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SHARP TRANSITION BETWEEN EXTINCTION
AND PROPAGATION OF REACTION

ANDREJ ZLATOŠ

1. Introduction

In the present paper we consider the reaction-diffusion equation

(1.1) Tt = ∆T + f(T )

in the cylinder R × Ω where Ω is a domain in R
n−1, with Neumann boundary

conditions on R×∂Ω. The non-linear reaction function f is assumed to be Lipschitz
continuous with f(0) = f(1) = 0 and the initial datum T0 is between 0 and 1.

We will treat the case when T0 is independent of the transversal variable y ∈ Ω,
and so (1.1) becomes

(1.2) Tt = Txx + f(T )

with x ∈ R. This equation has been extensively studied in mathematical, physical
and other literature, starting with the pioneering works of Fisher [7] and Kol-
mogorov, Petrovskii, Piskunov [11]. In these papers (1.2) was used to describe the
propagation of advantageous genes in a population. The main object of study in
these and many subsequent works was the existence and stability of traveling fronts
for (1.2) and (1.1). In recent years most of the results have been extended to in-
clude an advection term u · ∇T in (1.1), and we refer to the reviews [2, 16] for an
extensive bibliography.

The above equations are used to model more than just population genetics phe-
nomena. When f(θ) > 0 for θ ∈ (0, 1), then f is a combustion non-linearity and
(1.1)/(1.2) model an exothermic chemical reaction in an infinite tube with a zero
heat-loss boundary, in particular, flame propagation in a premixed combustible gas
without advection (see Zel’dovich and Frank-Kamenetskii [17]). In this setting T
is the normalized temperature taking values in [0, 1]. We note that (1.1) is usu-
ally obtained from a system involving both the temperature and the concentration
of the reactants after the simplifying assumption of equal thermal and material
diffusivities.

A special case of positive f , used particularly in chemical and biological lit-
erature, is the KPP type with f ′′(θ) ≤ c < 0 [11]. In combustion models the
non-linearity is often considered to be of Arrhenius type with slow reaction rates at
low temperatures, modeled by f(θ) = e−A/θ(1−θ). This case is often approximated
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by an ignition non-linearity f satisfying f(θ) = 0 for θ ∈ [0, θ0] and f(θ) > 0 for
θ ∈ (θ0, 1), with θ0 ∈ (0, 1) the ignition temperature.

The last prominent case is bistable non-linearity with f(θ) < 0 for θ ∈ (0, θ0) and
f(θ) > 0 for θ ∈ (θ0, 1), where one usually assumes

∫ 1

0
f(θ) dθ > 0. This has been

used to model signal propagation along bistable transmission lines, in particular,
nerve pulse propagation [12]. In a biological context it is also called heterozygote
inferior (see Aronson and Weinberger [1]).

In this paper we will consider all the above types. Our interest here will not
be in the question of traveling fronts, but in extinction of reaction — quenching of
flames. We will therefore assume the initial datum T0(x) for (1.2) to be compactly
supported and will want to know when

(1.3) ‖T (t, ·)‖∞ → 0 as t → ∞.

For the sake of simplicity we will restrict ourselves to the case of T0 being the
characteristic function of an interval,

(1.4) T0(x) ≡ χ[−L,L](x),

and study how long-time behavior of T depends on L. The methods in this paper
allow one to treat some other increasing 1-parameter families of initial conditions
as well.

Thus, we will study the competition of reaction and diffusion. The former helps
increasing the temperature, whereas the latter (together with the compactness of
the support of the initial datum) works towards the extinction of the flame. This
question was originally addressed forty years ago by Kanel′ [9] who considered the
case of ignition non-linearity and proved that if the initial datum is large enough,
then reaction wins, whereas if it is small, then diffusion manages to quench the
flame. More precisely, when T solves (1.2), (1.4) and f is of ignition type, Kanel′

proved that there are two length scales L0, L1 such that

T (t, x) → 0 as t → ∞ uniformly in x ∈ R if L < L0,

T (t, x) → 1 as t → ∞ uniformly on compacts if L > L1.

This has been extended to the case of bistable f by Aronson and Weinberger [1].
Both results also hold when (1.4) is replaced by

(1.5) T0(x) ≡ αχ[−L,L](x)

for any α > θ0, with L0 and L1 depending on α (in the ignition case this follows
from [9], in the bistable case it was proved by Fife and McLeod [6]). A natural
question arises: does L0 equal L1? If this is true and if one could determine the
behavior of T as t → ∞ when L = L0, then one would be able to provide the
complete “phase portrait” for the PDE (1.2) with respect to a 1-parameter family
of initial conditions.

Since these early works, particularly in recent years, several authors have studied
quenching for (1.1). The above results have been extended to the case when (1.1)
includes an advection term u · ∇T , with u a shear or periodic flow (see [13, 15]),
even for certain combustion non-linearities [18]. Quenching of large initial data by
large amplitude shear and cellular flows has been studied in [4, 5, 10, 18]. However,
the question whether L0 = L1 remained open even in the simplest case of (1.2).
The following two results provide the answer, including the treatment of the critical
case L = L0.
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The first of them holds for ignition and combustion non-linearities.

