ FilZ, M2 =5 (W.Q4 =t

(Y, My)
The structure of the right-hand side is well-understood; see [24, Prop. 2.4.1]. The
statement for gry, M? and gr{, M? follows.

We next prove the statement (ii). It follows again from Lemma 2.1.1] that there
is a short-exact sequence of sheaves of abelian groups

0—>grUqu—>gr2JEqRF ) EL_ | — 0.
We recall that if x1,...,z, are local coordinates of an open neighborhood on X

around a point of Y, then, in the corresponding open neighborhood of Y, the
sheaf gr 7 B4 has the structure of a free Oy-module with a basis given by the local
sections

VE([z])™ .. [z [r) dlog @y, - . . dlog zp,,),
dVE([zi]™ ... [ 7 dlog 2y, .. .dlog Tmg 1)
where 0 < s <n —wv and 0 < s < n — v, respectively, and where the multi-indices

i and m vary as in the statement of Thm. [[35] (ii). We consider the short-exact
sequence of Oy-modules

0— (gr?f E%) — gr2] El — (gr2j ENH" — 0,

where the left-hand term is defined to be the sub-Oy-module spanned by the basis
elements in the top line above. The images of the basis elements in the bottom line
above form an Oy-basis of the right-hand term. Moreover, the map R — F' gives
rise to a map of short-exact sequences of sheaves of abelian groups as follows:

0—— (gry) B9) ——— gry! B ——— (gryl B9)" ——0

lR/_F/ lR_F JR//_F//

0—— (gr BY )Y ——grid B —— (gri) B2 )" ——0.

n—1 n—1 n—1

The map R’ is Oy-linear, annihilates the basis elements with s = n —v — 1, and
leaves the remaining basis elements unchanged, and the map F’ is equal to zero. It
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follows that R’ — F' = R’ is surjective, and hence we have the following short-exact
sequence of kernels of the vertical maps in the diagram above:

0 — (grf M) — grf] M — (gl M) — 0.

Moreover, as n varies, the left-hand term is zero as a sheaf of pro-abelian groups.
Indeed, the structure maps are zero. Similarly, the map R” above is the Oy-linear
map that annihilates the basis elements with s = n—v —1 and leaves the remaining
basis elements unchanged. The map F” is the p-linear map that annihilates the
basis elements with s = 1 and that is given on the remaining basis elements by

F(av* (i)™ ... o))" [ dlog 2y, . .. dlog o, )

=z .:ch"dVS*l([xl]i/l e [xr]i; (7l dlog p, ...dlog zm, ,),
where iy, = ky,p*~1 + i/, with 0 < i’l, ooyl < p*71. It follows that a local section
w= Z a,, s) ,dVE(] [z [mf dlog T, ... dlog T, )

of gr I E"4 lies in grQUJ M]'? if and only if the local sections a of Oy satisfy the
followmg system of equations:

o () prk1 =k
Ay E (@ pps—140)PT1 - T
0k, . kr<p

Here 1 < s < n — v and the multi-indices m and ¢ vary as in the statement of
Thm. [35 (ii). We note that a solution to this system of equations determines and
is determined by the local sections defined by the formula

Ay, = Z( 7(2)1) Tz
i
In this sum, the multi-index i ranges as in the statement of Thm.[[[35](ii) depending

on the multi-index m, which is fixed, and the index 1 < s < n—wv, which is arbitrary
but fixed. It follows that the restriction map

R”Z ( 23 M’ZJrl)H _ (ngQJj Mz)//

is an isomorphism, if n > v + 1, and that (gr%,] M%) is zero, if n < v+ 1. Hence,
the statement (ii) is equivalent to the statement that, for n > v + 1, the maps

p2j: Qg’fl/Bﬂgfl — (ngUj M5 (resp. pa;: lefl/ZQ‘{fl — (gr?]j M

induced by po; are isomorphisms of sheaves of abelian groups. To prove this, we
note that, for every positive integer s, Q3 Y/BQL (resp. Q471 /ZQ4T) has a
canonical structure of a locally free Op -module. If zq,...,z, are the local coordi-
nates of a neighborhood of X that we con51dered above, then, in the corresponding
neighborhood of Y, an O}, -basis is given by the local sections

... 2 dlog Ty, ... dlog Ty,

where 0 < 41,...,4, < p® (resp. 0 < iy,...,4, < p°, not all divisible by p), and
where 1 < m; < -+ < mg_1 < r are such that, if m is largest with i,, prime to
p, then m; # m, for all 1 < i < ¢— 1. We note that, for 1 < s < n — v fixed, the
multi-indices ¢ and m vary in the same way as in the statement of Thm. [[3.5] (ii).
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Let w be a local section of the sheaf Q4" /BQL™" (resp. QL' /ZQ%4™). Then, for
every positive integer s, we can write w as a linear combination

w = Z( 52)2) :zci1 T dlog T, - - .dlog Tp,_,

m,i

with respect to this basis. Then the coefficients a'® )i are local sections of Oy and,
astheindex 1 <s<n-—w varles constitute a solution to the system of equations
that define the subsheaf gr 7 M C gr%ﬂ EZ. Moreover, Lemma [[.2:3] shows that

paj(w Z aﬁi)ZdVS ([z1]™ .. [z ] [7) dlog T, ... dlog @y, ),
s,m, 7
and hence pp; is an isomorphism as stated. The proof of the statement (iii) is

completely analogous, and statement (iv) follows from Thm. (iv). O

Addendum 2.1.3. The canonical projection
(W pry)) =1 = (W ) )P

is an isomorphism of pre-sheaves of pro-abelian groups on the small étale site of Y.
Moreover, the associated sheaf for the étale topology is zero.

