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POSITIVITY OF QUASI-LOCAL MASS II

CHIU-CHU MELISSA LIU AND SHING-TUNG YAU

1. Introduction

A spacetime is a four-manifold with a pseudo-metric of signature (+, +, +,−). A
hypersurface or a 2-surface in a spacetime is spacelike if the induced metric is pos-
itive definite. A quasi-local energy-momentum vector is a vector in R

3,1 associated
to a spacelike 2-surface which depends on its first and second fundamental forms
and the connection to its normal bundle in the spacetime. The time component of
the four-vector is called quasi-local energy (mass). Similar to [10, 8], we require the
quasi-local energy-momentum vector to satisfy the following properties.

(1) It should be zero for the flat spacetime.
(2) The quasi-local mass should be equivalent to the standard definition if the

spacetime is spherically symmetric and the quasi-local mass is evaluated on
the spheres [7]. (We say that two masses m1 and m2 are equivalent if there
is a universal constant c > 0 such that c−1m1 ≤ m2 ≤ cm1.) In particular,
for the centered spheres in the Schwarzschild spacetime, the quasi-local
mass should be equivalent to the standard mass.

(3) For an asymptotically flat slice, the quasi-local mass of the coordinate
sphere should be asymptotic to the ADM energy-momentum vector.

(4) For an asymptotically null slice, the quasi-local mass of the coordinate
sphere should be asymptotic to the Bondi energy-momentum vector.

(5) For an apparent horizon Σ, the quasi-local mass should be no less
than a (universal) constant multiple of the irreducible mass, which is√

Area(Σ)/16π.
(6) The quasi-local energy-momentum vector should be nonspacelike and the

quasi-local mass should be nonnegative.
Our definition of quasi-local energy [22] arises naturally from calculations in the

second author’s work [36] on black holes and is strongly motivated by our ability
to prove its positivity. After the second author proposed our definition, we were
informed of the existence of much earlier works by Brown-York [3, 4] and others
[21, 20, 11]. The main goal of this paper is to provide a complete proof of a stronger
version of the positivity stated in [22].

The rest of the paper is organized as follows. In Section 2, we recall our definition
of quasi-local energy, discuss its properties, and state the main result (positivity of
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quasi-local energy). In Section 3, we describe Shi and Tam’s proof of positivity in
the Riemannian case. In Section 4, we prove the main result.

2. Definition of quasi-local energy and its properties

Let Σ be a spacelike 2-surface in a spacetime N . At each point of Σ, choose two
null normals l, n such that 〈l, n〉 = −1. Any other choice (l′, n′) is related to (l, n)
by l′ = λl, n′ = λ−1n or l′ = λn, n′ = λ−1l for some function λ : Σ → R \ {0}. We
denote the mean curvature with respect to l and n by

(1) 2ρ = −〈∇1e1 + ∇2e2, l〉, −2µ = −〈∇1e1 + ∇2e2, n〉

respectively, where {e1, e2} is a local orthonormal frame of Σ. The definitions of
ρ and µ depend on the choice of (l, n), but their product ρµ is independent of the
choice of (l, n). More intrinsically,

8ρµ = 〈H,H〉,

where H is the mean curvature vector of Σ in N . We assume that ρµ > 0, or
equivalently, the mean curvature vector H of Σ in N is spacelike.

Suppose that Σ has positive Gaussian curvature so that Σ is topologically a 2-
sphere. By Weyl’s embedding theorem, Σ can be isometrically embedded into the
Euclidean space R

3 so that the second fundamental form (H0)ab is positive definite.
The embedding Σ ⊂ R

3 is unique up to an isometry of R
3, so (H0)ab is determined

by the metric on Σ. Let ρ0, µ0 be the mean curvatures with respect to null normals
l0, n0 of the embedding Σ ⊂ R

3 ⊂ R
3,1, with the normalization 〈l0, n0〉 = −1. Then

8ρ0µ0 = H2
0 ,

where H0 > 0 is the trace of (H0)ab. Define the quasi-local energy of Σ to be

(2) E(Σ) =
1

8πG

∫
Σ

(
√

8ρ0µ0 −
√

8ρµ) =
1

8πG

∫
Σ

(H0 −
√

8ρµ).

See [33] for other definitions of quasi-local energy.
Recall (1)–(6) in Section 1. In [26], Murchadha, Szabados, and Tod gave exam-

ples of Σ ⊂ R
3,1 but E(Σ) > 0, so E(Σ) does not satisfy (1). For (2), recall that

the Schwarzschild spacetime metric on R
4 is given by

g = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2), r > 2M,

where r, θ, φ are the spherical coordinates on R
3. Let Sa ⊂ (R4, g) be the round

sphere defined by t = 0, r = a, and let m(r) = E(Sr). Then

m(r) = r(1 −
√

1 − 2M

r
).

Note that m(r) is decreasing (for r ≥ 2M), m(2M) = 2M , and m(∞) = M , which
is consistent with (2). For (3), (4), Epp discussed the spatial and future null infinity
limits of a large sphere in asymptotically flat spacetimes, but cannot conclude that
E(Σ) satisfies (3), (4) in general. For (5), on an apparent horizon Σ we have ρµ = 0,
so

E(Σ) =
1
8π

∫
Σ

H0 ≥
√

Area(Σ)
4π
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by the Minkowski inequality of convex bodies [24]. Therefore, E(Σ) satisfies (5).
By the main result of this paper, E(Σ) is nonnegative as required in (6) and is
strictly positive when the spacetime is not flat along Σ.

We now give a precise statement of the main result. Let Ω be a compact spacelike
hypersurface in a time-orientable four-dimensional spacetime N . Let gij denote the
induced metric on Ω, and let pij denote the second fundamental form of Ω in N .
The local mass density µ and the local current density J i on Ω are related to gij

and pij by the constraint equations

µ =
1
2

⎛
⎝R −

∑
i,j

pijpij + (
∑

i

pi
i)

2

⎞
⎠ ,(3)

J i =
∑

j

Dj

(
pij − (

∑
k

pk
k)gij

)
,(4)

where R is the scalar curvature of the metric gij . In this paper, we prove the
following stronger version of the positivity stated in [22].

Theorem 1 (positivity of quasi-local energy). Let Ω, µ, J be as above. We assume
that µ and J i satisfy the local energy condition

(5) µ ≥
√

J iJi

and that the boundary ∂Ω has finitely many connected components Σ1, . . . , Σ�, each
of which has positive Gaussian curvature and has spacelike mean curvature vector
in N . Let E(Σα) be defined as in (2). Then E(Σα) ≥ 0 for α = 1, . . . , �. Moreover,
if E(Σα) = 0 for some α, then M is flat spacetime along Ω, and ∂Ω is connected
and will be embedded into R

3 ⊂ R
3,1 by the well-known Weyl embedding theorem.

3. The Riemannian case

When the second fundamental form of Ω in N vanishes, the local energy condition
(5) reduces to R ≥ 0 and the condition ρµ > 0 reduces to H > 0, where H is the
mean curvature of the spacelike 2-surface in Ω with respect to the outward unit
normal. Shi and Tam proved positivity of quasi-local energy in this case.

Theorem 2 ([31, Theorem 1]). Let (Ω3, g) be a compact manifold of dimension
three with smooth boundary and with nonnegative scalar curvature. Suppose ∂Ω
has finitely many connected components Σα so that each connected component has
positive Gaussian curvature and positive mean curvature H with respect to the unit
outward normal. Then for each boundary component Σα,

(6)
∫

Σα

Hdσ ≤
∫

Σα

Hα
0 dσ,

where Hα
0 is the mean curvature of Σα with respect to the outward normal when

it is isometrically embedded in R
3 and dσ is the volume form on Σα induced from

g. Moreover, if equality holds in (6) for some Σα, then ∂Ω has only one connected
component and Ω is a domain in R

3.

We now briefly describe Shi and Tam’s proof of Theorem 2. From now on, all
the mean curvatures are defined with respect to the outward unit normal.

