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COMPLEX BRJUNO FUNCTIONS

STEFANO MARMI, PIERRE MOUSSA, AND JEAN-CHRISTOPHE YOCCOZ

This paper is dedicated to Michael R. Herman

1. Introduction

1.1. The real Brjuno function. Let α ∈ R \ Q and let (pn/qn)n≥0 be the
sequence of the convergents of its continued fraction expansion. A Brjuno number
is an irrational number α such that

∑∞
n=0

log qn+1
qn

< +∞.
The importance of Brjuno numbers comes from the study of one–dimensional an-

alytic small divisors problems. In the case of germs of holomorphic diffeomorphisms
of one complex variable with an indifferent fixed point, extending a previous result
of Siegel [S], Brjuno proved ([Br1], [Br2]) that all germs with linear part λ = e2πiα

are linearizable if α is a Brjuno number. Conversely the third author proved that
this condition is also necessary [Yo1]. Similar results hold for the local conju-
gacy of analytic diffeomorphisms of the circle ([KH], [Yo2], [Yo3]) and for some
area–preserving maps ([Ma], [Da1]), including the standard family ([Da2], [BG1],
[BG2]). The set of Brjuno numbers is invariant under the action of the modular
group PGL (2,Z) and it can be characterized as the set where the Brjuno function
B : R \Q→ R ∪ {+∞} is finite.

This arithmetical function is Z–periodic and satisfies the remarkable functional
equation

B(α) = − logα+ αB

(
1
α

)
, α ∈ (0, 1) ,(1.1)

which allows B to be interpreted as a cocycle under the action of the modular group
(see Appendix 5 for details). In terms of the continued fraction expansion of α the
Brjuno function is defined as follows:

B(α) =
+∞∑
j=0

βj−1(α) logα−1
j ,(1.2)

where β−1 = 1 , βj(α) = |pj − qjα| (j ≥ 0) , αj = − qjα− pj
qj−1α− pj−1

(see Appendix 1

for a short summary of the relevant facts concerning the continued fraction).
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In a previous paper [MMY] we introduced the linear operator

Tf(x) = xf

(
1
x

)
, x ∈ (0, 1) ,

acting in the space of Z–periodic measurable functions and we studied the equation

(1− T )Bf = f ,

so that
Bf (x + 1) = Bf (x) ∀x ∈ R ,
Bf (x) = f(x) + xBf (1/x) ∀x ∈ (0, 1) .

The choice f(x) = − log{x} (where {·} denotes the fractional part) leads to the
Brjuno function B. For other choices of the singular behaviour of f at 0 the
condition Bf < +∞ leads to different diophantine conditions. On the other hand if
f is Hölder continuous, then Bf is also Hölder continuous and this fact could help
to explain the numerical results of Buric, Percival and Vivaldi [BPV].

Acting on Lp([0, 1]) the operator T has spectral radius bounded above by
√

5−1
2

(thus (1 − T ) is invertible). A suitable adaptation of this argument has led us to
conclude that the Brjuno function belongs to BMO (T1) (bounded mean oscillation;
see references [Ga], [GCRF] for its definition and more information).

By Fefferman’s duality theorem, BMO is the dual of the Hardy space H1; thus
one can add an L∞ function to B so that the harmonic conjugate of the sum will
also be L∞. This suggests we look for a holomorphic function B defined on the
upper half plane which is Z–periodic and whose trace on R has for imaginary part
the Brjuno function B. The function B will be called the complex Brjuno function.

Another motivation for the introduction of the complex Brjuno function comes
from results concerning the problem of the linearization of the quadratic polynomial
Pλ(z) = λ(z − z2) ([Yo1], Chapter II). One has the following results:

(1) there exists a bounded holomorphic function U : D → C such that |U(λ)| is
equal to the radius of convergence of the normalized linearization of Pλ;

(2) for all λ0 ∈ S1, |U(λ)| has a non–tangential limit in λ0 (which is still equal to
the radius of convergence of the normalized linearization of Pλ0);

(3) if λ = e2πiα, α ∈ R \Q, Pλ is linearizable if and only if α is a Brjuno number.
Moreover there exists a universal constant C1 > 0 and for all ε > 0 there
exists Cε > 0 such that for all Brjuno numbers α one has

(1− ε)B(α)− Cε ≤ − log |U(λ)| ≤ B(α) + C1 .

In [MMY] the authors proposed the following conjecture (see also [Ma]): the func-
tion defined on the set of Brjuno numbers by α 7→ B(α) + log |U(e2πiα)| extends
to a 1/2–Hölder continuous function as α varies in R. If this were true, then the
function −iB(z) + logU(e2πiz) would also extend to a Hölder continuous function
on H.

1.2. The complex Brjuno function. A natural question now is how to extend
the operator T to complex analytic functions. This is achieved as follows: the op-
erator T extends to the space A′([0, 1]) of hyperfunctions u with support contained
in [0, 1] (see Section 1.4 for a proof of this fact and Appendix 2 for a very brief
introduction to hyperfunctions). This space is canonically isomorphic to the com-
plex vector space O1(C \ [0, 1]) of holomorphic functions on C \ [0, 1] which vanish
at infinity. The connection between u and the associated holomorphic function ϕ
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is commonly written as: u(x) = 1
2i (ϕ(x + i0) − ϕ(x − i0)), which is also equal to

Im ϕ(x+ i0) when ϕ is real (i.e. ϕ(z) = ϕ(z)). On O1(C \ [0, 1]) the formula for T
reads

(Tϕ)(z) = −z
∞∑
m=1

[
ϕ

(
1
z
−m

)
− ϕ(−m)

]
+
∞∑
m=1

ϕ′(−m) .(1.3)

Formally we have

(1− T )−1ϕ(z) =
∑
r≥0

(T rϕ)(z) =
∑
g∈M

(Lgϕ)(z) ,(1.4)

where the monoid

M =
{
g =

(
a b
c d

)
∈ GL (2,Z) , d ≥ b ≥ a ≥ 0 , and d ≥ c ≥ a

}
∪
{(

1 0
0 1

)}
acts on O1(C \ [0, 1]) according to

(Lgϕ)(z) = (a− cz)
[
ϕ

(
dz − b
a− cz

)
− ϕ

(
−d
c

)]
− det(g)c−1ϕ′

(
−d
c

)
.(1.5)

The series (1.4) actually converges in O1(C\ [0, 1]) to a function
∑
M ϕ. To recover

a holomorphic periodic function on H one sums over integer translates:

Bϕ(z) =
∑
n∈Z

(∑
M

ϕ

)
(z − n) .(1.6)

To construct the complex Brjuno function one has to take ϕ0(z) = − 1
πLi2

(
1
z

)
,

where Li2 is the dilogarithm (Appendix 3, [O]). Then the above formulas give

B(z) = − 1
π

∑
p/q∈Q

{
(p′ − q′z)

[
Li2

(
p′ − q′z
qz − p

)
− Li2

(
−q
′

q

)]

+(p′′ − q′′z)
[
Li2

(
p′′ − q′′z
qz − p

)
− Li2

(
−q
′′

q

)]
+

1
q

log
q + q′′

q + q′

}
,

(1.7)

where
[
p′

q′ ,
p′′

q′′

]
is the Farey interval such that p

q = p′+p′′

q′+q′′ (with the convention
p′ = p− 1, q′ = 1, p′′ = 1, q′′ = 0 if q = 1).

1.3. Main results: Properties of the complex Brjuno function. Our main
result (Corollary 5.8) is that the real part of B is bounded on the upper half plane
(note that this statement is stronger than the result obtained by the above men-
tioned general properties of the harmonic conjugates of BMO functions); moreover
the trace of Re B on R is continuous at all irrational points and has a jump of π/q
at each rational point p/q ∈ Q (see Section 5.2.9).

A numerical study of the function argU(e2πiα) seems to indicate a similar be-
haviour (see Figure 1).

Concerning the boundary behaviour of the imaginary part of B we prove the
following (Theorem 5.19):

(i) if α is a Brjuno number, then Im B(α + w) converges to B(α) as w → 0 in
any domain with a finite order of tangency to the real axis;

(ii) if α is diophantine, one can allow domains with infinite order of tangency (see
(5.58)).
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Figure 1. The argument of the function U close to the unit circle:
plot of argU(0.999eix) for −π < x < π.

The precise behaviour of Im B at rational points is described by Theorem 5.10.

1.4. Hyperfunctions and operator T . Let u, ψ ∈ L2([0, 1]), m ∈ N, m ≥ 1.
We consider

Tmu(x) =

{
xu(1/x−m) if x ∈

[
1

m+1 ,
1
m

]
,

0 otherwise.
(1.8)

Note that Tmu = (Tu) |[ 1
m+1 ,

1
m ], thus T =

∑
m≥1 Tm. We define the adjoint T ∗m by∫ 1

0

Tmu(x)ψ(x)dx =
∫ 1

0

u(x)T ∗mψ(x)dx ,

which gives

T ∗mψ(x) =
1

(m+ x)3
ψ

(
1

m+ x

)
.

The previous formula with ψ analytic in a neighborhood of [0, 1] allows us to extend
the domain of definition of Tm to the hyperfunctions u ∈ A′([0, 1]) (see Appendix 5
for a very short summary of hyperfunctions) and to obtain Tmu ∈ A′

([
1

m+1 ,
1
m

])
.

More generally, if u ∈ A′([γ0, γ1]), γ0 > −1, then Tmu ∈ A′
([

1
m+γ1

, 1
m+γ0

])
⊂

A′
([

0, 1
1+γ0

])
. One has∫ 1

0

Tu(x)ψ(x)dx =
∑
m≥1

∫ 1

0

u(x)T ∗mψ(x)dx .(1.9)

If ψ is holomorphic in a neighborhood V of [0, 1], then also T ∗mψ is holomorphic in
V and one has

sup
V
|T ∗mψ| ≤

1
2
m−3 sup

V
|ψ|(1.10)

(this follows immediately from the estimates of Section 3.2 choosing V to be the
complement of a neighborhood of D∞ with respect to the Poincaré metric on C \
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[0, 1]). Therefore the series
∑
m≥1 Tmu converges in A′([0, 1]) to a hyperfunction

which will be denoted Tu.
Let u ∈ A′([γ0, γ1]), γ0 > −1, and let ϕ ∈ O1(C \ [γ0, γ1]) be the associated

holomorphic function, i.e. ϕ is holomorphic outside [γ0, γ1] and vanishes at infinity.
For all m ≥ 1 the holomorphic function associated to Tmu is Lg(m)ϕ given by
equation (1.5) with a = 0, b = c = 1, d = m. Indeed if z /∈ [γ0, γ1]

(Tmu)(cz) = u(T ∗mcz),(1.11)

where cz(x) = 1
π

1
x− z , and

πT ∗mcz(x) =
1

(m+ x)3

1
1

m+x − z
=

1
(m+ x)2

− z
(

1
m+ x− 1

z

− 1
m+ x

)

= π

[
∂

∂z
cz(x)

∣∣∣∣
z=−m

− z
(
c 1
z−m(x) − c−m(x)

)]
.

Thus we are led to define Tϕ, according to (1.3), as an element of the space
O1(C \ [0, 1/(1 + γ0)]).

To construct the complex analytic extension of the functions Bf (defined in
Section 1.1) our strategy is the following:

1) take the restriction of the periodic function f to the interval [0, 1];
2) consider its associated hyperfunction uf and its holomorphic representative

ϕ ∈ O1(C \ [0, 1]).
Then the series (1.6) converges (thanks to Corollary 3.6) to the complex extension

Bf of the function Bf . The main difficulty (unless f belongs to some Lp space; see
Section 4.3) would be to recover Bf as non–tangential limit of the imaginary part
of Bf as Im z → 0.

1.5. Summary of the contents. Let us now briefly describe the contents of this
article.

In Section 2 we discuss the relation between the monoidM and the full modular
group GL (2,Z). We then describe various automorphic actions of M.

In Section 3, the introduction of a complex analogue of the continued fraction
expansion of a real number allows us to prove the convergence of the series (1.4)
and (1.6) (Corollary 3.6). The main feature of the complex continued fraction is
that it reduces to the real continued fraction when the number is real and it stops
after a finite number of iterations when the number is rational or complex. In the
latter case the absolute value of the imaginary part of the iterates grows at least
exponentially with the number of iterations and when it reaches 1/2 the iteration
stops.

In Section 4 we use the complex continued fraction to study the behaviour of the
series (1.4) when z is close to [0, 1]. This is interesting in itself and it will be very
important when applied to the complex Brjuno function in order to prove our main
results. Our study allows us to prove that the restriction of T to the Hardy spaces
Hp(C \ [0, 1]) ∩ O1(C \ [0, 1]), 1 ≤ p ≤ +∞, is continuous with spectral radius
bounded above by

√
5−1
2 . The same result holds also on the space of functions

ϕ ∈ O1(C \ [0, 1]) with bounded real part.
The complex Brjuno function is finally introduced in Section 5 where we state

and prove our main results.
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In the Appendices we recall the results we need on the real continued fraction,
on the hyperfunctions and on the dilogarithm. Then we show how to relate the
complex Brjuno function with the even real Brjuno function treated in [MMY].
Finally we describe how the real Brjuno function can be viewed as a cocycle under
the action of the modular group.

2. Modular group, the monoid M and its action

According to (1.4) the inversion of (1 − T ) leads us to consider the monoid M
of matrices of GL(2,Z). In this section we study its algebraic properties and we
describe various actions of the modular group and of the monoidM on meromorphic
or holomorphic functions.

2.1. Algebraic properties, notation, structure of the monoidM; relations
of M with the modular group and with Farey intervals.

2.1.1. Notation.

G = GL(2,Z) = {
(
a b
c d

)
, a, b, c, d ∈ Z , εg := ad− bc = ±1};

H is the subgroup of order 8 of matrices of the form
(
ε 0
0 ε′

)
or
(

0 ε
ε′ 0

)
, where

ε, ε′ ∈ {−1,+1};
M is the monoid with unit

(
1 0
0 1

)
made of matrices g =

(
a b
c d

)
∈ G such

that, if g 6= id , we have d ≥ b ≥ a ≥ 0 and d ≥ c ≥ a.