Proof. We recall from Lemma 2.1.7] that the map

Fily, "W )~ FilG Wl

is surjective. The isomorphism of the statement now follows from Lemma .21

Finally, by the proof of Addendum [[.3.6], there is a split-exact sequence
0— W.QY — W.Ql ), ) — WLt -0,

and we have from [I3] Prop. 1.3.26] that, for the étale topology, the map 1 — F
induces surjections of the left and right-hand terms. [l

Theorem 2.1.4. There is a natural exact sequence

0 — i"RIjupy? — i W.Q 8wl

(X,Mx) (XM)HO

of sheaves of pro-abelian groups on the small étale site of Y in the étale topology.

Proof. We follow Bloch and Kato [3] and construct the left-hand map of the state-
ment by means of the symbol maps

*RIjpst — i (MEP)® — i (W.Qf

F=1
(x.a1)

The right-hand map takes a local section a1 ® - - - ® aq4 to dloga; ... dloga, and the
left-hand map takes the same local section to the symbol {a1,...,a,}. We recall
the definition of the latter. By Hilbert’s Theorem 90, the Kummer sequence

0—pp — O % 0 — 0
gives rise to an exact sequence
0= i jupty = i"uOf L 3.0 2" R juy — 0
of sheaves of abelian groups on the small étale site of Y in the étale topology. The
symbol {a} is defined as the image of the local section a by the composite

M 205,08 L iRV,
and {a1,...,aq} as the product of {a1},...,{as}.
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We may assume that the scheme X is connected. Let V' be the strictly henselian
local ring of X at the generic point of Y, and let X' be the quotient field of V.
We let 7: Speck — Y be the inclusion of the generic point and consider the maps
induced by the symbol maps

TR St — T (MP)2 p — (WY

F=1
(X,MX))

The left and right-hand terms are canonically isomorphic to the skyscraper sheafs
associated with the pro-abelian groups K é‘/f (K') and (W.Q‘(Zv, Mv/))F =1 respectively.
It follows that the left-hand map is a surjection whose kernel is equal to the subsheaf

generated by the sections a1 ®- - - ® a, with some a; +a; = 1. By Prop.[B1.1] these
sections are annihilated by the right-hand symbol map, so we have an induced map

(2.1.5) TR oy — T (W

This map preserves U-filtrations, and [3, Cor. 1.4.1] and Thm. show that the
induced map of filtration quotients is an isomorphism. It follows that the map is
an isomorphism.

We consider the following commutative diagram:

)F:l

PRI S e i (M) — (.0, )P
* ok J - m * (KX, l =
7T 1 R, — T 7 (i W.Q‘(ZX’MX))F 1

It is proved in [3 Prop. 6.1(i)] that the left-hand vertical map is injective and
in op. cit., Cor. 6.1.1, that the upper left-hand horizontal map is surjective. More-
over, the right-hand vertical map is injective, since, Zariski locally on Y, the sheaf
i*VT/.Q?X) Mx) is a quasi-coherent Oy -module. It follows that the upper horizontal
maps have the same kernel, and hence the symbol maps give rise to a map

PR p T — (W

F=1
(XVMX)) :

Again this map preserves U-filtrations, and [3, Cor. 1.4.1] (see also [24, Prop. 2.4.1])
and Thm. 2.1.2] show that the induced map of the associated graded sheaves is an
isomorphism. It follows that the map is an isomorphism as stated. (I

Remark 2.1.6. It is possible from the proof of Thm. 2.1.2] to derive the following
more precise statement about the injectivity of the map
. . ® . T q
iR, — Z*W"Q(X,Mx)'

As in the statement of Thm. [[33] let v = v(j) be the unique integer such that

e(

Then the map is injective if n — 1 > v for all 0 < j < ¢’. This, in turn, holds if and
only if p"~! > ¢'.

pv—1 ) p,(erl) -1
)<i< 6(1,_17_1

pt-1

Proof of Thm.[Al The surjectivity of 1 — F is an immediate consequence of Adden-
dum Z.T.3l We show by induction on v > 1 that the symbol maps

iRt — (M) /p° — (WL /)
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are surjective and have the same kernel. The case v = 1 is Thm. T4l In the
induction step we consider the following diagram with exact rows, where we have
abbreviated EI = i*W.Q‘(IX M)

P RIju ST ———— " RYj pod ————— i*R1j Sl

| T |

P (MRP)®1 /p —— i (M) ®1 [p* —— i*(MF)®4/p* ™ —— 0

J | |

0 —— (B?/p)" = ——— (B!/p")" = ——— (B! /p"= )" ——0.

The exactness of the lower row follows from Prop. [[L4.1] and Addendum 1.3l By
induction the right-hand vertical maps are surjective and have the same kernel. The
same is true for the left-hand vertical maps. It follows that the middle vertical maps
and the upper right-hand horizontal map are surjective. We claim that the upper
left-hand horizontal map is injective. Indeed, this is equivalent, by the long-exact
cohomology sequence, to the statement that in the sequence

. 1. . 1. ® . 1. ®
i*RY ]*M?q — i"RY ]*Np”q — i"R1 J*N;D“q_l

the right-hand map is surjective. But the cup product by a primitive p”th root of

®(q—1) ®4 and we have already

unity defines an isomorphism of the sheaves i, and fi,.,

proved that the following sequence is exact:
PRI i R Y i R 0,

It remains to show that the middle vertical maps in the diagram above have the
same kernel. To this end, we assume, as in the proof of Thm. T4 that X is
connected and let 7: Speck — Y be the inclusion of the generic point. We consider
the symbol maps

Py Q® * e v * [ ok v\ F=
TR ! 750 (MRP)2 " — T (WY ¢y /P )=
The kernel of the left-hand map is generated by the symbols {a1, ..., a,} with some

a; + aj = 1, and Prop. [B.1.1l shows that these sections are contained in the kernel
of the right-hand map. Hence, we have an induced map

T*i*qu*HS? — T*(i*W.Q‘(IX)MX)/pv)FZI.