Let Σα be a connected component of ∂Ω. By the hypothesis of Theorem 2, it
has positive Gaussian curvature, so it can be isometrically embedded in R

3 by the
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well-known Weyl embedding theorem. Moreover, the embedding is unique up to
an isometry of R

3. Let Σα
0 ⊂ R

3 be the image of such an embedding. Then Σα
0 is

a strictly convex hypersurface diffeomorphic to S2.
Let X be the position vector of a point on Σα

0 , and let N be the unit outward
normal of Σα

0 at X. Let Σα
r be the surface described by Y = X + rN, with r ≥ 0.

Let Dα be the region of R
3 outside Σα

0 , and let Eα = Dα ∪ Σα
0 be the closure of

Dα in R
3. Then Eα can be represented by

(Σα × [0,∞), g0 = dr2 + gr),

where gr is the induced metric on Σα
r and g0 = dr2 + gr is the standard Euclidean

metric on Eα ⊂ R
3. Note that gr = (a + r)2(dθ2 + sin2 θdφ2) if Σα

0 is a round
sphere of radius a > 0.

Consider a Riemannian metric on Eα of the form

(7) g = h2dr2 + gr,

where h is a smooth positive function. This is a special case of Bartnik’s construc-
tion in [2]. Note that g and g0 induce the same metric on each Σα

r . The mean
curvatures H and H0 of Σα

r with respect to g and g0 are related by

H = h−1H0.

Note that H0(x, 0) = Hα
0 (x) for x ∈ Σα

0
∼= Σα. The scalar curvature R of g is given

by

2H0
∂h

∂r
= 2h2∆rh + (h − h3)Rr + h3R,

where Rr is the scalar curvature of Σα
r , and ∆r is the Laplacian operator on Σα

r .
So a solution to the parabolic partial differential equation

(8) 2H0
∂h

∂r
= 2h2∆rh + (h − h3)Rr

on Eα ∼= Σα × [0,∞) with the initial condition

(9) h(x, 0) =
Hα

0

H

defines a metric on Eα such that the scalar curvature R = 0 and the mean curvature
of Σα

0 coincides with the restriction of H to Σα ∼= Σα
0 .

Let ρ : R
3 → [0,∞) be the distance function to the origin (in the Euclidean

metric). We may assume that the origin is enclosed by Σα
0 so that ρ ≥ a for some

constant a > 0. Shi and Tam showed that [31, Theorem 2.1]:

Theorem 3. The equation (8) with the initial condition (9) has a unique solution
such that

(a) h = 1 + moρ
−1 + κ, where m0 is a constant and the function κ satisfies

|κ| = O(ρ−2), |∇0κ| = O(ρ−3).

Here ∇0 is the Levi-Civita connection of the Euclidean metric on R
3.

(b) The metric gα = h2dr2 + gr on Eα is asymptotically flat in the sense that

(10) |gα
ij − δij | + ρ|∇0g

α
ij | + ρ2|∇2

0g
α
ij | ≤ Cρ−1

with zero scalar curvature.
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(c) The ADM mass of (Eα, gα) is given by

mα
∞ = lim

r→∞
mα(r),

where
mα(r) =

1
8πG

∫
Σα

r

(H0 − H)dσr,

and dσr is the volume form of Σα
r .

Let mα(r) be defined as in (c) of Theorem 3. It is computed in the proof of [31,
Lemma 4.2] that

(11)
dmα

dr
(r) =

−1
16πG

∫
Σα

r

Rru−1(1 − u)2 ≤ 0.

Shi and Tam glued (Eα, gα) to (Ω, g) along Σα to obtain a complete noncompact
three manifold M with a continuous Riemannian metric g̃ such that

(1) g̃ is smooth on M \ Ω and Ω and is Lipschitz near ∂Ω.
(2) The mean curvatures of Σα with respect to g = g̃|Ω and gα = g̃|Eα are the

same for each α.
(3) Each end Eα of M is asymptotically Euclidean in the sense of (10).
(4) The scalar curvature R of M \ ∂Ω is nonnegative and is in L1(M).

Using Witten’s argument [35, 27], Shi and Tam proved that the positive mass
theorem holds for such a metric, so the ADM mass

mα
∞ = lim

r→∞
mα(r)

is nonnegative for each end Eα, and mα
∞ vanishes for some α if and only if M has

only one end and M is flat. This together with the monotonicity (11) of mα(r)
gives Theorem 2, since

mα(0) =
1

8πG

∫
Σα

(Hα
0 − H)dσ.

4. Proof of Theorem 1

4.1. Outline of proof. Let (Ω, gij , pij) and Σ1, . . . , Σ� be as in Section 2. We first
deform the metric gij on Ω by a procedure used by Schoen and the second author
in [32] and also by the second author in [36]. This procedure consists of two steps.
The first step is to deform gij to a new metric

ḡij = gij + fifj ,

where f is a solution to Jang’s equation on Ω such that f |∂Ω = 0. The metric ḡij

coincides with gij when restricted to ∂Ω, and its scalar curvature R̄ satisfies

(12) R̄ ≥ 2|X|2 − 2divX

for some vector field X on Ω. The equality holds only if pij = hij , where hij is the
second fundamental form of the isometric embedding of (Ω, ḡij) into

(Ω × R, gijdxidxj + dt2)

as the graph of f . The second step is to deform ḡij conformally to a metric with
zero scalar curvature. The inequality (12) implies that there is a unique metric ĝij

in the conformal class of ḡij which has zero scalar curvature and coincides with ḡij

on ∂Ω.
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After the above reduction, we cannot apply Theorem 2 directly to ĝij because
the mean curvature Ĥ of ∂Ω with respect to ĝij is not necessarily positive (this
point was overlooked in [22]). Instead, we have

(13)
∫

∂Ω

Ĥ ≥
∫

∂Ω

(H̄ − 〈X, ν̄〉),

where H̄ and ν̄ are the mean curvature and outward unit normal of ∂Ω with respect
to ḡij , and the equality holds iff ĝ = ḡ and X = 0 (so pij = hij). It was shown in
[36] that

(14) H̄ − 〈X, ν̄〉 ≥
√

H2 − P 2 =
√

8ρµ,

where P is the trace of the restriction of pij to ∂Ω. In particular, H̄ − 〈X, ν̄〉 is
positive.

Let Eα and Hα
0 be defined as in Section 3. Shi and Tam’s proof of Theorem 3

shows that one can solve (8) on Eα with the initial condition

(15) h(x, 0) =
Hα

0

H̄ − 〈X, ν̄〉
and obtain a scalar flat, asymptotically flat metric gα on the end Eα. Gluing
(Eα, gα) to (Ω, ĝ) along Σα, we obtain a complete noncompact three manifold M
with a Lipschitz continuous Riemannian metric g̃. On M \ ∂Ω, g̃ is smooth and
has zero scalar curvature. However, the mean curvatures of Σα with respect to
ĝ = g̃|Ω and gα = g|Eα are not necessarily the same. This causes the following
problem which is absent in the case considered by Shi and Tam: the zeroth-order
term of the Dirac operator can be discontinuous along ∂Ω, so there is an extra term
when we integrate the Weitzenböck-Lichnerowicz formula. To prove the positive
mass theorem for (M, g̃) (Theorem 7), we derive an inequality (Proposition 10) as a
substitute of the integral form of the Weitzenböck-Lichnerowicz formula for smooth
metrics.

Let mα
∞ and mα(r) be defined by gα as in Section 3. The monotonicity (11) of

mα(r) and (14) imply

(16) mα
∞ ≤ 1

8πG

∫
Σα

(Hα
0 − (H̄ − 〈X, ν̄〉)) ≤ 1

8πG

∫
Σα

(Hα
0 −

√
8ρµ) = E(Σα).

The positive mass theorem for (M, g̃) says that mα
∞ ≥ 0 for α = 1, . . . , �, and

mα
∞ = 0 for some α iff � = 1 and (M, g̃) is the Euclidean space R

3. So E(Σα) ≥ 0
for α = 1, . . . , �. If E(Σα) = 0 for some α, we must have mα

∞ = 0 and ĝ = ḡ, so
(Ω, ḡ) = (Ω, g̃) is a domain Ω0 ⊂ R

3. In this case, (Ω, g) (at least the part away from
apparent horizons) can be isometrically embedded in R

3,1 = (R3 ×R,
∑

dx2
i − dt2)

as a graph
{(x, f(x)) | x ∈ Ω0)}

with second fundamental form pij , where f is a smooth function on Ω0 which
vanishes on ∂Ω0.

