
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 16, Number 4, Pages 887–900
S 0894-0347(03)00431-4
Article electronically published on May 30, 2003

OORT’S CONJECTURE FOR Ag ⊗ C

SEAN KEEL AND LORENZO SADUN

1. Introduction and results

Let Ag be the moduli space of principally polarized Abelian varieties and let E
be the Hodge bundle.

1.1. Main Theorem. Let X be a compact subvariety of Ag⊗C such that ci(E)|X =
0 in H2i(X,R) for some g ≥ i ≥ 0. Then

(1) dim(X) ≤ i(i− 1)
2

,

with strict inequality if i ≥ 3.

The Grothendieck-Riemann-Roch theorem implies that cg(E) is trivial on Ag
(see [G99, 2.2]); thus we have the following corollary, conjectured by Oort [GO99,
3.5]:

1.2. Corollary. There is no compact codimension g subvariety of Ag⊗C for g ≥ 3.

Corollary 1.2 is striking in that it fails in positive characteristic: Oort has shown
that the locus Z ⊂ Ag⊗Fp of Abelian varieties of p-rank zero is complete and pure
codimension g.

We also obtain

1.2.1. Corollary. There is no compact codimension g subvariety of M c
g ⊗ C for

g ≥ 3.

This is a formal consequence of (the g = 3 case of) Corollary 1.2 and the bounds
of [Diaz87] on dimensions of compact subvarieties of Mg; see §8.

Inequality (1) has been obtained previously, in all characteristics, by van der
Geer [G99]. The improvement to strict inequality may seem rather humble, but in
relation to Faber’s conjectures, it is quite significant:

Faber has made the surprising conjecture that the subring R∗(Mg) ⊂ CH∗(Mg)Q
⊗Q generated by tautological classes looks like the rational cohomology of a smooth
projective variety of dimension g−2; e.g., it satisfies Poincare duality and Grothen-
dieck’s standard conjectures. See [Faber99] for the precise statement and very com-
pelling evidence. One naturally wonders if there is a projective (g− 2)-dimensional
variety with the right cohomology. The form of the conjectures, specifically his
evaluation maps ([FP00, 0.4]), strongly suggests looking for a compact codimension
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2g−1 subvariety ofMg, whose cohomology class inMg is a multiple of cg(E)cg−1(E).
There are analogous speculations for M c

g (stable curves of compact type) ([FP00,
0.5]) that lead one to hope for a compact subvariety of codim g, with cohomology
class a multiple of cg(E). Since E comes from Ag, it is natural to hope that the
subvarieties do as well. More compellingly, there are natural analogs of Faber’s
conjectures for Ag and A◦g (the open subset of Ag whose complement corresponds
to products of lower dimensional polarized varieties—note that the image of the
Torelli map is a closed subset of A◦g) and corresponding evaluation maps which
themselves raise the hope of compact subvarieties, of codimension g in Ag and of
codimension 2g− 1 in A◦g. Indeed the tautological ring R∗(Ag) has been computed
([G99] and [EV02]) and the analog of Faber’s conjecture holds, so if in particular
one has a compact subvariety Z ⊂ Ag with the desired cohomology class, then
Poincare duality already gives that R∗(Ag)→ H∗(Z,Q) is injective.

Unfortunately, by Corollary 1.2 the hoped for subvariety of Ag does not exist in
characteristic zero. Theorem 1.1 suggests a similar result may hold for A◦g: It is
natural to wonder if cg−1(E) vanishes on A◦g. If it does, then by Theorem 1.1, with
i = g−1, there is no compact subvariety of A◦g⊗C of codimension 2g−1, for g ≥ 4.

As noted, Oort’s example Z ⊂ Ag ⊗ Fp violates the analog of Corollary 1.2 for
characteristic p. As Oort pointed out to us, since it is known that Z does not lift to
char 0, uniqueness of Z would give a different, purely char p proof of Corollary 1.2.
In this sense Corollary 1.2 is evidence for this uniqueness, which would obviously
be attractive from the point of view of Faber’s conjecture. In §7 we point out an
intriguing parallel between our proof in char 0 and Oort’s example; perhaps it can
be exploited.

Finally, Theorem 1.1 is sharp for i = 2 and i = 3. There exists a compact surface
Z ⊂ A3 and a compact curve C ⊂ A2. Taking products with fixed elliptic curves,
one then obtains a compact surface Z ⊂ Ag, g ≥ 3, and a compact curve C ⊂ Ag,
g ≥ 2, with c3(E)|Z = 0, c2(E)|C = 0.