It is an isomorphism by induction and by the fact that the upper and lower horizon-
tal rows in the diagram above are short-exact. We consider the following diagram
with exact rows:

0 ——— " RIjpf? ————— i* RIj pSd ————— "R, ——— 0
0—— T*T*i*qu*u?q —_— T*T*i*qu*u?,q — T*T*i*qu*uf,’uq,l.

By induction and by [3| Prop. 6.1(i)], the right and left-hand vertical maps are
injective. Hence, also the middle vertical map is injective. A similar argument
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shows that also the right-hand vertical map in the following diagram is injective:

i*qu*u?vq @« i*(M)g(p)(g’q/p” Y (i*W'Q((IX,MX)/pv)FZI

|

T T " Rj, ,uf?'uq

T*T*(i*W.QgX’MX)/pU)le.

It follows that the upper horizontal maps have the same kernel as desired. This
way we obtain the left-hand map of the statement of Thm. [Al

PRI gt — (WAL o )T

Finally, an induction argument based on the short-exactness of the upper and lower
horizontal sequences in the diagram at the beginning of the proof shows that this
map is an isomorphism. O

3. HENSELIAN DISCRETE VALUATION RINGS

3.1. In this section we prove Thm. [Bl of the introduction. The proof uses the fol-
lowing commutative diagram of pro-abelian groups in which the right-hand vertical
map is the cyclotomic trace of [4]. We refer the reader to [9] for an introduction
and a comprehensive list of references to this construction:

(3.1.1) KX(K) @ Sz/p (ppe) ——— K. (K, Z/p")

l |

WA ) © Szype (ppr) —— TR (V|K; p, Z/p").

We recall from [I0, Thm. C] and [II, Thm. E] that in this diagram the lower
horizontal map is an isomorphism of pro-abelian groups.

Suppose first that the residue field x is separably closed. Then Thm. [A] shows
that the left-hand vertical map is injective and an isomorphism onto the Frobenius
fixed set of the target. Similarly, we show in Prop. [3.2.3] below that the right-hand
vertical map is injective and an isomorphism onto the Frobenius fixed set of the
target. This proves Thm. [Blin this case.

In the general case the vertical maps in ([BIJ]) are not injective, but they still
induce surjections onto the Frobenius fixed sets of the respective targets. Hence, to
prove Thm. Bl we must show that the upper horizontal map induces an isomorphism
of the kernel of the left-hand vertical map onto the kernel of the right-hand vertical
map. We first express the two kernels in terms of de Rham-Witt groups and then
show that the map in question is an isomorphism. The proof of the latter occupies
most of the section.

3.2. Let the field K be as in the statement of Thm. [Bl We first consider the
left-hand vertical map in (BI)).

Proposition 3.2.1. Suppose that p, C K. Then there is a natural exact sequence
of pro-abelian groups

0— (WL ) @ p)r=1 — K31 (KK) — (W00, )F=! =0,

where the left-hand map takes the class of [a]dlogzy ...dlogze—1 ® ¢ to the class
of the symbol {1+ a(1 — ()P, x1,...,Tq—1}-
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Proof. It follows from [I5, Thm. 2(1)] and from Thm. 2T 2]above that the map that
to {a1,...,aq} associates dloga; ...dloga, induces an isomorphism of pro-abelian
groups ,

K(K)/Filf Ko () = (W, ) 7
Indeed, the right-hand side is the stalk at the generic point of Y of the sheaf of
pro-abelian groups (i*VT/'.Q‘(ZX’]V[X))F=1 on the small étale site of Y in the Nisnevich
topology. Similarly, [I5, Thm. 2(1)] and Addendum T3] shows that the left-hand

map of the statement induces an isomorphism of pro-abelian groups
= -1 ~ 12e’ M
(W'Q[(JV,MV) ® pp)p=1 — Fily K" (K).
This completes the proof. (I

Remark 3.2.2. Suppose that p,» C K. One can deduce from Prop. B.2.T] that there
exists a natural exact sequence of pro-abelian groups

0= (W ) @ e )rmr = K1) /0" = (W ag, /)7 = 0.

However, we do not have a purely algebraic proof of this deduction. We also do not
have an explicit description of the left-hand map for v > 1.

We now turn our attention to the right-hand vertical map in (BII). To this
end, we consider the cyclotomic trace map
tr: Kq(K,Z/p) — TC,(VIK;p,Z/p)

from K-theory to topological cyclic homology; see [10, Sect. 1]. The right-hand side
is related to TR, (V|K;p,Z/p) by a natural exact sequence of pro-abelian groups

. s ) ' B
0— TRq+1(V|]C5pv Z/p)F:l — TCq(VUC;p7 Z/p) N TRq(V‘IC;p, Z/p)Ffl 0.
We consider the composition of the left-hand map and the canonical map
(W'Q((Z;_}Mv))le - TRI}+1(V|K§Z)7 Z/p>F:1.