Theorem 1. Let θ0 ∈ [0, 1) and f : [0, 1] → R be Lipschitz with f(θ) = 0 when θ ∈
[0, θ0], f(θ) > 0 when θ ∈ (θ0, 1), and f(1) = 0. If θ0 > 0, then assume in addition
that f is non-decreasing on [θ0, θ0 + δ] for some δ > 0. Let T : [0,∞) × R → [0, 1]
solve

Tt = Txx + f(T ),

T0(x) ≡ χ[−L,L](x).
(1.6)

Then there is L0 ≥ 0 such that
(i) if L < L0, then T → 0 uniformly on R as t → ∞;
(ii) if L = L0, then T → θ0 uniformly on compacts as t → ∞;
(iii) if L > L0, then T → 1 uniformly on compacts as t → ∞.

Remark. The possibility of L0 = 0 (the so-called hair-trigger effect) cannot be
excluded when θ0 = 0. More precisely, using results from [18] one can show that
L0 = 0 when f(θ) ≥ cθp for some p < 3 and all small θ, but L0 > 0 when f(θ) ≤ cθp

for some p > 3 and all small θ. Note also that if θ0 = 0, then the convergence in
(ii) is as in (i) — uniform on R.

Our second result holds for bistable non-linearities. We define θ2 ∈ (θ0, 1) by∫ θ2

0
f(θ)dθ = 0 and let U be the unique function solving 0 = U ′′ + f(U) with

U(0) = θ2 and U ′(0) = 0. Then U is an even function and we will show in the
proof of the following theorem that it is positive on R, decreasing to 0 on (0,∞),
and bell-shaped.

Theorem 2. Let θ0 ∈ (0, 1) and f : [0, 1] → R be Lipschitz with f(0) = f(θ0) =
f(1) = 0, f(θ) < 0 when θ ∈ (0, θ0), and f(θ) > 0 when θ ∈ (θ0, 1). Assume also
that

∫ 1

0
f(θ)dθ > 0 and U is as above. Let T : [0,∞)×R → [0, 1] solve the problem

(1.6). Then there is L0 > 0 such that
(i) if L < L0, then T → 0 uniformly on R as t → ∞;
(ii) if L = L0, then T → U uniformly on R as t → ∞;
(iii) if L > L0, then T → 1 uniformly on compacts as t → ∞.

Remark. Both theorems can be extended to some other increasing families of initial
conditions, in particular, to (1.5) with α > θ0.

The crux of the proofs of both theorems will be to show that there is a single
L for which T does not converge to 0 or 1 at x = 0 as t → ∞. In Theorem 1 this
will be achieved with the help of Lemma 4 by comparing solutions of (1.6) for two
different initial conditions at differently rescaled times. In Theorem 2 it will follow
from a detailed analysis of the large time behavior of T when the above limit is not
0 or 1, and an application of the comparison principle.

We note here that Theorem 1 is, in a sense, a limiting case of Theorem 2. If one
takes f → 0 on (0, θ0) keeping f unchanged on (θ0, 1), one has θ2 → θ0 and U → θ0

on compacts. That is, the bell-shaped solution U from Theorem 2(ii) converges to
the constant solution θ0 from Theorem 1(ii).

The rest of the paper is devoted to the proofs of the two theorems. Section 2
contains preliminary Lemmas 3 and 4. Sections 3 and 4 prove Theorems 1 and 2,
respectively.
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2. Preliminary lemmas

We start with

Lemma 3. Let f : [0, 1] → R be Lipschitz with f(0) = f(1) = 0. If T : [0,∞)×R →
[0, 1] solves (1.6), then the following hold.
(i) If |x| ≤ |y|, then T (t, x) ≥ T (t, y).
(ii) There is t∗ > 0 (possibly t∗ = ∞) such that T (t, 0) as a function of t is

non-increasing on [0, t∗) and non-decreasing on [t∗,∞).
(iii) If f ≥ 0, then there is θ∗ ∈ [0, 1] such that f(θ∗) = 0 and T (t, x) → θ∗ as

t → ∞, uniformly on compacts.

Remarks. 1. For sufficiently smooth f this is essentially a result of Kanel′ [9].
2. In the case of (1.5) with α ∈ (θ0, 1), part (ii) has 0 < t∗ ≤ t∗∗ ≤ ∞ such that

T (t, 0) is non-decreasing on [0, t∗), non-increasing on [t∗, t∗∗) and non-decreasing
on [t∗∗,∞).

