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ZETA FUNCTION OF REPRESENTATIONS OF COMPACT
p-ADIC ANALYTIC GROUPS

A. JAIKIN-ZAPIRAIN

1. Introduction

Let G be a profinite group. We denote by rn(G) the number of isomorphism
classes of irreducible n-dimensional complex continuous representations of G (so
that the kernel is open in G). Following [20], we call rn(G) the representation
growth function of G. If G is a finitely generated profinite group, then rn(G) < ∞
for every n if and only if G has the property FAb (that is, H/[H, H] is finite for
every open subgroup H of G) [1, Proposition 2]. In the case when G is a finitely
generated pro-p group, the property FAb is equivalent to the condition that all
derived subgroups G(k) are open.

In this paper we shall investigate the function

ζG(s) =
∞∑

n=1

rn(G)n−s =
∑

λ∈Irr(G)

λ(1)−s,

when G is an FAb compact p-adic analytic group. This function is called the zeta
function of representations of G. The main result of this article is as follows.

Theorem 1.1. Let G be an FAb compact p-adic analytic group with p > 2. Then
there are natural numbers n1, . . . , nk and functions f1(p−s), . . . , fk(p−s) rational in
p−s such that

ζG(s) =
k∑

i=1

n−s
i fi(p−s).

In particular, if G is an FAb p-adic analytic pro-p group, then ζG(s) is a rational
function in p−s.

The proof of this theorem is based on the correspondence between the characters
of a uniform pro-p group and the orbits of the action of the group on the dual of its
Lie algebra. This correspondence is an analogue of the Kirillov theory, introduced
first in the context of nilpotent Lie groups and then used in many other situations
(see [16]). The correspondence is quite explicit, and it also gives the exact formula
for characters in some cases. We believe that Theorem 1.1 also holds when p = 2,
but now we only can prove it when G is a uniform pro-2 group (see Theorem 1.2).
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Recall that a pro-p group G is called powerful if [G, G] ≤ Gp when p > 2 or
[G, G] ≤ G4 when p = 2. We say that a pro-p group G is uniform if G is finitely
generated, powerful, and without torsion.

Theorem 1.2. Let N be an FAb uniform pro-p group. Then for any g ∈ N ,∑
λ∈Irr(G)

λ(g)
λ(1)s

is a rational function in p−s.

The layout of the paper is as follows. In Section 2 we describe Howe’s version
of Kirillov’s correspondence, emphasizing the case p = 2, which was not considered
by Howe. The correspondence permits us to “linearize” the problem and apply
the potent tool of p-adic integration which we introduce in Section 3. In Section
4 we prove Theorem 1.2 and deduce Theorem 1.1 when G is uniform. Section 5
is dedicated to some results from the character theory of finite groups. We apply
these results in Section 6, where we prove Theorem 1.1. In Section 7 we calculate
ζSL2(R)(s), where R is a complete discrete valuation ring with finite residue field of
odd characteristic.

The notation is standard. If G is a profinite group, then Irr(G) denotes the set
of the (complex) irreducible smooth (not only linear) characters of G. If L is a
Zp-Lie lattice of finite rank, then Irr(L) is the set of the irreducible characters of
the additive group of L and L∗ = HomZp

(L, Zp). The set Ch(G) is the set of the
finite dimensional smooth characters of G. So any element of Ch(G) is a finite sum
of elements from Irr(G). If µ is a Haar measure on G such that µ(G) = 1, then the
scalar product of two square integrable complex functions f and g is

〈f, g〉 =
∫

G

fḡdµ.

Let H be an open subgroup of G. Given a function α of G, we denote by αH its
restriction to H. If φ is a class function of H, then φG denotes the induced class
function on G. If N is a normal open subgroup of G and χ ∈ Irr(N), then

Irr(G|χ) = {λ ∈ Irr(G)|〈λN , χ〉 �= 0}
and Ch(G|χ) is the set of finite sums of elements from Irr(G|χ). We will say that
characters from Ch(G|χ) lie over χ. The set Irr(G|N) is the set of irreducible
characters λ of G such that N �≤ ker λ. We will regard the characters of G/N also
as characters of G. Thus Irr(G) = Irr(G|N)

⊔
Irr(G/N). We will use [ , ]L to

denote the Lie bracket and [ , ]G for the group commutator. If g is an element of a
group, o(g) will mean the order of g. The order of a nonzero complex number is its
order in C∗. We will write [N,k M ]G for [. . . [N, M ], · · · , M ]G, where M appears k
times.

2. Correspondence between characters and coadjoint orbits

of a uniform pro-p group

In this section we describe the correspondence between characters of a uniform
pro-p group N and coadjoint orbits of the action of N on the dual of the Zp-Lie
lattice associated with N . Our approach is based on Howe’s papers [12, 11]. Our
main contribution in this chapter is an extension of some results from [12] to the
case p = 2. The language of [12] is not so convenient for us, because we do not
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relate the groups under consideration with a fixed field. Therefore, we also present
proofs of some results which are contained implicitly in [12].

Recall that according to Lazard (see, for example, [7]) there is an equivalence
between the category of uniform pro-p groups and the category of uniform Zp-Lie
lattices. The uniform Zp-Lie lattice N corresponding to a uniform pro-p group N
has N itself as its underlying set, and the Lie lattice operations are given in terms
of the group operations as follows: for all z ∈ Zp and all x, y ∈ G we have

z · x = xz,

g + h = lim
n→∞

(gpn

hpn

)p−n

,

[g, h]L = lim
n→∞

[gpn

, hpn

]p
−2n

G .

(2.1)

Conversely, given a uniform Zp-Lie lattice N, the uniform pro-p group N cor-
responding to N can be constructed via the Baker-Campbell-Hausdorff formula
H. Its underlying set is again N, and the group product of x, y ∈ N is given by
xy = H(x, y).

Recall that the Baker-Campbell-Hausdorff Formula (BCHF) is H(x1, x2) =
log(ex1ex2) regarded as a formal power series in two noncommuting variables.
Equivalently, this is a formal power series H(x1, x2) such that

eH(x1,x2) = ex1ex2 .

The homogeneous component of H(x1, x2) of degree n is denoted by Hn(x1, x2),
so that H(x1, x2) =

∑∞
n=1 Hn(x1, x2). The main fact about the BCHF is that

Hn(x1, x2) is a Lie word in x1 and x2 (see [18, Theorem 9.11]). For example,
H1(x1, x2) = x1 + x2 and H2(x1, x2) = x1x2 − x2x1 = [x1, x2]L.

Let {ek} be a Z-basis of the free Lie algebra generated by x1 and x2, consisting
of simple commutators. Then we can express Hn as Hn =

∑
λk,nek, for some

λk,n ∈ Q. We need the following fact about the coefficients λk,n ([2, Proposition
II.8.1]):

(2.2) vp(λk,n) ≥ −(n − 1)/(p − 1),

where vp(a
b ps) = s if (a, p) = 1 and (b, p) = 1. We also will use the following

well-known formula:

(2.3) x−1yx = H(H(−x, y), x) = y +
∞∑

i=1

1
i!

[y,i x]L.

Although a uniform pro-p group and its associated Zp-Lie lattice are the same as
sets, sometimes it will be important to emphasize whether we speak about the
group or the lattice. Therefore, in the following if A, B, N , etc., are pro-p groups,
the associated Zp-Lie lattice will be denoted by A, B, N, etc. For example, Irr(N)
will be the set of irreducible characters of the group N and Irr(N) the irreducible
characters of the abelian group (N, +).

The Lazard correspondence can be used not only in the context of uniform pro-
p groups. Indeed, Lazard [19] constructed his correspondence for a more general
family of pro-p groups, saturable pro-p groups. We will call a pro-p group M strong
if

(1) Mpk

= {mpk | m ∈ M},
(2) the map x → xp is a bijection between M and Mp,
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(3) [Mpk

, Mpk

]G ≤ Mp2k

,
(4) operations (2.1) are well defined and M is a Zp-Lie lattice with respect to

these operations.

For example, in [13] it is shown that any subgroup of a uniform pro-p group of rank
less than p is strong. More results in this direction can be found in [17]. It follows
implicitly from [10] that any normal subgroup of a uniform pro-p group is strong
if p > 2. In Lemma 2.1 we present a family of strong pro-p groups which appear
naturally in this work.

We say that a pro-p group G is k-powerful if [G, G] ≤ Gpk

. A pro-p group G
is k-uniform if G is finitely generated, k-powerful, and without torsion. Thus, a
uniform pro-p group is 1-uniform if p > 2 and 2-uniform if p = 2. A pro-p group
H is called k 1

2 -uniform if there exists a (k + 1)-uniform pro-p group G such that
Gp ≤ H ≤ G. The notions of k-uniform and k 1

2 -uniform Zp-Lie lattices are
defined in the same way.

Lemma 2.1. Let A be a k 1
2 -uniform pro-p group, where k = 0 if p > 2 and k = 1

if p = 2. Then the following properties hold:

(1) A is strong, and A is k 1
2 -uniform;

(2) [A,i A]L ≤ p(k+1)i−1A: in particular [A,i+1 A]L ≤ p(k+1)i−1[A, A]L;
(3) ab ≡ a + b + 1

2 [a, b]L + 1
12τ mod [A, A]L, where τ ∈ [A, A, A]L;

(4) x[A, A]G = x + [A, A]L for every x ∈ A.

Proof. By the definition of a k 1
2 -uniform pro-p group, there exists a (k+1)-uniform

pro-p group N such that Np ≤ A ≤ N .
(1) We divide the proof of the first statement into several steps:
Step 1. If x, y ∈ A, then (xpyp)1/p ∈ A.
Note that xpyp ≡ (xy)p mod Np2

. Since N is powerful, 〈xy, Np〉 is also powerful
(see [18, Lemma 11.7]). Hence xpyp = zp for some z ∈ 〈xy, Np〉 ≤ A.