After submitting this paper for publication, we learned from E. Colombo that
the i = g case of Corollary 2.6, the crucial technical step in the proof of Corollary
1.2, has been previously obtained by E. Izadi [Izadi98], using methods of Colombo
and Pirola [CP90]. The main argument of Colombo-Pirola and Izadi is entirely
different from ours (and quite ingenious). It is more elementary (no use is made of
the vanishing of cg(E)) and also more algebraic, so it might be useful for showing
uniqueness of Oort’s Z ⊂ Ag ⊗ Fp.

2. Proof of Main Theorem

In this section we give the main line of our argument for Theorem 1.1. The
various constituent results will be proved in subsequent sections.

We use throughout the (orbifold) cover q : Hg → Ag by Siegel’s generalized
upper half space. (We could as well replace Ag by a finite branched cover and q
by an honest (unbranched) cover. Above and throughout the paper any statement
about Ag should be interpreted in the orbifold sense.) Hg is by definition the space
of symmetric complex g × g matrices with positive definite imaginary part, while
Sg denotes the space of all symmetric g × g complex matrices.

2.1. Chern forms. E has a tautological Hermitian metric: A point of Ag is given
by a pair (V/L, 〈, 〉), where L ⊂ V is a lattice in a g-dim complex vector space
and 〈, 〉 is a positive definite Hermitian form (such that Im〈, 〉|L is integral and
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unimodular). E is the Hermitian bundle with fibre V ∗ and metric dual to 〈, 〉. (We
abuse notation and denote this dual metric, and any other metric induced from 〈, 〉,
by 〈, 〉). Griffiths showed that the curvature of (E, 〈, 〉) is nonnegative [Griffiths84].
Our proof is based on the tension between this nonnegativity and the vanishing of
cg(E) noted above: As E ≥ 0, it is natural to hope that ck(E) is represented by a
nonnegative form c̃k. (Recall a real (k, k) form is called nonnegative if its restriction
to every complex k-plane in the tangent bundle is a nonnegative multiple of the
volume form.) As we indicate in a moment, this is indeed the case. Thus if Y ⊂ Ag
is a compact k-fold and

(2) 0 = ck(E) ∩ [Y ] =
∫
Y

c̃k,

then c̃k|Y vanishes identically (on the smooth locus), and we get pointwise infor-
mation on the tangent space of Y .

Here is how we obtain c̃k. By Hodge theory, E sits in an exact sequence

(3) 0→ E→ H→ E∗ → 0,

where H is a flat bundle (with fibre H1(A,C) at the point [A] ∈ Ag given by the
Abelian variety A), whence the equality of cohomology classes

(4) c(E) · c(E∗) = 1.

Thus c(E) is represented by the inverse Chern form of (E∗, 〈, 〉). This is computed
as follows:

2.2. Segre forms. Let (F, 〈, 〉) be a rank g Hermitian bundle, on a complex
manifold B, with curvature Ω, let G = 1

2πiΩ, and let p : P(F )→ B be the projective
bundle of lines in F . Let

(5) A : TP(F ) → TP(F )/B

(where TP(F )/B is the vertical tangent space, i.e., the kernel of dp) be the sec-
ond fundamental form for the tautological sublinebundle O(−1) ⊂ p∗(F ). Let
s(F, 〈, 〉) =

∑
sk(F, 〈, 〉) denote the Segre from, i.e.,

(6) sk(F ) = p∗(c1(O(1), 〈, 〉)g−k+1).

2.3. Theorem. The kernel of A defines a horizontal subspace, complementary to
the vertical tangent space, which is identified with p∗(TB) by dp. Under this splitting
of TP(F ) the first Chern form of O(1) at a line L ⊂ Fb, spanned by a unit vector v,
is

(7) FS + 〈Gv, v〉,

where FS is the Fubini-Study form (on the vertical tangent space, normalized to
represent the hyperplane class). The Segre form sk(F, 〈, 〉) equals

(8)
(
g + k − 1

k

)∫
P(Fb)

(
〈Gv, v〉
〈v, v〉

)k
dVolP(Fb),

and the total Segre form s(F, 〈, 〉) equals c(F, 〈, 〉)−1 (pointwise!) in the algebra of
even degree forms.
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It is well known that the Segre class represents the inverse Chern class in co-
homology; see, e.g., [BT82, p. 269] and [Fulton84, 3.1]. We do not know if this
equality at the level of forms, or the rather canonical expressions above, has been
previously observed.

The tangent space TpAg is canonically identified with S(Ep,E∗p), the space of
symmetric linear maps from Ep to its dual. Theorem 2.3 applied to (E∗, 〈, 〉),
together with Griffiths’ formula for the curvature, imply

2.4. Corollary. The kth Chern class of E is represented by c̃k := sk(E∗, 〈, 〉). The
form c̃k is nonnegative and vanishes on a (complex) i-plane Y in TpAg = S(Ep,E∗p)
if and only if, for every v ∈ Ep, the evaluation map ev : Y → E∗ fails to be injective.