Z is the subgroup of matrices of the form
(

1 n
0 1

)
, n ∈ Z.

2.1.2. Let g(m) =
(

0 1
1 m

)
, where m ≥ 1. Clearly g(m) ∈ M. Moreover,M is the

free monoid generated by the elements g(m), m ≥ 1: each element g of M can be
written as g = g(m1) · · · g(mr) , r ≥ 0 ,mi ≥ 1 , and this decomposition is unique
(see Proposition A1.2).

2.1.3. One has

G = Z · M ·H ,

i.e. the application Z ×M×H → G , (z,m, h) 7→ g = z ·m · h is a bijection.

2.1.4. The subset Z ·M of G is made of matrices g =
(
a b
c d

)
such that d ≥ c ≥ 0

with the following additional restrictions: a = 1 if c = 0, and b = a+1 if d = c = 1.
We will also often use the following remark, which is an immediate consequence

of the structure of M and of the relation

g(m)
(

1 1
0 1

)
= g(m+ 1) :

one has the partition

Z ·M = Z ·M ·
(

1 1
0 1

)
t Z ·M ·

(
0 1
1 1

)
.
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2.1.5. Let us consider the usual action of G on C = C ∪ {∞} by homographies:(
a b
c d

)
· z = az + b

cz + d
. The following facts are easy to check:

1. g · [0, 1] = [0, 1] if and only if g belongs to the subgroup of order 4 of matrices

of the form ±
(

1 0
0 1

)
, ±
(
−1 1
0 1

)
.

2. The monoid of the elements g such that g · [0, 1] ⊂ [0, 1] admits the partition

MtM
(
−1 0
0 −1

)
tM

(
−1 1
0 1

)
tM

(
1 −1
0 −1

)
.

Note that
(
−1 1
0 1

)
=
(

1 1
0 1

)(
−1 0
0 1

)
.

3. The application g 7→ g · 1 = a+ b
c+ d

is a bijection of ZM over Q which maps
M onto Q ∩ (0, 1].

4. The application g 7→ g · 0 = b/d maps ZM onto Q and each rational number
has exactly two inverse images. The two elements which map 0 on 1 are(

1 1
0 1

)
and

(
0 1
1 1

)
. This makes the partition of 2.1.4 less mysterious.

5. The application g 7→ g · [0,+∞] is a bijection of ZM on the set of Farey inter-
vals (the convention we adopt here implies that [n,+∞] is a Farey interval,
but [−∞, n] is not). For the definition and properties of the Farey partition
of [0, 1] we refer the reader to [HW].

6. The application g 7→ g · ∞ = a/c ∈ Q = Q ∪ {∞} of ZM on Q is surjective.
Moreover
• g · ∞ =∞ if and only if g ∈ Z;
• g · ∞ = n ∈ Z if and only if

g =
(
n 1 + kn
1 k

)
, k ≥ 1 , or g =

(
n −1 + kn
1 k

)
, k ≥ 2 ;

• g · ∞ = a/c, c > 1, if and only if

g =
(
a a′ + ka
c c′ + kc

)
, k ≥ 1 , or g =

(
a a′′ + ka
c c′′ + kc

)
, k ≥ 1 ,

where
[
a′

c′ ,
a′′

c′′

]
is the Farey interval which contains a/c.

2.2. Actions of M on some spaces of holomorphic functions.

2.2.1. Let U be an open subset of C. We will denote by O(U) the complex vector
space of holomorphic functions on U . Let I ⊂ R be a compact interval and let
k ∈ Z. If k ≥ 0 (k < 0 respectively), we will denote with Ok(C \ I) the complex
vector space of functions holomorphic in C \ I, meromorphic in C \ I, which have
a zero at infinity of order at least k (resp. a pole of order at most |k|).

Let g =
(
a b
c d

)
∈ G and assume that ϕ is meromorphic in U . We define

L(k)
g ϕ(z) = (a− cz)−kϕ

(
dz − b
a− cz

)
.(2.1)
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The function L
(k)
g ϕ is meromorphic in g · U . Note that

(L(k)
g ϕ)′ = kcL(k+1)

g ϕ+ εgL
(k+2)
g ϕ′,

(L(k)
g ϕ)′′ = k(k + 1)c2L(k+2)

g ϕ+ εg(2k + 2)cL(k+3)
g ϕ′ + L(k+4)

g ϕ′′;

thus, for k = −1

(L(−1)
g ϕ)′′ = L(3)

g ϕ′′ .(2.2)

Note also that if g ∈ Z, then L
(k)
g does not depend on k.

The formula (2.1) above clearly defines an action of G: if g, g′ ∈ G, k ∈ Z and ϕ
is meromorphic in U , then the functions L(k)

g (L(k)
g′ ϕ) and L

(k)
gg′ϕ (meromorphic on

gg′ · U) coincide.

2.2.2. Let J denote a compact interval of R and let ϕ ∈ O2(C \ J). The series∑
n∈Z

ϕ(z − n) =
∑
g∈Z

L(k)
g ϕ (for all k)(2.3)

converges uniformly on compact subsets of C \ R and also on the domains {z ∈
C , | Im z| ≥ δ > 0 , |Re z| ≤ A}. The sum will be denoted

∑
Z ϕ; it is a function

holomorphic in C \R, periodic of period 1 and vanishing at ±i∞. Thus taking the
quotient by Z it can be represented by means of the variable q = e±2πiz .

If ϕ ∈ O1(C \ J) with [0, 1] ⊂ J , then one can decompose in a unique way

ϕ(z) = a0 log
z

z − 1
+ ϕ0(z) ,(2.4)

where a0 ∈ C, ϕ0 ∈ O2(C \ J) and we consider the main branch of the logarithm
in C \ R−. We have

N∑
n=−N

log
z − n

z − n− 1
= log

z +N

z −N − 1

and this leads to the definition∑
Z

ϕ(z) :=
∑
Z

ϕ0(z) +
{
−a0πi if Im z > 0,
+a0πi if Im z < 0.(2.5)

Note that in order to insure the convergence of the series
∑

g∈Z L
(k)
g ϕ one must

regroup together the terms
(

1 n
0 1

)
and

(
1 −n
0 1

)
, n ≥ 1 (symmetric summation

or Eisenstein’s summation).

2.2.3. Let k ∈ Z and g ∈M. Since g · [0, 1] ⊂ [0, 1] if ϕ is meromorphic in C \ [0, 1],
then L

(k)
g ϕ will still be meromorphic in C \ [0, 1]. Moreover if ϕ ∈ Ok(C \ [0, 1]),

then also L
(k)
g ϕ ∈ Ok(C \ [0, 1]). Thus one has an action of the monoid M on

Ok(C \ [0, 1]).
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2.2.4. We will now define a new action Lg ofM on O1(C\ [0, 1]) which differs from
the action L(−1)

g on O−1(C \ [0, 1]) by an affine correction.
All functions ϕ ∈ O−1(C \ [0, 1]) can be uniquely written as

ϕ(z) = Az +B + p(ϕ)(z) , p(ϕ) ∈ O1(C \ [0, 1]) .(2.6)

Note that if g =
(
a b
c d

)
∈ G and ψ(z) = Az + b, then

L(−1)
g ψ(z) = A(dz − b) +B(a− cz)

is still an affine function. Thus the formula

Lgϕ := p(L(−1)
g ϕ) ,(2.7)

where g ∈ M, ϕ ∈ O1(C \ [0, 1]), defines an action of M on O1(C \ [0, 1]) which
makes the following diagram commute:

O−1(C \ [0, 1])
L(−1)
g−−−−−→ O−1(C \ [0, 1])

p

y
y p

O1(C \ [0, 1]) −−−−−→
Lg

O1(C \ [0, 1])

More explicitly, if g =
(
a b
c d

)
∈M, then

Lgϕ(z) = (a− cz)
[
ϕ

(
dz − b
a− cz

)
− ϕ

(
−d
c

)]
− εgc−1ϕ′

(
−d
c

)
.(2.8)

Since this definition differs from that of L(−1)
g only by an affine correction one

clearly has

(Lgϕ)′′ = L(3)
g ϕ′′ ,(2.9)

where ϕ′′ ∈ O3(C \ [0, 1]). Equivalently one can say that Lgϕ is obtained by taking
the double primitive of L(3)

g ϕ′′ which vanishes at infinity.
Two other formulas will be used throughout what follows: if ϕ ∈ O1(C \ [0, 1]),

g =
(
a b
c d

)
∈ M and z /∈

[
b
d ,

a
c

]
= g · [0,+∞], one has

Lgϕ(z) = εgc
−1

[∫ 1

0

ϕ′
(
−d
c

+ εg
t

c(a− cz)

)
dt− ϕ′

(
−d
c

)]
= c−2(a− cz)−1

∫ 1

0

ϕ′′
(
−d
c

+ εg
t

c(a− cz)

)
(1− t)dt .

(2.10)

Note that the assumption about z means that the segment whose extremities are
−d/c and (dz − b)/(a− cz) does not intersect the interval [0,1]. The two formulas
are thus nothing else than Taylor’s formulas of first and second order with integral
remainder.

2.2.5. If ϕ ∈ O(C \ I), we denote σ · ϕ(z) = ϕ(z̄) . σ is an involution of O(C \ I)
which preserves all the subspaces Ok(C \ I), commutes with p and with the actions
of M on Ok. If σ · ϕ = ϕ, then ϕ(x) ∈ R for all x ∈ R \ I, and we say that ϕ is
real holomorphic.
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3. Complex continued fractions

Exactly as in the real case treated in [MMY], where the use of the continued
fraction expansion was important for the study of the real Brjuno function, the
introduction of a complex analogue of Gauss’ algorithm of continued fraction ex-
pansion of a real number will be essential for the study of the boundary behaviour
of
∑
M(Lgϕ)(z) and the construction of the complex Brjuno function. In this

section we first define our complex version of the continued fraction (Section 3.1)
then we use it to estimate the spectral radius of T (Section 3.2) and to prove the
convergence of the series (1.4) and (1.6) (Corollary 3.6).

3.1. Definition of the complex continued fractions.

3.1.1. We consider the following domains:

D0 =

{
z ∈ C , |z + 1| ≤ 1 , Re z ≥

√
3

2
− 1

}
,

D1 =
{
z ∈ C , |z| ≥ 1 ,

∣∣∣∣z − 1√
3

∣∣∣∣ ≤ 1√
3

}
,

D = {z ∈ C , |z| ≤ 1 , |z − i| ≥ 1 , |z + i| ≥ 1 , Re z > 0} ,
H0 = {z ∈ C , |z − i| ≤ 1 , |z + 1| ≥ 1 , Im z ≤ 1/2} ,
H ′0 = {z ∈ C , z ∈ H0},
∆ = H0 ∪H ′0 ∪D = {z ∈ C , |z| ≤ 1 , |z + 1| ≥ 1 , | Im z| ≤ 1/2} ,

D∞ = C \ (D0 ∪∆ ∪D1)

= {| Im z| > 1/2} ∪ {Re z <
√

3
2
− 1} ∪ {Re z >

√
3

2
, |z − 1/

√
3| > 1/

√
3} .

Figures 2 and 3 show these domains and their image under the inversion S(z) = 1/z.
A fundamental property is the following:
• if z /∈ D ∪D1 (in particular if z ∈ D∞), then 1/z −m ∈ D∞ for all m ≥ 1;
• if z ∈ D1, then 1/z − 1 ∈ D0 and 1/z −m ∈ D∞ for all m ≥ 2.
Observe that SD =

⋃
m≥1(∆ + m) , where the domains have disjoint interior.

Thus, for z ∈ D, we define

A(z) =
1
z
−m = (g(m))−1 · z(3.1)

(we recall that g(m) =
(

0 1
1 m

)
, m ≥ 1), where m ≥ 1 is the unique integer such

that A(z) ∈ ∆ , |A(z)| < 1 . Iterating from z0 ∈ D, we define

zi+1 = A(zi) = Ai+1(z0)(3.2)

as long as zi = Ai(z) ∈ D. The iteration process stops when one of the two following
conditions is verified:
• zl = 0 for some l ≥ 0; this happens if and only if z0 ∈ Q,
• zl /∈ (D ∪ {0}) for some l ≥ 0; this happens if and only if z0 /∈ R.
For all 0 ≤ i < l, we will denote the integer mi+1 such that

zi+1 =
1
zi
−mi+1 , mi+1 ≥ 1 .(3.3)
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Figure 2. The various domains Di used for the definition of the
complex continued fraction.

Figure 3. Result of the action of S : z 7→ 1/z on the domains of
Figure 2.
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3.1.2. Let
(
pi−1 pi
qi−1 qi

)
=
(

0 1
1 m1

)
. . .

(
0 1
1 mi

)
∈ M , 0 ≤ i ≤ l . Then one has

the same recurrence relations as for the real continued fraction

pi+1 = mi+1pi + pi−1 ,

qi+1 = mi+1qi + qi−1 ,
(3.4)

with initial data p−1 = q0 = 1 and p0 = q−1 = 0. Moreover

z0 =
pi−1zi + pi
qi−1zi + qi

, zi =
pi − qiz0

qi−1z0 − pi−1
,(3.5)

and if one poses

βi(z0) =
i∏

j=0

zj = (−1)i(qiz0 − pi) ,(3.6)

then

βi(z0) =
zi

qi + qi−1zi
=

1
qi+1 + qizi+1

.(3.7)

Finally one has

(−1)i Im z0 = |βi−1(z0)|2 Im zi = |qi + qi−1zi|−2
Im zi ,

dzi
dz0

= (−1)i(βi−1(z0))−2 = (−1)i(qi + qi−1zi)2 .