Step 2. If x, y ∈ A, then [xp, yp]1/p2

G ∈ A.
Note that [xp, yp]G ≡ [x, y]p

2

G mod Np3
. Since N is powerful, 〈[x, y]G, Np2〉 is

also powerful ([18, Lemma 11.7]). Hence [xp, yp]G = zp2
for some z ∈ 〈[x, y]G, Np2〉

≤ A.
Step 3. If x, y ∈ A and n ≥ 1, then (xpn

ypn

)1/pn ∈ A and [xpn

, ypn

]1/p2n

G ∈ A.
The case n = 1 is proved in Steps 1 and 2. Since Np2 ≤ Ap ≤ Np, we have that

Ap is uniform. Hence xpn

ypn

is a pn−1-power of an element from Ap, and so by
Step 1, xpn

ypn

is a pn-power of an element from A. Again using that Ap is uniform,
we obtain that [xpn

, ypn

]G is a p2(n−1)-power of an element from [Ap, Ap]. By Step
2, [xpn

, ypn

]G is a p2n-power of an element from A.
Step 4. Final step.
Since A is a subgroup of N and N is a uniform pro-p group, A satisfies the

second property in the definition of a strong pro-p group. The first and the third
properties follow from Step 3.

Since N is closed under the operations (2.1), the limits limn→∞(xpn

ypn

)p−n

and
limn→∞[xpn

, ypn

]p
−2n

G exist for any x, y ∈ N . By Step 3, these two limits are in A
if x, y ∈ A. Hence A is closed under the operations (2.1), and since N is a Zp-Lie
lattice with respect to this operations, A is a sublattice. Clearly A is k 1

2 -uniform.
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(2) Since N is (k + 1)-uniform,

[A,i A]L ≤ p(k+1)iN ≤ p(k+1)i−1A.

(3) This is a consequence of (2.2) and part (2) of this lemma.
(4) Since

A =
⊔

x∈A

x[A, A]G =
⊔

x∈A

x + [A, A]L,

it is enough to show that x[A, A]G ≤ x + [A, A]L. First, using (2.3), (2.2) and
parts (2) and (3) of this lemma, we obtain that [A, A]G ≤ [A, A]L. Then, applying
again parts (2) and (3) and (2.2), we conclude that x[A, A]G ≤ x + [A, A]L for any
x ∈ A. �

If N is a strong pro-p group, then N acts on N by conjugation (recall that N and
N coincide as sets). The definition (2.1) of the Lie operations on N implies that the
action by conjugation of an element from N is a Lie homomorphism of N. Hence
N also acts on Irr(N):

wx(a) = w(ax−1
), a ∈ N, x ∈ N, w ∈ Irr(N).

The group Irr(N) is a direct limit of Irr(N/pnN), whence any N -orbit in Irr(N) is
finite. If Ω ⊆ Irr(N), we define ΦΩ : N → C by means of

ΦΩ(u) = |Ω|− 1
2

∑
w∈Ω

w(u).

Note that if Ω is an N -orbit in Irr(N), then ΦΩ is a class function on N . In the
following lemma we collect some basic properties of these functions.

Lemma 2.2. Let N be a strong pro-p group.
(1) Let Ω1 and Ω2 be two N-orbits in Irr(N). Then

〈ΦΩ1 , ΦΩ2〉 =
{

1 if Ω1 = Ω2,
0 otherwise.

In particular, two different orbits Ω1 and Ω2 give two different functions
ΦΩ1 and ΦΩ2 .

(2) Let K be a powerfully embedded open subgroup of N . Then K is a Lie
ideal of N and the functions {ΦΩ | Ω is an N-orbit in Irr(N/K) } form an
orthonormal basis for class functions on N/K.

Proof. (1) Let v, w ∈ Irr(N). Since 〈v, w〉 = 0 if v �= w and 〈v, w〉 = 1 if v = w, we
have the statement.

(2) Since K is powerfully embedded, a + K = aK for every a ∈ N . Thus
N/K = N/K. The number of N -orbits in Irr(N/K) coincides with the number of
N -orbits in N/K = N/K. Hence it is equal to the dimension of the space of class
functions on N/K. �

If w ∈ Irr(N), we define

Bw(l, k) = w([l, k]L), l, k ∈ N.

We see that Bw is a bilinear form on N. Put

Rad(w) = {l ∈ N | Bw(l, N) = 1}.
We have the following important result.
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Lemma 2.3 ([12, Lemma 1.1]). Let N be a k-uniform Zp-Lie lattice and w ∈ Irr(N).
Then Rad(w) is k-uniform. Moreover, if k ≥ 1 when p > 2 or k ≥ 2 when p = 2,
then Rad(w) and StN (w) coincide as sets. In particular, StN (w) is a uniform pro-p
group.

Let w ∈ Irr(N). We say that a subgroup A of (N, +) polarizes w in N if
w([A, A]L) = 1 and A is maximal with respect to this property. Note that in this
case Rad(w) ≤ A and |A : Rad(w)| = |N : A|.

The following lemma is a well-known fact. For instance, its proof is contained in
the proof of [12, Lemma 1.4].

Lemma 2.4. Let V be a finite dimensional Fp-vector space and α : V ∧ V → C∗

an antisymmetric bilinear form on V . Suppose that a pro-p group G is contained
in Isom(V, α). Then there exists a maximal isotropic subspace U of (V, α) which is
G-invariant.

Lemma 2.5. Let N be a (k+1)-uniform Zp-Lie lattice and w ∈ Irr(N). Suppose that
a pro-p group P acts on N and fixes w. Then there exist a polarizing k 1

2 -uniform
Zp-Lie lattices A for w, which is stable under the action of P .

Proof. We adapt the proof of [12, Lemma 1.4] to our case. First, let us assume that
k = 0 and w(p[N, N]L) = 1. Thus, pN ≤ Rad(w) and Bw can be considered as a
bilinear form on N/pN. Hence, by Lemma 2.4, there exists P -invariant pN ≤ A ≤ N
which polarizes w.

Now let us assume only that k = 0. We will prove the lemma by induction on
|N : Rad(w)|. The case pN ≤ Rad(w) is considered in the previous paragraph.
Suppose now that pN �≤ Rad(w). Let n ≥ 1 be such that

w([pn+1N, N]L) = 1 and w([pnN, N]L) �= 1.

Define T = {t ∈ N |w([t, pnN]L) = 1}. Note that T = Rad(wpn

). Hence, by
Lemma 2.3, T is 1-uniform. Now we can apply the induction hypotheses because
|N : Rad(w)| > |T : Rad(wT)| and T is P -invariant. Hence there exists a polarizing
1
2 -uniform Zp-Lie lattice A for wT that is stable under the action of P . We show
that A also polarizes w. If b ∈ N satisfies w([b, A]L) = 1, then w([b, pnN]L) = 1,
because pnN ≤ Rad(wT) ≤ A. Thus, b ∈ T and so b ∈ A.

Now we consider the case k > 1. Let M = p−kN. Then M is a 1-uniform Zp-
lattice. Define v ∈ Irr(M) by v(p−kn) = w(n)pk

. From the previous discussion we
know that there exists a 1

2 -uniform Zp-lattice B ≤ M polarizing v. Then A = pkB

is a k 1
2 -uniform Zp-lattice polarizing w in N. �

Lemma 2.6. Let A be a strong Zp-Lie lattice and let w ∈ Irr(A) be trivial on
[A, A]L. Then the following hold.

(1) If A is k 1
2 -uniform with k = 0 if p > 2 and k = 1 if p = 2, then for every

a ∈ A and b ∈ [A, A]G, w(ab) = w(a). In particular, wA is a class function
on A.

(2) If A is 1
2 -uniform and p ≥ 5, then wA is a linear character of A.

(3) If A is uniform and p = 3, then wA is a linear character of A.

Proof. The first part of the lemma follows from Lemma 2.1(4) and the second and
third from Lemma 2.1(3). �
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Lemma 2.7. Let N be a uniform Zp-Lie lattice and w, v ∈ Irr(N). Let A be a
polarizing Zp-Lie lattice for w (as in Lemma 2.5). Then vA = wA if and only if v
and w are A-conjugate.

Proof. Note first that by Lemma 2.6(1), if v = wa for some a ∈ A, then for any
b ∈ A,

v(b) = wa(b) = w(ba−1
) = w(b).

Now let Σ be the set of elements v of Irr(N) such that vA = wA. We have that Σ
has |N : A| elements. On the other hand, A acts on Σ and the A-orbit of w has

|A : StN (w)| = |A : Rad(w)| = |N : A| = |Σ|
elements (we have used Lemma 2.3). Hence Σ is exactly the A-orbit of w. �

Lemma 2.8. Let N be a uniform Zp-Lie lattice and w ∈ Irr(N). Let A be a
polarizing Zp-Lie lattice for w (as in Lemma 2.5). Suppose that Ω is the N-orbit
of w in Irr(N). Then ΦΩ = (wA)N .

Proof. Let w̄ = 1
|N :A| (1A)Nw, i.e., w̄(g) = 0 if g /∈ A and w̄(g) = w(g) = wA(g) if

g ∈ A. Fix a transversal {gi} for the right cosets of A in N . By the definition of
(wA)N , we have that

(2.4) (wA)N =
∑

i

w̄gi .

Let Σ be the set of elements v of Irr(N) such that vA = wA. Then, by Lemma
2.7,

w̄ =
1

|N : A|
∑
v∈Σ

v =
1

|N : A|
∑

j

whj ,

where {hj} is a transversal for the right cosets of StG(w) in A. Together with (2.4)
this gives us that (wA)N = ΦΩ. �

2.1. The case p > 2. Now we consider the case p > 2.

Theorem 2.9. Let N be a uniform pro-p group, with p > 2, and Ω an N-orbit in
Irr(N). Then ΦΩ ∈ Irr(N) and all characters of N have this form.

Proof. Let us first assume that p ≥ 5. Then by Lemmas 2.8 and 2.6, ΦΩ is a class
function induced from a linear character of a subgroup. Hence ΦΩ is a character
of N . By Lemma 2.2(1), ΦΩ has norm 1, and so ΦΩ is an irreducible character.
Using Lemma 2.2(2), we obtain that {ΦΣ | Σ is an N -orbit in Irr(N)} is the set of
all irreducible characters of N .

Now suppose that p = 3. The argument of the previous paragraph does not work
in this case, because not every w ∈ Irr(A) that is trivial on [A, A]L is a character of A
when A is 1

2 -uniform (see Lemma 2.6). We will use another observation. Note that
any orthogonal matrix over Q with nonnegative entries is a permutation matrix.
Therefore, if we have two orthonormal bases and the matrix of change of bases has
only nonnegative rational entries, then these two bases coincide. Hence it is enough
to prove that for any λ ∈ Irr(N) and any N -orbit Ω in Irr(N) the scalar product
〈λ, ΦΩ〉 is nonnegative. We divide the proof into several steps:

Step 1. Let N be a uniform pro-3 group, and let w ∈ Irr(N) be N -invariant.
Then 〈w, λ〉 is a nonnegative integer for any λ ∈ Irr(N).
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By Lemma 2.6, w is a linear character of N . Therefore, 〈w, λ〉 is a nonnegative
integer for any λ ∈ Irr(N).