For each line L ⊂ Ep, choose 0 6= w ∈ L. Let 〈, 〉L on S(Ep,E∗p) be the Hermitian
form e∗w(〈, 〉E∗p)/〈w,w〉, i.e.,

(9) 〈a, b〉L =
〈ew(a), ew(b)〉
〈w,w〉 .

Up to a positive constant, the restriction of c̃k to p is the average of the kth wedge
powers of − Im(〈, 〉L) over all lines L ⊂ Ep.

We prove Theorem 2.3 and Corollary 2.4 in §3.
Given compact X ⊂ Ag with ci(E)|X = 0, we may apply Corollary 2.4 to every

i-plane in the tangent space at smooth points of X . (Since Ag is quasi-projective,
each i-plane is realized as a tangent plane to a compact i-dimensional subvariety.)

We reformulate this using the following linear algebra result, proved in §4.

2.5. Theorem. Let V be a complex vector space of dimension g ≥ 1. Let i be an
integer g ≥ i ≥ 0. Let X ⊂ S(V, V ∗) be a linear subspace of dimension at least
max(i, i(i−1)

2 ) such that for each v ∈ V and every i-dimensional subspace Y ⊂ X
the evaluation map ev : Y → V ∗ fails to be injective.

Then i ≥ 3, X = W⊥ for some (g − i+ 1)-dimensional linear subspace W ⊂ V ,
and X has dimension exactly i(i−1)

2 .

Here W⊥ ⊂ S(V, V ∗) is the set of maps whose kernels contain W .
Combining this with Corollary 2.4, we find

2.6. Corollary. Let g ≥ i ≥ 3. Let X ⊂ Ag be a compact subvariety of dimen-
sion at least i(i−1)

2 such that ci(E)|X = 0. Then X has dimension exactly i(i−1)
2 .

Furthermore, at each smooth point p ∈ X, TpX = W⊥ ⊂ S(Ep,E∗p) for some
(g − i+ 1)-dimensional subspace W (p) ⊂ Ep.

Let X ⊂ Ag be as in Corollary 2.6, and let X be an irreducible component of
q−1(X). By Corollary 2.6,

(10) TAX = W (A)⊥ ⊂ Sg
for each smooth A ∈ X .

In §5 we prove

2.7. Theorem. The subspace W (A) is constant (and henceforth denoted W ). If
X is an irreducible component of q−1(X), then for some fixed τ ∈ Hg, X ⊂ Hg is
the affine space

(11) X(W, τ) := {M ∈ Hg|M |W = τ |W }.
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Finally, in §6 we show

2.8. Theorem. The image of X(W, τ) in Ag cannot be compact.

3. Segre forms

Proof of Theorem 2.3. The restriction of A to the vertical tangent space is the
identity, so A is indeed surjective. Now equation (7) follows by the definition of A;
see [GH78, p. 78]. What remains is to show that the pointwise inverse of the total
Chern form c(F, 〈, 〉) is given by the formula (8) and equals the Segre form.

If M is a positive Hermitian form on a g-dimensional complex vector space V
with inner product 〈, 〉, then

(12) π−g det(M)
∫
V

e−〈Mv,v〉dVolV = 1.

This identity remains true if M takes values in the commutative ring of even degree
forms at a point, as long as the scalar part of M remains positive-definite.

Now let V = Fp, and let M = I −G. Then

[c(F, 〈, 〉)]−1 =π−g
∫
Fp

e−〈(I−G)v,v〉dVolFp

=π−g
∫
Fp

∑
k

〈Gv, v〉k
k!

e−〈v,v〉dVolFp

(13) =
∑
k

(
g + k − 1

k

)
1

Vol(S2g−1)

∫
S2g−1

〈Gv, v〉kdVolS2g−1

=
∑
k

(
g + k − 1

k

)
1

Vol(P(Fp))

∫
P(Fp)

(
〈Gv, v〉
〈v, v〉

)k
dVolP(Fp)

=
∑
k

∫
P(Fp)

(
FS +

〈Gv, v〉
〈v, v〉

)g+k−1

.

In going from the second line to the third, we integrate over radius, using the
facts that

∫∞
0 r2ke−r

2
r2g−1dr = (k + g − 1)!/2 and that the volume of S2g−1 is

2πg/(g − 1)!. �

Proof of Corollary 2.4. The second paragraph implies the first, since 〈, 〉L is semi-
positive, and its restriction to an i-plane Y fails to be positive iff ev∗ |Y fails to be
injective. Thus c̃k|Y is nonnegative and vanishes iff ev∗ fails to be injective for all
v.