Observe that, as |zi+1 + 1| ≥ 1 and Re zi+1 ≥
√

3
2 − 1 for i < l, we have from (3.7)

|βi(z0)| ≤ q−1
i+1[cosπ/12]−1 =

2
√

2
1 +
√

3
q−1
i+1(3.8a)

and, as qi ≤ qi+1, |zi+1| ≤ 1,

|βi(z0)| ≥ 1
2
q−1
i+1 .(3.8b)

3.2. The operator T , its spectral radius and the sum over the monoid.

3.2.1. Let γ1 > γ0 > −1, I = [γ0, γ1], ϕ ∈ O1(C \ I).
For all m ≥ 1 one has (compare with (2.10))

Lg(m)ϕ(z) = −z
(
ϕ

(
1
z
−m

)
− ϕ(−m)

)
+ ϕ′(−m)

= −z−1

∫ 1

0

ϕ′′
(
−m+

t

z

)
(1− t)dt ,

(3.9)

provided that z /∈ [0, 1/(γ0 + m)], and one has an even simpler formula for the
action at the level of second derivatives

L
(3)
g(m)ψ(z) = −z−3ψ

(
1
z
−m

)
.(3.10)
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3.2.2. Let ε > 0,

Uε = {z ∈ C ,Re z ≤ γ0 − ε or Re z ≥ γ1 + ε or | Im z| ≥ ε} .(3.11)

We have the following

Proposition 3.1. Let γ0, γ1 be as above, I = [γ0, γ1], J = [0, 1/(1 + γ0)].
1) For all ϕ ∈ O1(C \ I), the series

∑
m≥1 Lg(m)ϕ converges uniformly on com-

pact subsets K of C \ J to a function Tϕ ∈ O1(C \ J) and there exist ε > 0
and CK > 0 such that supK |Tϕ| ≤ CK supUε |ϕ| .

2) For all ψ ∈ O3(C\I) the series
∑
m≥1 L

(3)
g(m)ψ converges uniformly on compact

subsets K of C \ J to a function T (3)ψ ∈ O1(C \ J) and there exist ε > 0 and
CK > 0 such that supK |T (3)ψ| ≤ CK supUε |ψ| .

3) For all ϕ ∈ O1(C \ I) one has T (3)ϕ′′ = (Tϕ)′′ .

Proof. Let ε > 0. There exists cε > 0 such that for ψ ∈ O3(C \ I), z ∈ Uε one has

|ψ(z)| ≤ cε|z|−3 sup
Uε

|ψ| .

If K is a compact subset of C \ J , there exists ε = εK such that 1/z − m ∈ Uε
for all m ≥ 1 and z ∈ K. Moreover there exist cK > 0 and M = M(γ0), such
that |1/z −m|−1 ≤ cKm

−1 for all z ∈ K, m ≥ M . Consequently, for z ∈ K and
ψ ∈ O3(C \ I) we have∑

m≥1

∣∣∣∣ψ(1
z
−m

)∣∣∣∣ ≤ c′K sup
Uε

|ψ| , with c′K = M + cεc
3
K

∑
m≥M

m−3 ,

which proves the second part of the proposition.
By integrating twice from ∞ one deduces that for ϕ ∈ O1(C \ I) the series∑
m≥1 Lg(m)ϕ converges uniformly on compact subsets of C \ J to a function Tϕ ∈

O1(C \ J). Moreover for any compact K ⊂ C \ J there exist cε > 0 and cK > 0
such that for z ∈ K, |(Tϕ)′′(z)| = |(T (3)ϕ′′)(z)| ≤ cK |z|−3 supUε |ϕ′′| . On the
other hand there exists c′′ε > 0 such that supUε |ϕ′′| ≤ c′′ε supUε/2

|ϕ| (by Cauchy’s
formula), hence we get for z ∈ K, |Tϕ(z)| ≤ c̃K |z|−1 supUε/2

|ϕ| . The third part of
the proposition is immediate.

3.2.3. The open set C \ [0, 1] is a hyperbolic Riemann surface which is naturally
equipped with a Poincaré metric. The following well-known fact will be crucial
for the proof of Lemma 3.2: given two hyperbolic Riemann surfaces M,N and an
analytic map f : M → N , either its differential df contracts the hyperbolic metric
or f is a surjective local isometry. In what follows we will denote by dhyper the
Poincaré metric on the Riemann surface under consideration.

Given ρ > 0 we denote by

Vρ(D∞) = {z ∈ C \ [0, 1] , dhyper(z,D∞) < ρ}(3.12)

the ρ–neighborhood of D∞ in C \ [0, 1].

Lemma 3.2. Let ρ ≥ 0. For all m ≥ 1 and z ∈ Vρ(D∞) one has 1
z −m ∈ Vρ(D∞).

Proof. The Möbius transformation z 7→ 1
z −m maps D∞ into itself and C \ [0, 1]

onto C\[1−m,+∞] which is contained in C\[0, 1]. Thus it decreases the hyperbolic
distance and the ρ–neighborhood of the image of D∞ w.r.t. the Poincaré metric
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of C \ [1 −m,+∞] is contained in the ρ–neighborhood of D∞ w.r.t. the Poincaré
metric of C \ [0, 1].

3.2.4. Once the existence of the operator T on holomorphic functions is established
(Proposition 3.1) one can ask for more information on Hardy spaces. The results we
will prove are completely analogous to those obtained for the real Brjuno operator
in [MMY].

Proposition 3.3. Let ρ ≥ 0. There exists c′ρ > 0 such that for all r ≥ 0 and
ψ ∈ O3(C \ [0, 1]) one has

sup
Vρ(D∞)

|((T (3))rψ)(z)| ≤ c′ρ

(√
5− 1
2

)r
sup

Vρ(D∞)

|ψ(z)| .

Proof. First of all note that if z ∈ D∞ and g ∈M, then g−1 · z ∈ D∞; thus, taking
into account Lemma 3.2, if z ∈ Vρ(D∞), then g−1z ∈ Vρ(D∞).

Given an integer r ≥ 0 we denote by M(r) the set of elements g of M of the
form g(m1) . . . g(mr), mi ≥ 1 for all 1 ≤ i ≤ r. Then one has

(T (3))rψ =
∑

g∈M(r)

L(3)
g ψ =

∑
g′∈M(r−1)

L
(3)
g′ (T (3)ψ) .

Let g′ =
(
a′ b′

c′ d′

)
∈ M(r−1) and z ∈ Vρ(D∞); let z′ = d′z−b′

a′−c′z . For all m ≥ 1 one

has (
a′ b′

c′ d′

)(
0 1
1 m

)
=
(

b′ d′

a′ + mb′ c′ +md′

)
,

from which it follows that

L
(3)
g′ (T (3)ψ)(z) = (b′ − d′z)−3

∑
m≥1

ψ

(
1
z′
−m

)
.

Since z′ ∈ Vρ(D∞), as we have seen during the proof of Proposition 3.1 one has∣∣∣∣∣∣
∑
m≥1

ψ

(
1
z′
−m

)∣∣∣∣∣∣ ≤ cρ sup
Vρ(D∞)

|ψ| .

On the other hand one has |z − b′/d′|−1 ≤ cρ for all z ∈ Vρ(D∞) and b′/d′ ∈ [0, 1].
Thus we get |L(3)

g′ (T (3)ψ)(z)| ≤ c̃ρ(d′)−3 . But now it is enough to recall that (see

Appendix A1) minM(r−1) d′ ≥ C
(√

5+1
2

)r−1

and
∑
M(r−1) d′

−2 ≤ C to obtain the
desired estimate.

Remark 3.4. In a completely analogous way we may prove that for ρ ≥ 0 and all
ϕ ∈ O1(C \ [0, 1]),

sup
Vρ(D∞)

|T rϕ(z)| ≤ c′ρ

(√
5− 1
2

)r
sup

Vρ(D∞)

|ϕ(z)| .

Remark 3.5. We may also consider the Hardy space Hp(D∞), 1 ≤ p < +∞, of
analytic functions ϕ : D∞ → C such that the subharmonic function |ϕ|p has
a harmonic majorant. It is an immediate consequence of the Riemann mapping
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theorem that this space is isomorphic to Hp(D). Indeed if h maps D∞ conformally
onto D one can use the norm

‖ϕ‖Hp(D∞) = ‖ϕ ◦ h−1‖Hp(D) =
(∫

∂D∞

|ϕ(z)|p|h′(z)||dz|
)1/p

.

Note that since ∂D∞ is a rectifiable Jordan curve, h extends to a homeomorphism
of ∂D∞ onto S1 which is conformal almost everywhere. It is immediate to check
that the proof of Proposition 3.3 can be easily adapted so as to show that T is a
bounded linear operator on Hp(D∞) with spectral radius ≤

√
5−1
2 .

3.2.5. We now have the following important corollary, which establishes the con-
vergence of the series (1.4).

Corollary 3.6. 1) Let ψ ∈ O3(C \ [0, 1]). The family (L(3)
g ψ)g∈M is summable,

uniformly on compact subsets of C \ [0, 1]. Its sum is equal to
∑
r≥0(T (3))rψ, will

be denoted
∑(3)
M ψ and for all compact subsets K of C\ [0, 1] there exists ε > 0 such

that

sup
K
|
∑(3)

M
ψ| ≤ CK sup

Uε

|ψ| .

The family (L(3)
g ψ)g∈Z·M is summable, uniformly on all domains of the form

{|Re z| < A , | Im z| ≥ δ} (where A and δ are positive). Its sum is equal to∑
Z
∑(3)
M ψ and will be denoted

∑(3)
Z·M ψ. It is holomorphic in C \ R, periodic of

period 1 and bounded in a neighborhood of ±i∞.
2) Let ϕ ∈ O1(C \ [0, 1]). The family (Lgϕ)g∈M is summable, uniformly on

compact subsets of C \ [0, 1]. Its sum is equal to
∑
r≥0 T

rϕ and will be denoted∑
M ϕ. The function

∑
Z(
∑
M ϕ) will be denoted

∑
Z·M ϕ. It is holomorphic in

C \ R, periodic of period 1 and vanishes at ±i∞. One has

(
∑
M

ϕ)′′ =
∑(3)

M
ϕ′′ , (

∑
Z·M

ϕ)′′ =
∑(3)

Z·M
ϕ′′ .

3)
∑
M (resp.

∑(3)
M ) and (1−T ) (resp. (1−T (3))) acting on O1(C\[0, 1]) (resp.

O3(C \ [0, 1])) are the inverses of one another:

(1− T )
∑
M

=
∑
M

(1− T ) = id,

(1− T (3))
∑(3)

M
=
∑(3)

M
(1 − T (3)) = id.

Proof. 1) The only non–trivial assertions are the summability of the families
(L(3)

g ψ)g∈M and (L(3)
g ψ)g∈ZM. Writing g = g′g(m) (m ≥ 1, g′ ∈ M) for g ∈ M,

g 6= id, we have

L(3)
g ψ(z) = (b′ − d′z)−3ψ

(
1
z′
−m

)
,

with

g′ =
(
a′ b′

c′ d′

)
, z′ =

d′z − b′
a′ − c′z .

Now for z ∈ Vρ(D∞),
∣∣∣L(3)
g ψ(z)

∣∣∣ = cρ
(
md′dist

(
z, [0, 1]

))−3 supVρ(D∞) |ψ| , and the
summability assertions follow (see the proof of Proposition 3.3).
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2) Again, the only non–trivial assertion is the summability one, which is obtained
from the first part by integrating twice.

3) The third part of the corollary is immediate.

4. Boundary behaviour of

∑
M ϕ

In this section we will study the behaviour of
∑
M ϕ(z) when z is close to [0, 1].

Our main tool for this study will be the complex continued fraction introduced in
the previous section. In this section and in the next one we will for shortness often
denote by c or C various positive universal constants.

4.1. Decomposition into principal and residual terms.

4.1.1. We begin our study of the boundary behaviour of
∑
M ϕ(z) by considering

the case when z is close to 0.

Proposition 4.1. 1) Let I = [γ0, γ1], γ0 > −1. There exists c = cI > 0 such that
for all ϕ ∈ O1(C \ I) and for all z ∈ D0 ∪H0 ∪H ′0 one has

|Tϕ(z)−
∑
m≥1

ϕ′(−m)| ≤ cI |z| log(1 + |z|−1) sup
U
|ϕ| ,(4.1)

where U = {z ∈ C , | Im z| ≥ 1/2 or Re z ≤ γ0 − 1 or Re z ≥ γ1 + 1}.
2) There exists c > 0 such that for all ϕ ∈ O1(C \ [0, 1]) and for all z ∈ D0 ∪

H0 ∪H ′0 one has

|
∑
M

ϕ(z)− ϕ(z)−
∑
m≥1

(
∑
M

ϕ)′(−m)| ≤ c|z|(1 + log |z|−1) sup
D∞

|ϕ| .(4.2)

Proof. We will only prove (4.2), since the proof of (4.1) is essentially the same.
Let ϕ̃ =

∑
M ϕ. One has

ϕ̃ = ϕ+ T ϕ̃ = ϕ+
∑
m≥1

Lg(m)ϕ̃ .

Let z ∈ D0 t H0 t H ′0. We will consider the cases m ≥ 3|z|−1 and m < 3|z|−1

separately.
If m ≥ 3|z|−1 the segment [−m,−m + 1

z ] is contained in the closed half plane
{Re w ≤ −2/3} and one has

Lg(m)ϕ̃(z) = −1
z

∫ 1

0

(1− t)ϕ̃′′(−m+
t

z
)dt .

Applying Cauchy’s estimate, it follows that |Lg(m)ϕ̃(z)| ≤ c|z|−1m−3 supD∞ |ϕ̃| .
Since by Remark 3.4 supD∞ |ϕ̃| ≤ c supD∞ |ϕ| one gets∣∣∣∣∣∣

∑
m≥3|z|−1

Lg(m)ϕ̃(z)

∣∣∣∣∣∣ ≤ c|z| sup
D∞

|ϕ| .