Step 2. Let N be a uniform pro-3 group, and let w ∈ Irr(N) be such that
w([N, N, N]L) = 1. If Ω is the N -orbit of w, then 〈ΦΩ, λ〉 is a nonnegative rational
number for any λ ∈ Irr(N).

Since w([N, N, N]L) = 1, w(32−s[N,s N]L) = 1. Hence if a ∈ StN (w) and x ∈ N ,
then, by (2.3),

wx(a) = w(ax−1
) = w(a + [a,−x]L +

1
2!

[a,−x,−x]L + · · · ) = w(a).

Thus if v ∈ Ω, vStN (w) = wStN (w). Since there are only |N : StN (w)| = |Ω| linear
characters of N satisfying this property, they are all in Ω. Hence ΦΩ(a) = 0 for any
a �∈ StN (w). Thus,

〈ΦΩ, λ〉 =
1
|Ω| 〈(ΦΩ)StN (w), λStN (w)〉 =

1
|Ω|1/2

〈wStN (w), λStN (w)〉

is a nonnegative rational number by Step 1.
Step 3. Let N be a uniform pro-3 group. Then for any λ ∈ Irr(N) and any

N -orbit Ω in Irr(N) the scalar product 〈λ, ΦΩ〉 is a nonnegative rational number.
By Lemma 2.5 there exists a 1

2 -uniform lattice A polarizing w in N. Put

B = A +
∞∑

i=1

1
3i

[A,i A]L.

Note that B is uniform. Since A is 1
2 -uniform, [A,i+1 A]L ≤ 3i−1[A, A]L by Lemma

2.1(2). Hence

[B, B, B]L ≤
∞∑

i=1

1
3i−1

[A,i+1 A]L ≤ [A, A]L.

By Lemma 2.8, wB
A = ΦΣ, where Σ is the B-orbit of wB in Irr(B). Thus, we obtain

that

〈λ, ΦΩ〉 = 〈λ, wN
A 〉 = 〈λA, wA〉 = 〈λB, wB

A〉 = 〈λB, ΦΣ〉

is a nonnegative rational number by Step 2.
As we have indicated previously, Step 3 implies the theorem in the case p = 3. �

2.2. The case p = 2. Let N be a uniform pro-2 group. The main difference
between the cases p = 2 and p > 2 is that not every N -invariant w ∈ Irr(N) is a
linear character of N (see Lemma 2.6). Moreover, w is a linear character of N if
and only if w is trivial on 2−1[N, N]L.

Let us study first linear characters of a uniform pro-2 group. Let B be a 1 1
2 -

uniform pro-2 group. Put A = B2, and let µ ∈ Irr(A) be a linear character of A.
Let w ∈ Irr(B) be such that 〈µ, wA〉 �= 0. Note that wA is A-stable.

Lemma 2.10. The functions w and µ coincide on StA(wB). In particular, w(a)2 =
µ(a)2 for any a ∈ A.
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Proof. By Lemma 2.3, StA(wB) = Rad(wB)∩A, whence if a ∈ A and x ∈ StA(wB),
then w([12a, x]L) = 1. Therefore, using Lemma 2.1(3), we obtain that

w(ax) = w(a + x +
1
2
[a, x]L) = w(a + x + [

1
2
a, x]L) = w(a)w(x).

In particular, we see that wStA(wB) ∈ Irr(StA(wB)). Let R be a transversal of A
over StA(wB). Then we have

〈µ, wA〉 =
1
|R|

∑
r∈R

µ(r)w(r)〈wStA(wB), µStA(wB)〉.

Hence 〈wStA(wB), µStA(wB)〉 �= 0, and so wStA(wB) = µStA(wB).
Since A2 ≤ StA(wB),

w(a)2 = w(a2) = µ(a2) = µ(a)2

for any a ∈ A. �
For every a ∈ B and x ∈ A define γa(x) = w([x, a]L) and c(x) = µ(x)w(x)−1.

By the previous lemma c(x) = ±1. It is clear that γa is a linear character of A of
order 2. Moreover, γa = 1A if and only if a ∈ StB(wA).

Lemma 2.11. Let T be a transversal of B over StB(wA), and let x, y ∈ A. Then
we have the following.

(1) Irr(A/ StA(wB)) = {γa | a ∈ T}.
(2) c(xy) = c(x)c(y)w( [x,y]L

2 ).
(3) c(x) = sign(〈µ,wA〉)

|T |1/2

∑
a∈T c(a2)γa.

(4) µ(x) = sign(〈µ,wA〉)
|T |1/2

∑
a∈T c(a2)wa(x). In particular, if v ∈ Irr(A), then

〈µ, v〉 �= 0 if and only if v = wa for some a ∈ B.

Proof. (1) By Lemma 2.3, StA(wB) = Rad(w) ∩ A, whence γa(x) = 1 for any x ∈
StA(wB). Thus, we obtain that {γa | a ∈ T} ⊆ Irr(A/ StA(wB)). Since all γa (a ∈
T ) are different and |T | = |A/ StA(wB)|, we have the equality Irr(A/ StA(wB)) =
{γa | a ∈ T}.

(2) By Lemma 2.1(3), we have

c(xy) = µ(xy)w(xy)−1 = µ(x)µ(y)w(x + y + [x,y]L
2 )

= µ(x)µ(y)w(x)w(y)w( [x,y]L
2 ) = c(x)c(y)w( [x,y]L

2 ).

(3) By Lemma 2.10 and the previous item, c can be considered as a function on
A/ StA(wB). Since Irr(A/ StA(wB)) = {γa | a ∈ T}, there are ca (a ∈ T ) such that
c =

∑
a∈T caγa. If a ∈ A, then

ca = 〈c, γa〉 =
∫

A
c(x)γa(x)dx =

∫
A

c(x)w([a2, x]/2)dx

=
∫

A
c(xa2)c(a2)dx = c(a2)〈wA, µ〉.

Since 1 = 〈c, c〉 =
∑

a∈T c2
a = |T |〈wA, µ〉2, we obtain that 〈wA, µ〉2 = 1/|T |. Thus,

we conclude that

ca =
sign(〈µ, wA〉)c(a2)

|T |1/2
.

(4) Since µ(x) = w(x)c(x) and wa(x) = w(x)γa(x), we obtain the desired result.
�
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Now we are ready to describe the characters of an arbitrary uniform pro-2 group.

Theorem 2.12. Let N be a uniform pro-2 group. Then there exists a bijection
f between Irr(N) and {Φ∆ | ∆ is an N-orbit in Irr(N)} such that for any φ ∈
Irr(N), f(φ)N2 = φN2 . Moreover, if N is 3-uniform, then there exists a function
dφ : N/N2 → ±1 with f(φ)(a) = dφ(a)φ(a) for any a ∈ N .

Proof. Let λ ∈ Irr(N2), and take φ ∈ Irr(N) lying over λ. Choose w ∈ Irr(N) such
that 〈wN2 , λ〉 �= 0. Let B be a 1 1

2 -uniform Zp-Lie lattice polarizing w4 in N (see
Lemma 2.5). Then A = 2B is a 2 1

2 -uniform lattice polarizing w2N in 2N. We will
divide the proof of the theorem into several steps:

Step 1. There exists a linear character µ ∈ Irr(A) such that µ is a constituent of
λA and 〈µ, wA〉 �= 0.

Let Ω be the N2-orbit of w2N in Irr(2N). By Lemma 2.8,

〈(wA)N2
, λ〉 = 〈ΦΩ, λ〉 = |N2 : A|〈wN2 , λ〉 �= 0.

Hence, by Frobenius reciprocity,

〈wA, λA〉 = 〈(wA)N2
, λ〉 �= 0.

Thus, there exists an irreducible constituent µ ∈ Irr(A) of λA such that 〈µ, wA〉 �= 0.
By Lemma 2.6(1), µ is linear.

From now on we fix one such linear character µ ∈ Irr(A).
Step 2. We have StB(µ) = StB(wA) = StN (wN2)A. In particular, StB(wA) ∩

N2 = A.
The equality StB(µ) = StB(wA) follows from Lemma 2.11(4). Also StN (wN )A is

clearly contained in StB(wA). Now let x ∈ StB(wA). Then by Lemma 2.7, wx = wa

for some a ∈ A. Hence xa−1 ∈ StN (wN2), and so x ∈ StN (wN2)A.
Step 3. We have λ = µN2

.
Note that if a ∈ B, then A is also a polarizing Zp-Lie lattices for wa

N2 . Hence if
a, b ∈ B, then, by Lemma 2.8, (wa

A)N2
= (wb

A)N2
if and only if

(2.5) ab−1 ∈ (StN (wN2)N2) ∩ B = StN (wN2)(N2 ∩ B) = StB(wA)(N2 ∩ B).

Let T1 be a transversal of N2 ∩ B over A, and let T2 be a transversal of B over
StB(wA)(N2 ∩ B). By Step 2, StB(wA) ∩ N2 ≤ A. Hence T1T2 is a transversal of
B over StB(wA). Put T = T1T2.

Using Lemma 2.11(4), we obtain that

µ(x) =
sign(〈µ, wA〉)

|T |1/2

∑
a∈T

c(a2)wa
A(x),

where c(x) = µ(x)w(x)−1 and x ∈ A. In order to prove that λ = µN2
, we have to
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show that 〈µN2
, µN2〉 = 1:

〈µN2
, µN2〉 =

〈 sign(〈µ, wA〉)
|T |1/2

∑
a∈T

c(a2)(wa
A)N2

,
sign(〈µ, wA〉)

|T |1/2

∑
a∈T

c(a2)(wa
A)N2〉

=
1
|T |

∑
a2∈T2

∑
a1,b1∈T1

c(a2
1a

2
2)c(b

2
1a

2
2) (we use (2.5))

=
1

|T ||T1|
∑
a∈T

∑
a1,b1∈T1

c(a2
1a

2)c(b2
1a

2)

=
1

|T ||T1|
∑

a1,b1∈T1

(∑
a∈T

c(a2
1)c(b

2
1)γa1(a

2)γb1(a
2)

)

=
1

|T1|
∑

a1,b1∈T1

c(a2
1)c(b

2
1)〈γa1 , γb1〉

=
1

|T1|
∑

a1∈T1

c(a2
1)c(a

2
1) = 1.