What remains, then, is to compute the curvature of E∗, from which we obtain the
Segre form sk by equation (8). This is given by Griffiths’ formula [Griffiths84], but
can also be computed from a direct calculation, which we include for the reader’s
convenience: The metric on E∗ is given by the inner product h = (τI)−1, where τI
denotes the imaginary part of τ ; see [Kempf91, p. 59]. Thus the curvature is given
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by

Ω =∂(h−1∂h)

=− ∂[(∂τI)τ−1
I ]

=− (∂τI)τ−1
I (∂τI)τ−1

I

=− 1
4

(∂τ)τ−1
I (∂τ)τ−1

I .

(14)

If v ∈ E∗, then w := τ−1
I v = 〈·, v〉 ∈ E, and

〈Gv, v〉 =
i

8π
vtτ−1

I (∂τ)τ−1
I (∂τ )τ−1

I v

=
i

8π
〈ew(∂τ), ew(∂τ)〉

=
−1
4π

Im
(
e∗w〈, 〉E∗p

)
.

(15)

Note that 〈v, v〉 = 〈w,w〉, and the unit sphere in E∗p is naturally identified with
the unit sphere in Ep. As a result, averaging 〈Gv, v〉k/〈v, v〉k over all values of v is
equivalent to averaging (− Im(〈, 〉L)/4π)k over all lines in Ep. �

Remark. It is natural to wonder whether or not the Chern form ck(E, 〈, 〉) and the
Segre form sk(E∗, 〈, 〉) are actually equal. We checked that this holds for k = 1, 2,
and we suspect that it holds in general.

4. Linear algebra

As before, let S(V, V ∗) be the space of symmetric maps from the vector space V
to its dual. For each v ∈ V , let v⊥ ⊂ S(W,W ∗) be the set of maps that vanish on
v. Let Rk ⊂ S(W,W ∗) be the locus of maps whose image has dimension at most
k. (This is a closed subset, not a vector subspace.)

We prove Theorem 2.5 in stages, beginning with the following standard fact:

4.1. Lemma. Let M ∈ Rk \Rk−1. Rk is smooth at M with tangent space

(16) TMRk = {N ∈ S(V, V ∗)|N(ker(M)) ⊂ Im(M)}.

4.2. Corollary. Let Y ⊂ S(V, V ∗) be a 2-plane spanned by rank-1 maps. Then
Y ⊂ R2, but Y 6⊂ R1.

Proof. Let M,N ∈ R1 be a basis of Y , and let T ∈ Y . Then ker(M) ∩ ker(N) ⊂
ker(T ), so T ∈ R2. If Y ⊂ R1, however, then M ∈ TNRk, so M(kerN) ⊂ Im(N).
Using that they are each rank one, this implies that M and N are dependent, a
contradiction. �

4.3. Lemma. Let Y ⊂ S(V, V ∗) be a linear subspace of R2. Let M ∈ Y , v ∈ V be
such that M(v)(v) 6= 0. Then v⊥ ∩ Y ⊂ R1 and has dimension at most one.

Proof. Suppose N ∈ v⊥ ∩Y has rank 2. Since M ∈ TNR2, Lemma 4.1 implies that
M(v) = N(w) for some w ∈ V . But then M(v)(v) = N(v)(w) = 0, a contradiction.
Thus v⊥ ∩ Y ⊂ R1. Now apply Corollary 4.2 to v⊥ ∩ Y . �

It will be convenient to prove the cases i = 1, 2 of Theorem 2.5 separately

4.4. Proposition. If i < 3, then the hypotheses of Theorem 2.5 are never met.
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Proof. We consider an i-dimensional subspace Y on which, for all nonzero v, ev
fails to be injective. That is, every vector in V is in the kernel of some nonzero
element of Y , and we have

(17) V =
⋃

Q∈P(Y )

ker(Q).

If i = 1, this means that all of V is in the kernel of a nonzero matrix, clearly
impossible. If i = 2, this means that a g-dimensional vector space is the union of
a 1-dimensional family of proper subspaces. Thus almost every element of Y has a
(g− 1)-dimensional kernel, i.e., is of rank 1. But this contradicts Corollary 4.2. �
4.5. Proposition. Let i ≥ 3. If Theorem 2.5 holds for all spaces X of dimension
equal to i(i− 1)/2, then the hypotheses of the theorem cannot be satisfied by any X
of dimension greater than i(i− 1)/2.