4.2. Jang’s equation with Dirichlet boundary condition. As in [32], we con-
sider the following equation proposed by Jang [19] on Ω:

(17)
3∑

i,j=1

(
gij − f if j

1 + |∇f |2

) (
fij√

1 + |∇f |2
− pij

)
= 0.
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As in [36], we consider solutions to (17) with the Dirichlet boundary condition

(18) f |∂Ω ≡ 0.

Most of the estimates were made in [32]. To solve the boundary value problem,
the second author constructed a barrier in [36] and concluded that there exists a
solution to (17) with boundary value (18) when (Ω, gij , pij) has no apparent horizon.

Definition 4. Let (Ω, gij , pij) be an initial data set. Given a smooth compact
surface S embedded in Ω, let Hs be the mean curvature of S with respect to the
outward unit normal vector, and let Ps be the trace of the restriction of pij to
S. A smooth 2-sphere S embedded in Ω is an apparent horizon of the initial data
(Ω, gij , pij) if Hs + Ps = 0 or Hs − Ps = 0.

We first assume that (Ω, gij , pij) has no apparent horizon so that there exists a
solution f to Jang’s equation (17) on Ω such that f |∂Ω = 0. The induced metric of
the graph Ωf

∼= Ω of f in (Ω × R, gijdxidxj + dt2) is

ḡij = gij + fifj ,

which can be viewed as a deformation of the metric gij on Ω. Note that the new
metric ḡ coincides with the old metric g when restricted to ∂Ω.

We now introduce some notation. Let ē4 be the downward unit normal to Ωf in
Ω × R, and let ē1, ē2, ē3 be a local orthonormal frame of Ω. We define hi4 by

∇̄4ē4 = hi4ēi,

where ∇̄ denotes the Levi-Civita connection of the metric gijdxidxj +dt2 on Ω×R.
Let hij = 〈ēi, ∇̄j ē4〉 be the second fundamental form of Ωf in Ω × R. Let R̄ be
the scalar curvature of ḡ, and extend pij , µ, J i parallel along the R factor. The
following inequality was derived in [32]:

(19) 2(µ − |J |) ≤ R̄ −
∑
i,j

(hij − pij)2 − 2(hi4 − pi4)2 + 2
∑

i

Di(hi4 − pi4),

where Di denotes the covariant derivative of ḡ. In particular,

(20) R̄ ≥ 2|X|2 − 2divX,

where X =
∑

(hi4 − pi4)ei, and the divergence is defined by ḡ. By (19), the
inequality (20) is an equality only if pij = hij .

In general, the solution f and the metric ḡ are defined on Ω′, the complement
of the union of apparent horizons, but one can extend ḡ to a metric on Ω′′ which is
obtained by adding a point on each end of Ω′. See [32] for details.

4.3. Scalar flat metric on Ω. We shall prove the following:

Proposition 5. Let (Ω, ḡ) be a compact Riemannian manifold of dimension three
with smooth boundary. Suppose that the scalar curvature R̄ of ḡ satisfies

R̄ ≥ c|X|2 − 2divX,

for some constant c > 1
2 and some smooth vector field X on Ω. Then there is a

unique metric ĝij on Ω such that
(1) the metric ĝij is conformal to ḡij;
(2) the scalar curvature of ĝij is zero;
(3) the metric ĝij coincides with ḡij on ∂Ω.
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(4) Let H̄ and Ĥ denote the mean curvatures with respect to the metric ḡ and
ĝ, respectively, and let ν̄ denote the outward unit normal of ∂Ω in (Ω, ḡ).
Then ∫

∂Ω

Ĥ ≥
∫

∂Ω

(H̄ − 〈X, ν̄〉),

where the equality holds if and only if R̄ = 0, X = 0, and ĝij = ḡij.

Proof. In this proof, the Laplacian, gradient, divergence, and all the norms are
defined by the metric ḡij .

Any metric ĝij conformal to ḡij can be written as ĝij = u4ḡij , where u is a
positive smooth function on Ω. The metric ĝij satisfies (1) and (2) in Proposition
5 if and only if v = u − 1 is a solution to

(21)
{

∆v − 1
8 R̄v = 1

8 R̄ on Ω,
v = 0 on ∂Ω.

We first show that (21) has a unique solution. Let f be a solution to

(22)
{

∆f − 1
8 R̄f = 0 on Ω,

f = 0 on ∂Ω.

Then

0 =
∫

Ω

f

(
−∆f +

R̄

8
f

)
=

∫
Ω

(
|∇f |2 +

R̄

8
f2

)

≥
∫

Ω

(
|∇f |2 +

c

8
|X|2f2 − 1

4
(divX)f2

)

=
∫

Ω

(
|∇f |2 +

1
2
X(f)f +

c

8
|X|2f2

)

≥
∫

Ω

(
|∇f |2 − 1

2
|fX||∇f | + c

8
|fX|2

)

=
∫

Ω

⎛
⎝

(
1√
2c

|∇f | −
√

2c

4
|fX|

)2

+ (1 − 1
2c

)|∇f |2
⎞
⎠

≥ 0.

Note that 1 − 1
2c > 0, so ∇f ≡ 0, which implies f ≡ 0 since f vanishes on ∂Ω.

Therefore, zero is the only solution to (22), and (21) has a unique solution. Let v
be the unique solution to (21). Then v is smooth.

We next show that u = v + 1 is positive. Note that u satisfies

(23) ∆u − 1
8
R̄u = 0

on Ω. Assume that Ω− = {x ∈ Ω | u(x) < 0} is nonempty. Then ∂Ω− ∩ ∂Ω = ∅,
and {

∆u − 1
8 R̄u = 0 on Ω−,

u = 0 on ∂Ω−,

which implies that u ≡ 0 on Ω−, a contradiction. So Ω− must be empty, or
equivalently, u is nonnegative. Since u = 1 on ∂Ω, the positivity of u follows from
the Harnack inequality for nonnegative solutions to (23).

Finally, we check that the metric ĝij = u4ḡij satisfies (4) in Proposition 5. We
first compute Ĥ in terms of H̄ and u. We may choose coordinates (x1, x2, x3) near
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a point p ∈ ∂Ω such that (x1, x2) are the normal coordinates of ∂Ω centered at p,
and ∂

∂x3 = ν̄. Let Γ̄k
ij , Γ̂k

ij denote the Christoffel symbols of ḡ, ĝ, respectively. Then
for i, j = 1, 2, at p we have

−ĥij = Γ̂3
ij =

1
2

(
∂

∂xi
ĝi3 +

∂

∂xj
ĝj3 −

∂

∂x3
ĝij

)

=
1
2

(
∂

∂xi
(u4ḡi3) +

∂

∂xj
(u4ḡj3) −

∂

∂x3
(u4ḡij)

)

=
1
2

(
∂

∂xi
ḡi3 +

∂

∂xj
ḡj3 −

∂

∂x3
ḡij − 4

∂u

∂x3
δij

)

= Γ̄3
ij − 2

∂u

∂x3
δij

= −h̄ij − 2
∂u

∂x3
δij .

So Ĥ = H̄ + 4ν̄(u). Also,

∫
∂Ω

ν̄(u) =
∫

Ω

div(u∇u) =
∫

Ω

(|∇u|2 + u∆u) =
∫

Ω

(
|∇u|2 +

R̄

8
u2

)

≥
∫

Ω

(
|∇u|2 +

c

8
|X|2u2 − 1

4
divXu2

)

=
∫

Ω

(
|∇u|2 +

c

8
|X|2u2 +

1
2
X(u)u

)
− 1

4

∫
∂Ω

〈X, ν̄〉

≥
∫

Ω

⎛
⎝(

1√
2c

|∇u| −
√

2c

4
|uX|

)2

+ (1 − 1
2c

)|∇u|2
⎞
⎠ − 1

4

∫
∂Ω

〈X, ν̄〉

≥ −1
4

∫
∂Ω

〈X, ν̄〉.