In the case m < 3|z|−1 we separate the three terms constituting Lg(m)ϕ̃(z) and we
obtain

|ϕ̃′(−m)| ≤ cm−2 sup
D∞

|ϕ̃| , |zϕ̃(−m)| ≤ cm−1|z| sup
D∞

|ϕ̃| ,∣∣∣∣zϕ̃(−m+
1
z

)∣∣∣∣ ≤ c| −m+
1
z
|−1 sup

D∞

|ϕ̃| ,
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thus ∣∣∣∣∣∣
∑

m<3|z|−1

Lg(m)ϕ̃(z)−
∑
m≥1

ϕ̃′(−m)

∣∣∣∣∣∣ ≤ c|z|(1 + log |z|−1) sup
D∞

|ϕ| ,

and the assertion is proved.

4.1.2. Next we consider the behaviour near z = 1:

Proposition 4.2. There exists c > 0 such that for all ϕ ∈ O1(C\[0, 1]) and z ∈ D1

one has ∣∣∣∣∣∣Tϕ(z) + zϕ

(
1
z
− 1
)
−
∑
m≥1

ϕ′(−m)

∣∣∣∣∣∣ ≤ c|z − 1| sup
D∞

|ϕ| ,(4.3)

∣∣∣∣∣∑
M

ϕ(z)− ϕ(z) + zϕ

(
1
z
− 1
)∣∣∣∣∣ ≤ c|z − 1|(1 + log |z − 1|−1) sup

D∞

|ϕ| .(4.4)

Proof. For z ∈ D1 we have 1
z − 1 ∈ D0. Moreover, there exists c > 0 such that for

m ≥ 2 and w on the segment with endpoints 1−m and 1/z −m we have

|ϕ′(−w)| ≤ cm−2 sup
D∞

|ϕ| .(4.5)

Since

Tϕ(z) + zϕ

(
1
z
− 1
)
−
∑
m≥1

ϕ′(−m) = z
∑
m≥2

[
ϕ(1 −m)− ϕ

(
1
z
−m

)]
,

from (4.5) one easily deduces (4.3).
Let ϕ̃ =

∑
M ϕ. We have ϕ̃(z) = ϕ(z) + T ϕ̃(z) , and

ϕ̃(z) = ϕ(z)− zϕ
(

1
z
− 1
)

+ T ϕ̃(z) + zϕ̃

(
1
z
− 1
)
−
∑
m≥1

ϕ̃′(−m)

+ z

ϕ(1
z
− 1
)
− ϕ̃

(
1
z
− 1
)

+
∑
m≥1

ϕ̃′(−m)

+ (1− z)
∑
m≥1

ϕ̃′(−m) .

By (4.3) one has∣∣∣∣∣∣T ϕ̃(z) + zϕ̃

(
1
z
− 1
)
−
∑
m≥1

ϕ̃′(−m)

∣∣∣∣∣∣ ≤ c|z − 1| sup
D∞

|ϕ̃| .

We also have supD∞ |ϕ̃| ≤ c supD∞ |ϕ| and by (4.2)∣∣∣∣∣∣ϕ(
1
z
− 1)− ϕ̃(

1
z
− 1) +

∑
m≥1

ϕ̃′(−m)

∣∣∣∣∣∣ ≤ c|z − 1|(1 + log |z − 1|−1) sup
D∞

|ϕ| .

As
∣∣∣∑m≥1 ϕ̃

′(−m)
∣∣∣ ≤ c supD∞ |ϕ̃| ≤ c supD∞ |ϕ| , we get the second inequality.

Remark 4.3. It is easy to check that the estimates in Proposition 4.2 are valid if z
is such that z − 1 ∈ ∆.
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4.2. Boundary behaviour and continued fraction. Let k ≥ 1 and let m1, . . . ,
mk be integers ≥ 1. We denote by D(m1, . . . ,mk) the set of z0 ∈ D for which the
complex continued fraction is

z−1
i = mi+1 + zi+1 , 0 ≤ i < k ,

with zi ∈ D for 0 ≤ i < k and zk ∈ ∆. In the following we set for 0 < i ≤ k

εi =
{

0 if mi = 1 ,
1 if mi > 1 .

Proposition 4.4. For ϕ ∈ O1(C \ [0, 1]) we have in D(m1, . . . ,mk)

T kϕ(z0) = (pk−1 − qk−1z0)[ϕ(zk) + ϕ(zk − 1) + εkϕ(zk + 1)]

− (pk−2 − qk−2z0)(1 + zk−1)εk−1ϕ

(
− zk−1

1 + zk−1

)
+R[k](ϕ)(z0) .

(4.6)

The remainder term R[k](ϕ) is holomorphic in int D(m1, . . . ,mk), continuous in
D(m1, . . . ,mk) and satisfies there

|R[k](ϕ)(z0)| ≤ ck
(√

5 + 1
2

)−k
sup
D∞

|ϕ| .(4.7)

Proof. One has

Tϕ(z0) = −z0[ϕ(z1) + ϕ(z1 − 1) + ε1ϕ(z1 + 1)] +R(m1)(ϕ)(z0) ,(4.8)

with

R(m1)(ϕ)(z0) =
∑
m≥1

ϕ′(−m)− z0

∑
m≥1 , |m−m1|>1

[ϕ(z1 +m1 −m)− ϕ(−m)]

+ z0

∑
m≥1 , |m−m1|≤1

ϕ(−m) .

For z0 ∈ D(m1), one easily checks that |R(m1)(ϕ)(z0)| ≤ c supD∞ |ϕ| and that
R(m1)(ϕ) is holomorphic in the neighborhood of D(m1).

Iterating (4.8) k times we have

T kϕ(z0) =
k−1∏
i=0

(−zi)[ϕ(zk) + ϕ(zk − 1) + εkϕ(zk + 1)]

+
k−1∑
j=1

[
j−1∏
i=0

(−zi)](T k−jϕ(zj − 1) + εjT
k−jϕ(zj + 1))

+
k∑
j=1

[
j−2∏
i=0

(−zi)]R(mj)(T k−jϕ)(zj−1) .

(4.9)

We have here
∏l−1

0 (−zi) = pl−1− ql−1z0 and |pl−1− ql−1z0| ≤ cq−1
l . The function

R
[k]
0 (z0) =

k∑
j=1

[
j−2∏
i=0

(−zi)]R(mj)(T k−jϕ)(zj−1)(4.10)
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is holomorphic in a neighborhood of D(m1, . . . ,mk) and satisfies there

|R[k]
0 (z0)| ≤ c

k∑
j=1

q−1
j−1 sup

D∞

|T k−jϕ| ≤ ck
(√

5 + 1
2

)−k
sup
D∞

|ϕ| .

The function

R
[k]
1 (z0) =

k−1∑
j=1

(pj−1 − qj−1z0)T k−jϕ(zj − 1)(4.11)

is holomorphic in the interior of D(m1, . . . ,mk) (and even in a neighborhood of
D(m1, . . . ,mk) if mk > 1). Applying Proposition 4.1 (k− j) times to each term of
the sum we see that it is continuous in D(m1, . . . ,mk) and satisfies there

|R[k]
1 (z0)| ≤ c

k−1∑
j=1

q−1
j sup

D∞

|T k−j−1ϕ| ≤ ck
(√

5 + 1
2

)−k
sup
D∞

|ϕ| .

The function

R
[k]
2 (z0) =

k−2∑
j=1

(pj−1 − qj−1z0)εjT k−jϕ(zj + 1)(4.12)

is holomorphic in a neighborhood of D(m1, . . . ,mk) and satisfies, according to
Propositions 4.1 and 4.2,

|R[k]
2 (z0)| ≤ c

k−2∑
j=1

q−1
j sup

D∞

|T k−j−2ϕ| ≤ ck
(√

5 + 1
2

)−k
sup
D∞

|ϕ| .

Finally, we apply Proposition 4.2 to (pk−2− qk−2z0)εk−1Tϕ(zk−1 + 1) and by sum-
ming up the different contributions to (4.9) we get the desired result.

4.3. Hp–estimates.

4.3.1. Let 1 < p < +∞. We consider the space Hp(H±) of functions F ∈
O1(C \ [0, 1]) whose restrictions to both H+ and H− belong to the Hardy space
Hp of these half–spaces, endowed with the norm

‖F‖Hp(H±) = ‖F |H+ ‖Hp + ‖F |H− ‖Hp .(4.13)

See references [Du], [St] for details. Then, it is a classical result [Ga] that F ∈
Hp(H±) if and only if the associated hyperfunction u belongs to Lp([0, 1]) and that
the correspondence is an isomorphism of Banach spaces.

But we know [MMY] that T acting on Lp([0, 1]) has spectral radius ≤
√

5−1
2 .

Consequently the same is true for T acting on Hp(H±).

4.3.2. For the case p =∞ and on the larger domain C \ [0, 1] we have the following

Proposition 4.5. The restriction of T to H∞(C\[0, 1])∩O1(C\[0, 1]) is a bounded
operator on this space with spectral radius ≤

√
5−1
2 .
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Proof. Let k ≥ 1, ϕ ∈ H∞(C\ [0, 1])∩O1(C\ [0, 1]) and z0 ∈ C\ [0, 1]. We estimate
|T kϕ(z0)| in various cases.

(i) If z0 ∈ D∞ we have

|T kϕ(z0)| ≤ c
(√

5 + 1
2

)−k
sup
D∞

|ϕ| ,

according to Remark 3.4.
(ii) If z0 ∈ D0 ∪H0 ∪H ′0 we have, according to Proposition 4.1 and Remark 3.4,

|T kϕ(z0)| ≤ c sup
D∞

|T k−1ϕ| ≤ c
(√

5 + 1
2

)−k
sup
D∞

|ϕ| .

(iii) If z0 ∈ D1 we have, according to Proposition 4.2,

|T kϕ(z0)| ≤ c
[
sup
D∞

|T k−1ϕ|+
∣∣∣∣T k−1ϕ

(
1
z0
− 1
)∣∣∣∣]

which gives, for k = 1, |Tϕ(z0)| ≤ c‖ϕ‖H∞ , and for k > 1, according to
Proposition 4.1,

|T kϕ(z0)| ≤ c sup
D∞

|T k−2ϕ| ≤ c
(√

5 + 1
2

)−k
sup
D∞

|ϕ| .

(iv) If z0 ∈ D has continued fraction z−1
i = mi+1 +zi+1 with 0 ≤ i < l, zl ∈ ∆\D,

l < k, we apply Proposition 4.4 to write

T kϕ(z0) = (pl−1 − ql−1z0)[T k−lϕ(zl) + T k−lϕ(zl − 1) + εlT
k−lϕ(zl + 1)]

− (pl−2 − ql−2z0)(1 + zl−1)εl−1T
k−lϕ

(
−zl−1

1 + zl−1

)
+R[l](T k−lϕ)(z0) .

Here, we have zl, zl − 1 and −zl−1
1 + zl−1

in D∞ ∪ D0 ∪ H0 ∪ H ′0 , hence the

value of T k−lϕ at these points is in absolute value less than c supD∞ |T k−l−1ϕ|
(Proposition 4.1). We also have, according to Proposition 4.2 and Proposition
4.1,

|T k−lϕ(zl + 1)| ≤
{
c‖ϕ‖H∞ if k = l + 1 ,
c supD∞ |T k−l−2ϕ| if k > l + 1 .

On the other hand we have

|pl−2 − ql−2z0| ≤ cq−1
l−1 ≤ c

(√
5 + 1
2

)−l
,

|pl−1 − ql−1z0| ≤ cq−1
l ≤ c

(√
5 + 1
2

)−l
,

and thus from the estimate of R[l] in Proposition 4.4 and from Remark 3.4
we have

|T kϕ(z0)| ≤

c l
(√

5+1
2

)−l
‖ϕ‖H∞ if k = l + 1 ,

c k
(√

5+1
2

)−k
supD∞ |ϕ| if k > l + 1 .



COMPLEX BRJUNO FUNCTIONS 803

(v) If z0 ∈ D has continued fraction z−1
i = mi+1 + zi+1 with 0 ≤ i < k, zk ∈ ∆,

we again apply Proposition 4.4 to get

T kϕ(z0) = (pk−1 − qk−1z0)[ϕ(zk) + ϕ(zk − 1) + εkϕ(zk + 1)]

− (pk−2 − qk−2z0)(1 + zk−1)εk−1ϕ

(
− zk−1

1 + zk−1

)
+R[k](ϕ)(z0) ,

which gives

|T kϕ(z0)| ≤ cq−1
k−1‖ϕ‖H∞ + ck

(√
5 + 1
2

)−k
sup
D∞

|ϕ| .

By collecting the estimates obtained in (i)–(v) we get the desired result.

4.3.3. Let us now consider the conformally invariant version of Hp, 1 < p < +∞.
The application w 7→ z = (w+1)2

4w is a conformal representation of D on C \ [0, 1];
letting w = e2πiθ, one finds z = cos2 θ and thus |dz| = 2| sin θ|| cos θ|dθ, i.e. dθ =

dx

2
√
x(1−x)

. We can therefore identify Lp(T1) with the direct sum of two copies

of Lp([0, 1], dx

2
√
x(1−x)

) (one for each side of [0, 1]). Now let ϕ ∈ O1(C \ [0, 1]) ∩

Hp(C \ [0, 1]), which we will assume to be real. The associated hyperfunction u is
u = Im ϕ(x+ i0), and u ∈ Lp([0, 1], dx

2
√
x(1−x)

). We have the following

Proposition 4.6. For p ≥ 1 the operator T defines a bounded operator on the
space Lp([0, 1], dx

2
√
x(1−x)

) and its spectral radius is ≤
√

5−1
2 .