Proof. Let X have dimension greater than i(i− 1)/2, satisfying the hypotheses of
Theorem 2.5, and let X ′ be a subspace of dimension i(i − 1)/2. The hypotheses
of the theorem then apply to X ′, so X ′ ⊂ W⊥ for some (g − i + 1)-dimensional
subspace W ⊂ V . Since their dimensions are equal, X ′ = W⊥, so we can find
i− 1 rank-1 elements x1, . . . xi−1 of X ′ whose ranges are linearly independent. Let
xi ∈ X −X ′, and let Y be the span of x1, . . . , xn. It is then straightforward to find
a vector v ∈ V for which ev is injective on Y , which is a contradiction. �

In light of Proposition 4.5, we will henceforth consider only spacesX of dimension
equal to i(i− 1)/2.

4.6. Proposition. Theorem 2.5 holds for i = 3.

Proof. Since i = i(i − 1)/2 = 3, the only i-dimensional subspace Y of X is X
itself. We first show that Y ⊂ R2. This follows from equation (17) by counting
dimensions. If Y 6⊂ R2, then there must exist a codimension-one locus Z ′ ⊂ P(Y )
of rank-1 quadrics, and correspondingly a codimension-one closed cone Z ⊂ Y ∩R1.
But then, by Corollary 4.2, Y ⊂ R2, which is a contradiction.

Having shown that Y ⊂ R2, we use Lemma 4.3 to construct rank-1 elements of
Y . Since Y is nonzero, we can find M0 ∈ Y and v0 ∈ V such that M0(v0)(v0) 6= 0.
Since ev0 in not injective, v⊥0 ∩ Y is nonempty and contains a rank-1 element M1.
Let v1 ∈ V be such that M1(v1)(v1) 6= 0. By Lemma 4.3, we can then find a rank-1
element M2 ∈ v⊥1 .

Clearly M1 and M2 are independent. Let Z be the 2-plane they span, and let
W = ker(M1) ∩ ker(M2). W ⊂ V is codimension two and Z ⊂ W⊥. Let H be
another element of Y , independent of M1 and M2, so that Y is the span of M1,
M2, and H .

By Proposition 4.4, there exists t ∈ V such that

(18) et : Z → V ∗

is injective. Injectivity is an open condition, so et is injective on Z for general t.
However, by assumption, et is never injective on Y . Thus for each t there exists
M3 ∈ Z such that M3(t) = H(t). However, that implies that, for every w ∈W ,

(19) H(w)(t) = H(t)(w) = M3(t)(w) = M3(w)(t) = 0.

Since this is true for general t, H(w) must be zero, so H ∈ W⊥. But then Y ⊂W⊥.
Finally, the dimension of W⊥ is exactly 3, so X = Y = W⊥. �
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For i > 3, we will prove Theorem 2.5 by induction on i. The key to the inductive
step is the following lemma:

4.7. Lemma. Suppose that Theorem 2.5 applies for all values of i ≤ k and that X
is a subspace of Sym(V, V ∗) satisfying the hypotheses of Theorem 1.1 with i = k+1.
Let M ∈ X, v ∈ V be such that M(v)(v) 6= 0. There is a (g − i + 2)-dimensional
subspace W ⊂ V , containing v, such that

(20) W⊥ = v⊥ ∩X ⊂ S(V, V ∗).

In particular v⊥ ∩X contains nonzero elements of rank one.

Proof. If W ⊂ V is a linear subspace and W⊥ ⊂ S(V, V ∗) is the subspace of maps
f with f |W = 0, then the natural map W⊥ → Hom(V/W, (V/W )∗) identifies W⊥

with S(V/W, (V/W )∗).
Let Xv := v⊥ ∩ X . By assumption, ev is not injective on every i-dimensional

subspace Y ⊂ X . This implies that the rank of ev : X → V ∗ is at most i − 1, so
the kernel of ev has codimension at most i− 1. Thus

dim(Xv) = dim(X)− codim(Xv, X) ≥ i(i− 1)
2

− (i− 1)

=
(i− 1)(i− 2)

2
.(21)

We claim thatXv ⊂ S(V/v, (V/v)∗) satisfies the evaluation condition of Theorem
2.5. If not, then for some w 6= 0, the range of ew on Xv has dimension i − 1 and
so equals the range of ew on all of Y . Note that ew = ew+v on Xv ⊂ v⊥, so (after
possibly replacing w by w+v) we can assumeM(w)(v) 6= 0. But nowM(w) = N(w)
for some N ∈ v⊥; thus M(w)(v) = N(w)(v) = N(v)(w) = 0, a contradiction.