Therefore, ∫
∂Ω

Ĥ ≥
∫

∂Ω

(H̄ − 〈X, ν̄〉),

and the equality holds if and only if

u ≡ 1, X = 0, R̄ = 0.

�

4.4. Scalar flat metrics on the ends.

Lemma 6.

(24) H̄ − 〈X, ν̄〉 ≥
√

H2 − P 2.

Proof. Let {ē1, ē2, ē3, ē4} be a local orthonormal frame of Ω × R along the graph
Ωf so that ē1, ē2 are tangent to ∂Ω and ē3 = ν̄. Let w be the outward unit normal
of ∂Ω0 in Ω0, the graph of the zero function. It was computed in [36, Section 5]
that

(25) H̄ − 〈X, ν̄〉 = −〈ē4, w〉
〈ē3, w〉P +

1
〈e3, w〉H.
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Recall that H > 0, so (24) is equivalent to

(−〈ē4, w〉P + H)2 ≥ 〈ē3, w〉2
(
H2 − P 2

)
,

which is equivalent to

(〈e4, w〉2 + 〈e3, w〉2)P 2 − 2〈e4, w〉PH + (1 − 〈e3, w〉2)H2 ≥ 0.

But |w|2 = 1 = 〈e4, w〉2 + 〈e3, w〉2, and so this inequality holds trivially. �

We now modify Shi-Tam’s proof of Theorem 2. Let Σα, Σα
r , Eα, gα = h2dr2 + gr

be defined as in Section 3. Shi and Tam’s proof in [31] shows that there is a unique
solution to (8) on Eα ∼= Σα × [0,∞) with the initial condition

(26) h(x, 0) =
Hα

0

H̄ − 〈X, ν̄〉
such that

|h(x, r) − 1| ≤ C

r

for r ≥ 1. Equip Eα with the metric gα = h2dr2 + gr. Then gα has zero scalar
curvature, and the mean curvature of Σα in (Eα, gα) is H̄ − 〈X, ν̄〉.

Define

mα(r) =
1

8πG

∫
Σα

r

(H0 − H)dσr, mα
∞ = lim

r→∞
mα(r)

as in Section 3. By monotonicity (11), mα
∞ ≤ mα(0). By Lemma 6,

mα(0) =
1

8πG

∫
Σ

(Hα
0 − (H̄ −〈X, ν̄〉))dσ ≤ 1

8πG

∫
Σ

(Hα
0 −

√
H2 − P 2)dσ = E(Σα).

4.5. Asymptotically flat Lipschitz metric. Following [31], we glue (Eα, gα) in
Section 4.4 to (Ω, ĝ) in Section 4.3 along Σα to obtain a complete noncompact three
manifold M with a continuous Riemannian metric g̃ such that

(1) g̃ is smooth on M \ Ω and Ω and is Lipschitz near ∂Ω;
(2) each end Eα of M is asymptotically Euclidean;
(3) the scalar curvature R of M \ ∂Ω is nonnegative and is in L1(M).

The mean curvature of Σ with respect to ĝ = g̃|Ω is Ĥ = H̄ + 4ν̄(u), and the mean
curvature of Σ with respect to gα = g̃|Eα is H̄ − 〈X, ν̄〉.

Let ν̃ be the outward unit normal of ∂Ω with respect to g̃. There exists ε > 0
such that (x, t) �→ expx(tν̃(x)) defines an open embedding i : ∂Ω × (−ε, ε) → M .
The image T = i(∂Ω × (−ε, ε)) is a tubular neighborhood of ∂Ω in M . We use the
smooth structure on ∂Ω × (−ε, ε) to define the smooth structure on T . We have

i∗g̃ = dt2 + ρij(x, t)dxidxj ,

where (x1, x2) are local coordinates on ∂Ω.
We choose a local orthonormal frame e1, e2 of ∂Ω and parallel transport them

along ∂
∂t . Then e1, e2, and e3 = ∂

∂t form a local orthonormal frame on (∂Ω×
(−ε, ε), i∗g̃) such that

(1) e1, e2 are tangent to slides Σt = ∂Ω × {t};
(2) e3 is normal to Σt;
(3) ∇3ei = 0, where ∇ is the Levi-Civita connection with respect to i∗g̃.
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The mean curvature of Σt in ∂Ω × (−ε, ε) defines a function H on ∂Ω × (−ε, ε)
which is discontinuous at t = 0 and smooth away from t = 0.

Note that (M, g̃) is uniquely determined by (Ω, ĝ), which is uniquely determined
by (Ω, ḡ). As explained in Section 4.1, our main result Theorem 1 follows from the
following positive mass theorem of (M, g̃).

Theorem 7. The ADM mass mα
∞ of the end (Eα, gα) is nonnegative for α =

1, . . . , �, and mα
∞ = 0 for some α if and only if � = 1 and M is the Euclidean space.

We will prove Theorem 7 in Section 4.10.

4.6. Dirac spinor. In the rest of this paper, Lp, Lp
loc, L

p
0, W

k,p, W k,p
loc , W k,p

0 are
defined as in [14, Chapter 7].

The spinor bundle S over M is a trivial complex vector bundle of rank 2. Let
D : C∞(M, S) → C∞(M, S) be the Dirac operator defined by the Levi-Civita
connection of g̃. It can be extended to D : W 1,2

loc (M, S) → L2
loc(M, S).

Let T be the tubular neighborhood of ∂Ω in M defined in Section 4.5. We
identify T with ∂Ω × (−ε, ε) and study the Dirac operator on ∂Ω × (−ε, ε). Let
e1, e2, e3 be defined as in Section 4.5, and let θ1, θ2, θ3 be the dual coframe. Then
θ3 = dt. Let

Dt = c(θ3)
(
c(θ1)∇t

1 + c(θ2)∇t
2

)
,

where ∇t is the Levi-Civita connection on Σt. Then

Dψ = c(θ3)
(

∂ψ

∂t
− Dtψ +

H

2
ψ

)
.

Let

D′ = D − 1
2
β(t)Hc(θ3),

where β : (−ε, ε) → R is a smooth function such that β(t) = β(−t) and

β(t) =
{

1 |t| ≤ ε/3,
0 |t| > 2ε/3.

Then D′ extends to a first-order differential operator on M with smooth coefficients.
In Section 4.9, we will prove the following existence and uniqueness of the Dirac

spinor with prescribed asymptotics.

Theorem 8. Let ψ1, . . . , ψ� be constant spinors defined on the ends E1, . . . , E�.
Then there exists a unique spinor ψ ∈ W 1,2

loc (M, S) such that

(1) Dψ = 0;
(2) ψ ∈ C∞(M \ ∂Ω, S);
(3) ψ ∈ W 1,p

loc (M, S) for any 2 ≤ p < ∞.
(4) On each end Eα, let ρ be defined as in Theorem 3. Then

lim
ρ→∞

ρ1−ε|ψ − ψα| = 0

for any ε > 0.

In general, the mean curvature along ∂Ω is discontinuous, so the Dirac spinor ψ
in Theorem 8 is not in C1(M, S).
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4.7. Boundary values of W 1,2 functions. We recall the following result from
[25], where Hm

p corresponds to Wm,p in our notation.

Theorem 9 ([25, Theorem 3.4.5]). If G is bounded and of class Cm−1
1 the func-

tions u ∈ Cm−1
p (Ḡ) are dense in any space Hm

p (G) with p ≥ 1 and there is a
bounded operator B from Hm

p (G) into Hm−1
p (∂G) such that Bu = u|∂G whenever

u ∈ Cm−1
1 (Ḡ). If un → u in Hm

p (G), then un → u in Hm−1
p (∂G). If p > 1, the

mapping is compact.

Recall that we have translated Σα
0 ⊂ R

3 such that there is an a > 0 such that
the closed ball Ba of radius a centered at the origin is disjoint from Eα. Choose
L > 0 such that Eα contains R

3 \ BL. For r > L, let

Eα
r = Eα \ Br, Sα

r = ∂Eα
r , Mr = M \

�⋃
α=1

Eα
r .