Proof. One has Tu(x) = xu
(

1
x −m

)
if 1
m+1 ≤ x ≤

1
m , thus

∫ 1/m

1/(m+1)

|Tu(x)|p dx

2
√
x(1− x)

≤ m1/2−p
∫ 1/m

1/(m+1)

∣∣∣∣u(1
x
−m

)∣∣∣∣p dx

2
√

(1 − x)

≤ m1/2−p
∫ 1

0

|u(s)|p
(

1− 1
s+m

)−1/2
ds

(s+m)2

≤ m1/2−p
∫ 1

0

|u(s)|p(s+m)−3/2 ds√
s
.

Summing over m ≥ 1 we have

‖Tu‖
Lp([0,1],dx/2

√
x(1−x))

≤

∑
m≥1

m−p−1

1/p

‖u‖Lp([0,1],dx/
√
x) ,

which proves the first assertion.
As far as the spectral radius is concerned, let us consider an integer k > 1 and

the set I(k) of the intervals of definition of the branches of Ak. For I ∈ I(k) one
has (we denote by xI the center of I)∫

I

|T ku(x)|p dx

2
√
x(1 − x)

=
∫
I

βk−1(x)p|u(Akx)|p dx

2
√
x(1 − x)

≤ c|I|p [xI(1− xI)]−1/2
∫
I

|u(Akx)|pdx



804 STEFANO MARMI, PIERRE MOUSSA, AND JEAN-CHRISTOPHE YOCCOZ

since c−1 [xI(1− xI)]−1/2 ≤ [x(1− x)]−1/2 ≤ c [xI(1− xI)]−1/2 for all x ∈ I, I ∈
I(k) and k > 1; also c−1|I| ≤ βk−1(x) ≤ c|I| for all x ∈ I. From this we get∫

I

|T ku(x)|p dx

2
√
x(1 − x)

≤ c|I|p+1 [xI(1− xI)]−1/2 ‖u‖pLp([0,1])

(since Ak has bounded distortion on I).
Taking the sum over all the intervals I (i.e. the branches of Ak), since the

I ∈ I(k) form a partition (mod 0) of [0, 1], one obtains

‖T ku‖p
Lp([0,1], dx

2
√
x(1−x)

)
≤ c

∫ 1

0

dx√
x(1− x)

‖u‖pLp([0,1])

[
max
I(k)
|I|
]p

,

which proves the second part of the proposition.

Corollary 4.7. For p > 1, the operator T maps O1(C \ [0, 1])∩Hp(C \ [0, 1]) into
itself, is bounded and its spectral radius is ≤

√
5−1
2 .

Proof. Let ϕ ∈ O1(C \ [0, 1]) ∩Hp(C \ [0, 1]) be real, and let u = Im ϕ(x + i0) be
the associated hyperfunction. For k ≥ 0 the function of O1(C \ [0, 1]) associated to
T ku is T kϕ. Using the conformal representation of C \ [0, 1] onto D and the fact
that the Hilbert transform is bounded on Lp(dθ) one obtains the desired result.

4.3.4. Here we consider the operator
∑
M acting on the space H1(C \ [0, 1]) ∩

O1(C \ [0, 1]).

Lemma 4.8. For all g ∈ M the restriction to H1(C \ [0, 1]) ∩ O1(C \ [0, 1]) of Lg
is a bounded operator of this space into itself.

Proof. It is sufficient to consider the case g = g(m), m ≥ 1. One then has

Lg(m) = σ ◦ τ−1 ◦ χ1 ◦ χ0 ◦ τ ◦ σ ◦ ιm ◦ τm ,
where
τm is the isomorphism ϕ(z) 7→ ϕ

(
1
z −m

)
of H1(C \ [0, 1]) onto

H1(C \ [1/(m+ 1), 1/m]);
ιm is the canonical injection of H1(C \ [1/(m+ 1), 1/m]) into H1(C \ [0, 1]);
σ is the bounded operator ϕ 7→ ϕ− ϕ(∞) of H1(C \ [0, 1]) into H1(C \ [0, 1])∩
O1(C \ [0, 1]);

τ is the isomorphism ϕ 7→ ϕ1(w) = ϕ
(

(w+1)2

4w

)
of H1(C \ [0, 1]) onto H1(D),

whose restriction to H1(C \ [0, 1]) ∩ O1(C \ [0, 1]) is an isomorphism onto
{ϕ1 ∈ H1(D) , ϕ1(0) = 0};

χ0 is the isomorphism ϕ1(w) 7→ 1
wϕ1(w) of {ϕ1 ∈ H1(D) , ϕ1(0) = 0} onto

H1(D);
χ1 is the multiplication operator by the function − (w+1)2

4 ∈ H∞(D) into H1(D).

We now want to estimate the norm of Lg acting on H1(C\ [0, 1])∩O1(C\ [0, 1]).

Proposition 4.9. There exists a constant K > 0 such that, if g ∈ M is different

from
(

1 0
0 1

)
,
(

0 1
1 1

)
(thus d > b > 0) one has

‖Lg‖H1 ≤ Kd−5/2[min(b, d− b)]−1/2 log(1 + d) .
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Proof. A function ϕ ∈ H1(C \ [0, 1]) has non–tangential limits at almost all points
of the boundary and

‖ϕ‖H1 =
∫ 1

0

|ϕ(x + i0)|dx
2
√
x(1− x)

+
∫ 1

0

|ϕ(x − i0)|dx
2
√
x(1 − x)

.

On the other hand a function ϕ ∈ H1(C \ [0, 1]) verifies

|ϕ(t)| ≤ C|t|−1/2‖ϕ‖H1 ∀t ∈ (−1, 0) ,

|ϕ(t)| ≤ C(t− 1)−1/2‖ϕ‖H1 ∀t ∈ (1, 2) ,
(4.14)

as one can check directly by applying Poisson’s integral formula. Moreover, if it
belongs to H1(C \ [0, 1]) ∩ O1(C \ [0, 1]) the same argument leads to the estimates

|ϕ(z)| ≤ C|z|−1‖ϕ‖H1 , |ϕ′(z)| ≤ C|z|−2‖ϕ‖H1 , |ϕ′′(z)| ≤ C|z|−3‖ϕ‖H1 ,

(4.15)

for all z such that |z − 1/2| > 1.
Given these preliminary elementary estimates, let ϕ ∈ H1(C \ [0, 1]) ∩

O1(C \ [0, 1]), g =
(
a b
c d

)
∈ M, with d > b > 0. Let ϕ̃ = Lgϕ; ϕ̃ is holo-

morphic outside the interval with end points b/d and (a + b)/(c + d). We must
estimate

∫ 1

0
|ϕ̃(x±i0)|dx√

x(1−x)
and by symmetry it is enough to consider ϕ̃(x + i0). We

define an interval Ig of the following form:

(i) if g =
(

0 1
1 m

)
, m ≥ 2, Ig = [0, 3/2m];

(ii) if g =
(

1 m− 1
1 m

)
, m ≥ 2, Ig = [1− 3/2m, 1];

(iii) in all the other cases one has c > a > 0, a
c = b

d + εg
cd ; Ig is the interval with

end points b
d + 3εg

2cd and b
d −

εg
2cd ; clearly Ig ⊂ [0, 1].

We will now directly estimate the integral of ϕ̃(x+i0)dx√
x(1−x)

on Ig and on [0, 1] \ Ig.
We begin with the latter.

If x ∈ [0, 1] \ Ig, ϕ̃ is holomorphic in a neighborhood of x and one has

ϕ̃(x) = c−2(a− cx)−1

∫ 1

0

(1− t)ϕ′′
(
−d
c

+ εg
t

c(a− cx)

)
dt .

We have

x /∈ Ig ⇒
εg

c(a− cx)
∈
[
−2

d

c
,

2
3
d

c

]
,(4.16)

thus the values of the second derivative in the integral are ≤ Cc3d−3‖ϕ‖H1 , by the
third estimate of (4.15), and one has

|ϕ̃(x)| ≤ Cd−3|x− b/d|−1‖ϕ‖H1 ,

since x− a/c and x− b/d are comparable outside Ig. We thus obtain∫
[0,1]\Ig

|ϕ̃(x± i0)|dx√
x(1− x)

≤ Cd−3‖ϕ‖H1

∫
[0,1]\Ig

dx√
x(1 − x)

∣∣x− b
d

∣∣ .
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An easy estimate of this last integral gives∫
[0,1]\Ig

|ϕ̃(x± i0)|dx√
x(1 − x)

≤ Cd−5/2[min(b, d− b)]−1/2 log(1 + min(b, d− b)) .

For the integral inside Ig we distinguish the three different contributions to ϕ̃ =
L(g)ϕ. First of all one has (applying the second estimate of (4.15))

|c−1ϕ′(−d/c)| ≤ Ccd−2‖ϕ‖H1

and ∫
Ig

dx√
x(1− x)

≤ Cc−1d−1/2[min(b, d− b)]−1/2‖ϕ‖H1 ,

thus ∫
Ig

|c−1ϕ′(−d/c)|dx√
x(1 − x)

≤ Cd−5/2[min(b, d− b)]−1/2‖ϕ‖H1 .

For x ∈ Ig, by applying (4.15) and (4.16) one has

|(a− cx)ϕ(−d/c)| ≤ Ccd−2‖ϕ‖H1 ,

from which follows the same estimate above for the second term. We are left with

I =
∫
Ig

|a− cx||ϕ(y ± i0)|√
x(1 − x)

dx , y =
dx− b
a− cx .

Inside Ig one has |a− cx|√
x(1 − x)

≤ Cd−1/2[min(b, d− b)]−1/2 ; on the other hand one

has
∫
Ig
|ϕ(y ± i0)|dx = c−2

∫ |ϕ(y ± i0)|dy
(y + d/c)2 , where this integral is taken on the

complement in R of the interval
[
−3d
c ,−

d
3c

]
(if c > 1; when g =

(
0 1
1 m

)
or(

1 m− 1
1 m

)
, m ≥ 2, the integral is taken from −m/3 to +∞).

One then has∫ 3/2

−1/2

|ϕ(y ± i0)|dy
(y + d/c)2

≤ Cc2d−2‖ϕ‖H1 ,∫ −1/2

−d/3c

|ϕ(y ± i0)|dy
(y + d/c)2

≤ Cc2d−2‖ϕ‖H1 log
(

1 +
d

c

)
,

and the same for
∫ 3d/c

3/2 . Finally one has∫
|y|>3d/c

|ϕ(y ± i0)|dy
(y + d/c)2

≤ Cc2d−2‖ϕ‖H1 .

Putting the various bounds together one gets∫
Ig

|ϕ̃(x± i0)|dx√
x(1− x)

≤ Cd−5/2[min(b, d− b)]−1/2 log(1 + d/c)‖ϕ‖H1 .

To conclude the proof it is now enough to note that log(1 + d/c) ≤ log(1 + d) and
log(1 + cmin(b, d− b)) ≤ log(1 + d2) ≤ 2 log(1 + d).
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Corollary 4.10. The series
∑
M ‖Lg‖H1 is convergent.

∑
M defines a bounded

operator of H1(C \ [0, 1])∩O1(C \ [0, 1]) into itself; moreover T is a contraction of
this space, its spectral radius being bounded above by

√
5−1
2 .

Proof. Let k ≥ 1. We will take the sum of ‖Lg‖H1 on the elements g ∈ M which
are the product of exactly k generators g(m). The branch of Ak associated to g

has domain
[
a+b
c+d ,

b
d

]
= I(g) and on this interval the max and the min of x(1 − x)

are comparable. The length [d(c+ d)]−1 of I(g) is bounded below by 1
2d
−2, thus

‖Lg‖H1 ≤ Kd−3 log(1 + d)√
b
d

(
1− b

d

) ≤ K ′d−1 log(1 + d)
∫
I(g)

dx√
x(1 − x)

.

When we sum on the elements g considered, the intervals I(g) form a partition of
[0, 1] mod 0, thus we get∑

m1,... ,mk ,g=g(m1)···g(mk)

‖Lg‖H1 ≤ K ′′ max
m1,... ,mk

[d−1 log(1 + d)] ,

which gives the desired result.

4.4. Real holomorphic functions with bounded real part. We denote by E
the space of functions ϕ ∈ O1(C \ [0, 1]) whose real part is bounded and endowed
with the norm ‖ϕ‖E = supC\[0,1] |Re ϕ| . We then have for | Im z| ≤ 1/2

| Im ϕ(z)| ≤ 2
π

log[(2
√

2− 2)| Im z|]−1‖ϕ‖E ,(∗)

as one can prove from the analogous estimate for functions in the unit disk D

| Im Φ(w)| ≤ 2
π

sup
ϑ∈[0,1]

|Re Φ(e2πiϑ)| log
1 + |w|
1− |w| ,

applying the conformal representation of C \ [0, 1]→ D, w = (
√
z −
√
z − 1)2.

Proposition 4.11. The restriction of T to E is a bounded operator with spectral
radius ≤

√
5−1
2 .

Proof. Let ϕ ∈ E, k ≥ 1, z0 ∈ C \ [0, 1]. We estimate Re T kϕ(z0) in various cases.
(i) If z0 ∈ D∞ we have

|Re T kϕ(z0)| ≤ |T kϕ(z0)| ≤ c
(√

5 + 1
2

)−k
sup
D∞

|ϕ| ,

and, on the other hand, for all ϕ ∈ E, supD∞ |ϕ| ≤ C‖ϕ‖E .
(ii) If z0 ∈ D0 ∪H0 ∪H ′0, or if z0 ∈ D1, k > 1, or if z0 ∈ D has continued fraction

z−1
i = mi+1 + zi+1, 0 ≤ i < l, with zl ∈ ∆ \D, l < k − 1, we have obtained

in the proof of Proposition 4.5 the estimate

|T kϕ(z0)| ≤ c k
(√

5 + 1
2

)−k
sup
D∞

|ϕ| .