Proof. We first assume that f is smooth and briefly recall main points of the proofs
of (i) and (ii) from [9]. Let T ε solve (1.6) but with initial condition T (0, x) ≡ χε(x)
where χε are smooth, symmetric, decreasing in |x|, and converge to χ[−L,L] in L1(R)
as ε → 0. Then T ε

x(0, x) ≤ 0 for x > 0, and by symmetry T ε
x(t, 0) = 0. Since

(T ε
x)t = (T ε

x)xx + f ′(T ε)T ε
x ,

the maximum principle gives T ε
x(t, x) ≤ 0 for x > 0. Symmetry then yields

T ε
x(t, x) ≥ 0 for x < 0. Since for any fixed t > 0 we have T ε(t, x) → T (t, x)

uniformly in x as ε → 0, this proves (i).
Now let Dh(t, x) ≡ T (t + h, x) − T (t, x). By the mean value theorem,

Dh
t = Dh

xx + f ′(S)Dh

for some S = S(t, x). Let ∆h be the set of (t, x) for which Dh(t, x) ≤ 0. Then
∆h ∩ ({0} × R) = {0} × [−L, L]. By the maximum principle and symmetry, ∆h is
connected and its sections by lines parallel to the x-axis are segments symmetric
about the t-axis. Therefore there is 0 < th∗ ≤ ∞ such that Dh(t, 0) < 0 for t ∈ [0, th∗)
and Dh(t, 0) ≥ 0 for t ∈ [th∗ ,∞). From Dh(t, x) = Dh/2(t + h

2 ) + Dh/2(t) we obtain
t
h/2
∗ ∈ [th∗ , th∗ + h

2 ], and (ii) follows with t∗ ≡ limn→∞ t2
−n

∗ .
If f is only Lipschitz, take smooth fε such that ‖fε − f‖∞ ≤ ε and let T ε

solve (1.6) with fε in place of f . One can then show that V ε ≡ T ε − T satisfies
|V ε(t, x)| ≤ ε

c (ect − 1) with c the Lipschitz constant for f (we spell this argument
out in the proof of Theorem 1 below). Therefore T (t, x) = limε→0 T ε(t, x) for all t
and x, and since (i) and (ii) hold for each T ε, they also hold for T .

Finally, assume that f ≥ 0. By (ii), θ∗ ≡ limt→∞ T (t, 0) is well defined. Let Φ
solve Φt = Φxx on R

+ with Φ(0, x) ≡ T (0, x) and boundary condition Φ(t, 0) ≡
T (t, 0). Then Φ(t, x) → θ∗ as t → ∞, uniformly on compacts. Since by the
comparison principle (see, e.g., [14]) and (i), Φ(t, x) ≤ T (t, x) ≤ T (t, 0), the second
claim in (iii) follows.

To prove the first claim, assume f(θ∗) > 0 and choose ε > 0 such that for
θ ≤ θ∗ + 10ε we have f(θ) ≥ θ − θ∗ + 2ε. Pick t0 such that if Φ solves Φt = Φxx on
R with initial condition Φ(t0, x) = T (t0, x), then Φ(t, 0) ≥ θ∗−ε and T (t, x) ≤ θ∗+ε
for t ∈ [t0, t0 + ln 4] and x ∈ R. This is possible thanks to the second claim in (iii).
Define

S(t, x) ≡ θ∗ − 2ε + (Φ(t, x) − θ∗ + 2ε)et−t0 .
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Then S(t, x) ≤ θ∗ + 10ε for t ∈ [t0, t0 + ln 4] because Φ(t, x) ≤ T (t, x) ≤ θ∗ + ε for
these t. A simple computation now shows that St ≤ Sxx +f(S) for t ∈ [t0, t0 +ln 4].
Hence, S is a subsolution of (1.6) with S(t0, x) = T (t0, x), and so S ≤ T for
t ∈ [t0, t0 + ln 4]. But S(t0 + ln 4, 0) ≥ θ∗ + 2ε > T (t, 0), which is a contradiction.
Therefore we need to have f(θ∗) = 0. �

Next, observe that one can use scaling to replace the variation in the initial
condition in (1.6) by variation in the reaction strength. If T solves (1.6) with
T (0, x) ≡ χ[−L,L](x), define T̃ (t, x) ≡ T (L2t, Lx), so that we have

T̃t = T̃xx + L2f(T̃ )

and T̃ (0, x) = χ[−1,1](x). Hence, Theorem 1 will be proved if we show that its
conclusion holds for the L-dependent family of problems

Tt = Txx + Lf(T ),

T0(x) ≡ χ[−1,1](x)
(2.1)

instead of (1.6) (note that Lemma 3 holds here, too). This important observation
motivates the following key lemma.

Lemma 4. Let Ω be a connected open domain in R
n with a smooth boundary

(possibly Ω = R
n) and let f, g : [0,∞) → R be Lipschitz with f(0) = g(0) = 0 and

f ≤ g. Let T, S : [0,∞) × Ω → [0,∞) be continuous functions solving

Tt = ∆T + f(T ),(2.2)

St = ∆S + g(S)(2.3)

in Ω with Dirichlet boundary conditions on ∂Ω. Assume 0 ≤ T (0, x) ≤ S(0, x) for
all x ∈ Ω and T (0, x0) < S(0, x0) for some x0. Assume also that for any θ > 0 the
set Ω0,θ ≡ {x ∈ Ω |S(0, x) ≥ θ} is compact. Finally, assume that there are θ1 > 0
and ε1 > 0 such that for any θ ∈ [θ1, ‖T‖∞) and ε ∈ [0, ε1] we have

(2.4) g
(
θ + ε[θ − θ1]

)
≥ (1 + ε)f(θ).