Step 4. We have StN (λ) = StN (wN2)N2.
Let Σ be the BN2-orbit of w2N in Irr(2N). Then, using the previous step and

the expression for µ from Lemma 2.11(4), we obtain that there are cv ∈ Q (v ∈ Σ)
such that

(2.6) λ =
∑
v∈Σ

cvv.

By Step 2, StN (wN2) ≤ StB(µ), whence StN (wN2)N2 ≤ StN (λ).
Now, suppose x ∈ StN (λ). Using (2.6), we obtain that x ∈ BN2. Hence we only

need to consider the case x ∈ B.
Let α =

∑
t∈T wt

A. Then, by (2.5), 〈αN2
, αN2〉 = |T2||T1|2. On the other hand,

by Lemmas 2.11(1) and 2.10,

α =
∑
t∈T

wt
A = 1A

StA(wB)wA = 1A
StA(wB)µ =

∑
t∈T

µt.

Hence 〈αN2
, αN2〉 = |B : StB(λ)|| StB(λ) : StB(wA)|2. Since StB(wA)(B ∩ N2) ≤

StB(λ), we conclude that StB(wA)(B ∩ N2) = StB(λ).
Step 5. The map β → βStN (λ) is a bijection between Irr(StB(µ)|µ) and

Irr(StN (λ)|λ).
Since µN2

= λ and StN (λ) fixes λ, βStN (λ) lies over λ for every β ∈ Irr(StB(µ)|µ).
In particular, we have that

〈µStN (λ), µStN (λ)〉 = 〈λStN (λ), λStN (λ)〉 = 〈λ, (λStN (λ))N2〉 = | StN (λ)/N2|.

On the other hand,

µStN (λ) = (µStB(µ))StN (λ)

=

⎛
⎝ ∑

γ∈Irr(StB(µ)|µ)

γ(1)γ

⎞
⎠

StN (λ)

=
∑

γ∈Irr(StB(µ)|µ)

γ(1)γStN (λ).
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Hence we have

| StN (λ)/N2| = 〈µStN (λ), µStN (λ)〉 =
∑

γ,δ∈Irr(StB(µ)|µ)

γ(1)δ(1)〈γStN (λ), δStN (λ)〉

≤
∑

γ∈Irr(StB(µ)|µ)

γ(1)2 = | StB(µ)/A| = | StN (λ)/N2|.

The last equality is a consequence of Step 2 and Step 4. Thus, we obtain that if
γ, δ ∈ Irr(StB(µ)|µ), then

〈γStN (λ), δStN (λ)〉 =
{

1 if γ = δ,
0 if γ �= δ.

which proves Step 5.
Let ψ be a character of StN (λ) such that φ = ψN . By Step 5, there exists a

character β ∈ Irr(StB(µ)|µ) such that ψ = βStN (λ). Put γ = βB. Hence γN =
βN = ψN = φ. Let C be a subgroup of StB(µ) such that β = δStB(µ) and δ is a
linear character of C. Since A is contained in the center of β, A ≤ C and so δ is
an extension of µ. Note that since [C, C]G ∈ A2,

w([C, C]G) = µ([C, C]G) = δ([C, C]G) = 1.

Step 6. The subgroup C is 1 1
2 -uniform, and C is a polarizing lattice for w in N.

Put D = Rad(w2
N) + A. By Lemma 2.3,

Rad(w2
N) = StN (w2

N) = StN (wN2),

whence, using Step 2, we obtain that D = StB(µ). Put E = D +
∑∞

i=1
1
4i [D,i D]L.

Note that E is a uniform Z2-Lie lattice. By Lemma 2.3, Rad(w2
N) is uniform. Hence,

by Lemma 2.1(2),

[D,i D]L ≤ [Rad(w2
N),i Rad(w2

N)]L + 2[B,i B]L ≤ 4i(Rad(w2
N) + B).

Therefore, E ≤ B. Thus, E2 ≤ A ≤ C ≤ StB(µ) ≤ E, and so C is 1 1
2 -uniform.

Let a be such that w([a, C]L) = 1. Since B polarizes w4, a ∈ B. Hence a ∈
StB(wA) = StB(µ). Now, for every x ∈ C

δ([a, x]G) = µ([a, x]G) = µ([a, x]L) = w([a, x]L) = 1.

Thus, a fixes δ and so a ∈ C = StB(δ).
Step 7. Let ∆ be the N -orbit of w in Irr(N). Then φ(x) = Φ∆(x) for every

x ∈ N2.
First, let us show that δB coincides with (wC)B on B∩N2. Indeed, let x ∈ B∩N2.

If x �∈ A, then x �∈ C by Step 2. Hence δB(x) = (wC)B(x) = 0. If x ∈ A but
x �∈ StA(wB), then again

δB(x) = | StB(µ) : C|
∑
t∈T

µt(x) = 0 = | StB(µ) : C|
∑
t∈T

wt(x) = (wC)B(x).

In the case x ∈ StA(wB), δB(x) = (wC)B(x) by Lemma 2.10.
Since Φ∆ = (wC)N = ((wC)B)N , by Lemma 2.8, and φ = δN = (δB)N , we

obtain the desired result.
Now, in order to construct the desired bijection, we have to show that the number

of irreducible characters lying over λ coincides with the number of N -orbits of
characters w ∈ Irr(N) such that 〈wN2 , λ〉 �= 0. In both cases this number is equal
to | StB(µ):A|

| StB(µ):C|2 .
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Now we assume that N is 3-uniform. In this case we have that B is 2 1
2 -uniform.

Hence w([B, B, B]L) = w([4B, B]L) = 1, and so [B, B, B]G ≤ ker γ. Define Z to be
the center of γ, and let σ ∈ Irr(Z) be the irreducible constituent of γZ . Define a
function d on Z by means of d(z) = σ(z)w(z)−1.

Step 8. Final step.
Since β is an extension of µ and µ coincides with w on A2, we have that x ∈ Z if

and only if µ([x, B]G) = 1 if and only if x ∈ StB(wB). Thus, Z = StB(wB). Hence,
by Step 2, N2 ∩ Z = StA(wB). By Lemma 2.10, d(x) = 1 for every x ∈ N2 ∩ Z.
Now, if a ∈ Z and x ∈ N2 ∩ Z, then

d(ax) = σ(ax)w(ax)−1 = σ(a)σ(x)(w(a)w(x)w([a,
1
2
x]L))−1 = d(a).

Thus, we can extend d to a function from N/N2 to ±1. Observe that

φ = γN =
1

|B : Z|1/2
(σB)N =

1
|B : Z|1/2

σN and Φ∆ =
1

|B : Z|1/2
(wZ)N .

Hence

(2.7) Φ∆(x) = d(x)φ(x) for every x ∈ N.

�

Corollary 2.13. Let N be a uniform pro-p group. Then

ζN (s) =
∑

w∈Irr(N)

|N : Rad(w)| 12 (−s−2).

Proof. By Theorems 2.9 and 2.12, there exists a bijection f between Irr(N) and
{Φ∆ | ∆ is an N -orbit in Irr(N)} such that for any φ ∈ Irr(N), f(φ)(1) = φ(1).
Hence

ζN (s) =
∑
∆

|∆|− 1
2 s =

∑
w∈Irr(N)

|N : StN (w)| 12 (−s−2) =
∑

w∈Irr(N)

|N : Rad(w)| 12 (−s−2).

�

3. p-adic integration

In this section we give an explanation of the notion of a definable p-adic integral
and we introduce the facts that we will use later. More detailed discussion of this
subject can be found in [3, 6, 4, 8].

We use the standard notation for p-adic sets. | |p is the standard p-adic valuation
on Qp: if a ∈ pkZp \ pk+1Zp, then |a|p = p−k. Also, µ will be the Haar measure on
Qn

p . We always suppose that µ(Zn
p ) = 1.

Let X = (X1, · · · , XM ) be M commuting indeterminates, and let Qp[[X]] denote
the set of formal power series over Qp. We define the following subsets of Qp[[X]]:

(1) Zp[[X]] denotes the set of power series over Zp;
(2) Qp{X} consists of all formal power series

∑
i∈NM

≥0
aiXi such that |ai|p → 0

as |i| → ∞.
(3) Zp{X} = Zp[[X]] ∩ Qp{X}.
We define the function D : Z2

p → Zp by

D(x, y) =
{

x/y if |x|p ≤ |y|p and y �= 0,
0 otherwise.
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For n > 0 we define Pn to be the set of nonzero nth powers in Zp.
We define the following language considered in [6]:
Let Lan

D be the language with logical symbols ∀, ∃,¬,∨, &, =, a countable number
of variables Xi and

(1) an m-place operation symbol F for each F (X) ∈ Zp{X}, m ≥ 0;
(2) a binary operation symbol D;
(3) a unitary relation symbol Pn for each n ≥ 2.

Each formula φ(x1, · · · , xM ) in the language Lan
D defines a subset

Mφ = {x ∈ ZM
p |φ(x) is true in Zp},

where we interpret
(1) each F ∈ Zp{X} as a function f : Zn

p → Zp defined by f(x) = F (x);
(2) the binary operation symbol D as the function D;
(3) Pn(x) to be true if x ∈ Pn.

We call such a subset Mφ definable. A function f : V → Zp is called definable
if its graph is a definable subset. Note that, in particular, a definable function is
bounded.

With each pair of definable functions f1 : ZM
p → Zp, f2 : ZM

p → Zp and each
definable subset U of ZM

p we associate the following function:

I(f1, f2, U, s) =
∫

U

|f1(x)|sp|f2(x)|pdµ.

We shall call this function a definable integral. Our proof of Theorem 1.1 is
based on the following important result:

Theorem 3.1. Suppose that I(f1, f2, U, s) is a definable integral. Then
(1) U is measurable, and
(2) I(f1, f2, U, s) is a rational function in p−s.

In this form Theorem 3.1 appears in [8, Theorem 1.8] (see also [5, Theorem 2.6]).
Its proof is presented in [6] and [4].