For a fixed r > L, let G+ be the interior of Ω, and let G− be the interior of Mr \Ω.
We have a disjoint union

Mr = G+ ∪ ∂Ω ∪ G− ∪ ∂Mr,

where

Ḡ+ = G+ ∪ ∂Ω, Ḡ− = ∂Ω ∪ G− ∪ ∂Mr.

Let r± : W 1,2(M) → W 1,2(G±) be the restriction map, and let b± : W 1,2(G±) →
L2(∂Ω) be the bounded linear operator in Theorem 9. Let B± = b± ◦ r± :
W 1,2(M) → L2(∂Ω). Given u ∈ W 1,2(M), there exists a sequence {un} ⊂
Cm−1

1 (Mr) such that un → u|Ω∪G− in W 1,2(Ω ∪ G−). Then B+u = B−u =
limn→∞(un|∂Ω).

4.8. Estimates near Ω. Let L > 0 be chosen as in Section 4.7. For r > L, let
Mr, S

α
r be defined as in Section 4.7. The goal of this subsection is to establish the

following estimate, which will be a crucial ingredient in the proof of Theorem 8.

Proposition 10. For r > L and ψ ∈ W 1,2
loc (M, S) ∩ C∞(M \ ML, S), we have

(27)

2
∫

Mr

|Dψ|2 ≥ 1
10

∫
Mr

|∇ψ|2 +
1
16

∫
Ω

u−2|du|2|ψ|2 +
�∑

α=1

∫
Sα

r

〈H
2

ψ − c(ν)Ďψ, ψ〉

where Ď is the Dirac operator on Sα
r .

Lemma 11. Let U be an open set of M . For any spinor η ∈ W 1,2
0 (U, S), ψ ∈

W 1,2
loc (U, S), we have ∫

U

〈Dψ, η〉 =
∫

U

〈ψ,Dη〉,(28) ∫
U

〈Dψ,Dη〉 =
∫

U

〈∇ψ,∇η〉g̃ +
∫

∂Ω∩U

(2ν̄(u) +
1
2
〈X, ν̄〉)〈ψ, η〉.(29)

Proof. By the discussion in Section 4.7, the right-hand side of (29) makes sense. It
suffices to show that (28) and (29) hold for ψ ∈ C∞(U, S), η ∈ C∞

0 (U, S).
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Let U1 = Ω ∩ U , U2 = U \ Ω̄, and I = ∂Ω ∩ U . We have∫
U1

〈Dψ, η〉 =
∫

U1

〈ψ,Dη〉 +
∫

I

〈c(ν̂)ψ, η〉,(30) ∫
U2

〈Dψ, η〉 =
∫

U2

〈ψ,Dη〉 +
∫

I

〈−c(ν̂)ψ, η〉,(31)

where ν̂ is the outward unit normal of ∂Ω in (Ω, ĝ) (see e.g. [6, Proposition 3.4]).
Equation (28) is the sum of (30) and (31).

We also have∫
U1

〈Dψ,Dη〉 =
∫

U1

〈∇ψ,∇η〉g̃ +
∫

I

〈1
2
(H̄ + 4ν̄(u))ψ − c(ν̂)Ďψ, η〉,(32) ∫

U2

〈Dψ,Dη〉 =
∫

U2

〈∇ψ,∇η〉g̃ +
∫

I

〈1
2
(〈X, ν̄〉 − H̄)ψ + c(ν̂)Ďψ, η〉,(33)

where Ď is the Dirac operator on ∂Ω (see e.g. [18]). Equation (29) is the sum of
(32) and (33). �

The proof of Lemma 11 also gives the following:

Lemma 12. For r > L and ψ, η ∈ W 1,2
loc (M, S), we have

(34)
∫

Mr

〈Dψ, η〉 =
∫

Mr

〈ψ,Dη〉 +
�∑

α=1

∫
Sα

r

〈c(ν)ψ, η〉.

For r > L, ψ ∈ W 1,2
loc (M, S) ∩ C∞(M \ ML, S), and η ∈ W 1,2

loc (M, S), we have∫
Mr

〈Dψ,Dη〉 =
∫

Mr

〈∇ψ,∇η〉g̃ +
∫

∂Ω

(2ν̄(u) +
1
2
〈X, ν̄〉)〈ψ, η〉(35)

+
�∑

α=1

∫
Sα

r

〈H
2

ψ − c(ν)Ďψ, η〉.

Lemma 13. Let D̄ and D denote the Dirac operators on S|Ω defined by the Levi-
Civita connections of ḡ and ĝ = u4ḡ, respectively. Then

(36) Dψ =
1
u2

D̄ψ +
1

2u3
c̄(du)ψ,

where c̄ is the Clifford multiplication defined by ḡ.

Proof. The tangent bundle of Ω is trivial, so there exists a global orthonormal frame
{ē1, ē2, ē3} with respect to ḡ. Let {θ̄1, θ̄2, θ̄2} be the dual coframe. We have

∇̄ēi
ēj = Γ̄k

ij ēk,

dθ̄i = −Γ̄i
kj θ̄

k ∧ θ̄j ,

∇̄ēi
ψ = ēi(ψ) +

1
4
Γ̄k

ij c̄(θ̄
j)c̄(θ̄k)ψ.

Let

ei = u−2ēi, θi = u2θ̄i.
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Then {e1, e2, e3} is a global orthonormal frame with respect to ĝ, and {θ1, θ2, θ3}
is the coframe. Let ui = ēi(u), ψi = ∇̄ēi

ψ. Then

dθi = 2ujuθ̄j ∧ θ̄i −
∑
j,k

u2Γ̄i
kj θ̄

k ∧ θ̄j = −
(

Γ̄i
kj θ̄

k +
2uj

u
θ̄i

)
∧ θj ,

Γi
kj =

(
Γ̄i

lj θ̄
l +

2uj

u
θ̄i

)
(ek) = u−2Γ̄i

kj + 2u−3ujδik,

∇ei
ψ = ei(ψ) +

1
4
Γk

ijc(θ
j)c(θk)ψ =

1
u2

ψi +
1

2u3
c̄(du)c̄(θ̄i)ψ.

Note that c̄(θ̄i) = c(θi), so

Dψ = c(θi)∇ei
ψ =

1
u2

c̄(θ̄i)ψi +
1

2u3
c̄(θ̄i)c̄(du)c̄(θ̄i)ψ =

1
u2

D̄ψ +
1

2u3
c̄(du)ψ.

�

Lemma 14.

|∇ψ|2ĝ =
1
u4

|∇̄ψ|2ḡ +
3

4u6
|du|2ḡ|ψ|2 +

1
u5

Re〈D̄ψ, c̄(du)ψ〉 − 2
u5

Re〈uiψi, ψ〉,(37)

|∇̄ψ|2ḡ = u4|∇ψ|2ĝ +
3u2

4
|du|2ĝ|ψ|2 − u3Re〈Dψ, c(du)ψ〉 + 2u3Re〈ei(u)∇ei

ψ, ψ〉.

(38)

Proof. We use the notation in the proof of Lemma 13, where we calculated that

(39) ∇ei
ψ =

1
u2

ψi +
1

2u3
c̄(du)c̄(θ̄i)ψ.

Note that 〈ψ1, ψ2〉 does not depend on the metric on the tangent bundle of Ω. We
have

(40) |∇ei
ψ|2 =

1
u4

|ψi|2 +
|du|2ḡ
4u4

|ψ|2 +
1
u5

Re〈ψi, c̄(du)c̄(θ̄i)ψ〉.

Note that the last term on the right-hand side of (40) is not a sum and can be
rewritten as follows:

〈ψi, c̄(du)c̄(θ̄i)ψ〉 = 〈ψi, uj c̄(θ̄j)c̄(θ̄i)ψ〉
= 〈ψi, uj(−c̄(θ̄i)c̄(θ̄j) − 2δij)ψ〉
= 〈c̄(θ̄i)ψi, uj c̄(θ̄j)ψ〉 − 2ui〈ψi, ψ〉.

We now sum over i = 1, 2, 3 and obtain

|∇ψ|2ĝ =
3∑

i=1

|∇ei
ψ|2

=
1
u4

|∇̄ψ|2ḡ +
3|du|2ḡ
4u6

|ψ|2 +
1
u5

Re
(
〈D̄ψ, c̄(du)ψ〉 − 2ui〈ψi, ψ〉

)
.