We now apply Theorem 2.5 to Xv. Viewed as an element of S(V/v, (V/v)∗), Xv

is the orthogonal complement of a (g−i+1)-dimensional subspace W0 ⊂ V/v. This
is tantamount to equation (20), where W is the preimage of W0. �
Proof of Theorem 2.5. In light of Propositions 4.4, 4.5 and 4.6, we need only prove
Theorem 2.5 for i > 3 and for X of dimension exactly i(i − 1)/2. We do this by
induction on i, relying on the previously proven base case i = 3.

To establish the induction, we apply Lemma 4.7 to get a rank-1 element M ∈ X .
Choose v ∈ V with M(v)(v) 6= 0, and apply Lemma 4.7 again, so that

(22) W.⊥ = Xv ⊂ X
for some (g − i+ 2)-plane W. ⊂ V that contains v. Now let W = ker(M)∩W. We
claim that X = W⊥.

To see this, let Z ⊂ X be the span of W.⊥ and M , and let t be an element of
V that is neither in W. nor in the kernel of M . (This is an open condition.) Note
that M(t) is a nonzero multiple of M(v), so M(t)(v) 6= 0.

Since t 6∈W , et : W⊥ → V ∗ has rank exactly i− 2. Also M(t) 6∈ et(W.⊥), since
that would imply M(t)(v) = 0. Thus et(Z) ⊂ V ∗ has dimension i − 1 and so is
equal to et(X). Now let x be an arbitrary element of X . Since et(X) = et(Z), there
exists an element z ∈ Z ⊂W⊥ such that x(t) = z(t). But then, for any w ∈W ,

(23) x(w)(t) = x(t)(w) = z(t)(w) = z(w)(t) = 0.

Since t was chosen arbitrarily from an open set, x(w) must be zero. Since x and
w were arbitrary, X ⊂ W⊥. But X and W⊥ have the same dimension, so X =
W⊥. �



OORT’S CONJECTURE FOR Ag ⊗ C 895

5. The tangent space is constant

5.1. Theorem. Let X ⊂ Hg be a variety of dimension i(i−1)
2 , with i ≥ 3, such

that at every smooth point A ∈ X there is a (g− i+ 1)-plane W (A) ⊂ Cg such that

(24) TAX = W (A)⊥ ⊂ TAHg = Sg.

Then W (A) = W is constant and X ⊂ Hg is the affine subspace

(25) X = {M ∈ Hg|M |W = τ |W }
for some fixed τ ∈ Hg.

Proof. Once W (A) is constant, the tangent space is constant and equation (25) fol-
lows. Let I := {1, . . . , i−1}, K = {i, . . . , g}. Pick a smooth point A0. After chang-
ing basis, we can assume W (A0) is the span of {ek}, k ∈ K, where e1, . . . , eg ∈ Cg
are the standard basis elements. Then on an open set U around A the coordinates
Aab of the upper left (i−1)× (i−1) block are analytic coordinates for X , and there
exist holomorphic functions za,t, a ∈ I, t ∈ K, so that

(26) vt(A) := et +
∑
s∈I

zs,tes

form a basis of W (A). We will show that ∂abzs,t = 0 for all a, b, s ∈ I, t ∈ K (where
∂ab means differentiation with respect to the coordinate Aa,b). At A ∈ U a basis
for TAX ⊂ Sg is given by the matricies ∂abA. Note that the upper-left-hand entries
of ∂abA are particularly simple. If a, b, c, d ∈ I, then

(27) (∂abA)cd = 1 if (a = c and b = d) or (a = d and b = c), 0 otherwise.

By assumption (∂abA) · vt = 0. Looking at the first i entries of this product gives

∂abAc,t = 0 a, b, c ∈ I, t ∈ K, c 6∈ {a, b},
za,t + ∂abAb,t = 0 a, b ∈ I, t ∈ K.(28)

If i > 3, or if i = 3 and a = b, then there exists c ∈ I \ {a, b}. Thus for
s ∈ I, t ∈ K,

(29) ∂abzs,t = −∂ab(∂scAc,t) = −∂sc(∂abAc,t) = 0.

Finally, if i = 3 and a, b ∈ I, we have

∂abza,t = −∂ab(∂aaAa,t)
= −∂aa(∂baAa,t)

= ∂aazb,t = 0.(30)

�

6. Compactness

Here we argue that the image of X(W, τ) in Ag cannot be compact. The meaning
of X(W, τ) is clearer in an alternative realization of Hg:
Hg, with its Sp(2g,R) action is canonically identified with the set of complex

structures on R2g = Cg compatible with the standard symplectic form (, ), where
Sp(2g,R) acts on complex structures by conjugation. For M ∈ Hg the correspond-
ing complex structure on R2g is given by identifying R2g with Cg by sending a
column vector x ∈ Cg to

(31) fM (x) = (Re(x),−Re(Mx)).
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The above, and the next lemma, are all immediate from [Mumford83, 4.1].