(iii) If z0 ∈ D1, k = 1, we have from Proposition 4.2∣∣∣∣Tϕ(z0) + z0ϕ

(
1
z0
− 1
)∣∣∣∣ ≤ c sup

D∞

|ϕ| ,
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moreover ∣∣∣∣Re z0 Re ϕ
(

1
z0
− 1
)∣∣∣∣ ≤ C‖ϕ‖E ,

and ∣∣∣∣Im
(

1
z0
− 1
)∣∣∣∣ ≥ C−1| Im z0| ;

hence from (∗) ∣∣∣∣Im z0 Im ϕ

(
1
z0
− 1
)∣∣∣∣ ≤ C‖ϕ‖E .

(iv) If z0 ∈ D has continued fraction z−1
i = mi+1 + zi+1, 0 ≤ i < k − 1, with

zk−1 ∈ ∆ \ D, the only term in the proof of Proposition 4.5 which gives
some trouble is (pk−2 − qk−2z0)εk−2Tϕ(zk−1 + 1) (the others are once again

dominated by Ck
(√

5+1
2

)−k
supD∞ |ϕ|). In fact, from Proposition 4.2, we are

even left with

(pk−2 − qk−2z0)εk−2(1 + zk−1)ϕ
(

1
1 + zk−1

− 1
)
.

We have here (pk−2− qk−2z0)(1 + zk−1) = (pk−2− qk−2z0)− (pk−1− qk−1z0) ;
hence

|Re[(pk−2 − qk−2z0)(1 + zk−1)]| ≤ Cq−1
k−1 ,

|Im [(pk−2 − qk−2z0)(1 + zk−1)]| ≤ Cqk−1| Im z0| ≤ Cq−1
k−1| Im zk−1|

and ∣∣∣∣Im
(

1
1 + zk−1

− 1
)∣∣∣∣ ≥ C−1| Im zk−1| .

Thus, from (∗) we get∣∣∣∣Re(pk−2 − qk−2z0)(1 + zk−1)ϕ
(

1
1 + zk−1

− 1
)∣∣∣∣ ≤ Cq−1

k−1‖ϕ‖E ,

and finally |Re T kϕ(z0)| ≤ Ck
(√

5 + 1
2

)−k
‖ϕ‖E .

(v) If z0 ∈ D has continued fraction z−1
i = mi+1 + zi+1, 0 ≤ i < k, with zk ∈ ∆,

we apply Proposition 4.4. We have

|Re(pk−1 − qk−1z0)| ≤ Cq−1
k ,

| Im(pk−1 − qk−1z0)| ≤ qk−1| Im z0| ≤ Cqk−1q
−2
k | Im zk| ;

hence, for ε = −1, 0, 1, from (∗)

|Re[(pk−1 − qk−1z0)ϕ(zk + ε)]| ≤ Cq−1
k ‖ϕ‖E .

We deal similarly with

Re
[
(pk−2 − qk−2z0)(1 + zk−1)ϕ

(
− zk−1

1 + zk−1

)]
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(see (iv) above) and conclude that

|Re T kϕ(z0)| ≤ Ck
(√

5 + 1
2

)−k
‖ϕ‖E .

5. The complex Brjuno function

In this section we introduce and study the complex Brjuno function. Preliminar-
ily we need some further results on the monoidM and on the algebraic properties
of
∑
M and

∑
ZM.

5.0.1. Let us recall that one has

ZM = ZM
(

1 1
0 1

)
t ZM

(
0 1
1 1

)
.

More precisely, if one denotes M∗ =M\ {1}, one has

M
(

1 1
0 1

)
tM

(
0 1
1 1

)
=M∗ t

{(
1 1
0 1

)}
.

5.0.2. Let ϕ ∈ O1(C \ [0, 1]). Let

ϕ1 =

L0 1
1 1

 + L1 1
0 1



ϕ ∈ O1(C \ [1/2, 2]) .(5.1)

The family (Lgϕ)g∈M is uniformly summable on compact subsets of C \ [0, 1], thus∑
M

ϕ(z)− ϕ(z) =
∑
M

ϕ1(z)− ϕ(z − 1) .

On the other hand
∑
M ϕ1 = ϕ1 +

∑
M(Tϕ1) and Tϕ1 ∈ O1(C \ [0, 1]). We can

therefore conclude that ∑
ZM

ϕ(z) =
∑
Z

[ϕ1 +
∑
M

(Tϕ1)] ,(5.2)

where the definition of
∑

Z ϕ1, ϕ1 ∈ O1(C \ [1/2, 2]), is obtained by extending the
one given for functions in O1(C \ [0, 1]).

Remark 5.1. One has

ϕ1(z) = −z
[
ϕ

(
1
z
− 1
)
− ϕ(−1)

]
+ ϕ′(−1) + ϕ(z − 1) ,(5.3)

from which it follows that

zϕ1

(
1
z

)
= −[ϕ(z − 1)− ϕ(−1)] + zϕ′(−1) + zϕ

(
1
z
− 1
)

and

ϕ1(z) + zϕ1

(
1
z

)
= (1 + z)(ϕ(−1) + ϕ′(−1)) .
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5.1. The dilogarithm.

5.1.1. Let us define

ϕ0(z) = − 1
π

Li2

(
1
z

)
,(5.4)

where the dilogarithm is taken with its principal branch in C\[1,+∞] (see Appendix
3 for a short summary of the properties of the dilogarithm and [O] and references
therein for more details). The function ϕ0 belongs to O1(C \ [0, 1]). It is real on
the real axis outside [0, 1] and its only singular points are 0 and 1. It is bounded
outside of any neighborhood of 0 and

Im ϕ0(x± i0) = ± log
1
x
, 0 < x ≤ 1 ,(5.5)

thus the relation with the real Brjuno function B is clear: B(x) = [(1 − T )−1f ](x)
with f(x) =

∑
n∈Z Im ϕ0(x+ i0− n).

5.1.2. Let us now consider

ϕ1 =

L1 1
0 1

 + L0 1
1 1



ϕ0 ∈ O1(C \ [1/2, 2]) .(5.6)

Since ϕ0(−1) = π/12 and ϕ′0(−1) = 1
π log 2 one has

ϕ1(z) =
1
π

[
zLi2

(
z

1− z

)
− Li2

(
1

z − 1

)]
+

π

12
z +

1
π

log 2.(5.7)

The function ϕ1 is real. It admits as unique singularities the points 1/2, 1 and 2
and has two cuts along (1/2, 1) and (1, 2). It can be continuously extended to 1/2
and 2 and it is bounded outside any neighborhood of 1. Moreover

Im ϕ1(x± i0) =
{
±x log x

1−x if 1/2 ≤ x < 1 ,
± log 1

x−1 if 1 < x ≤ 2 .(5.8)

Note that if 1/2 ≤ x < 1, then

x log
x

1− x = log
1

1− x + x log x+ (1− x) log(1 − x) .

One also has

ϕ1(z) + zϕ1

(
1
z

)
= (1 + z)

(
π

12
+

1
π

log 2
)
.(5.9)

Lemma 5.2. The function ϕ1(z) + i log(1− z) is continuous on H+ and its value
at 1 is 1

π log 2 + 7π
12 .

Proof. Applying (A3.7) to (5.7) twice one gets

ϕ1(z) =
1
π

log 2− π

6
+
π

4
z +

1
π

[
Li2(z − 1)− zLi2

(
1− z
z

)]
+

1
2π

[
log2(1− z)− z log2 1− z

−z

]
.
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In this expression the function Li2(z − 1)− zLi2
(

1−z
z

)
is regular and vanishing at

z = 1. Moreover

log2(1− z)− z log2 1− z
−z = log2(1− z)− log2 1− z

−z + (1− z) log2 1− z
−z ,

where (1− z) log2 1−z
−z vanishes at z = 1, and

log2(1− z)− log2 1− z
−z = − log2(−z) + 2 log(−z) log(1 − z) .

In a neighborhood of 1 in H+ one has log(−z) + iπ = O (|z − 1|), thus

log2(1− z)− log2 1− z
−z = π2 − 2iπ log(1− z) + O

(
|z − 1| log

1
|z − 1|

)
.

This lemma leads to the following important

Corollary 5.3. The real part of ϕ1 is bounded in C \ [1/2, 2]. It has an extension
to a continuous function on C \ {1} and

lim
x→1±

Re ϕ1(x) =
1
π

log 2 +
π

12
∓ π

2
.(5.10)

This corollary is the motivation for using ϕ1 instead of ϕ0 as the starting point
of the construction of the complex Brjuno function. Equation (5.2) shows that this
leads to the same result.

5.2. A natural compactification of H+. By Lemma 5.2 above, Re ϕ1 extends
continuously to H+\{1} with limits at 1 along rays. This means that Re ϕ1 extends
continuously to the compactification of H+ obtained from H+ by blowing out 1 into
a semicircle (corresponding to all rays in H+ which end in 1). If we want to obtain
a similar result for the complex Brjuno function

∑
ZM ϕ0 we have to do the same

thing at every point of Q.

5.2.1. We will consider

Ĥ+ = H+ t (R \Q) t
(
Q×

[
−π

2
,+

π

2

])
(where Q = Q ∪ {∞}) equipped with the topology defined by the following funda-
mental system of neighborhoods at any point z ∈ Ĥ+:

a) if z0 ∈ H+, a fundamental system of neighborhoods is given by {|z−z0| < ε},
0 < ε < Im z0;

b) if α0 ∈ R \ Q, a fundamental system of neighborhoods is given by the sets
(ε > 0)

Vε(α0) = {z ∈ H+ , |z − α0| < ε}
∪ {α ∈ R \Q , |α− α0| < ε}

∪
{

(α, θ) ∈ Q×
[
−π

2
,+

π

2

]
, |α− α0| < ε

}
;
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c) if α0 ∈ Q, a fundamental system of neighborhoods of (α0, π/2) (resp.
(α0,−π/2)) is given by (0 < ε < π)

Vε(α0, π/2) = {z ∈ H+ , |z − α0| < ε , 0 < arg(z − α0) < ε}
∪ {α ∈ R \Q , 0 < α− α0 < ε}

∪
{

(α, θ) ∈ Q×
[
−π

2
,+

π

2

]
, 0 < α− α0 < ε

}
∪ {(α0, θ) , π/2− ε < θ ≤ π/2} ,

Vε(α0,−π/2) = {z ∈ H+ , |z − α0| < ε , π > arg(z − α0) > π − ε}
∪ {α ∈ R \Q , 0 < α0 − α < ε}

∪
{

(α, θ) ∈ Q×
[
−π

2
,+

π

2

]
, 0 < α0 − α < ε

}
∪ {(α0, θ) , −π/2 ≤ θ < −π/2 + ε} ;

d) if α0 ∈ Q, −π/2 < θ0 < π/2, a fundamental system of neighborhoods of
(α0, θ0) is given by (0 < ε < π/2− |θ0|)

Vε(α0, θ0) = {z ∈ H+ , |z − α0| < ε , θ0 − ε < π/2− arg(z − α0) < θ0 + ε}

∪
{

(α0, θ) ∈ Q×
[
−π

2
,+

π

2

]
, θ0 − ε < θ < θ0 + ε

}
;

e) a fundamental system of neighborhoods of (∞, π/2) (resp. (∞,−π/2)) is
given by (0 < ε < π)

Vε(∞, π/2) = {z ∈ H+ , |z| > ε−1 , π > arg z > π − ε}
∪ {α ∈ R \Q , α < −ε−1}

∪
{

(α, θ) ∈ Q×
[
−π

2
,+

π

2

]
, α < −ε−1

}
∪ {(∞, θ) , π/2 ≥ θ > π/2− ε} ,

Vε(∞,−π/2) = {z ∈ H+ , |z| > ε−1 , 0 < arg z < ε}
∪ {α ∈ R \Q , α > ε−1}

∪
{

(α, θ) ∈ Q×
[
−π

2
,+

π

2

]
, α > ε−1

}
∪ {(∞, θ) , −π/2 ≤ θ < −π/2 + ε} ;

f) if −π/2 < θ0 < π/2, a fundamental system of neighborhoods of (∞, θ0) is
given by (0 < ε < π/2− |θ0|)

Vε(∞, θ0) = {z ∈ H+ , |z| > ε−1 , θ0 − ε < arg z − π/2 < θ0 + ε}
∪ {(∞, θ) , |θ − θ0| < ε} .

5.2.2. One can check that the axioms for a system of neighborhoods are verified.
The following is the only non–trivial property: if ζ ∈ Ĥ+ and V is a neighborhood
of ζ, then there exists a neighborhood W of ζ such that V is a neighborhood of
each point of W . This must be checked directly for each of the above listed cases.

5.2.3. It is clear that the topology of Ĥ+ induces on H+ the usual topology and
that H+ is an open dense subset of Ĥ+.



COMPLEX BRJUNO FUNCTIONS 813

5.2.4. The space Ĥ+ is compact and Hausdorff. More precisely there exists a home-
omorphism of D onto Ĥ+ whose restriction to D is a homeomorphism onto H+. One
can therefore give to Ĥ+ the structure of a topological manifold with boundary;
the boundary is ∂Ĥ+ = Ĥ+ \H+ and is homeomorphic to S1.

5.2.5. The action of PSL(2,Z) on H+ by homographies has a continuous extension
to an action on Ĥ+: just define(

a b
c d

)
· α =

aα+ b

cα+ d
, ∀α ∈ R \Q ,(

a b
c d

)
· (α, θ) =

(
aα+ b

cα+ d
, θ

)
, ∀α ∈ Q , ∀θ ∈

[
−π

2
,+

π

2

]
.

(5.11)

Let I denote a compact non–trivial interval in R and g =
(
a b
c d

)
∈ PGL (2,Z).

Lemma 5.4. Assume that −d/c /∈ I (so that g · I = I ′ is also a compact interval
of R). If ϕ ∈ O1(C \ I) has the following properties:

(i) ϕ is real,
(ii) the harmonic function Re ϕ on H+ has a continuous extension to Ĥ+,

then the function Lgϕ ∈ O1(C \ I ′) also has these two properties.