This proves (37). By symmetry, we have

|∇̄ψ|2ḡ = u4|∇ψ|2ĝ +
3u6

4
|d(u−1)|2g|ψ|2 + u5Re〈Dψ, c(d(u−1))ψ〉

− 2u5Re〈ei(u−1)∇ei
ψ, ψ〉,

which is equivalent to (38). �
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Lemma 15. Let dσ̄ denote the volume form of ḡ, and let div denote the divergence
defined by ḡ. Then

∫
Ω

|∇ψ|2ĝdσ =
∫

Ω

(
u2|∇̄ψ|2ḡ +

3
4
|du|2ḡ|ψ|2 + uRe〈D̄ψ, c̄(du)ψ〉 − 2uRe〈uiψi, ψ〉

)
dσ̄,

(41)

2
∫

∂Ω

ν̄(u)|ψ|2 ≥
∫

Ω

(
2|du|2ḡ|ψ|2 +

1
2
|X|2ḡu2|ψ|2

(42)

− 1
2
(divX)u2|ψ|2 + 4uRe〈uiψi, ψ〉

)
dσ̄,

1
2

∫
∂Ω

〈X, ν̄〉|ψ|2 ≥
∫

Ω

(
1
2
(divX)u2|ψ|2 − 1

2
|X|2ḡu2|ψ|2 −

|∇̄(u2|ψ|2)|2ḡ
8u2|ψ|2

)
dσ̄.

(43)

Proof. We have dσ̄ = u6dσ, so (41) follows from (37). To prove (42), note that

2
∫

∂Ω

ν̄(u)|ψ|2dσ = 2
∫

Ω

div(u∇̄u|ψ|2)dσ̄

= 2
∫

Ω

|∇̄u|2ḡ|ψ|2dσ̄ + 2
∫

Ω

u∆̄u|ψ|2dσ̄

+2
∫

Ω

u〈∇̄u, ∇̄(|ψ|2)〉ḡdσ̄,

where

∆̄u =
R̄

8
u ≥ 1

4
(|X|2ḡ − divX)u,

〈∇̄u, ∇̄(|ψ|2)〉ḡ = uiēi(|ψ|2) = 2Re〈uiψi, ψ〉,
so (42) holds. Finally,

1
2

∫
∂Ω

〈X, ν̄〉|ψ|2 =
1
2

∫
Ω

div(Xu2|ψ|2)dσ̄

=
1
2

∫
Ω

(divX)u2|ψ|2dσ̄ +
1
2

∫
Ω

〈X, ∇̄(u2|ψ|2)〉ḡdσ̄

=
1
2

∫
Ω

(divX)u2|ψ|2dσ̄ + 2
∫

Ω

〈 1√
2
Xu|ψ|,

∇̄(u2|ψ|2)√
8u|ψ|

〉ḡdσ̄

≥ 1
2

∫
Ω

(divX)u2|ψ|2dσ̄ − 1
2

∫
Ω

|X|2ḡu2|ψ|2dσ̄

−1
8

∫
Ω

|∇̄(u2|ψ|2)|2ḡ
u2|ψ|2 dσ̄.

This proves (43). �
Lemma 16.∫

Ω

|∇ψ|2ĝdσ + 2
∫

∂Ω

ν̄(u)|ψ|2 +
1
2

∫
∂Ω

〈X, ν̄〉|ψ|2

≥
∫

Ω

(
1
10

|∇ψ|2ĝ +
1

16u2
|du|2ĝ|ψ|2 − |Dψ|2

)
dσ.
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Proof. By Lemma 15, we have∫
Ω

|∇ψ|2ĝdσ + 2
∫

∂Ω

ν̄(u)|ψ|2 +
1
2

∫
∂Ω

〈X, ν̄〉|ψ|2

≥
∫

Ω

(
u2|∇̄ψ|2ḡ +

11
4
|du|2ḡ|ψ|2 + 2uRe〈uiψi, ψ〉

−1
8
|∇̄(u2|ψ|2)|2

u2|ψ|2 + uRe〈Dψ, c̄(du)ψ〉
)

dσ̄.

We rewrite

−1
8
|∇̄(u2|ψ|2)|2

u2|ψ|2
as follows:

∇̄(u2|ψ|2) = 2u∇̄u|ψ|2 + u22Re〈∇̄ψ, ψ〉,

|∇̄(u2|ψ|2)|2 = 4u2|du|2ḡ|ψ|4 + 4u4
3∑

i=1

(Re〈ψi, ψ〉)2 + 8u3|ψ|2Re〈uiψi, ψ〉,

−|∇̄(u2|ψ|2)|2
8u2|ψ|2 = −1

2
|du|2ḡ|ψ|2 −

1
2

u2

|ψ|2
3∑

i=1

(Re〈ψi, ψ〉)2 − uRe〈uiψi, ψ〉

≥ −1
2
|du|2ḡ|ψ|2 −

1
2
u2|∇̄ψ|2ḡ − uRe〈uiψi, ψ〉.

So

(44)
∫

Ω

|∇ψ|2ĝdσ + 2
∫

∂Ω

ν̄(u)|ψ|2 +
1
2

∫
∂Ω

〈X, ν̄〉|ψ|2

≥
∫

Ω

(
1
2
u2|∇̄ψ|2ḡ +

9
4
|du|2ḡ|ψ|2 + uRe〈uiψi, ψ〉 + uRe〈D̄ψ, c̄(du)ψ〉

)
dσ̄.

In the rest of this proof, we will write

|du|2 = |du|2ĝ, |∇ψ|2 = |∇ψ|2ĝ.

By (38),
(45)
1
2
u2|∇̄ψ|2ḡ =

u6

2
|∇ψ|2 +

3u4

8
|du|2|ψ|2 − u5

2
Re〈Dψ, c(du)ψ〉 + u5Re〈ei(u)∇ei

ψ, ψ〉.

By (39) and symmetry,

(46) ψi = u2∇ei
ψ +

u3

2
c(d(u−1))c(θi)ψ = u2∇ei

ψ − u

2
c(du)c(θi)ψ.

So

uRe〈uiψi, ψ〉 = uRe〈u2ei(u)
(
u2∇ei

ψ − u

2
c(du)c(θi)

)
ψ, ψ〉

= u5Re〈ei(u)∇ei
ψ, ψ〉 − u4

2
Re〈c(du)2ψ, ψ〉,

which implies

(47) uRe〈uiψi, ψ〉 = u5Re〈ei(u)∇ei
ψ, ψ〉 +

u4

2
|du|2|ψ|2.
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We also have

uRe〈D̄ψ, c̄(du)ψ〉 = uRe〈u2Dψ − 1
2u

c̄(du)ψ, c̄(du)ψ〉

= u5Re〈Dψ, c(du)ψ〉 − 1
2
u4〈c(du)ψ, c(du)ψ〉,

which implies

(48) uRe〈D̄ψ, c̄(du)ψ〉 = u5Re〈Dψ, c(du)ψ〉 − 1
2
u4|du|2|ψ|2.

Let v = log(u). Then (44), (45), (47), and (48) imply that∫
Ω

|∇ψ|2ĝdσ + 2
∫

∂Ω

ν̄(u)|ψ|2 +
1
2

∫
∂Ω

〈X, ν̄〉|ψ|2

≥
∫

Ω

(
1
2
|∇ψ|2 +

21
8
|dv|2|ψ|2 +

1
2
Re〈Dψ, c(dv)ψ〉 + 2Re〈ei(v)∇ei

ψ, ψ〉
)

dσ

≥
∫

Ω

(
1
2
|∇ψ|2 +

21
8
|dv|2|ψ|2 − (|Dψ|2 +

1
16

|dv|2|ψ|2)

−(
2
5
|∇ψ|2 +

5
2
|dv|2|ψ|2)

)
dσ

≥
∫

Ω

(
1
10

|∇ψ|2 +
1
16

|dv|2|ψ|2 − |Dψ|2
)

dσ.