6.1. Definition-Lemma. For M ∈ X(W, τ)

(32) V := fM (W ) = fτ (W )

is a nondegenerate subspace of R2g with a fixed complex structure compatible with
the restriction of (, ). Under the above realization of Hg, X(W, τ) is identified with
the set of complex structures on R2g, compatible with (, ), extending the complex
structure on V . This is naturally identified with compatible complex structures on
(V ⊥, (, )|V ⊥), and thus with Hr, where r is the complex codimension of W .

Let H (resp. Γ ⊂ H) be the subgroup of Sp(2g,R) (resp. Sp(2g,Z)) that pre-
serves X(W,T )—or equivalently by the above, the subgroups that preserve and act
complex linearly on V . Restriction to V, V ⊥ identifies H with U(s)×Sp(2g,R), and
under this identification, U(s) × {1} is the stabilizer of τ . Recall that a subgroup
of a semi-simple Lie group is called a lattice if it is discrete and the quotient has
finite volume. It is called cocompact iff the quotient is compact. The following is
clear:

6.2. Lemma. Assume the image, Z, of X(W, τ) in Ag is a closed analytic subva-
riety. Then

(33) Γ\(H/U(s)) = Γ\X(W, τ)

is the normalization of Z, and Γ ⊂ H is a lattice and it is cocompact iff Z is
compact.

As U(s) is compact, Γ ⊂ H is a lattice iff its image in H/U(s) = Sp(2r,R) is a
lattice. Furthermore, by the Borel Density Theorem ([Zimmer84, 3.2.5]), a lattice
in a semi-simple Lie group without compact factors is Zariski dense.

Thus it suffices to prove the following, which was done jointly with (and mostly
by) Scot Adams:

6.3. Theorem. Let W ⊂ R2g be a real subspace, of codimension 2r, together with
a complex structure compatible with (, )|W . Let H ⊂ Sp(2g,R) be the subgroup of
elements that preserves, and acts complex linearly on, W . Let Γ := H ∩ Sp(2g,Z).
The image of the restriction map

(34) Γ→ Sp(W⊥,R) = Sp(2r,R)

is Zariski dense iff W is spanned by integer vectors. In this case the image is a
noncocompact lattice.

Proof. Suppose first that W has a basis of integer vectors. Then the image of Γ
in H/U(s) = Sp(2r,R) is commensurable with (i.e., up to finite index subgroups
equal to) Sp(2r,Z) a noncocompact lattice.

Now suppose that W is not spanned by integer vectors and that the image of Γ
is dense. Let G ⊂ H ⊂ Sp(2g,R) be the Zariski closure of Γ. Restriction to W⊥

gives a surjection

(35) G(R)→ Sp(W⊥,R) = Sp(2r,R)

which together with restriction to W defines an embedding

(36) G(R) ⊂ U(s)× Sp(2r,R).
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For any complex subspace V ⊂ C2g, nondegenerate with respect to the complex
linear extension of (, ), let GV ⊂ Sp(2g,C) be the subgroup of matricies that act
trivially on V . Of course restriction to V ⊥ identifies this with Sp(V ⊥,C). We
indicate its (complex) Lie algebra by

(37) spV ⊥ ⊂ sp(2g,C).

We abuse notation and refer to W ⊗R C as W as well.
Note that if a Lie subalgebra h ⊂ sp(2g,C) is stable under Gal(C/L) for a

subfield L ⊂ C, then h is defined over L, i.e., is the extension of scalars of a Lie
subalgebra of sp(2g, L), which we denote h(L). The subalgebra h(L) ⊂ h is simply
the subset fixed by Gal(C/L).

SinceW is not spanned by rational vectors, there exists an element σ ∈ Gal(C/Q)
for which σ(W ) 6= W . Let V = σ(W ). Let g ⊂ sp(2g,C) be the complexified Lie
algebra of G.

By Levi’s theorem, [Serre65, 4.1], (35) has a section at the level of real Lie
algebras. Since there is no nontrivial homomorphism sp(2r,R)→ u(s), we conclude
from (36) that spW⊥ ⊂ g. Note that the image is an ideal, as it corresponds to the
kernel of the restriction

(38) G→ U(s) ⊂ Sp(W,R).

If V = V , let

(39) r = spV ⊥ + spW⊥ ⊂ sp(2g,C).