Proposition 3.2.3. For all integers q, the cyclotomic trace and the map 0 give
rise to a natural isomorphism of pro-abelian groups

K,(K,Z/p) & (W.Q?\fjwv))F:l = TC,(VIK; p, Z/p).

Proof. We consider the following diagram of pro-abelian groups, where the horizon-
tal maps are given by the cyclotomic trace on the first summand and the boundary
map on the second summand, and where the vertical maps are induced by the
canonical projection:

K,(V,Z/p) & (W.QL) poy —— TC, (Vip, Z/p)

l |

Ko(k,Z/p) ® (W.Q) p_y —— TC,(k:p, Z/p).

The lower horizontal map is an isomorphism by [7, Thm. 4.2.2], and we claim
that also the top horizontal map is an isomorphism. Indeed, by Addendum 2.1.3]
the left-hand vertical map induces an isomorphism of the second summand of the
domain onto the second summand of the target, so the claim follows from the fact
that the map of relative groups induced by the cyclotomic trace
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is an isomorphism of pro-abelian groups. The latter statement, in turn, is proved
in [20], [23, 22], and [5, Thm. 2.1.1].
We recall that [10, Addendum 1.5.7] gives a map of localization sequences

e KW Zfp) T S K (K, Zp) s Ky (5, T p) -

| | |

- TC, (Vip, Z/p)—2 TC, (VIK: p, Z/p)—2— TC, _, (ks p, Z/p) —- - - .

Moreover, it follows from Addendum [[3:6]and Thm. 27T2(i) that the upper row in
the following diagram is exact:

0 (W0 ) s 2 (W s — s (W20 ey ———0

| | |

We claim that the diagram commutes. Indeed, the left-hand square commutes by
the universal property of the de Rham-Witt complex, and the description of the
upper horizontal map 0 in terms of local coordinates shows that, in order to show
that the right-hand square commutes, it suffices to show that the lower horizontal
map O takes dlogm to 1. But this follows from the definition of dlog 7 and from
the commutativity of the right-hand square in the previous diagram.

Finally, we combine the two diagrams above as follows. The two diagrams give
rise to a map of long-exact sequences from the sum of the upper rows in the two di-
agrams to the common lower row in the two diagrams. We showed in the beginning
of the proof that, in this map of long-exact sequences, two out of three maps are
isomorphisms of pro-abelian groups. The third map is the map of the statement.
This completes the proof. ([

Proof of Thm.[Bl We first note that if the statement is proved in the basic case
v = 1, then the general case v > 1 follows inductively by using that the coefficient
sequence breaks up into short-exact sequences

0 — Ko(K,Z/p) — Kq(K,Z/p") — Ko(K, Z/p"™") — 0.

Hence, it suffices to consider the case v = 1. It follows from Propositions B.2.1]
and B.23] that the left and right-hand vertical maps in ([B-I1]) are surjections onto
the domain and target, respectively, of the canonical map

(W an) ® Sz/p ()" =1 = TR (VI p, Z/p) "=

The two propositions further identify the kernel of both of the vertical maps
in (BII) with the direct sum

zr yg+1-2
@ (WQEJV’MV)S ® N?S)F:I-
s>1
It remains to show that the map between the two kernels induced by the upper
horizontal map in (BI) is an isomorphism. This, in turn, is equivalent to show-

ing that the following diagram ([B.2.4]) of pro-abelian groups commutes. The three
unmarked maps are as follows: the upper horizontal map is induced by the lower
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horizontal map in (BI1]); the lower horizontal map is the composition of the canon-
ical map from Milnor K-theory to algebraic K-theory followed by the cyclotomic
trace; and the left-hand vertical map is the left-hand map in Prop. B.2.1}

(3.2.4) (WL ) © ) pmt ——————— TR (VIK: 9, Z/p)

| I

KM (K)————— TC,(VIK; p, Z/p) [§(W.QL 1) =1

It follows from Addendum that every element of the upper left-hand term can
be written in the form [a]dlogx; ... dlogz,—1 ® (, and since all maps in ([B.2.4) are
KM(K)-linear, we can further assume that ¢ = 1. Hence, it suffices to prove the
following Prop. O

Proposition 3.2.5. The image of [a] ® ¢ by the composite map
. s )
W.(V) ® pp — TR3(V|K; p, Z/p) = TC{(V|K;p, Z/p)
is congruent, modulo 6(W.Q(2v,Mv))F=1, to dlog(l + a(1 — ¢)P).

Proof. We may assume that the discrete valuation ring V is complete. Indeed, the
canonical map for V to the completion of V induces an isomorphism of all three
terms in the statement. The line of proof is similar to that of [10, Addendum 3.3.9].
We apply op. cit., Lemma 3.3.10, to the 3 x 3-diagram of cofibration sequences

f11 f12 fis
Eyy Eqo Eq;5 YE
gi1 gi2 gi3 3g11
f21 fa2 fa3
Ey Eaa Eo3 YEx
g21 g22 923 3g21
fa1 3 f32 f33 h
Es Es; Ess Y E4;
g31 932 933 (—1) —%g11
b)) > - ~
SE, f11 S Eys fi2 S Fys fi3 EQEH

obtained as the smash product of the coefficient sequence
SO 250, 2 5t
as the first smash factor and the fundamental cofibration sequence
TC"(VIK;p) — TR"(VIK:p) == TR" ™ (VIK:p) = £ TC"(VIK:p)

as the second smash factor. We recall from op. cit., Lemma 3.3.10, that if we are