4. The uniform case

In this section we prove Theorem 1.2. First, we consider the case g = 1, and then
we present a general argument. The main steps of our proof are as follows. First,
using Corollary 2.13 we interpret the function ζN (s) in terms of the associated
Zp-Lie lattice. Next, we express the function

ζ(s) =
∑

w∈Irr(N)

|N : Rad(w)|−s

as a definable p-adic integral and use Theorem 3.1.
Recall that N∗ = HomZp

(N, Zp). Since N acts on N, N∗ is also an N -module.
For each i ≥ 0 we fix θi a pith primitive root of 1 in C and we construct an
N -homomorphism πpi : N∗ → Irr(N/piN) in the following way:

πpi(m)(l + piN) = θ
m(l)
i .

The kernel of πpi is equal to piN∗, and so πpi is surjective. For any 0 �= z ∈ Zp

such that |z|p = p−i we define πz = πpi . Put W = (N∗ \ pN∗) × (pZp \ {0}). This



ZETA FUNCTION OF REPRESENTATIONS 105

set will be the domain of integration:

Lemma 4.1. Let β(a, z) = |N : Rad(πz(a))|, where (a, z) ∈ W . Denote by n the
Zp-rank of N. Then

ζ(s) = 1 + p(p − 1)−1

∫
W

|z|−(n+1)
p |β(a, z)|spdadz.

Proof. First note that if (a, z) ∈ W and w = πz(a), then |z|p = o(w)−1. Hence

µ({(a, z) ∈ W |πz(a) = w}) = (p − 1)p−1o(w)−(n+1).

Therefore

ζ(s) − 1 =
∑

1N �=w∈Irr(N)

|N : Rad(w)|−s

=
∑

1N �=w∈Irr(N)

∫
(a,z)∈W,πz(a)=w

p(p − 1)−1|z|−(n+1)
p |N : Rad(πz(a))|−sdadz

= p(p − 1)−1

∫
W

|z|−(n+1)
p |N : Rad(πz(a))|−sdadz

= p(p − 1)−1

∫
W

|z|−(n+1)
p |β(a, z)|spdadz.

�

The integral which appears in the previous lemma is not definable. In the fol-
lowing we will see how we can transform it in a definable integral.

We recall now some known facts about endomorphisms of Zn
p . Any book on

matrices over a principal ideal domain contains these facts (see, for example, [22]).
Let A, B ∈ Mn(Zp) be two matrices over Zp. We write A ∼ B if there are two
invertible matrices C1 and C2 over Zp such that C1AC2 = B. Of course, A ∼ B
is an equivalence relation. The canonical forms of matrices with respect to this
relation are the following:

Lemma 4.2. Let A ∈ Mn(Zp) be a matrix over Zp. Then there exist s1, · · · , sn ∈
Zp, satisfying |si|p ≥ |si+1|p for any 1 ≤ i ≤ n, such that A ∼ diag(s1, · · · , sn).
Moreover, if A ∼ diag(t1, · · · , tn) with |ti|p ≥ |ti+1|p for any 1 ≤ i ≤ n, then
|ti|p = |si|p.

Proof. It is enough to observe that A ∼ diag(s1, · · · , sn) if and only if Zn
p/A(Zn

p ) ∼=⊕n
i=1 Zp/siZp. �

This diagonal form is called Smith’s normal form. Now we present a method
of calculating Smith’s normal form. If A = (aij)1≤i,j≤n and U, V ⊆ {1, · · · , n},
such that |U | = |V |, we put

gU,V (A) = det[(aij)i∈U,j∈V ].

For any 1 ≤ i ≤ n we fix an order on the set of pairs (U, V ), where U and V are
subsets of {1, · · · , n} with i elements. We put h0(A) = 1, and for 1 ≤ i ≤ n we
define hi(A) to be gU,V (A), where (U, V ) is the unique pair such that

(1) |U | = |V | = i;
(2) for any U ′, V ′ ⊆ {1, · · · , n} with |U ′| = |V ′| = i, we have either |gU ′,V ′(A)|p

< |gU,V (A)|p or |gU ′,V ′(A)|p = |gU,V (A)|p and (U, V ) ≤ (U ′, V ′).
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Lemma 4.3 ([22, Corollary 26.1]). Let A ∈ Mn(Zp) be a matrix over Zp. Then
for any 0 ≤ i ≤ n − 1, |D(hi(A), hi−1(A))|p ≥ |D(hi+1(A), hi(A))|p and

A ∼ diag(h1(A), D(h2(A), h1(A)), · · · , D(hn(A), hn−1(A))).

By the previous lemma, if A ∼ B, then |hi(A)|p = |hi(B)|p. Therefore, we can
speak about |hi(φ)|p, where φ ∈ HomZp

(M1, M2) and M1
∼= M2

∼= Zn
p . Thus,

Lemma 4.3 implies the following result.

Lemma 4.4. Let M1
∼= M2

∼= Zn
p be two Zp-modules, 0 �= z ∈ Zp and φ ∈

HomZp
(M1, M2). Then |M1/φ−1(zM2)| =⎧⎪⎪⎨

⎪⎪⎩
1 if |z|p > |h1(φ)|p,
|z|−k

p |hk(φ)|p if |D(hk(φ), hk−1(φ))|p ≥ |z|p > |D(hk+1(φ), hk(φ))|p,
1 ≤ k ≤ n − 1,

|z|−n
p |hn(φ)|p if |z|p ≤ |D(hn(φ), hn−1(φ))|p.

Proof. By Lemma 4.2, we can choose bases of M1 and M2 such that the matrix A
associated with φ in these bases is diagonal and equal to

diag(h1(A), D(h2(A), h1(A)), · · · , D(hn(A), hn−1(A))).

Since |hi(φ)|p = |hi(A)|p for all i, we obtain the lemma from Lemma 4.3. �
Let Ψ: N∗ → HomZp

(N, N∗) be the map defined in the following way: if l, k ∈ N
and m ∈ N∗, then

Ψ(m)(l)(k) = m([k, l]L).

Lemma 4.5. Let m ∈ N∗ and 0 �= z ∈ Zp. Then

Rad(πz(m)) = (Ψ(m))−1(zN∗).

Proof. Let |z|p = p−i. Then we have the following series of equivalent propositions:

x ∈ Rad(πz(m)) ⇔ πz(m)([y, x]L) = 1 ∀y ∈ N

⇔ θ
m([y,x]L)
i = 1 ∀y ∈ N ⇔ m([x, y]L) ∈ zZp ∀y ∈ N

⇔ Ψ(m)(x)(y) ∈ zZp ∀y ∈ N ⇔ Ψ(m)(x) ∈ zN∗ ⇔ x ∈ (Ψ(m))−1(zN∗).

�
Let {e1, · · · , en} be a basis of N and {f1, · · · , fn} a basis of N∗. Thus, any

element a from N or N∗ is identified with a vector (a1, · · · , an), and we can view
HomZp

(N, N∗) as Mn(Zp). Then the entries of Ψ(a), a ∈ N∗, are linear functions
on {ai} and gU,V (Ψ(a)) are polynomials on {ai} for every U, V ⊆ {1, · · · , n} with
|U | = |V |. This implies that the functions hi(Ψ(a)) are definable in Lan

D .
Define the following subsets of W :

W0 = {(a, z) ∈ W | |z|p > |h1(Ψ(a))|p};
for any 1 ≤ k ≤ n − 1,

Wk = {(a, z) ∈ W | |D(hk(Ψ(a)), hk−1(Ψ(a)))|p ≥ |z|p
> |D(hk+1(Ψ(a)), hk(Ψ(a)))|p};

and
Wn = {(a, z) ∈ W | |z|p ≤ |D(hn(Ψ(a)), hn−1(Ψ(a)))|p}.

If (a, z) ∈ Wk define α(a, z) = D(zk, hk(Ψ(a))). Then α is a definable function on
W . Using Lemmas 4.4 and 4.5, we obtain the following corollary.
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Corollary 4.6. Let (a, z) ∈ W . Then |N : Rad(πz(a))| = |α(a, z)|−1
p .

Now, suppose that N is FAb. In this case we have the following important
property.

Lemma 4.7. Let N be an FAb uniform pro-p group. Then the number

m(N) = min{k|pkN ⊆ [N, N]L}
is finite and for any w ∈ Irr(N) we have o(w) ≤ |N : Rad(w)|pm(N).

Proof. Since N is FAb, [N, N]L is of finite index in N. Thus, m(N) is finite.
Since pm(N)N ≤ [N, N]L, we obtain that

|N : Rad(w)|pm(N)N ≤ [N, |N : Rad(w)|N]L ≤ [N, Rad(w)]L.

Hence
w(|N : Rad(w)|pm(N)N) = 1,

and so |N : Rad(w)|pm(N) ≥ o(w). �

Corollary 4.8. Let (a, z) ∈ W . Then

|pm(N)α(a, z)|p ≤ |z|p.

Proof. Note that if w = πz(a), then |z|p = o(w)−1. Therefore, by Lemma 4.7 and
Corollary 4.6, |z|−1

p ≤ |α(a, z)|−1
p pm(N). Hence |pm(N)α(a, z)|p ≤ |z|p. �

Theorem 4.9. Let N be an FAb uniform pro-p group. Then ζN (s) is a rational
function in p−s.

Proof. Let n be the Zp-rank of N. By Lemma 4.1 and Corollary 4.6,

ζ(s) − 1 = p(p − 1)−1

∫
W

|z|−(n+1)
p |α(a, z)|spdadz.

By Corollary 4.8, we have that if (a, z) ∈ W , then

|z|−1
p = |z|−1

p |pm(N)α(a, z)|p|pm(N)α(a, z)|−1
p

= |D(pm(N)α(a, z), z)|p|pm(N)α(a, z)|−1
p .

Therefore, we have∫
W

|z|−(n+1)
p |α(a, z)|spdadz

= pm(N)(n+1)(
∫

W

|D(pm(N)α(a, z), z)|n+1
p |α(a, z)|s−n−1

p dadz).

Now, from Theorem 3.1 we obtain that the last integral is a rational function
in p−s, whence ζ(s) is a rational function in p−s. Note that ζ(s) is a function in
p−2s, whence ζ(s) is a rational function in p−2s. Thus, by Corollary 2.13, ζN (s) is
a rational function in p−s. �

We dedicate the rest of this section to the proof of Theorem 1.2. The idea of the
proof is the same as in the proof of the previous theorem.