Proof. It is enough to distinguish three cases:
(a) If α is real and irrational one has

Re Lgϕ(α) = (a− cα)
[
Re ϕ

(
dα − b
a− cα

)
− ϕ

(
−d
c

)]
− εgc−1ϕ′

(
−d
c

)
.

Note that, from the assumption −d/c /∈ I, it follows that ϕ(−d/c) and
ϕ′(−d/c) are both real.

(b) If α =∞ and θ ∈
[
−π2 ,+

π
2

]
is arbitrary, then Re Lgϕ(∞, θ) = 0.

(c) Finally, if α is a rational number and θ ∈
[
−π2 ,+

π
2

]
is arbitrary, one has

Re Lgϕ(α, θ) = (a− cα)
[
Re ϕ

(
dα− b
a− cα, εgθ

)
− ϕ

(
−d
c

)]
− εgc−1ϕ′

(
−d
c

)
.

5.2.6. If I is a non–trivial compact interval of R, we denote by ĈR(C \ I) the space
of holomorphic functions ϕ ∈ O1(C \ I) which are real and whose real part on H+

extends to a continuous function on Ĥ+. This is a Banach space with the norm

‖ϕ‖Ĉ := sup{|Re ϕ(z)| , z ∈ H+}
= sup{|Re ϕ(z)| , z ∈ Ĥ+}
= sup{|Re ϕ(z)| , z ∈ ∂Ĥ+}

(5.12)

(the equality of all these norms is a trivial consequence of the maximum principle).
ĈR(C \ I) is a real closed vector subspace of the Banach space E(I) of holomorphic
functions in O1(C \ I) with bounded real part with respect to the norm

‖ϕ‖E(I) = sup
z∈C\I

|Re ϕ(z)|(5.13)

(generalizing the definition used in Section 4.4 for the particular case I = [0, 1]).
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If g =
(
a b
c d

)
∈ PGL (2,Z) verifies −d/c /∈ I, then, by Lemma 5.4, Lg defines

an operator of ĈR(C \ I) into ĈR(C \ g · I). From its definition it is easy to see that
this operator is bounded.

Let us assume now that I ⊂ (−1,+∞), I = [γ0, γ1]. For all m ≥ 1, Lg(m)

defines a bounded operator of ĈR(C \ I) into ĈR(C \ [1/(m + γ1), 1/(m + γ0)]). If
ϕ ∈ ĈR(C \ I), then

Tϕ =
∑
m≥1

Lg(m)ϕ

is holomorphic, real and belongs to O1(C \ [0, 1/(1 + γ0)]).

Proposition 5.5. The function Tϕ belongs to ĈR(C \ [0, 1/(1 + γ0)]) and the op-
erator T from ĈR(C \ I) into this space is bounded. More precisely, for k ≥ 0,
2k ≤ j < j′ ≤ 2k+1, one has

‖
∑

j≤m<j′
Lg(m)ϕ‖C ≤ CI(1 + k)2−k‖ϕ‖Ĉ ,

thus the series
∑

Re Lg(m)ϕ is uniformly convergent in Ĥ+.

Proof. As in the proof of Proposition 4.9, by Poisson’s formula one has the estimates

|ϕ(z)| ≤ CI |z|−1‖ϕ‖Ĉ ,
|Dϕ(z)| ≤ CI |z|−2‖ϕ‖Ĉ ,
|D2ϕ(z)| ≤ CI |z|−3‖ϕ‖Ĉ ,

(5.14)

provided that dist (z, I) ≥ 1 and ϕ ∈ ĈR(C \ I).
Now let k ≥ 0, and let j, j′ be such that 2k ≤ j < j′ ≤ 2k+1. Let us also

denote ϕj,j′ =
∑
j≤m<j′ Lg(m)ϕ. Clearly we get ϕj,j′ ∈ ĈR(C \ Ik), where Ik =[

1
2k+1−1+γ1

, 1
2k+γ0

]
. By the maximum principle the supremum of |Re ϕj,j′ | on Ĥ+

is attained at a point of the boundary ∂Ĥ+ of the form α ∈ R\Q, or (α, ϑ), α ∈ Q,
−π/2 ≤ θ ≤ π/2, such that α ∈ Ik. Note that

∑
j≤m<2j′ |ϕ′(−m)| ≤ C2−k‖ϕ‖Ĉ

and
∑

j≤m<2j′ |ϕ(−m)| ≤ C‖ϕ‖Ĉ . If α is irrational and contained in Ik one has∑
j≤m<2j′

∣∣∣∣Re ϕ
(

1
α
−m

)∣∣∣∣ ≤ C(1 + k)‖ϕ‖Ĉ

and the same estimate holds if α ∈ Q ∩ Ik for all θ ∈ [−π/2, π/2]. Since |α| <
C2−k for α ∈ Ik one obtains the desired inequality which also implies all the other
properties.

Proposition 4.11 leads to the following

Corollary 5.6. The spectral radius of T on ĈR(C \ [0, 1]) is less than or equal to√
5−1
2 .

∑
M defines a bounded operator on this space.

Proof. ĈR(C \ [0, 1]) is a closed subspace of E([0, 1]).



COMPLEX BRJUNO FUNCTIONS 815

5.2.7. One constructs a compactification Ĥ+/Z of H+/Z adding the point i∞ and
glueing (R\Q)/Zt(Q/Z× [−π/2, π/2]) in the same way we proceeded for Ĥ+. One
obtains a topological manifold with boundary homeomorphic to D. The restriction
of this homeomorphism to H+/Z is onto D∗. The boundary ∂Ĥ+/Z = Ĥ+/Z \
(H+/Z ∪ {i∞}) is once again homeomorphic to S1.

5.2.8. If I is a compact non–trivial interval of R and ϕ ∈ O1(C \ I), we defined in
(2.5) the 1–periodic holomorphic function

∑
Z ϕ on H+ which extends continuously

to i∞.

Proposition 5.7. Assume that ϕ ∈ ĈR(C \ I). Then
∑
Z ϕ has the following prop-

erties:

(i) Re(
∑

Z ϕ) is bounded on H+ and the function which it defines on H+/Z has
a continuous extension to Ĥ+/Z.

(ii) One has

sup
H+
|Re(

∑
Z

ϕ)| ≤ C sup
H+
|Re ϕ| .

We postpone the proof of this proposition after the statement of the two following
consequences:

Corollary 5.8. If ϕ ∈ ĈR(C \ [0, 1]), then
∑
ZM ϕ has a bounded real part which

extends continuously to Ĥ+/Z and verifies

sup
H+
|Re

∑
ZM

ϕ| ≤ C sup
H+
|Re ϕ| .

Corollary 5.9. Let ϕ0(z)=− 1
πLi2

(
1
z

)
; the complex Brjuno function B=

∑
ZM ϕ0

has a bounded real part which extends continuously to Ĥ+/Z.

Proof of Corollary 5.9. Let ϕ1 be defined as in (5.6). Then ϕ1 ∈ ĈR(C \ [1/2, 2]),
Tϕ1 ∈ ĈR(C \ [0, 2/3]) and

∑
M Tϕ1 ∈ ĈR(C \ [0, 1]). Thus ϕ1 +

∑
M Tϕ1 ∈

ĈR(C \ [0, 2]). Applying (5.2) to ϕ0 we get the desired result.

Proof of Proposition 5.7. It is not restrictive to assume I = [0, 1].
Let us consider the holomorphic function F0 associated to the hyperfunction

u(x) =
{

x if 0 ≤ x ≤ 1/2 ,
1− x if 1/2 ≤ x ≤ 1 .

One has

F0(z) =
1
π

[
z log

z − 1/2
z

+ (1− z) log
z − 1
z − 1/2

]
with the principal branch of the logarithm: if z /∈ [0, 1], then (z − 1/2)/z and
(z − 1)/(z − 1/2) do not belong to [−∞, 0].
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One can easily check that F0 |H± extends continuously to H±. At infinity one
has (with z̃ = z − 1/2):

z log
z − 1/2

z
=
(

1
2

+ z̃

)
log

z̃

z̃ + 1/2

= −1
2
− 1

8z̃
+ O (z̃−2) ,

(1− z) log
z − 1
z − 1/2

=
(

1
2
− z̃
)

log
z̃ − 1/2

z̃

=
1
2
− 1

8z̃
+ O (z̃−2) ,

thus

F0(z) = − 1
4πz

+ O (z−2)

(this could also be checked directly by observing that
∫ 1

0 u(x)dx = 1/4).
It is easy to verify that:
• the real part of F0 is bounded in C \ [0, 1];
• the real part of

∑
Z F0 is bounded in H.

Let ϕ ∈ ĈR(C \ I); consider the unique decomposition

ϕ = c(ϕ)F0 + ϕ],

where ϕ] ∈ O2(C \ [0, 1]) ∩ ĈR(C \ [0, 1]), c(ϕ) ∈ R. One has ‖ϕ]‖Ĉ ≤ C‖ϕ‖Ĉ and
|c(ϕ)| ≤ C‖ϕ‖Ĉ , i.e. this decomposition is continuous.

Thus we are led to consider only the case ϕ ∈ O2(C \ [0, 1])∩ ĈR(C \ [0, 1]). But
in this case

∑
Z ϕ converges uniformly on all domains {|Re z| ≤ A} and this fact

immediately leads to the assertions of the proposition.

5.2.9. Note that the topology induced by Ĥ+/Z on H+/Z t (R \Q)/Z is the same
as the topology induced by C/Z. Therefore the continuity of Re

∑
ZM ϕ0 on Ĥ+/Z

implies that the real part Re
∑

ZM ϕ0 of the complex Brjuno function is continuous
on H+/Z t (R \ Q)/Z in the usual sense. The value Re

∑
ZM ϕ0(α0, π/2) (resp.

(α0,−π/2)), with α0 ∈ Q/Z, is the right (resp. left) limit of Re
∑

ZM ϕ0(α), as
α ∈ (R \Q)/Z tends to α0

Recalling Lemma 5.2, one has

Re ϕ1(1, π/2)−Re ϕ1(1,−π/2) = −π
and more precisely

Re ϕ1(1, θ) = Re ϕ1(1, 0)− θ .
If α0 ∈ Q, α0 6= 1, then

Re ϕ1(α0, θ) = Re ϕ1(α0, 0)

for all θ ∈ [−π/2, π/2]. Thus by (5.2) one obtains that for all p/q ∈ Q (p ∧ q = 1)

Re
∑
ZM

ϕ0(p/q, θ) = Re
∑
ZM

ϕ0(p/q, 0)− θ/q.(5.15)

Thus the real part Re
∑

ZM ϕ0 of the complex Brjuno function has at each rational
p/q ∈ Q/Z a decreasing jump of π/q.
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5.3. Boundary behaviour of the imaginary part of the complex Brjuno
function.

5.3.0. Notation. We simply denote by ‖ϕ‖ the norm (5.13) in the Banach space
E(I).

We set ϕ0(z) = − 1
πLi2

(
1
z

)
as in (5.4) and ϕ1 as in (5.6), thus by (5.2)

B =
∑
Z

(ϕ1 +
∑
M

Tϕ1) =
∑
ZM

ϕ0 .(5.16)

We have ϕ1 ∈ E([1/2, 2]), Tϕ1 ∈ E([0, 2/3]) and T kϕ1 ∈ E([0, 1]) for all k ≥ 2.
In this section we want to estimate the imaginary part of the 1–periodic function

B near the real axis. We have

{| Im z| ≤ 1/2} =
⋃
n∈Z

(∆ + n) .(5.17)

For r ≥ 1, m1, . . . ,mr ≥ 1, we recall the definition of D(m1, . . . ,mr) given in
Section 4.2, namely the set of z0 ∈ D such that the continued fraction is

z−1
i = zi+1 +mi+1 , 0 ≤ i < r , zi ∈ D , zr ∈ ∆ .(5.18)

We also set

H = H0 ∪H ′0 = ∆ \ intD

H(m1, . . . ,mr) = D(m1, . . . ,mr) \ int

 ⋃
mr+1≥1

D(m1, . . . ,mr+1)

 .
(5.19)

Then we have

{| Im z| ≤ 1/2} =
⋃
n∈Z

⋃
r≥0

⋃
m1,... ,mr≥1

[H(m1, . . . ,mr) + n] tR \Q ,(5.20)

where the sets in the righ–hand term have disjoint interiors.

5.3.1. A set H(m1, . . . ,mr) + n meets R in a unique point, which belongs to Q.
Conversely, any rational belongs to exactly two such sets: if p/q ∈ Q has continued
fraction p/q = n+ 1/m1 + 1/m2 + · · ·+ 1/mr with mr ≥ 2 when q > 1 (i.e. r > 0),
these two sets are H+n and H(1)+n−1, if p/q = n and r = 0, H(m1, . . . ,mr)+n
and H(m1, . . . ,mr − 1, 1) +n if r > 0. The union of these two sets will be denoted
by V (p/q); the boundary of V (p/q)∩H+ is formed by parts of the three horocycles,
attached to p/q, p′/q′ and p′′/q′′ (where [p′/q′, p′′/q′′] is the Farey interval with
“center” p/q; when p/q = n ∈ Z we have p′/q′ = n − 1, p′′/q′′ = ∞), which are
deduced from Im z = 1/2 by the action of SL (2,Z) (see Figure 4).