given classes €ij (S (EIL) such that 933(633) = flg(elg) and f33(633) = 921(621),
then the sum fo1(e21) + g12(e12) is in the image of 7, (E11) — i (FEa2). In the case
at hand, we consider the class

es3 = [a]l _, - be € mo(Fs3) = ma(M, A TR (V|K;p)).
We wish to show that the image e3; of es3 by the map
faze = (Id AS)y: ma(M, A TR (VIK; p)) — m1(M, A TC™(V|K;p))
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is congruent, modulo the image of my(Fa3) — 71 (FE31), to the class
e = dlog,, (1 +a(l —()F).
We shall use repeatedly that the canonical map
Wall, 1 — TRI(VIK: p) = 7,(S° A TR™(VIK: )

is an isomorphism, if ¢ < 2. This was proved in [I0, Thm. 3.3.8] for V = V. The
general case follows from this by [1I, Thms. B and CJ.
By the definition of the Bott element, the image of e33 by the map

g3z« = (BAid),: ma(M, A TR (V|K;p)) — m1(S° A TR (V|K; p))
is equal to the class
e13 = [a];,_,dlog,_, C.

Since we assume that V is mV-adically complete, the proof of Lemma 2.1.7] shows
that this class is in the image of

froe = R—=F: Woy ) = W1y an)-

Indeed, the class ej3 is contained in Fier Wn,lQ%qu) and ¢’ > 1. This also
shows that the class e3;, which we wish to determine, is contained in the image of
the map go1.: m1(F21) = 71 (Es31).

We write ( =1+ un® with u € V* a unit and consider the class

n—1 s

ez =— > > AV ([al_[u],_[n]s" ).

s=0 t=0
Sublemma 3.2.6. flg*(elg) € ez + Fﬂ;l]e” Wn 1Q(V My)*

Proof. We assume that v = 1 (the general case is only notationally more compli-
cated) and calculate

n—2 s

(R F 612_ szvs n 1— s[ﬂ-]zﬂ—l—s)
s=0 t=0
Y SV () + Fd((alalls)
s=1 t=0

" "

= Zdvs n 1— S[ﬂ']i_l_s)‘FFd([a]n[ﬂz )

"

= Zd n 1VS }Z 1— s))+Fd([a]"[ﬂ-]z)

n—2

= D lalh 1 dVe([rli o)

s=0

+Zp VS([ ]fL 1— s)

"

+[a}i 1Al ad(aln-afmly )
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The summands in the last two lines lie in pFilZ = Fil?J(HEN) and the sum in
the third to last line is congruent to [a]’_,dlog, ;(1 + 7¢) modulo Fil{f by

n—1

Lemma [[.2.3] This completes the proof. O
It follows from Lemma 211 that for m > 2,

(3.2.7) (R — F)7H(Fily Wy Qfy, ) = Fily Wo Q)+ ker(R — F),
and hence, Sublemma implies that

Fras(ers + Bl W1 Qfy, p0)) = exa + Filfe WoQy )+ im(fi1.)-
We next consider the image of this subset by the map

9120 =P WSy ary) = Walivoar)-
Sublemma 3.2.8. The subset glg*(/fﬁ} (e13 —|—Fi1%f” Wn,lQ%qu))) is equal to the
subset dlog,, (1+a(1 — ()P) + Fil ** )V W,Ql, o+ im(g1a. f11.).
Proof. We again assume u = 1 and recall from Lemma that
pFill WoQby 1) = Filg' T Wby -
Hence, in view of the equation ([B2Z7), it will suffice to prove that
2(e’ e’
gi2«(e12) € dlog,,(1+a(l — )P) + Fill'" " W0l 4 .

To this end, we use that in W,,,(V),

] = p(— 3 V().
v=0

modulo W,,,(m2¢' V). If we rewrite

n—s—1
1"

e = S AV ([l o= 3 V(L )),
s=0 v=0

this implies that gq2.(e12) is congruent, modulo Fil?f/ WnQ%M My TO the sum

/

> dve((aln—s[rls_,).
s=0
Finally, Lemma [[.2.3] shows that this sum is congruent, modulo Fil4Ue/ WnQ(lM M)
to the class eay = dlog,, (a(1 — ¢)P). B

Recall that the map

fore: m1(Ea1)/im(fage) < m1(Ea2)

induced by f214 is identified with the canonical inclusion
(WnQ%v,M\;))FZI - WnQ:(lV7M\;)
We can now conclude that fs;%(g12.(fi5s(e13))) is contained in
q2(e’ +e”’ — . _
legn(l + a(l - C)p> + FﬂU( i )(W"Q%\&Mv))F ! + lm(gll*)'
The image of this set by the map
G2+t T1(Fo1)/im( faze) — m1(F31)/ im(go1« f23+)
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is equal to the class of dlog,, (1 + a(1 — ¢)P), provided that
q2(e/ ¢’ - -
FllU(e ‘ )(WnQ%v,Mv))F 'c p(WnQ%v,MV))F .

We shall prove in Cor. 3210 below that this is almost true. More precisely, we will
show that given n > 1, there exists m > n such that the left-hand side is contained
in the image of the composite

— R”TL*”‘L
p(WmQ%MMv))F to WmQ%v,Mv) —’WnQ%v,Mw'

The proof of this will occupy the rest of this section. We may then conclude that
given n > 1, there exists m > n such that the map of the statement takes [a],, ® ¢
to dlog, (1 + a(1 — ¢)P). The proposition follows. O

Lemma 3.2.9. The map that to x ® ( assigns xdlog( is an isomorphism of pro-
abelian groups

W.(mV) @ i, = (Fil W0, 400 0]
Proof. 1t follows from [11, Thm. E] that the map
W.(V) ® pp = Wy sy, [P

that to x ® ¢ associates xdlog ¢ is an isomorphism of pro-abelian groups. This map
factors as the composite

W.(V) ® pp — (il Wy ar,,)) 0] = Wy an,,) ],

and since the right-hand map is injective, both maps are necessarily isomorphisms.
We wish to conclude that the map of the statement is an isomorphism. To this end
we consider the following diagram of pro-abelian groups with exact columns.