Since Gal(C/Q) preserves Γ, it preserves g, and thus

(40) spV ⊥ = σ(spW⊥) ⊂ g

is another ideal. Since spV ⊥ and spW⊥ are distinct simple ideals, their intersection
is trivial, so r is the direct sum

(41) r = spV ⊥ ⊕ spW⊥ ⊂ g

and is itself an ideal.
If V 6= V , let

(42) r = spV ⊥ + sp
V
⊥ + spW⊥ = spV ⊥ +spV ⊥ + spW⊥ ⊂ sp(2g,C).

By the same reasoning as before, each factor is a simple ideal, so r is the direct
sum of its factors and is an ideal.

In either case, we have an ideal r ⊂ g. Since r, g are preserved by complex
conjugation, we have an induced real ideal r(R) ⊂ g(R). By construction, r(R) is
isomorphic to

sp(2r,R)⊕ sp(2r,R) if V = V ,

sp(2r,C)⊕ sp(2r,R) if V 6= V .(43)

By (35) there is an induced surjection of real Lie algebras

(44) r(R)→ sp(2r,R)

whose kernel, by (36), is a subalgebra of u(s). As r(R) is semi-simple, the kernel is a
direct sum of simple factors of r(R). Since no factor has a nontrivial homomorphism
to u(s), we conclude r has only a single factor, which is a contradiction. �
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7. Remarks on characteristic p > 0

In positive characteristic the only known codim g complete subvariety of Ag is
the locus Z ⊂ Ag ⊗ Fp of Abelian varieties of p-rank zero, discovered by Oort.
Results of [Koblitz75] imply that the tangent space to Z is just as in Corollary 2.6
(with i = g):

7.1. Proposition (Koblitz). At points [A] in a Zariski dense subset of Z the
following hold: The p-linear Frobenius

(45) H : H1(A,OA)→ H1(A,OA)

has 1-dimensional cokernel. Let L[A] ⊂ H0(A,Ω1
A) = E[A] be the dual line. Z is

(orbifold) smooth at [A] and its tangent space is given by

(46) T[A]Z = L⊥[A] ⊂ S(E[A],E∗[A]) = T[A]Ag.

Proof. This follows from [Koblitz75]. Here we give a few details for the readers
convenience. The p-linear Frobenius gives a commutative diagram:

(47)

0 −−−−→ H0(A,Ω1
A) −−−−→ H1

DR(A) −−−−→ H1(A,OA) −−−−→ 0

0

y F

y H

y
0 −−−−→ H0(A,Ω1

A) −−−−→ H1
DR(A) −−−−→ H1(A,OA) −−−−→ 0

The snake lemma induces a canonical map B : ker(H) → H0(A,Ω1
A). This is

the (restriction to ker(H) of the) map given by the matrix B in [Koblitz75]. The
argument on pages 188-189 shows that the tangent space to Z is the perpendicular
to the (1-dimensional) image of B. So it remains to show that the image of B is
dual to the cokernel of H . This follows from the fact that the image of F is isotropic
for the canonical pairing on H1

DR. �

Given the parallel between Theorem 7.1 and our argument in characteristic zero,
it is natural to wonder:

7.2. Question. If Z ⊂ Ag ⊗ Fp is complete and of codimension g, is the tangent
space to Z as in Corollary 2.6? Is Oort’s example the only possibility?

8. M c
g

Proof of Corollary 1.2.1. By [Diaz87] a compact subvariety of M c
g or M c

g,1 has codi-
mension at least g, for any g, and a compact subvariety of Mg or Mg,1 has codimen-
sion at least 2g − 1. Now assume g ≥ 3 and let Z ⊂ M c

g be a compact subvariety
of codimension at most g. We have a regular map

M c
g → Ag

with zero-dimensional fibres outside of ∂M c
g (meaning the complement of Mg ⊂

M c
g). Suppose first that g = 3. By Corollary 1.2, Z ⊂ ∂M c

3 and so it projects to
a complete surface in M c

2 , violating Diaz’s bound. So we may assume g ≥ 4. We
proceed by induction.

By Diaz’s bounds Z must meet the boundary. Let Zi be the intersection of Z
with δi.
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If Zi is nonempty, we have by Diaz’s bounds

g ≥ codim(Z,M c
g ) ≥ codim(Zi, δi)

≥ codim(πi(Zi),M c
i,1) + codim(πg−i(Zi),M c

g−i,1)

where πk indicates the projection onto the factor M c
k,1. Furthermore, by induction,

we can replace the last term by g + 1 if either i or g − i is at least 3. Thus the
only possibility is that g = 4 and Z meets only δ2. But then its image in M c

2,1 is a
complete surface contained in M2,1, contradicting Diaz’s bounds. �
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