Lemma 4.10. Let N be an FAb uniform pro-p group and µi the sum of all irre-
ducible characters of N of degree pi. Then µi is equal to the sum of all Φ∆ where
∆ is any N-orbit in Irr(N) of size p2i.
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Proof. Denote by ρi the sum of all Φ∆ where ∆ is any N -orbit in Irr(N) of size p2i.
Then if p > 2, Theorem 2.9 says that µi = ρi.

If p = 2, Theorem 2.12 says that µi coincides with ρi on elements from N2. Now,
note that for any character σ of N/N2, ρi = σρi and µi = σµi. Hence both ρi and
µi vanish outside N2. We conclude that ρi = µi in the case p = 2 as well. �

Now we are ready to prove Theorem 1.2.

Theorem 4.11. Let N be a uniform pro-p group. Then for any g ∈ N ,
∞∑

i=0

µi(g)p−si =
∑

λ∈Irr(G)

λ(g)λ(1)−s

is a rational function in ps.

Proof. By the previous lemma,
∞∑

i=0

µi(g)p−si =
∑

w∈Irr(N)

w(g)|N : Rad(w)|−(s+1)/2.

Let θm be a pmth primitive root of 1. If the order of w is equal to pm ≥ p, then

∑
σ∈Gal(Q(θm)/Q)

wσ(g) =

⎧⎨
⎩

(p − 1)pm−1 if g ∈ Ker w,
−pm−1 if o(w(g)) = p,
0 if o(w(g)) > p.

Therefore, we have
∞∑

i=0

µi(g)p−si =
∑

w∈Irr(N), o(w(g))=1

|N : Rad(w)|−(s+1)/2

− 1
p − 1

∑
w∈Irr(N), o(w(g))=p

|N : Rad(w)|−(s+1)/2.

Now, note that the sets V1 = {(a, z) ∈ W |a(g) ≡ 0(mod z)} and V2 = {(a, z) ∈
W |pa(g) ≡ 0(mod z)} are definable. Following the proof of Theorem 4.9, we obtain
that ∑

w∈Irr(N), o(w(g))=1

|N : Rad(w)|−s − 1 = p(p − 1)−1

∫
V1

|z|−(n+1)
p |α(a, z)|spdadz,

and ∑
w∈Irr(N), o(w(g))=p

|N : Rad(w)|−s = p(p − 1)−1

∫
V2\V1

|z|−(n+1)
p |α(a, z)|spdadz.

Hence, as in the proof of Theorem 4.9, we conclude that
∑∞

i=0 µi(g)p−si is a rational
function in p−s. �

5. Character extensions

In order to prove Theorem 1.1 for an arbitrary compact p-adic analytic group
G, we need to develop a theory of extensions of characters from a normal uniform
subgroup N of G to characters of G. Thus, we should adapt the Clifford theory
to our case. Let F be a profinite group, V a normal open subgroup of F , and
θ ∈ Irr(V ) an irreducible character of V . Under these hypotheses we say that
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(F, V, θ) is a generalized character triple. If, moreover, θ is F -invariant, then
we say that (F, V, θ) is a character triple. We refer the reader to [14, Section 11]
for general discussion on character triples. For every generalized character triple
we define the function f(F,V,θ)(s) by means of

f(F,V,θ)(s) =
∑

λ∈Irr(F |θ)

(
λ(1)
θ(1)

)−s

.

Thus, for example, if N is an open normal subgroup of G, we have the following
expression for ζG(s):

ζG(s) =
∑

θ∈Irr(N)

θ(1)−sf(G,N,θ)(s)
|G : StG(θ)| .

From the Clifford theory we know that if (F, V, θ) is a generalized character
triple, then

f(F,V,θ)(s) = |F : StF (θ)|−sf(StF (θ),V,θ)(s).

Therefore, the calculation of the function f(F,V,θ)(s) is reduced to the case when
(F, V, θ) is a character triple. From now on we will suppose this.

For the convenience of the reader and in order to fix the notation, we recall
the definition of the abelian group H2(K, C∗), where K is an arbitrary group. A
2-cocycle of K is a function α : K × K → C∗ such that

α(xy, z)α(x, y) = α(x, yz)α(y, z).

The set of 2-cocycles of K forms a group under pointwise multiplication. This
group is denoted by Z2(K, C∗). If µ : K → C∗ is an arbitrary function, we can
define δ(µ) : K × K → C∗ by

δ(µ)(g, h) = µ(g)µ(h)µ(gh)−1.

Note that δ is a homomorphism from the group of C∗-valued functions on K into
Z2(K, C∗). The image of δ is the subgroup B2(K, C∗) ≤ Z2(K, C∗) which is called
the group of 2-coboundaries. The factor group Z2(K, C∗)/B2(K, C∗) is denoted
by H2(K, C∗).

If K1 and K2 are two groups and φ : K1 → K2 is a group homomorphism, then
φ induces naturally a homomorphism φ∗ : Z2(K2, C

∗) → Z2(K1, C
∗) by means of

φ∗(α)(g, h) = α(φ(g), φ(h)), α ∈ Z2(K2, C
∗), g, h ∈ K1.

Since φ∗(B2(K2, C
∗)) ≤ B2(K1, C

∗), we obtain a homomorphism H2(K2, C
∗) →

H2(K1, C
∗), which we will also denote by φ∗.

From [14, Theorem 11.7] we know that any character triple (F, V, θ) determines
uniquely an element from H2(F/V, C∗). We denote this element by β(F,V,θ). Let us
recall this construction. Let T be a transversal for V in F and M a left irreducible
CV -module corresponding to the character θ. Since θ is F -stable, the left CV -
module tM is isomorphic to M for any t ∈ T . Let ψt : tM → M be an isomorphism
of CV -modules. Put at(m) = ψt(tm). Then it is clear that at ∈ EndC(M). Any
element f ∈ F has the form f = tn, where t ∈ T and n ∈ N . We define an
endomorphism af of M by means of af (m) = at(nm). Let g ∈ V , m ∈ M , and
f1, f2 ∈ F . From the construction of af we have

a(f1f2)−1af1af2(gm) = ga(f1f2)−1af1af2(m).
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Hence a(f1f2)−1af1af2 is an endomorphism of M as a CV -module. But M is irre-
ducible and so, by Schur’s Lemma, a(f1f2)−1af1af2 is multiplication by a nonzero
constant, which we denote by α(F,V,θ,T,{ψt})(f1V, f2V ). Now, it can be proved
that α(F,V,θ,T,{φt}) is a 2-cocycle of F/V ; its image in H2(F/V, C∗) is denoted by
β(F,V,θ). Although the construction of α(F,V,θ,T,{ψf}) depends on the choice of T
and ψt, t ∈ T , the element β(F,V,θ) does not.

For our purposes the following proposition is very useful.

Proposition 5.1. Let (Fi, Vi, θi) (i = 1, 2) be two character triples where Vi

(i = 1, 2) are pro-p groups, and let Pi be a pro-p Sylow subgroup of Fi. If φ :
F1/V1 → F2/V2 is an isomorphism such that φ(P1/V1) = P2/V2 and β(P1,V1,θ1)

= φ∗(β(P2,V2,θ2)), then f(F1,V1,θ1) = f(F2,V2,θ2).

Proof. First, note that by [23, Corollary 7.26(3)], β(F1,V1,θ1) = φ∗(β(F2,V2,θ2)). Then
the argument of [14, Theorem 11.28] implies that (F1, V1, θ1) and (F2, V2, θ2) are
isomorphic character triples in the sense of [14, Definition 11.23]. Hence, by [14,
Lemma 11.24], f(F1,V1,θ1) = f(F2,V2,θ2). �

The following result is a generalization of [15, Lemma 4.1].

Lemma 5.2. Let (F, V, θ) be a character triple and S a subgroup of F such that
F = SV . Put H = V ∩S. Assume that µ is an irreducible S-stable character of H
and 〈µ, θH〉 = 1. Then τ∗(β(F,V,θ)) = β(S,H,µ), where τ : S/H → F/V is the natural
group isomorphism that sends sH to sV .

Proof. Let M be a left irreducible CV -module corresponding to the character θ.
Then the restriction of M to H is isomorphic to

⊕
Mi. Since 〈µ, θH〉 = 1, we can

suppose that M1 corresponds to the character µ and the rest of the Mi are not
isomorphic to M1. Let T be a transversal for H in S. Then T is also a transversal
for V in F . As was explained at the beginning of this section, for any t ∈ T we
can define an isomorphism of V -modules ψt : tM → M . We show that ψt sends
tM1 to M1. Since tM1 is isomorphic to M1 as an H-module, because t fixes µ
and ψt is a V -isomorphism, ψt(tM1) is isomorphic to M1 as an H-module. Since
M has only one H-submodule isomorphic to M1, we obtain that ψt(tM1) = M1.
Hence (ψt)tM1 : tM1 → M1 is an isomorphism which we can use in the calculation
of β(S, H, µ). Thus, for any x, y ∈ S and 0 �= m ∈ M1 we have

τ∗(α(F,V,θ,T,{ψt}))(xH, yH) = α(F,V,θ,T,{ψt})(xV, yV )

=
ψ−1

xy ((xy)−1ψx(xψy(ym)))
m

= α(S,H,µ,T,{(ψt)tM1})(xH, yH).

Thus, τ∗(β(F,V,θ)) = β(S,H,µ). �
In the following corollaries we present two particular cases of the previous lemma

of special interest.

Corollary 5.3. Let (F, V, θ) be a character triple and S a subgroup of F such that
F = SV . Put H = V ∩ S. Assume that µ is an irreducible S-stable character of
H and µV = θ. Then τ∗(β(F,V,θ)) = β(S,H,µ), where τ : S/H → F/V is the natural
group isomorphism that sends sH to sV .

Proof. Since θ is irreducible, 〈µ, θH〉 = 〈µH , θ〉 = 1 by Frobenius reprocity. Hence
we can apply Lemma 5.2. �
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Corollary 5.4. Let (F, V, θ) be a character triple and S a subgroup of F such that
F = SV . Put H = V ∩ S. Assume that µ is an irreducible S-stable character of
H and µ = θH . Then τ∗(β(F,V,θ)) = β(S,H,µ), where τ : S/H → F/V is the natural
group isomorphism that sends sH to sV .

Proof. Since µ is irreducible, 〈µ, θH〉 = 1. Hence we can apply Lemma 5.2. �

Theorem 5.5. Let G be a compact p-adic group, p > 2, N a normal open 2-uniform
subgroup of G, and λ ∈ Irr(N). If w ∈ Irr(N) and 〈λ, w〉 �= 0, then

(1) StG(λ) = StG(w)N ,
(2) f(StG(λ),N,λ)(s) = f(StG(w),StN (w),wStN (w))(s).