0 0
W.(mV) @ p ——————— (Fil;'" T wW.Qh, )]

~

W.(V) @ u

(FilZf W.QL, ) [Pl

.12¢" 2(e’+1
W.(k) @ p — (Fil% W.Q%V7MV)/F11U( + )W.Q%V7MV))[p]

0

It suffices to show that the lower horizontal map is injective. To prove this, we
compose with the canonical inclusion

.12¢" .2(e”+1 .12(e"+1
(Filyy” Wby g/ File TV WL, 1)) WO, )/ Fil T W,
and use the isomorphism of Lemma [[.2.]

q2(e”+1 ~
WLy ary/ Filg Wy, ) = W0l

Vc//+1ng//+1)'
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The resulting map
WTL(K’) ® /LP - W‘Q%V61/+1,Me//+1)

takes a ® ¢ to adlog, ¢, where @ € W,,(V.11) is any lifting of a € W, (k). The
ring Ve 41 is isomorphic to the truncated polynomial ring H[t]/(te”“), and we can
choose the isomorphism such that the induced map of residue fields is the identity
map. The image of ¢ by this isomorphism has the form 1+ ut®”, where u € x* is
a unit. (Since ¢ € V, we can even assume that u € k*.) Hence, it follows from
Lemma [[.2.3] that the composition

Wn(ﬂ) © pp — WnQ%Ve/’+17Me”+1) = W"an[t]/(t'i”‘*'l),No)

is equal to the W, (k)-linear map that takes 1 ® ¢ to the sum

legn E = i dvs([u]nfs[t]fzts)'

s=0
The domain of this map is given by

Wi (k) [pWa(K) @ pp = Wi (k) [VEW,(K) @ pp = Wi (k) [V Wi (KP) @ pp,

and the target is given by Prop. [A. LIl below. We must show that if n is sufficiently
large, then for all a € W, (), the product

1"

© = adlog, ¢ = (3 V" ([arlnr) - (3 dV*([uluo[115)
r=0 s=0

is equal to zero if and only if ayp = 0 and a, € kP, for all 1 < r < n. We write
¢/’ = p¥i with ¢ prime to p and proceed to rewrite the summands of © = >~ 0,  in
the form of Prop. [A-T.1l We first note that since d is a derivation,
Ors = d(V" ([arla—r) - V* (fulnslth ) = AV ([ar)ur) - V*([uln-s[112),
forall 0 < r,s < n.
Suppose first that » > 0. If 0 < s < v and s > r, we get

0,5 = P dV*([a, 2, [u]n—s) - [t]2

n—s

+ pr+v—sivs([ar]§:§’" [u]n—s) - [t]pvisidk’gn 13

n

- VS([ar]pS_rdIOgn—s ar - [uln—s) - [t]ﬁwszl'

n—s

The first summand on the right-hand side is zero, since

P dVe([a,)’_ . [u]ns) € Fil**" W, QL

n—s

and p"t%.p*7Y > €’ +1, and the second term is zero for similar reasons. The third
term is zero if and only if
Ve (a2, dlog,_, a, - [ul,_,) € FiI** 1 W, QL
and this happens if and only if a, € xP. Indeed, the filtration of the groups W, Q4
is known completely by [I3] Prop. 1.2.12]. If 0 < s < v and s < 7, we have
Oprs = p°dV* (V" ([ar]n—r) [u]n—s) - [t]ﬁ%%
=p iV (V" (lar]n—r) [u]n—s) - [t]g%sidlogn t

- Vs(dvr_s([ar]nfr)[u]nfS) : [t]p ia

n
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and all three terms are zero, since p" -p" %t > e’ +1. f0<v <sand s > 7,

s—r

®r,s = prdvs—v(vv([ar]iis [U]TL*S) : [t}ilferv)
- VS_U(VU([ar]is:;vdIOgn—s ar - [uln—s) - [t]ihsﬂ))-

The first term is zero, since p**"i > e” + 1, and the second term is equal to zero if
and only if a, € kP. Finally, if 0 < v < s and s < r, we have

O, = p*dVE (VO (VT ([ar]n—r) [u]n—s) - [t];—sﬁj)
= VeV AV ([ae)n—r ) [uln—s) - [t]iz—erv)v

and both terms are zero since p” 37V > e + 1.
We next evaluate the remaining summands Og ;. If 0 < 5 < v, we have

Bo,s = dvs([aoms—s[u}nfﬂ : [t]ﬁv_Si
+ 0"V (aolhJuln—s) - (1 dlog,, ¢
~V*(laolt_ ,dlog,_,ao- [uln—s) - [
The first term is zero if and only if s = 0 and a¢ € kP, the second term is zero if
and only if s < v, and the last term is zero if and only if ag € kP. Finally, if s > v,

Bo,s = AV (V" ([ao]n—s[uln—s) - [t —st0)
- VS?U(VU([U‘OV:L—sdIOgn—s '[U]n_s) : [t]’ril—s—}-v)'
The first term is zero if and only if ag is zero, and the second term is zero if and
only if ag € kP.
We can now show that for n > v, the product