Then

(2.5) lim inf
t→∞

inf
T (t,x)>θ1

S(t, x) − θ1

T (t, x) − θ1
> 1

with the convention that the infimum over an empty set is ∞.

Remark. The result holds without change when we add a first-order term u(x) · ∇,
with u a Lipschitz vector field, to (2.2) and (2.3).

Proof. First notice that the assumptions imply that

Ωt,θ ≡ {x ∈ Ω
∣∣ S(t, x) ≥ θ}

are compact. Indeed, by the maximum principle, Ωt,θ ⊆ Ω̃t,δθ where δ ≡ e−tc with
c the Lipschitz constant for g, and Ω̃t,θ is defined as Ωt,θ but with Φ, the solution
of

Φt = ∆Φ, Φ(0, x) = S(0, x),

in place of S. Compactness of Ω̃t,θ follows from that of Ω̃0,θ and the Feynman-Kac
formula.
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The assumptions and the strong maximum principle also imply T (t, x) < S(t, x)
for t > 0 and x ∈ Ω. Let us define

Ω(t) ≡ {x ∈ Ω
∣∣ T (t, x) > θ1},

Ω′(t) ≡ {x ∈ Ω
∣∣ T (t, x) = θ1},

and let

ω(t) ≡ min
{

1 + ε1, inf
x∈Ω(t)

S(t, x) − θ1

T (t, x) − θ1

}
.

Since Ω(t) is compact and T < S continuous, ω(t) > 1 for t > 0. Hence the result
will follow if we show that ω is a non-increasing function. Since ω is continuous
(because T and S are), it is sufficient to show that for any t0 > 0 there is τ0 > 0
such that for all t ∈ [t0, t0 + τ0] we have ω(t) ≥ ω(t0).

Hence, fix t0 > 0. Notice that the maximum principle and Feynman-Kac formula
show that Λt0,θ ≡

⋃
t≤t0+1 Ωt,θ is bounded for each θ > 0. Since T, S are continuous,

they are uniformly continuous on [0, t0+1]×Λt0,θ, and obviously |S(t, x)−S(s, y)| ≤
θ and |T (t, x) − T (s, y)| ≤ θ for (t, x), (s, y) ∈ [0, t0 + 1] × (R � Λint

t0,θ). It follows
that T, S are uniformly continuous on [0, t0 + 1] × Ω. Notice also that the set

Σ ≡ {(t, x) | t ∈ [t0, t0 + 1] and x ∈ Ω(t) ∪ Ω′(t)} ⊆ [t0, t0 + 1] × Λt0,θ1

is compact.
Thanks to the uniform continuity of T we only need to consider the case Ω(t0)∪

Ω′(t0) �= ∅ (otherwise Ω(t) = ∅ and ω(t) = 1+ε1 for t close to t0), and hence Σ �= ∅.
Since S is continuous and S > T ,

σ ≡ inf
(t,x)∈Σ

{S(t, x) − θ1} > 0.

We let δ ≡ σ/4(1 + ε1) and define

∆ ≡ {x ∈ Ω
∣∣ |T (t0, x) − θ1| ≤ δ and S(t0, x) − θ1 ≥ σ − δ}.

By the uniform continuity of T, S, there is τ0 ∈ (0, 1) such that for t ∈ [t0, t0 + τ0]
and x ∈ Ω we have

(2.6) |T (t, x) − T (t0, x)| ≤ δ
2 and |S(t, x) − S(t0, x)| ≤ δ

2 .

So if t ∈ [t0, t0 + τ0], then

(2.7) Ω(t) ⊆ Ω(t0) ∪ ∆

(note that S(t0, x) − θ1 ≥ σ − δ
2 for x ∈ Ω(t) because then (t, x) ∈ Σ). Now if

t ∈ [t0, t0 + τ0] and x ∈ ∆, then by (2.6),

(2.8) S(t, x) − θ1 >
σ

2
> (1 + ε1)|T (t, x) − θ1| ≥ ω(t0)(T (t, x) − θ1).

Next let

(2.9) A ≡ {x ∈ Ω
∣∣T (t0, x) > θ1 + δ} = Ω(t0) � ∆

and
B ≡ {x ∈ Ω

∣∣ T (t0, x) ≥ θ1 + δ
2} ⊆ Ω(t0).