�

Proof of Proposition 10. By (35),∫
Mr

|Dψ|2 =
∫

Mr\Ω
|∇ψ|2 +

∫
Ω

|∇ψ|2 +
∫

∂Ω

(2ν̄(u) +
1
2
〈X, ν̄〉)|ψ|2

+
�∑

α=1

∫
Sα

r

〈H
2

ψ − c(ν)Ďψ, ψ〉,

where∫
Ω

|∇ψ|2+
∫

∂Ω

(2ν̄(u)+
1
2
〈X, ν̄〉)|ψ|2 ≥ 1

10

∫
Ω

|∇ψ|2+
1
16

∫
Ω

u−2|du|2|ψ|2−
∫

Ω

|Dψ|2

by Lemma 16. Therefore,∫
Mr

|Dψ|2 +
∫

Ω

|Dψ|2

≥
∫

Mr\Ω
|∇ψ|2 +

1
10

∫
Ω

|∇ψ|2 +
1
16

∫
Ω

u−2|du|2|ψ|2

+
�∑

α=1

∫
Sα

r

〈H
2

ψ − c(ν)Ďψ, ψ〉,

which implies (27). �
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4.9. Proof of Theorem 8. We modify Parker and Taubes’s proof of [27, Theorem
4.1]. In [27], the hypersurface Dirac operator is studied, so the second fundamental
form of the spacelike hypersurface in the spacetime is involved in estimates. Here
we consider the Riemannian case, so the estimates are simpler in certain steps. The
main difficulty in our case comes from the discontinuity of the zeroth-order term of
the Dirac operator along ∂Ω.

Let L > 0 be chosen as in Section 4.7. For r > L, let Eα
r , Mr, S

α
r be defined as in

Section 4.7. Choose a smooth function βα
L on each end Eα such that (i) 0 ≤ βα

L ≤ 1,
(ii) βα

L ≡ 1 on Eα
3L, (iii) βα

L ≡ 0 on Eα ∩ M2L, and (iv) |∇βα
L| ≤ 2/L. Then βα

Lψα

extends to a smooth section of S over M . Define

(49) ψ0 =
�∑

α=1

βα
Lψα ∈ C∞(M, S).

We wish to find ψ1 ∈ W 1,2(M, S) such that

(50) Dψ1 = −Dψ0

and
lim

r→∞
r1−ε|ψ1| = 0.

Then ψ = ψ0 + ψ1 is the desired solution.
Let U be an open subset of M , and let ψ ∈ L2

loc(U, S). Given η ∈ C∞(U, S), ψ
is said to satisfy

Dψ = η

in the weak sense if ∫
U

〈ψ,Dφ〉 =
∫

U

〈η, φ〉

for any φ ∈ C1
0 (U, S), or equivalently, for any φ ∈ W 1,2

loc (U, S).

Lemma 17. Let U be an open subset of M , and let ψ ∈ L2
loc(U, S) be a weak

solution to
Dψ = η,

where η ∈ C∞(U, S). Then ψ ∈ C∞(U \ ∂Ω, S), and ψ ∈ W 1,p
loc (U, S) for any

2 ≤ p < ∞.

Proof. Recall from Section 4.6 that D = D′ + A, where D′ is a first-order elliptic
operator with smooth coefficients, and A ∈ L∞(U, End(S))∩C∞(U \ ∂Ω, End(S)).
So ψ ∈ C∞(U \ ∂Ω, S) by elliptic regularity. Now

D′ψ = Aψ + η,

where Aψ + η ∈ L2
loc(U, S). By elliptic regularity, ψ ∈ W 1,2

loc (U) ⊂ L6
loc(U), so

Aψ + η ∈ L6
loc(U). By elliptic regularity again, ψ ∈ W 1,6

loc (U, S) ⊂ C0(U, S). So
Aψ +η ∈ Lp

loc(U, S) for any p ≥ 2, which implies ψ ∈ W 1,p
loc (U, S) for any p ≥ 2. �

We recall some weighted Sobolev spaces introduced in [27]. The distance function
from the origin is a smooth function ρ : Eα

L → R such that ρ(Eα
L) = [L,∞). This

defined a smooth function ρ on ML such that ρ−1(r) = ∂Mr for r ≥ L. Fix a
smooth function σ on M such that (i) σ ≥ 1, (ii) σ = ρ on Eα

2L and (iii) σ = 1 in
ML.
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Definition 18. Given a pair (δ, p) such that

p ≥ 2,
1
2
− 3

p
≤ δ ≤ 2 − 3

p
,

let W 0,p
δ , W 1,p

δ be the completions of C∞
0 (M, S) with respect to the norms

(51) ‖ ψ ‖0,δ,p = ‖ σδψ ‖p, ‖ ψ ‖1,δ,p = ‖ σ1+δ∇ψ ‖p + ‖ σδψ ‖p,

respectively, where ‖ ψ ‖p is the Lp norm.

Lemma 19. For p ≥ 2 and 0 < δ < 2 − 3/p, or p = 2 and δ = −1, the operators
∇ and D are bounded linear maps from W 1,p

δ into W 0,p
δ , and there is a continuous

embedding W 1,p
δ ⊂ W = W 1,2

−1 .

Proof. It is obvious from the definitions that the operators ∇ and D are bounded
linear maps from W 1,p

δ into W 0,p
δ+1. Suppose that p ≥ 2 and 0 < δ < 2 − 3/p. Then

σ−(1+δ) is in L 2p
p−2

. Set

C = ‖ σ−(1+δ) ‖ 2p
p−2

,

which is a positive constant. We have

‖ ψ ‖1,−1,2 = ‖ ∇ψ ‖2 + ‖ σ−1ψ ‖2

= ‖ σ−(1+δ)σ1+δ∇ψ ‖2 + ‖ σ−(1+δ)σδψ ‖2

≤ ‖ σ−(1+δ) ‖ 2p
p−2

‖ ∇ψ ‖p + ‖ σ−(1+δ) ‖ 2p
p−2

‖ σδψ ‖p

= C ‖ ψ ‖1,δ,p .

�

By Proposition 10,

2
∫

Mr

|Dψ|2 ≥ 1
10

∫
Mr

|∇ψ|2 +
1
16

∫
Ω

u−2|du|2|ψ|2 +
�∑

α=1

∫
Sα

r

〈H
2

ψ − c(ν)Ďψ, ψ〉

for all r ≥ L. So we have

(52)
∫

M

|Dψ|2 ≥ 1
20

∫
M

|∇ψ|2

for ψ ∈ C∞
0 (N, S). By Lemma 19, (52) holds for ψ ∈ W , or equivalently,

Lemma 20. For ψ ∈ W , we have

(53) 2
√

5 ‖ Dψ ‖2 ≥‖ ∇ψ ‖2 .

Corollary 21. For p ≥ 2 and 0 < δ < 2 − 3/p, or p = 2 and δ = −1, the operator
D : W 1,p

δ → W 0,p
δ+1 is an injection.

Proof. Suppose that ψ ∈ W 1,p
δ and Dψ = 0. By Lemma 17, ψ is continuous on M

and smooth on M \ ∂Ω. By Lemma 20, ∇ψ = 0, so |ψ| is constant outside M \ ∂Ω.
Then |ψ| is constant on M since |ψ| is continuous on M . We have

‖ ψ ‖1,δ,p ≥‖ σδψ ‖p = (‖ σδp ‖1)1/p|ψ|,

where δp ≥ −1, so ‖ σδp ‖1= ∞. We must have ψ ≡ 0. �
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Lemma 22 ([27, Lemma 5.4 (a)]). For sufficiently large L, we have

(54) ‖ σ−1ψ ‖2
2;Eα

2L
≤ 5 ‖ ∇ψ ‖2

2;Eα
2L

for ψ ∈ W .

Lemma 23. For sufficiently large L, there is a constant c = c(L) > 0 such that
for all ψ ∈ W ,

(55) ‖ ψ ‖2
W≤ c ‖ Dψ ‖2

2 .

Proof. We modify the proof of [27, Lemma 5.5].
Fix a large L such that Lemma 22 holds. Choose a smooth function β = βL such

that (i) 0 ≤ β ≤ 1, (ii) β ≡ 1 on each Eα
3L, (iii) β ≡ 0 on M2L, and (iv) |∇β| ≤ 2/L.