Proof. Let Ω be an N -orbit of w in Irr(N). By Theorem 2.9, λ = ΦΩ. Hence, it
is clear that StG(w)N stabilizes λ. On the other hand, if λg = λ for some g ∈ G,
then there should exist n ∈ N such that wg = wn. Hence gn−1 ∈ StG(w). This
implies that StG(λ) ≤ StG(w)N .

Let P be a pro-p Sylow subgroup of StG(λ). From the previous paragraph
P = StP (w)N . By Lemma 2.5, there exists a polarizing uniform Zp-Lie lattice A
for w that is stable under StP (w). By Lemma 2.6, wA is a linear character of A.

Since StP (w) ∩ N = StN (w) = Rad(w) ≤ A, we obtain that StP (w)A ∩ N = A.
By Lemma 2.8, λ = ΦΩ = wN

A . Using Corollary 5.3, we obtain that

τ∗
1 (β(P,N,λ)) = β(StP (w)A,A,wA),

where τ1 : StP (w)A/A → P/N is defined by τ1(xA) = xN , x ∈ StP (w)A.
Note that StP (w) ∩ A = StN (w). Hence by Corollary 5.4,

τ∗
2 (β(StP (w)A,A,wA)) = β(StP (w),StN (w),wStN (w)),

where τ2 : StP (w)/ StN (w) → StP (w)A/A is defined by τ2(x StN (w)) = xA, x ∈
StP (w).

Let φ : StG(w)/ StN (w) → StG(λ)/N be defined by φ(x StN (w)) = xN . Thus,
φStP (w)/ StN (w) = τ1 ◦ τ2. Hence we obtain that

φ∗(β(P,N,λ)) = (τ1 ◦ τ2)∗(β(P,N,λ)) = β(StP (w),StN (w),wStN (w)),

and so, by Proposition 5.1, f(StG(λ),N,λ)(s) = f(StG(w),StN (w),wStN (w))(s). �

Thus, the last theorem reduces the study of f(StG(λ),N,λ)(s) to the study of
f(StG(w),StN (w),wStN (w))(s). The advantage of this reduction is that wStN (w) is a
linear character of StN (w). We finish this section by considering character triples
of linear characters.

Let Q be a finite group and F a free group on |Q| variables (so that F is generated
by xq, q ∈ Q). Define a homomorphism φ : F → Q by φ(xq) = q. Let H be the
kernel of this homomorphism. Put F̄ = F/[H, F ] and H̄ = H/[H, F ]. Since F̄
is central by finite, the derived subgroup F̄ ′ of F̄ is finite. Let β and α be F -
invariant linear characters of H. Since they are F -invariant, we can regard α and
β as characters of H̄. We will need the following criterion.

Lemma 5.6. With the previous notation suppose that for every b ∈ F̄ ′ ∩ H̄, α(b)
and β(b) have the same orders. Then f(F,H,α) = f(F,H,β).

Proof. Let γ be a linear character of H̄ which is trivial on F̄ ′ ∩H. Then there is a
linear character τ of F such that τH = γ. Hence f(F,H,α) = f(F,H,αγ).
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The conditions of the lemma imply that αH̄∩F̄ ′ and βH̄∩F̄ ′ are conjugate by an
element σ of the Galois group of Q. Hence α = βσγ, where γ is a linear character of
H̄ which is trivial on H̄ ∩ F̄ ′. By the previous paragraph, f(F,H,α) = f(F,H,βσ). On
the other hand, f(F,H,β) = f(F,H,βσ) because there is a natural bijection between
characters over β and βσ conserving degrees. �

Now let VQ = {si = si(xq|q ∈ Q)} ⊂ F ′ be a finite subset of F ′ such that

H̄ ∩ F̄ ′ = {si[H, F ]}. Suppose that 1 → N → G
φ→ Q → 1 is an exact sequence,

i.e., φ is a surjective homomorphism with kernel N . Let {tq|q ∈ Q} be a transversal
for N in G such that φ(tq) = q, and let α be a G-invariant linear character of N .
Define a vector

VQ(G, N, φ, α) = (o(α(s1(tq|q ∈ Q))), . . . , o(α(sk(tq|q ∈ Q)))),

where k = |VQ| and o(r) denotes the order of r.

Corollary 5.7. (1) The vector VQ(G, N, φ, α) does not depend on the choice of
transversal for N in G.

(2) There exists only a finite number of possibilities for VQ(G, N, φ, α).

(3) Let 1 → N1 → G1
φ1→ Q → 1 and 1 → N2 → G2

φ2→ Q → 1 be two exact
sequences and αi a Gi-invariant linear character of Ni for i = 1, 2. Suppose
VQ(G1, N1, φ1, α1) = VQ(G2, N2, φ2, α2). Then f(G1,N1,α1) = f(G2,N2,α2).

Proof. (1) This is obvious because α is trivial on [N, G].
(2) For any b ∈ N̄ ∩ Ḡ′, o(α(b)) ≤ |H̄ ∩ F̄ ′|.
(3) This is the consequence of the previous lemma. �

6. The general case

In this section we finish the proof of Theorem 1.1. Let G be a p-adic analytic
group with p > 2. We can find an open normal 2-uniform subgroup N of G. Since G
acts on N, G also acts on N∗. We will use the notation of Section 4. Let {e1, · · · , en}
be a basis of N and {f1, · · · , fn} a basis of N∗. Thus, any element a from N or N∗

is identified with a vector (a1, · · · , an) from Zn
p .

For any subgroup N ≤ K ≤ G, define the set

Irr(N)K = {w ∈ Irr(N) | N StG(w) = K}.

Lemma 6.1. WK = {(a, z) ∈ W | πz(a) ∈ Irr(N)K} is a definable set.

Proof. Fix a right transversal (ti|i = 1, . . . , m) for N in G, and suppose that K =⋃s
i=1 tiN .
Note that gi(a) = ati , a ∈ N∗, is a linear function of a and f(a, g) = ag,

a ∈ N∗, g ∈ N, is an analytic function of (a, g). Define a formula Fi in the language
Lan

D as
Fi := ∃g gi(a) ≡ f(a, g)(mod z).

Then WK is equal to the definable set

{(a, z) ∈ W |F1(a, z)& · · ·&Fs(a, z)&¬Fs+1(a, z)& · · ·&¬Fm(z, a) is true in Zp}.

�
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Now, fix a subgroup K, satisfying N ≤ K ≤ G, and put Q = K/N . Fix a right
transversal (yq|q ∈ Q) for N in K, such that q = yqN . Let VQ = {sj} be as in the
previous section. For any w ∈ Irr(N)K define V (w) as follows.

Since w ∈ Irr(N)K , we have StG(w)N = K. Define φ : StG(w) → Q by means of

φ(s) = q if sN = yqN , for s ∈ StG(w). Then 1 → StN (w) → StG(w)
φ→ Q → 1 is

an exact sequence. Put

V (w) = VQ(StG(w), StN (w), φ, wStN (w)).

From Corollary 5.7 we know that V (w) takes a finite number of values and depends
only on w. Let v = (v1, . . . , vk) be such a value. We put

Irr(N)K,v = {w ∈ Irr(N)K |V (w) = v}.

Lemma 6.2. The set WK,v = {(a, z) ∈ WK |πz(a) ∈ Irr(N)K,v} is definable.

Proof. Note that a(si(yqaq|q ∈ Q)) is an analytic map from N∗ × N|Q| to Zp and
for any q ∈ Q, the function gq(a) = ayq , a ∈ N∗, is a linear function of a. Also the
function f(a, g) = ag, a ∈ N∗, g ∈ N, is an analytic function of (a, g). Define the
following formula GK,v in Lan

D :

GK,v : = ∃(nq|q ∈ Q) ∀q ∈ Q gq(a) ≡ f(a,−nq)(mod z)

& ∀j((a(sj(yqnq)) ≡ 0(mod z) & vj = 1)

∨
(vja(sj(yqnq)) ≡ 0(mod z) & vja(sj(yqnq)) �≡ 0(mod pz))).

In the first row of the formula we find a transversal (yqnq|q ∈ Q) for StN (πz(a))
in StG(πz(a)), and in the second and third we check the condition V (πz(a)) = v.
Hence we have WK,v = {(a, z) ∈ WK | GK,v(a, z) is true in Zp}, and so WK,v is
definable. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We keep the previous notation. For any N ≤ K ≤ G we
define

ζG,K(s) =
∑

λ∈Irr(G|χ), χ∈Irr(N), StG(χ)=K

|λ(1)|−s.

Note that if λ ∈ Irr(G|χ), χ ∈ Irr(N), and StG(χ) = K, then λ lies over |G/K|
irreducible characters of N . Hence we have

ζG(s) =
∑

N≤K≤G

1
|G : K|ζ

G,K(s).

So, we need to prove the rationality of ζG,K(s) for each K. Note that

(6.1) ζG,K(s) = |G : K|−s
∑

χ∈Irr(N), StG(χ)=K

f(K,N,χ)χ(1)−s.

Consider an arbitrary character χ ∈ Irr(N) such that StG(χ) = K. Then,
from Theorem 2.9, it follows that there exists a G-orbit Ω in Irr(N), such that
χ = ΦΩ. Let w ∈ Ω. Since StG(χ) = K, we have w ∈ Irr(N)K . By Theorem 5.5,
f(K,N,χ) = f(StG(w),StN (w),wStN (w)). Then equality (6.1) can be rewritten as

ζG,K(s) = |G : K|−s
∑

w∈Irr(N)K

f(StG(w),StN (w),wStN (w))|N : Rad(w)|−(s−2)/2.
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Now, note that if w1, w2 ∈ Irr(N)K,v, then, by Corollary 5.7,

f(StG(w1),StN (w1),(w1)StN (w1)) = f(StG(w2),StN (w2),(w2)StN (w2)).

Hence in order to prove the rationality of ζG,K(s), it is enough to prove that∑
w∈Irr(N)K,v

|N : Rad(w)|−s is a rational function in p−2s.
We do it in the same way that we proved Theorem 4.9, because we have that∑

1N �=w∈Irr(N)K,v

|N : Rad(w)|−s = p(p − 1)−1

∫
WK,v

|z|−(n+1)
p |α(a, z)|spdadz.