Uniform continuity of T shows that dist(A, Bc) > 0, and so there is an open set
Γ with a smooth boundary such that A ⊆ Γ ⊆ B. Let T̃ ≡ T − θ1, Ũ ≡ ω(t0)T̃ ,
S̃ ≡ S − θ1, f̃(θ) ≡ f(θ + θ1), and g̃(θ) ≡ g(θ + θ1). Then for x ∈ Γ we have

S̃(t0, x) ≥ ω(t0)T̃ (t0, x) = Ũ(t0, x)
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by the definition of ω(t0). For t ∈ [t0, t0 + τ0] and x ∈ ∂Γ we have

S̃(t, x) > σ − 2δ >
σ

2
≥ ω(t0)T̃ (t, x) = Ũ(t, x)

since ∂Γ ⊆ B � A ⊆ ∆. Also, for t ∈ [t0, t0 + τ0] and x ∈ Γ we have

Ũt = ∆Ũ + ω(t0)f̃
(

1
ω(t0)

Ũ
)
,

S̃t = ∆S̃ + g̃(S̃)

by (2.2) and (2.3). For these (t, x) we have T (t, x) ≥ θ1 because of (2.6) and Γ ⊆ B,
and so by (2.4) and ω(t0) − 1 ∈ (0, ε1],

ω(t0)f̃
(

1
ω(t0)

Ũ
)

= ω(t0)f(T ) ≤ g
(
ω(t0)[T − θ1] + θ1

)
= g̃(Ũ).

The comparison principle now shows that S̃ ≥ Ũ on [t0, t0 + τ0] × Γ. Hence

S(t, x) − θ1 ≥ ω(t0)(T (t, x) − θ1)

for t ∈ [t0, t0 + τ0] and x ∈ A, which together with (2.7), (2.8), and (2.9) gives
ω(t) ≥ ω(t0) for t ∈ [t0, t0 + τ0]. The proof is finished. �

3. Proof of Theorem 1

We can now complete the proof of Theorem 1. We will do this for the formulation
in (2.1).

First assume θ0 > 0. We know from Lemma 3(iii) that for every L we have T →
θL
∗ uniformly on compacts, with θL

∗ such that f(θL
∗ ) = 0. Obviously θL

∗ /∈ (0, θ0)
because in that case we would have T (t, x) ≤ θ0 for all t ≥ t0 and consequently
T → 0 (since ‖T (t0, ·)‖1 < ∞ and Tt = Txx for t ≥ t0). So we are only left with
θL
∗ ∈ {0, θ0, 1}.

Let A, B, and C be the sets of L ≥ 0 such that θL
∗ equals 0, θ0, and 1, respectively.

Notice that since T (t, 0) ≥ T (t, x), the convergence of T to 0 for L ∈ A is actually
uniform on R. We have A ∪ B ∪ C = [0,∞), and the comparison principle implies
that the three sets are intervals with A lying to the left of B and B to the left of
C.

Moreover, A and C are non-empty by Kanel′ [9] and open. The latter follows
from the fact that if TL is the solution of (2.1), then for L1 < L2 and V ≡ TL2−TL1

we have V ≥ 0 by comparison, V (0) = 0, and

Vt = ∆V + (L2 − L1)f(TL2) + L1[f(TL2) − f(TL1)]

≤ ∆V + c(L2 − L1) + cL1V

with c ≥ ‖f‖∞ the Lipschitz constant for f . Since the function

Ṽ (t, x) ≡ L2−L1
L1

(ecL1t − 1)

(or Ṽ (t, x) ≡ cL2t when L1 = 0) satisfies

Ṽt = ∆Ṽ + c(L2 − L1) + cL1Ṽ

with Ṽ (0) = 0, the comparison principle gives V ≤ Ṽ , that is,

TL2(t, x) − TL1(t, x) ∈ [0, L2−L1
L1

(ecL1t − 1)].

Therefore if L1 ∈ A, then TL1(t0, 0) ≤ 1
2θ0 for some t0 > 0, and hence TL2(t0, 0) <

θ0 (and so L2 ∈ A) for L2 < L1 + 1
2θ0L1(ecL1t0 −1)−1. On the other hand, Kanel′’s

result [9] also holds for (1.5), and it says that for any α > θ0 and L > 0 there
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is M = M(α, L) < ∞ such that if T solves (2.1) and T (t0, x) ≥ αχ[−M,M ](x),
then T → 1 uniformly on compacts. Let θ0 < α < β < 1 and if L1 ∈ C, let
M = M(α, 1

2L1). For some t0 we have TL1(t0, x) ≥ βχ[−M,M ](x) and so for any
L2 > L1−(β−α)L1(ecL1t0 −1)−1 we have TL2(t0, x) ≥ αχ[−M,M ](x). If in addition
L2 > 1

2L1, we have L2 ∈ C. So A, C are non-empty and open, and hence B is non-
empty and closed.