Given ψ ∈ W , let ψin = (1 − β)ψ and ψex = βψ. Note that the support of ψin is
contained in M3L, and the support of ψex is contained in

⋃�
α=1 Eα

2L.
We have

‖ ψ ‖2
W = ‖ ψ ‖2

1,−1,2 = (‖ ∇ψ ‖2 + ‖ σ−1ψ ‖2)2 ≤ 2 ‖ ∇ψ ‖2
2 +2 ‖ σ−1ψ ‖2

2,

‖ σ−1ψ ‖2
2 = ‖ σ−1ψ ‖2

2;M2L
+

�∑
α=1

‖ σ−1ψ ‖2
2;Eα

2L
.

Recall that σ ≥ 1, so

‖ σ−1ψ ‖2
2;M2L

≤‖ ψ ‖2
2;M2L

= ‖ ψin ‖2
2;M2L

≤‖ ψin ‖2
2 .

If ψ ∈ C∞(M, S) and ∇ψ = 0, then |ψ| is a constant. So B(ψ, φ) =
∫

M
〈∇ψ,∇φ〉

is a positive definite Hermitian form on C∞
0 (M, S). We have

(56) ‖ ψin ‖2
2 ≤ c2(L) ‖ ∇ψin ‖2

2

(see e.g. [25, Section 5.2]).

‖ ∇ψin ‖2
2 = ‖ ∇ψ −∇ψex ‖2

2 ≤ 2 ‖ ∇ψ ‖2
2 +2 ‖ ∇ψex ‖2

2,

where

‖ ∇ψex ‖2
2 = ‖ ∇(βψ) ‖2

2 ≤ 2 ‖ (∇β)ψ ‖2
2 +2 ‖ β∇ψ ‖2

2 .

Note that ∇β vanishes outside M3L \ M2L, |∇β| ≤ 2/L and 1 ≤ 3Lσ−1 on
M3L \ M2L, so

‖ (∇β)ψ ‖2
2 ≤ ‖ 2

L
ψ ‖2

2;M3L\M2L
≤‖ 2

L
· 3L · σ−1ψ ‖2

2;M3L\M2L

= 36 ‖ σ−1ψ ‖2
2;M3L\M2L

.

Recall that |β| ≤ 1, so ‖ β∇ψ ‖2
2 ≤‖ ∇ψ ‖2

2. So we have

‖ σ−1ψ ‖2
2;M2L

≤ ‖ ψin ‖2
2 ≤ c2(L) ‖ ∇ψin ‖2

2 ≤ 2c2(L)(‖ ∇ψ ‖2
2 + ‖ ∇ψex ‖2

2)

≤ 2c2(L)(3 ‖ ∇ψ ‖2
2 +72 ‖ σ−1ψ ‖2

2;M3L\M2L
),
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‖ σ−1ψ ‖2
2 = ‖ σ−1ψ ‖2

2;M2L
+

�∑
α=1

‖ σ−1ψ ‖2
2;Eα

2L

≤ 6c2(L) ‖ ∇ψ ‖2
2 +(1 + 144c2(L))

(
�∑

α=1

‖ σ−1ψ ‖2
2;Eα

2L

)

≤ 6c2(L) ‖ ∇ψ ‖2
2 +5(1 + 144c2(L))

(
�∑

α=1

‖ ∇ψ ‖2
2;Eα

2L

)

≤ (726c2(L) + 5) ‖ ∇ψ ‖2
2,

where we used Lemma 22. So

‖ ψ ‖2
W ≤ 2 ‖ ∇ψ ‖2

2 +2 ‖ σ−1ψ ‖2
2≤ (1452c2(L) + 12) ‖ ∇ψ ‖2

2 .

By Lemma 20, ‖ ∇ψ ‖2
2 ≤ 20 ‖ Dψ ‖2

2, so

‖ ψ ‖2
W ≤ 240(121c2(L) + 1) ‖ Dψ ‖2

2 .

�

Lemma 24. For each η ∈ C∞
0 (N, S) there exists a unique u ∈ W such that D2u =

η. ψ = Du ∈ W and
‖ ψ ‖2

W ≤ c ‖ η ‖2
2 .

Proof. Consider the functional

F (u) =
1
2
‖ Du ‖2

2 +Re〈u, η〉2

on W . It is strictly convex, weakly lower semicontinuous, and

F (u) ≥ 1
2c

‖ u ‖2
W − ‖ u ‖W ‖ ση ‖2,

where c is the constant in Lemma 23. By the calculus of variations, F has a unique
critical point u ∈ W which is an absolute minimum in W , and u is the weak solution
to

D2u = η.

Let ψ = Du ∈ W 0,2
0 . Then ψ is a weak solution to

Dψ = η.

By Lemma 17, ψ ∈ W 1,2
loc (M, S) ∩ C∞(M \ ∂Ω, S). By Lemma 23,

‖ ψ ‖2
W ≤ c ‖ η ‖2

2 .

So ψ ∈ W . �

Lemma 25. For each η ∈ C∞
0 (N, S) there exists a unique ψ ∈ W with Dψ = η.

For p, δ as in Lemma 19,

(57) ‖ ψ ‖1,δ,p≤ c(δ, p) ‖ η ‖0,δ+1,p .

Proof. By Lemma 24, there exists ψ ∈ W such that Dψ = η. The solution is unique
by Lemma 23.

By Lemma 17, ψ ∈ W 1,p
loc (M, S) ∩ C∞(M \ ∂Ω, S). A slight modification of the

proof of [27, Proposition 5.7] gives the a priori bound (57). �
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The proof of [27, Proposition 5.9] gives

Proposition 26. Let p, δ be as in Lemma 19. Then D : W 1,p
δ → W 0,p

δ+1 is a
surjection. If Dψ = η, where η ∈ W 0,p

δ and ψ ∈ W 1,p
δ , then the a priori bound (57)

holds.

We now return to the proof of Theorem 8. Let ψ0 be defined as in (49). Then
Dψ0 ∈ L2(M, S) ∩ W 0,p

1+δ ∩ C∞(M, S) for all 2 ≤ p < ∞ and 0 < δ < 1 − 3/p (see
[27, Section 4] for details). By Proposition 26, there exists ψ1 ∈ W such that

(58) Dψ1 = −Dψ0

and ψ1 ∈ W 1,p
δ (M, S) for all 2 ≤ p < ∞ and 0 < δ < 1 − 3/p. So

lim
r→∞

r1−ε|ψ1| = 0

for any ε > 0. By Lemma 17, ψ ∈ C∞(M, S) and ψ ∈ W 1,p
loc for any 2 ≤ p < ∞.

Let ψ = ψ1 + ψ0. Then ψ is the desired solution in Theorem 8. The solution is
unique by Lemma 19.

4.10. Proof of Theorem 7. Let ψ be the unique spinor given by Theorem 8. By
Proposition 10,

(59) 0 ≥ 1
10

∫
Mr

|∇ψ|2 +
1
16

∫
Ω

u−2|du|2|ψ|2 +
�∑

α=1

∫
Sα

r

〈H
2

ψ − c(ν)Ďψ, ψ〉.

By calculations similar to those in [27], we have

lim
r→∞

∫
Sα

r

〈H
2

ψ − c(ν)Ďψ, ψ〉 = −4πGmα
∞|ψα|2,

where mα
∞ is the ADM mass of the end Eα. So

4πG
�∑

α=1

mα
∞|ψα|2 ≥ 1

10

∫
M

|∇ψ|2 +
1
16

∫
Ω

u−2|du|2|ψ|2.

In particular, taking |ψβ| = 1 and ψα = 0 for α �= β, we have

4πGmβ
∞ ≥ 1

10

∫
M

|∇ψ|2 +
1
16

∫
Ω

u−2|du|2|ψ|2 ≥ 0.

If mβ
∞ = 0 for some β, we have du = 0, so u ≡ 1, which implies ĝ = ḡ. We also

have ∇ψ = 0 on M . We conclude that ∂Ω is connected and M is the Euclidean
space.
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