_ - 1
© =adlog, C € W"Q(w[t]/(tﬁ”‘*'l),No)

is equal to zero if and only if ag = 0 and a, € P, for all 1 < r < n, as desired. To
this end we use the direct sum decomposition of the de Rham-Witt group on the
left-hand side exhibited by Prop. [A.1.1l below. Suppose first that 1 < r < n. Then
O, = 0 if and only if » > s or r < s and a, € kP. Suppose that r < s. Then
the element ©, , belongs to the direct summand V*(W,_,QL) - [t]2" " if s < v,

n
and to the direct summand V*= (W, _s, QL - [t]}_,,), if s > v. In particular,
two non-zero elements O, s and ©,s 5 belong to the same summand if and only if

s = s’. It follows that the sum

n—1ln—1 n—1ln—1
2. 0= > O
r=1 s=0 r=1 s=r

is equal to zero if and only if a, € kP, for all 1 < r < n. A similar argument shows
that no cancellation can occur between the elements O, 5, 1 <7 < s < n, and the
elements ©g o, 0 < s’ < n. Finally, O, is non-zero if a¢ is non-zero and s > v.
This completes the proof. O

Corollary 3.2.10. The map induced from multiplication by p,
p: Filzu(ewﬂ)(WQ%v,Mv))F:l — File(e/H)(W.Q%v,Mv))lea

is an isomorphism of pro-abelian groups.
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Proof. We abbreviate £ = WQ(V M) and consider the following diagram:

" 7 1-F "
0—— Fil* " (EHF=! — Fi2 ) gl —— Rl D L ——0

’ ’ —F ’
0 —— FiI2 D (g1 F=1 —— 2@+ g1 = pi2 D gl —— 0,

It follows from Lemma that the middle and right-hand vertical maps, which
are induced by multiplication by p, are well-defined and surjective. The left-hand
vertical map is the map of kernels induced by 1 — F. This is the map of the
statement. The horizontal maps 1 — F' induce a map between the kernels of the
middle and right-hand vertical maps

1— F: Rl glp) — R+ gLy,
and Lemma B.2.9] shows that this map is an isomorphism of pro-abelian groups.

Indeed, the map 1 — F: W.(mV) — W.(mV) is an isomorphism, since the geometric
series 1 + F + F? + ... converges. The corollary follows. (I

APPENDIX A. TRUNCATED POLYNOMIAL ALGEBRAS

A.1. In this appendix, we give an explicit formula for the de Rham-Witt complex
of a truncated polynomial algebra in terms of the de Rham-Witt complex of the
coefficient ring. The formula is derived from the corresponding formula, proved
n [II, Thm. B], for the de Rham-Witt complex of a polynomial algebra, and it
generalizes the formula of the thesis of Kare Nielsen [21I], where the case with
coefficient ring IF, was considered.

Let A be a Z)-algebra with p # 2, and let A[t] be the polynomial algebra in
one variable with the pre-log structure a: Ng — A, a(i) = t*. One can show as
in [II, Thm. B] that every element w(™) € WnQ((IA[t],NO) can be written uniquely as

w™ =3 (agr) [t]h, + b7 [t];,dlog, )
1€Np

S S )+ VO )

s=1iel,

where a( "™ e W, Q9% and b, m) € W,,Q% ", and where I, denotes the set of positive
integers prlme to p. The formulas for the product dlfferentlal and Frobenius and
Verschiebung operators may be found in op. cit., Sect. 4.2. We now fix an integer
N > 1 and consider the subgroup

17 CWQ(AMN)

of those elements w™) such that agf?) € Fil" W,,,Q% and bg?) € Fil' W,,Q47", for
some 0 < v < m with p¥i > N. We consider the ring A[t]/(t"¥) with the induced

pre-log structure. The following result expresses W, Q( Al]/(tV)Ng) 85 @ direct sum
of groups W, —,Q% and W,,_, Q%" L

Proposition A.1.1. The canonical projection induces an isomorphism

q ~ q
Wikl a woy 15— WaS¥{apn vy o)
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Proof. We see as in the proof of Lemma [[21] that it suffices to show that I} is a
differential graded ideal with W,,((¢")) C I? and that if J* is another differential
graded ideal with W, ((t")) c J?, then I} C J*. We leave the former state-
ment to the reader and prove the latter. We first show that elements of the form
Vs(angs)[t}il_s), where a € Fil" W,,_,Q%, for some 0 < v < n — s with p¥i > N,
are contained in JZ. By definition of the standard filtration,

(n—s) — VU((JJ) +dV”(w’)

S,

a

for some w € W, ,0% and o' € W,_,_,Q% ", and hence Vs(aiz_s)[t]fl_s) is
equal to the sum

VAWt )+ pt AV W R ) — VT W R, dlog ).

We consider the left-hand term. By [I1, Thm. A], the canonical map

Q%V"(A) — VVnQ?4

is surjective. This shows that w can be written as a sum of elements of the form
xodxy ... dxg, where xg, ..., x5 € W,_s_(A). But
Vet (woday . . dag[t]l ) = VT (@[ AV (@) . . AV (@),

n—s—v n—s—v
which is contained in JZ, and hence VST (w[t]? Y _ ), too, is contained in JZ. One

shows in a similar manner that dV T (w/[t]? ", ) and V=T (W/[t]2 7, dlogt) are

S n—s

are treated in a completely analogous manner. ([

contained in JZ. Hence V* (a(?fs)[t}i ) is contained in JZ. The remaining cases

APPENDIX B. THE STEINBERG RELATION (BY VIOREL COSTEANU)

B.1. This appendix is devoted to the proof of the following general version of the
Steinberg relation in the p-typical de Rham-Witt complex. We assume as above
that the prime p is odd.