The proof will be finished if we show that B contains a single element. Hence
assume L1 < L2 are both in B. Let θ1 ≡ 1

2θ0 ∈ (0, θ0) and

ε1 ≡ min{L2L
−1
1 − 1, δ(δ + θ0)−1} > 0

(with δ from the statement of Theorem 1). Choose t0 > 0 such that TL1(t, x) ≤
θ0 + δ

2 when t ≥ t0. The comparison principle, f �≡ 0, and the strong maximum
principle yield TL1 < TL2 for t > 0 and both TL1 and TL2 are obviously continuous
for t > 0. Lipschitzness of f and compact support of TL2(0, ·) show that for
any θ > 0, the set of x for which TL2(t0, x) ≥ θ is compact. Finally, whenever
θ ∈ [θ1, θ0 + δ

2 ] and ε ∈ [0, ε1], we have θ + ε[θ − θ1] ≤ θ0 + δ. Thus by the
assumptions on f (and the definition of ε1),

L2f(θ + ε[θ − θ1]) ≥ L2f(θ) ≥ (1 + ε)L1f(θ).

Therefore Lemma 4 applies to TL1 and TL2 (with starting time t0) and shows that
for some r > 1 and all large enough t we have

TL2(t, x) − θ1 ≥ r
[
TL1(t, x) − θ1

]
whenever TL1(t, x) > θ1. But since θ1 < θ0, this contradicts the assumption that
both TL1(t, 0) and TL2(t, 0) converge to θ0 as t → ∞. Hence, B = {L0} and we
are done with the case θ0 > 0.

Now, consider θ0 = 0. We have θL
∗ ∈ {0, 1}, the sets A, C satisfy A∪C = [0,∞),

and by the comparison principle, A lies to the left of C. Moreover, 0 ∈ A and C
is non-empty and open by the same argument as above. Hence A is closed and its
maximum is L0 (possibly L0 = 0). Lemma 3(iii) yields (iii) of this theorem and
T (t, 0) ≥ T (t, x) gives (i) and (ii), including the fact that the convergence in (ii) is
uniform on R. The proof is finished.

4. Proof of Theorem 2

The situation is somewhat more complicated here. Firstly, we do not have
Lemma 3(iii) at our disposal, and so the limit of T as t → ∞ need not always
be a constant function. Secondly, we cannot use Lemma 4 and the scaling argu-
ment preceding it in the way we did in the last section because it is no longer
true that L2f ≥ L1f when L2 > L1. We note that one can still use the lemma
without scaling, but then the argument applies only to a restricted class of bistable
f . Fortunately, it turns out that the first of these difficulties actually cancels the
problems created by the second, as we shall see below.

Let us therefore go back to T solving (1.6) rather than (2.1). We know from
Lemma 3(ii) that θL

∗ ≡ limt→∞ T (t, 0) is well defined, and from the comparison
principle that it is non-decreasing in L.

First assume θL
∗ < θ2, with θ2 defined in the introduction by

∫ θ2

0
f(θ)dθ = 0.

Choose ε > 0 and a Lipschitz function f̃ : [0, 1] → R so that f̃ = 0 on [0, ε],
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f̃ ′(ε) < 0, f̃ ≥ f on (ε, 1
2 (θL

∗ + θ2)] and f̃ has a single zero there, f̃ > 0 on
( 1
2 (θL

∗ + θ2), 1), f̃(1) = 0 > f̃ ′(1), and

(4.1)
∫ 1

0

f̃(θ)dθ < 0.

Let t0 be such that for t ≥ t0 and all x ∈ R we have T (t, x) ≤ 1
2 (θL

∗ + θ2). This is
possible by Lemma 3(i). Since f̃ ≥ f on [0, 1

2 (θL
∗ + θ2)], starting from time t0 one

has Tt ≤ Txx + f̃(T ), that is, T is a subsolution of the equation

(4.2) Φt = Φxx + f̃(Φ).

Let φ : R → [0, 1] with φ(x) → ε as x → ∞ and φ(x) → 1 as x → −∞ be the
unique, up to translation, traveling front profile (with speed v) for (4.2) [8]. That
is, φ(x − vt) solves (4.2). It follows from (4.1) that in this case v < 0.

From compactness of the support of T (0, x) and Lipschitzness of f , T (t0, x) → 0
as |x| → ∞. This and ‖T (t0, ·)‖∞ < 1 mean that there is x0 such that T (t0, x) ≤
φ(x − x0 − vt0), and since φ(x − x0 − vt) is a solution and T (t, x) a subsolution of
(4.2),

T (t, x) ≤ φ(x − x0 − vt)

for all t ≥ t0. But then T (t, 0) ≤ φ(−x0 − vt) → ε as t → ∞ because v < 0. This
holds for any ε > 0 and thus θL

∗ = 0.
Next assume θL

∗ > θ2. Let S be the solution of (1.6) on R
+ with S(0, x) = 0 and

S(t, 0) = s(t) a smooth strictly increasing function with all derivatives bounded
such that s(0) = 0, s(t) ≤ T (t, 0), and limt→∞ s(t) = θL

∗ . Then for any h > 0
we have S(h, x) > S(0, x) and so by comparison S(t + h, x) > S(t, x). Hence
S̃(x) ≡ limt→∞ S(t, x) > 0 is well defined and S̃(0) = θL

∗ . Since by comparison
again, S(t, x) ≤ T (t, x) ≤ T (t, 0), we also have S̃(x) ≤ θL

∗ .
Standard parabolic regularity shows that S(t, x) converges to S̃(x) along with its

first two derivatives uniformly on compacts, and so S̃ solves the stationary problem

(4.3) 0 = S̃′′ + f(S̃)

on R
+ (this can be found also in [1]). But then for any y > 0,

∫ θL
∗

S̃(y)

f(θ) dθ =
∫ 0

y

f(S̃(x))S̃′(x) dx =
∫ y

0

S̃′′(x)S̃′(x) dx = 1
2

[
(S̃′(y))2 − (S̃′(0))2

]
.