We can transform the last integral to a definable integral using the argument of the
proof of Theorem 4.9, because, by Lemma 6.2, WK,v is a definable set. �

7. An example

Let R be a complete discrete valuation ring and m its maximal ideal. We sup-
pose that the residue field R/m ∼= Fq has odd characteristic. We denote by π
a generator of m. Put G = SL2(R). In this section we calculate the zeta func-
tion of representations of G. Let Gi be the kernel of the natural homomorphism
SL2(R) → SL2(R/mi). Then G1 is an example of an R-perfect group (see [21] for
a general definition). We will use the following facts about G1:

Lemma 7.1. The following properties of Gi hold:
(1) [Gn, Gm]G = Gn+m.
(2) If n < m ≤ 2n, then Gn/Gm is an abelian group and it is isomorphic as a

G-module to sl2(R/mm−n). Moreover, there are G-isomorphisms

φn : Gn/Gn+1 → sl2(Fq)

such that

φn+m([xGn+1, yGm+1]G) = [φn(xGn+1), φm(yGm+1)]L
for every x ∈ Gn and y ∈ Gm.

(3) If n < m ≤ 2n, Irr(Gn/Gm) and Gn/Gm are isomorphic as G-modules.

Proof. The first and second statements are well-known facts about G1. The third
statement can be obtained using the Killing form on sl2(R/mm−n). �

We will consider the set M2(R) of all 2-by-2 matrices as a Lie ring. If x ∈ M2(R),
then xk is the image of x in M2(R/mk). Thus,

CM2(R)(xk) = {a ∈ M2(R) | xa − ax ∈ m
kM2(R)}.

The next lemma is the crucial point which makes possible the calculation of ζSL2(R).

Lemma 7.2. Let x ∈ sl2(R) \ m sl2(R) and k ≥ 1. Then

CM2(R)(xk) = CM2(R)(x) + m
kM2(R) = R + Rx + m

kM2(R).

In particular, CG(xk) = CG(x)Gk.

Proof. The inclusions CM2(R)(xk) ≥ CM2(R)(x) + mkM2(R) ≥ R + Rx + mkM2(R)
are evident. Let us prove that CM2(R)(xk) ≤ R + Rx + mkM2(R). We will prove it
by induction on k. Note that CM2(Fq)(x1) = Fq + Fqx1, because x1 is a noncentral
element of M2(Fq). Thus,

(7.1) CM2(R)(xk) ≤ CM2(R)(x1) = R + Rx + mM2(R).
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In particular, the lemma holds when k = 1. Now, suppose that k ≥ 2 and the
lemma holds for k − 1 . Since CM2(R)(xk) ∩ mM2(R) = mCM2(R)(xk−1), we obtain
from the inductive hypothesis and (7.1) that

CM2(R)(xk) ≤ R + Rx + (CM2(R)(xk) ∩ mM2(R))

= R + Rx + mCM2(R)(xk−1) = R + Rx + mkM2(R).

�

Lemma 7.3. Let m ≥ 1 and τ ∈ Irr(Gm/G2m+1|G2m/G2m+1). Then τ (1) = q.

Proof. The group H = Gm/G2m+1 has nilpotency class 2. Hence,

τ (1) = |H : Z(τ )|1/2,

where Z(τ ) is the center of τ . Let v be the irreducible constituent of τG2m/G2m+1

and α the bilinear form on Gm/Gm+1 defined by α(xGm, yGm) = v([x, y]G). Then
from Lemma 7.1(2) we obtain that since v is not trivial, the radical of α has size
q. But the preimage of the radical of α in Gm is exactly Z(τ ). Thus τ (1) = q. �

Let λ ∈ Irr(G). We define the level n(λ) of λ to be the least number n ≥ 0
such that Gn+1 ≤ ker λ. The characters of G of level 0 are well known: they are
characters of the group SL2(Fq). We fix our attention on characters of positive level.
We divide these characters into three groups as follows. Let λ ∈ Irr(G) be of level
n > 0 and vλ an irreducible constituent of λGn

. Since vλ is an irreducible character
of Gn/Gn+1, using Lemma 7.1, we can consider vλ as an element of sl2(Fq). Then
we define the type of λ as follows:

type(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I if the characteristic polynomial of vλ

has two different roots in Fq,
II if the characteristic polynomial of vλ

does not have roots in Fq,
III if the characteristic polynomial of vλ is equal to x2.

Although the choice of vλ is not unique, the definition of the type of λ only depends
on λ.

Theorem 7.4. Let λ be an irreducible character of G of level n > 0. Then

λ(1) =

⎧⎨
⎩

(q + 1)qn if type(λ) = I,
(q − 1)qn if type(λ) = II,
q2−1

2 qn−1 if type(λ) = III.

Proof. Put m = �n/2� + 1, and let χ be an irreducible constituent of λGm
. By

Lemma 7.1, there exists an isomorphism φ : Irr(Gm/Gn+1) ∼= sl2(R/mn−m+1) of
G-modules. Hence there exists x ∈ sl2(R) \ m sl2(R) such that φ(χ) = xn−m+1.
Without loss of generality we can assume that vλ = χGn

. Then we have that
StG(vλ) = CG(x1).

First suppose that n is an odd number. By Lemma 7.2,

StG(χ) = CG(xn−m+1) = AGm,

where A = CG(x) is an abelian subgroup of G. Thus, we can extend χ to StG(χ)
and so λ(1) = |G : StG(χ)|.
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Now suppose that n is an even number. Again, we have that StG(χ) = AGm−1

for some abelian subgroup A of G. Let τ be an irreducible constituent of λGm−1

lying over χ.
First we will show that StG(τ ) = StG(χ). The inclusion StG(τ ) ≤ StG(χ) is

clear. In order to prove the inverse inclusion we have to show that A stabilizes τZ

where Z = Z(τ ) is the center of τ , because τ vanishes outside Z. Note that

Z = G ∩ {1 + πm−1t | t ∈ CM2(R)(x1)}.

Thus, by Lemma 7.2, [Z, A]G = [Gm, A]G and Gm−1 ∩ A ≤ Z. In particular, A
fixes τZ and so A fixes τ .

Now we will prove that we can extend τ to AGm−1. Let P be the pro-p Sylow
subgroup of A. We only need to show that τ can be extended to PGm−1. The idea
of the following argument is taken from the proof of Theorem 5.5. As we see, it also
works when R has positive characteristic. Define a new operation on Gm−1/Gn+1:

x ∗ y = xy[x, y]1/2.

We obtain that Gm−1/Gn+1 is a G-module with respect to this operation. More-
over, M = (Gm−1/Gn+1, ∗) is isomorphic to sl2(R/mn−m+2) as a G-module. In-
deed, it is easy to check that

1 + a (mod m
n+1M2(R)) → a − a2

2
(mod m

n−m+2M2(R))

is a G-isomorphism between

M and (mm−1 sl2(R) + m
n−m+2M2(R))/m

n−m+2M2(R).

Recall that A = CG(x). We can find an extension µ ∈ Irr(M) of χ such that A
fixes µ. As in the proof of Lemma 7.3, we define a bilinear form α on Gm−1/Gm by
means of α(xGm, yGm) = µ([x, y]G) = vλ([x, y]G), x, y ∈ Gm−1. By Lemma 2.4,
there exists Gm ≤ D ≤ Gm−1 such that D/Gm is a maximal isotropic subspace of
Gm−1/Gm and P fixes D. It is clear that D is a subgroup of Gm−1 and µD is a
linear character of D. Note that |Gm−1 : D| = q, whence τ = µGm−1 . Since P is
abelian and P fixes µD, µD can be extended to PD. Hence, by Corollary 5.3, τ
can be extended to PGm−1 and so to AGm−1. Therefore, λ(1) = |G : StG(χ)|q.

Thus, in both cases when n is odd and when n is even we reduce the calculation
of λ(1) to the calculation of |G : StG(χ)| = |G : CG(xn−m+1)|. Applying Lemma
7.2, we obtain that

|G : CG(xk+1)| =

⎧⎨
⎩

(q + 1)q2k+1 if type(λ) = I,
(q − 1)q2k+1 if type(λ) = II,
q2−1

2 q2k if type(λ) = III.

This gives the theorem. �

Theorem 7.5. Let R be as before. Then

ζSL2(R) = 1 + q−s + q−3
2 (q + 1)−s + 2

(
q+1
2

)−s
+ q−1

2 (q − 1)−s + 2
(

q−1
2

)−s

+
4q

(
q2−1

2

)−s
+ q2−1

2 (q2−q)−s+ (q−1)2

2 (q2+q)−s

1−q−s+1 .
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Proof. From [9, page 155] we know that when q is odd,

ζSL2(Fq) = 1+q−s +
q − 3

2
(q+1)−s +2

(
q + 1

2

)−s

+
q − 1

2
(q−1)−s +2

(
q − 1

2

)−s

.

The characters of SL2(Fq) are exactly the characters of SL2(R) of level 0. Let n > 0
and v ∈ Irr(Gn/Gn+1). Then | Irr(G|v)| = | Irr(StG(v)|v)|. Since all characters from
Irr(G|v) have the same type and the same level, the previous theorem implies that
they have the same degree. Therefore, since∑

θ∈Irr(StG(v)|v)

θ(1)2 = | StG(v) : Gn|,

we obtain that

(7.2) | Irr(G|v)| =
|G : StG(v)|2| StG(v) : Gn|

λ(1)2
=

|G : StG(v)||G : Gn|
λ(1)2

,

where λ is any character from Irr(G|v).
For example, we calculate the number of the irreducible characters of level n and

type I. In sl2(Fq) there are (q−1)/2 G-conjugacy classes of diagonalizable nontrivial
elements. Hence, by (7.2) and Theorem 7.4, the number of irreducible characters
of level n and type I is equal to

q − 1
2

q(q + 1)q3n−2(q − 1)(q + 1)
(q + 1)2q2n

=
qn−1(q − 1)2

2
.

The number of irreducible characters of level n and type II is equal to

q − 1
2

q(q − 1)q3n−2(q − 1)(q + 1)
(q − 1)2q2n

=
qn−1(q2 − 1)

2
.

The number of irreducible characters of level n and type III is equal to

2
(q+1)(q−1)

2 q3n−2(q − 1)(q + 1)
(q2−1)2

4 q2n−2
= 4qn.

Applying Theorem 7.4, we obtain the desired formula for ζSL2(R). �
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