Proposition B.1.1. Let (A, M) be a log-Z-algebra, and let x and y be two
elements of M with the property that the sum a(x) + a(y) in A is equal to 1. Then
the product dlog, x - dlog, y in WnQ%A’MA) is equal to zero.

Proof. The proof is by induction on n > 1. The proof of the case n =1 and of the
induction step are similar. We assume that the statement holds for n — 1 and prove
it for n. We have

dlog,, x - dlog, y = ([a(z)]n + [(y)]n — 1 — [a(@)]n — [a(y)]n) - dlog,, z - dlog,, y
= dlo(z)]n - dlog, y + dlog, = - dla(y)]n+(1 — [a(x)]n— [a(y)]n)dlog, x - dlog,, y.
The last summand on the right-hand side is zero by induction. Indeed,
L= [e(@)]n = [a(y)]n = [(z) + 2(y)]n — [a(@)]n — [(y)]n = V(7),
for a unique element 7 € W,,_1(A), and hence
(1= [a(®)]n = [a(y)]n) - dlog, x - dlog, y = V(7 - dlog,,_; « - dlog,,_y) = 0.

It remains to show that d[a(x)], -dlog, v and dlog,, = -d[a(y)], are zero. The proof
is the same in the two cases. Lemma [B.1.2] below shows that the polynomial

(X)) =p* (1 X)P — (1 - X7
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has integral coeflicients. Moreover, one readily verifies the formula
[1—aln=[1]n —[aln + Z Ve(fs(laln—s))
0<s<n
by evaluating the ghost coordinates of the two sides. It follows that
d[a(y)]n ’ legn T = d[l - Oé(I)]n : legnx
= ddlog,, « — dd[a(z)], + Z AV (fs([a(x)]n-s)) - dlog,, .
0<s<n

The left-hand and middle term in the bottom line are zero. This completes the
proof, for n = 1. It remains to prove that the right-hand term is zero, for n > 1.
Let ¢, ; denote the coefficient of X in the polynomial fs(X). Suppose first that p
does not divide i. Since A is assumed to be a Z,)-algebra, the integer i is invertible
in W, (A). Hence, we can write

Csyi dvs([a(l’)];ﬂ) ! dlogn L =Csyi- dvs([a(m)]izfs : dlognfs $)

=i lteg; - dVidla(z)])n_s = pi e - ddVE ([a(2)]n_s),

which is zero as desired. Finally, if p divides 7, the coefficient ¢, ; is divisible by p®
by Lemma [B.1.2l Hence, we can write

Coi - AV ([a(a)];,_) - dlog, x = p~c ;- Vid([a(z)];,_,) - dlog, @

=p Sics; - VE([a(z)],_ydlog,,_, x) - dlog, x

= pisiCSﬂ' ! VS([Oé(x)]:’L—é) ’ dlogn €T dlogn €T,
which is zero. This completes the proof. U

Lemma B.1.2. The coefficient of X* in the polynomial
(1-x)p — (- X7y

s—1

is divisible by p°, if p does not divide i, and by p>°, if p divides i.

Proof. In general, if two elements a and b of a ring R are congruent modulo pR,
then their p*~!th powers a?’ " and P are congruent modulo p*R. It follows that
(1—X)?" and (1 — XP)?""" are congruent modulo p*Z[X]. Hence, the coefficients
of the polynomial (1 — X)?" — (1 — X?)P""" are divisible by p*. It remains to show
that if 4 is divisible by p, the coefficient of X* in this polynomial is divisible by p?®.
If we write ¢ = pj, then the coefficient in question is equal to

ps ps—l ps—l s
(pj) ( j ) ( j )((Hp /L0 =1
where, on the right-hand side, the products range over integers 0 < k < pj that are
not divisible by p. The p-adic valuation of the first factor on the right-hand side
is at least s — 1 — v,(j). Indeed, in general, the p-adic valuation of the binomial
coefficient (m;:") is equal to the number of carriers in the addition of the integers m
and n in base p [I7, p. 116]. We must show that the p-adic valuation of the second
factor on the right-hand side is at least s + v,(j) + 1. Consider the polynomial

7@ =TI -».

where the product ranges over integers 0 < k < pj that are not divisible by p. We
wish to show that the p-adic valuation of (f(p®)/f(0)) — 1 is at least s + v, (j) + 1,
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and since f(0) is not divisible by p, this is equivalent to showing that the p-adic
valuation of f(p°®) — f(0) is at least s + v,(j) + 1. The polynomial f(T") — f(0) is
divisible by T'. It suffices to show that the p-adic valuation of the coefficient of T'
in this polynomial is at least v,(j) + 1. This coefficient if equal to f'(0). Since

dT
dlog f(T) =)

we find that )
F(O)==10)->"
where the sums range over integers 0 < k < pj that are not divisible by p. The

number of such integers is equal to (p — 1)j, and since p is odd, this is an even
number. The partial sum of the kth and (pj — k)th summands is equal to

1 . 1 pj

ko pi—Fk k(pj—k)
which has p-adic valuation v,(j) + 1. Finally, the p-adic valuation of a sum of
integers is at least the minimum of the p-adic valuations of the summands. Hence

the p-adic valuation of f/(0) is at least v,(j) + 1 as desired. O
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