Assume there is z > 0 such that S̃(z) < θL
∗ , and then pick one such that also

S̃′(z) < 0. Since
∫ θL

∗
w

f(θ)dθ is bounded below by a positive constant for all w ∈
[0, S̃(z)], the same must be true for (S̃′(y))2 when S̃(y) ∈ [0, S̃(z)]. But S̃′(z) < 0,
continuity of S̃′, and S̃ > 0 now imply that S̃ is decreasing and positive on [z,∞),
with S̃′ bounded away from zero — a contradiction. Hence, we must have S̃ ≡ θL

∗ ,
which is only possible if θL

∗ = 1. Moreover, since S converges to S̃ ≡ 1 uniformly
on compacts as t → ∞ (and S ≤ T ≤ 1), so does T .

The above shows that θL
∗ ∈ {0, θ2, 1}. As in the proof of Theorem 1, and using

the equivalent of Kanel′’s result for (1.5) and bistable f [6], one can show that the
intervals A, C of L for which θL

∗ = 0, 1, respectively, are non-empty and open. If
B is the closed interval of L for which θL

∗ = θ2, then B lies between A and C and
again A ∪ B ∪ C = [0,∞).
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Next we need to prove that B only contains one element. We will show below
that if L ∈ B, then T (t, x) → U(x) uniformly on R as t → ∞. Here U solves (4.3)
with U(0) = θ2 and U ′(0) = 0. Assume now that L1 < L2 are both in B, with TL1

and TL2 the corresponding solutions of (1.6). We then have TL1(t, 0) → θ2, and
since the equation is translation invariant, we also have T̃ (t, ε) → θ2 when T̃ solves
(1.6) with initial condition T̃0(x) ≡ χ[−L1+ε,L1+ε](x). But if |ε| < L2 − L1, then
TL2

0 (x) ≥ T̃0(x), and so by the comparison principle,

U(ε) = lim
t→∞

TL2(t, ε) ≥ lim
t→∞

T̃ (t, ε) = θ2.

Since U ′′(0) = −f(U(0)) = −f(θ2) < 0, U has a strict local maximum at zero and
therefore U(ε) < U(0) = θ2 for all small enough |ε| > 0. This is a contradiction
and hence B = {L0}.

To complete the proof, we need to show that T (t, x) → U(x) uniformly as t → ∞
when L ∈ B (and hence θL

∗ = θ2). Notice that the argument following (4.3) applies
to U and we find for any x > 0 such that U(x) ≥ 0,

(4.4)
∫ θ2

U(x)

f(θ) dθ = 1
2 (U ′(x))2.

The definition of θ2 then shows that U(x) ≤ θ2, and U ′(x) �= 0 when U(x) ∈ (0, θ2).
Since U(x) cannot equal the constant θ2 on any interval and U ′ is continuous, we
must have U ′(x) < 0 for all x > 0 such that U(x) > 0. There is no x with
U(x) = 0 because then (4.4) would give U ′(x) = 0, contradicting uniqueness of
solutions to initial value problems associated to (4.3). Hence U(x) ∈ (0, θ2) and
U ′(x) < 0 for x > 0, with U ′(x) bounded away from zero when U(x) is away from
zero (by (4.4) and the definition of θ2). This and symmetry show that U is indeed a
symmetric bell-shaped solution (with U ′ decreasing on [0, U−1(θ0)] and increasing
on [U−1(θ0),∞) by (4.4)) of the stationary problem (4.3) such that U(x) → 0 as
|x| → ∞.

If we now apply the argument involving S and S̃ from the case θL
∗ > θ2, we find

as above that S̃(x) ≤ θ2 = S̃(0) and that S̃ > 0 is possible only if S̃′(0) = 0. But
then S̃(0) = U(0) and S̃′(0) = U ′(0); thus S̃ = U . Moreover, uniform on compacts
convergence of S to U and 0 ≤ S(t, x) ≤ U(x) → 0 as |x| → ∞ yield uniform on R

convergence of S to U . Since T (t, x) ≥ S(t, x), we have lim inft→∞ T (t, x) ≥ U(x)
uniformly on R. Here “uniformly on R” means that for every ε > 0 there is τ < ∞
so that T (t, x) ≥ U(x)− ε for any t > τ and x ∈ R. Hence we are left with proving
lim supt→∞ T (t, x) ≤ U(x) uniformly in x > 0 (which suffices due to symmetry).

Let 0 < x0 < ∞ be such that if S(0, x) ≥ θ2χ[−x0,x0](x) and S satisfies (1.6),
then S → 1 uniformly on compacts. Such x0 exists by [6] because θ2 > θ0.
Then obviously for every t ≥ 0 we have T (t, x0) ≤ θ2, because otherwise Lemma
3(i) would imply T → 1 uniformly on compacts. Since both T (t, x) and V (x) =
U(x − x0) satisfy (1.6) on (x0,∞), V (x0) = θ2 ≥ T (t, x0), and V (x) > 0 = T (0, x)
for x > x0, the comparison principle implies T (t, x) ≤ V (x). Let us therefore define

x1 ≡ min{x̃ | lim sup
t→∞

T (t, x) ≤ U(x − x̃) uniformly in x > x̃} ≤ x0.

The minimum is achieved because U is uniformly continuous and by Lemma 3(i),
T (t, x) ≤ T (t, 0) → θ2 = U(0). We note that at this point one can derive T → U
from x1 < ∞ and the results of [3] if f ∈ C1(0, 1) and f ′(0) < 0. However, our
non-linearity is more general and so [3] is not applicable here.
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If x1 = 0, then we are done, so assume x1 > 0. First notice that

lim sup
t→∞

T (t, 1
2x1) ≤ θ2 − δ1

for some δ1 > 0. Indeed, in view of limt→∞ T (t, 0) = θ2, Lemma 3(i), and the
comparison principle, it is sufficient to show that there are δ1, δ2 > 0 such that if
S(0, x) ≥ (θ2 − δ1)χ[−x1/2,x1/2](x) and S satisfies (1.6), then S(t, 0) ≥ θ2 + δ2 for
some t > 0. This in turn is true because it holds for δ1 = 0 and some t, δ2 > 0,
since then S(0, 0) = θ2 and St(0, 0) = f(θ2) > 0, and because S(t, 0) is continuous
in δ1.

Now choose x2 ∈ ( 1
2x1, x1) such that U(x1 − x2) ≥ θ2 − δ1. The above and

Lemma 3(i) show that lim supt→∞ T (t, x) ≤ θ2 − δ1 uniformly in x ≥ 1
2x1, and so

(4.5) lim sup
t→∞

T (t, x) ≤ U(x − x2)

uniformly in x ∈ [x2, x1]. We will show that (4.5) also holds uniformly in x > x1,
which will yield x1 ≤ x2 by the definition of x1. This will be a contradiction and
hence necessarily x1 = 0.

Let s(t) be smooth, decreasing, with all derivatives bounded, such that s(0) = θ2

and limt→∞ s(t) = U(x1 − x2). Let S(t, x) satisfy (1.6) for x > x1 with S(0, x) =
U(x − x1) and S(t, x1) = s(t). As above, one proves that this time S is non-
increasing in t,

(4.6) S(t, x) ∈ [U(x − x2), U(x − x1)],

and S̃(x) ≡ limt→∞ S(t, x) satisfies (4.3) with S̃(x) → 0 as x → ∞ (by (4.6)).
Moreover, S → S̃ uniformly on compacts, which together with (4.6) and U(x) → 0
as x → ∞ shows that S → S̃ uniformly on R. Since S̃(x1) = U(x1 − x2) and
S̃(∞) = U(∞) = 0, a formula similar to (4.4), with the integral from 0 to U(x1−x2),
gives S̃′(x1) = U ′(x1 − x2). It follows that S̃(x) = U(x − x2).

Now pick any ε > 0 and choose t0 such that

(4.7) S(t, x) − U(x − x2) < ε
2

for t ≥ t0 and x ≥ x1. Then pick t1 so that

T (t, x) − U(x − x1) < ε0 ≡ ε
2e−ct0

for t ≥ t1 and x ≥ x1 (with c the Lipschitz constant for f). This is possible by the
definition of x1.

For any t2 > t1 and x > x1 we have

T (t2, x) − S(0, x) = T (t2, x) − U(x − x1) < ε0,

and for t > t2 we have

T (t, x1) − S(t − t2, x1) = T (t, x1) − s(t − t2) ≤ T (t, x1) − U(x1 − x2) < ε0

by (4.5) if t2 is large enough. Hence if we let R(t, x) ≡ S(t, x) + ectε0, then
T (t2, x) < R(0, x) for x > x1, T (t, x1) < R(t − t2, x1) for t > t2, and

Rt = St + cectε0 = Sxx + f(S) + cectε0 ≥ Rxx + f(R).
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So R is a supersolution of (1.6), and by the comparison principle, T (t, x) ≤
R(t − t2, x) for t > t2 and x > x1. In particular,

T (t2 + t0, x) ≤ R(t0, x) = S(t0, x) + ε
2 < U(x − x2) + ε

for x > x1 by (4.7). Since this holds for any large enough t2, we have T (t, x) <
U(x − x2) + ε for all large t and x > x1. As ε > 0 was arbitrary, this gives (4.5)
uniformly in x > x1. Hence x1 ≤ x2 < x1, a contradiction. Therefore we must have
x1 = 0 and the proof is finished.
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