5.3.2. We plan to compare, when z ∈ V (p/q), the imaginary part of B(z) to the
truncated real Brjuno function

Bfinite(p/q) =
r−1∑
j=0

βj−1(p/q) log
[
Aj(p/q − n)

]−1
,(5.21)
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Figure 4. The partition of the strip 0 ≤ Im z ≤ 1/2 by the sets
D(m1, . . . ,mr) and H(m1, . . . ,mr).

where p/q is as above and A is the Gauss map (A1.1). The point is that we want
the dependence on p/q to be explicit in this comparison (i.e. all the constants c are
independent of p/q). This will be achieved by the following

Theorem 5.10. For k ≥ 0, m1, . . . ,mk ≥ 1, z0 ∈ H(m1, . . . ,mk) one has

Im B(z0) = Bfinite(pk/qk) + (pk−1 − qk−1 Re z0) Im ϕ1(zk + 1) + r̂(z0)

with

|r̂(z0)| ≤ cq−1
k |zk| log(1 + |zk|−1)

for some positive constant c independent of k,m1, . . . ,mk.
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The strategy of the proof of the theorem is to start from the formula

Im B(z) =
∑
n∈Z

∑
k≥0

Im TKϕ1(z + n) ,

and to consider each term separately, putting most of them in the remainder part,
and replacing the others by simpler expressions. What makes the proof a little
lengthy is that while T kϕ1 ∈ E([0, 1]) for k > 1, we have ϕ1 ∈ E([1/2, 2]) and
Tϕ1 ∈ E([0, 2/3]), which leads to the need to distinguish several cases (Sections
5.3.3 through 5.3.7) before giving its complete proof (Section 5.3.9).

5.3.3. Recall that T kϕ1 is real and T kϕ1(z) = T kϕ1(z), hence Im T kϕ1(z) vanishes
on R outside of 

[1/2, 2] for k = 0 ,
[0, 2/3] for k = 1 ,
[0, 1] for k > 1 .

As we have, on the other hand,

|ϕ′(z)| ≤ CK |z|−2‖ϕ‖(5.22)

for all ϕ ∈ E(I), K ⊂ C \ I compact, z ∈ K, we obtain for z ∈ ∆

| Im ϕ1(z + n)| ≤ cn−2| Im z|‖ϕ1‖ , ifn 6= 0, 1, 2 , n ∈ Z ,
| Im Tϕ1(z + n)| ≤ cn−2| Im z|‖Tϕ1‖ , ifn 6= −1, 0 , n ∈ Z ,
| Im T kϕ1(z + n)| ≤ cn−2| Im z|‖T kϕ1‖ , if k > 1 , n 6= −1, 0, 1 , n ∈ Z .

(5.23)

Since, by Proposition 4.11, we have ‖T kϕ1‖ ≤ CkG−k‖ϕ1‖, with G = (
√

5 + 1)/2,
we obtain

Lemma 5.11. For z ∈ ∆ \ [0, 1], if we write

Im B(z) = Im ϕ1(z) + Im ϕ1(z + 1) + Im ϕ1(z + 2)

+ Im Tϕ1(z − 1) + Im Tϕ1(z)(5.24)

+
∑
k>1

[
Im T kϕ1(z − 1) + Im T kϕ1(z) + Im T kϕ1(z + 1)

]
+ r0(z) ,

then we have

|r0(z)| ≤ C| Im z|‖ϕ1‖ .(5.25)

5.3.4. One has

|ϕ′1(z)| ≤ C log(1 + |z − 1/2|−1)

in the neighborhood of 1/2 and

|ϕ′1(z)| ≤ C log(1 + |z − 2|−1)

in the neighborhood of 2. Therefore, for z ∈ ∆ \ {0} we have

| Im ϕ1(z + 2)| ≤ C| Im z| log(1 + |z|−1) ,(5.26)

and, for z ∈ ∆ \D(1)

| Im ϕ1(z)| ≤ C| Im z| log(1 + |z − 1/2|−1) .(5.27)
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Next we have

Lemma 5.12. For k ≥ 1 and z ∈ ∆ \ {1} we have

| Im T kϕ1(z − 1)| ≤ C| Im z| log(1 + |z − 1|−1)‖T k−1ϕ1‖ .

Proof. We have

| Im T kϕ1(z)| =

∣∣∣∣∣∣Im

z∑
m≥1

(
T k−1ϕ1

(
1
z
−m

)
− T k−1ϕ1(−m)

)∣∣∣∣∣∣ .
We distinguish two cases:

(a) If | Im z−1| = |z|−2| Im z| ≥ 1, we choose m0 ≥ 1 such that∣∣∣∣1z +m0

∣∣∣∣ ≤ C|z|−2| Im z| and C−1|z|−1 ≤ m0 ≤ C|z|−1 .

One then has∣∣∣∣T k−1ϕ1

(
1
z
−m

)
− T k−1ϕ1(−m−m0)

∣∣∣∣ ≤ C | Im z|‖T k−1ϕ1‖
|z|2(m+m0)2

from which it follows that∣∣∣∣∣∣
z∑

m≥1

(
T k−1ϕ1

(
1
z
−m

)
− T k−1ϕ1(−m−m0)

)∣∣∣∣∣∣ ≤ C| Im z|‖T k−1ϕ1‖ .

On the other hand∣∣∣∣∣Im z

m0∑
1

T k−1ϕ1(−m)

∣∣∣∣∣ ≤ C| Im z| log(1 + |z|−1)‖T k−1ϕ1‖ ,

from which the lemma follows in this case.
(b) If | Im z−1| ≤ 1 we choose m0 ≥ 1 such that −m0 ≤ Re 1/z ≤ −m0 + 1, thus∣∣∣∣Im T k−1ϕ1

(
1
z
−m

)∣∣∣∣ ≤ C| Im z||z|−2(m+m0)−2‖T k−1ϕ1‖ ,∣∣∣∣Re
[
T k−1ϕ1

(
1
z
−m

)
− T k−1ϕ1(−m−m0)

]∣∣∣∣ ≤ C(m+m0)−2‖T k−1ϕ1‖ .

We thus obtain

|Re z|

∣∣∣∣∣∣Im
∑
m≥1

T k−1ϕ1

(
1
z
−m

)∣∣∣∣∣∣ ≤ C| Im z|‖T k−1ϕ1‖ ,∣∣∣∣∣∣Re
∑
m≥1

[
T k−1ϕ1

(
1
z
−m

)
− T k−1ϕ1(−m−m0)

]∣∣∣∣∣∣ ≤ C|z|‖T k−1ϕ1‖ ,∣∣∣∣∣
m0∑
1

T k−1ϕ1(−m)

∣∣∣∣∣ ≤ C log(1 + |z|−1)‖T k−1ϕ1‖ ,

which give the desired result.
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Lemma 5.13. 1) If z ∈ D(1) \D(1, 1) we have

| Im Tϕ1(z)| ≤ C| Im z| log(1 + |z − 2/3|−1) .

2) For k > 1, z ∈ ∆ \ {0} we have

| Im T kϕ1(z + 1)| ≤ C| Im z| log(1 + |z|−1)‖T k−2ϕ1‖ .

Proof. In the first case, in the domain considered, we have 1/z − 1 ∈ ∆ \ D(1),
hence, by (5.27),∣∣∣∣Im ϕ1

(
1
z
− 1
)∣∣∣∣ ≤ C| Im z| log(1 + |z − 2/3|−1) .

On the other hand we have∣∣∣∣Re
[
ϕ1

(
1
z
− 1
)
− ϕ1(−1)

]∣∣∣∣ ≤ 2‖ϕ1‖ ,

and for m ≥ 2 ∣∣∣∣ϕ1

(
1
z
−m

)
− ϕ1(−m)

∣∣∣∣ ≤ Cm−2‖ϕ1‖ ,∣∣∣∣Im ϕ1

(
1
z
−m

)∣∣∣∣ ≤ Cm−2| Im z|‖ϕ1‖ ,

from which the first inequality of the lemma follows.
In the second case we use Lemma 5.12 to get∣∣∣∣Im T k−1ϕ1

(
1

z + 1
− 1
)∣∣∣∣ ≤ C| Im z| log(1 + |z|−1)‖T k−2ϕ1‖ ,

and deduce the second inequality as above.

5.3.5. For z ∈ ∆, k ≥ 1, we set (as in Section 4.2) εk = εk(z) = 0 if z belongs to
some D(m1, . . . ,mk) with mk = 1, εk = 1 otherwise.

Starting from Lemma 5.11, we use (5.26) to deal with Im ϕ1(z + 2), (5.27) to
deal with Im ϕ1(z) when ε = 1, Lemma 5.12 to deal with Im T kϕ1(z − 1), and
Lemma 5.13 to deal with Im T kϕ1(z + 1), and also with Im Tϕ1(z) when ε1 = 0,
ε2 = 1. This gives

Lemma 5.14. For z ∈ ∆ \ [0, 1] we have

Im B(z) = (1− ε1) Im ϕ1(z) + Im ϕ1(z + 1) + [1− ε2(1− ε1)] Im Tϕ1(z)

+
∑
k>1

Im T kϕ1(z) + r0(z) + r1(z)

and

|r1(z)| ≤ C| Im z| log(1 + | Im z|−1)‖ϕ1‖ .

We next recall that, by Proposition 4.1, we have, when z ∈ H , k ≥ 1

| Im T kϕ1(z)| ≤ C|z| log(1 + |z|−1) sup
D∞

|T k−1ϕ1| .(5.28)
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5.3.6. In the following two steps, we obtain for Im T kϕ1(z) an approximation sim-
ilar to Proposition 4.4, first for large k (Proposition 5.15), and then for small
k (Proposition 5.16). Here we assume that k ≥ 1, m1, . . . ,mk ≥ 1 and z0 ∈
D(m1, . . . ,mk) and let l > 0 and ϕ = T lϕ1.

Proposition 5.15. For k ≥ 1, m1, . . . ,mk ≥ 1, z0 ∈ D(m1, . . . ,mk), l > 0 we
have

| ImT k+lϕ1(z0)− [Im T lϕ1(zk)](pk−1 − qk−1 Re z0)|

≤ Cq−1
k | Im zk| log(1 + | Im zk|−1)×

{
‖T l−2ϕ1‖ if l > 1,
‖ϕ1‖ if l = 1.

Proof. As we did in the proof of Proposition 4.4 we write

T kϕ(z0) = (pk−1 − qk−1z0)ϕ(zk) +
k∑
j=1

(pj−1 − qj−1z0)T k−jϕ(zj − 1)

+
k∑
j=1

(pj−1 − qj−1z0)εjT k−jϕ(zj + 1)

+
k∑
j=1

(pj−2 − qj−2z0)R(mj)(T k−jϕ)(zj−1)

= (pk−1 − qk−1z0)ϕ(zk) + R̂
[k]
1 (ϕ)(z0) + R̂

[k]
2 (ϕ)(z0) + R̂

[k]
0 (ϕ)(z0),

(5.29)

where

R(mj)(ψ)(zj−1) =
∑
m≥1

ψ′(−m) + zj−1

∑
m≥1 , |m−mj|≤1

ψ(−m)

− zj−1

∑
m≥1 , |m−mj|>1

[ψ(zj +mj −m)− ψ(−m)] .
(5.30)

We will use repeatedly the following inequalities:

| Im(w1w2)| ≤ |w1|| Im w2|+ |w2|| Im w1| ,(5.31)

|pj−1 − qj−1z0| ≤ cq−1
j ,(5.32)

| Im(pj−1 − qj−1z0)| = qj−1| Im z0| ≤ Cqj−1q
−2
k | Im zk| .(5.33)

By Proposition 4.1, as l > 0, for 1 ≤ j ≤ k we have

|T k−jϕ(zj − 1)| ≤ C sup
D∞

|T k−j+l−1ϕ1| ,(5.34)

and, by Lemma 5.12,

| Im T k−jϕ(zj − 1)| ≤ C| Im zj| log(1 + |zj − 1|−1)‖T k−j+l−1ϕ1‖ .(5.35)

We observe that for j < k − 1

log(1 + |zj − 1|−1) ≤ C log(1 + |zj+1|−1) ≤ C log(1 +mj+2) ,

and one also has
log(1 + |zk−1 − 1|−1) ≤ C log(1 + |zk|−1) ≤ C log(1 + | Im zk|−1) ,

log(1 + |zk − 1|−1) ≤ log(1 + | Im zk|−1) .
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Thus, from (5.31)–(5.35) we get

| Im R̂
[k]
1 (ϕ)(z0)| ≤ Cq−1

k | Im zk| log(1 + | Im zk|−1)‖T l−1ϕ1‖ .
Similarly, by Lemma 5.13, we have, for j < k, l ≥ 1 or j ≤ k, l > 1

| Im T k−jϕ(zj + 1)| ≤ C| Im zj | log(1 + |zj |−1)‖T k−j+l−2ϕ1‖ ,(5.36)

and, by Proposition 4.2,

|T k−jϕ(zj + 1)| ≤ C sup
D∞

|T k−j+l−2ϕ1| .(5.37)

On the other hand, when j = k, l = 1 (i.e. T k−jϕ = Tϕ1) one has

| Im Tϕ1(zk + 1)| ≤ C| Im zk|‖Tϕ1‖ ,
|Tϕ1(zk + 1)| ≤ C‖Tϕ1‖

(note that as Tϕ1 ∈ E([0, 2/3]), zk + 1 is well separated from the boundary). This
gives

| Im R̂
[k]
2 (ϕ)(z0)| ≤ Cq−1

k | Im zk| log(1 + |zk|−1)×
{
‖T l−2ϕ1‖ (l > 1),
‖ϕ1‖ (l = 1).(5.38)

Finally one has

|R(mj)(ψ)(zj−1)| ≤ C‖ψ‖ ,(5.39)

| Im R(mj)(ψ)(zj−1)| ≤ C‖ψ‖[| Im zj−1| log(1 +mj) + Re zj−1| Im zj|](5.40)

≤ cm−1
j | Im zj |‖ψ‖ ,

giving

| Im R
[k]
0 (ϕ)(z0)| ≤ cq−1

k | Im zk|‖T lϕ1‖ .(5.41)

To conclude our proof we only need to observe that

| Im(pk−1 − qk−1z0) Re ϕ(zk)| ≤ Cq−1
k | Im zk|‖T lϕ1‖ ,(5.42)

to get the desired result.

5.3.7. For k ≥ 1, m1, . . . ,mk ≥ 1, z0 ∈ D(m1, . . . ,mk) we will now consider
Im T kϕ1(z0) (i.e. the case l = 0 left out from Proposition 5.15):

Proposition 5.16. For k ≥ 1, m1, . . . ,mk ≥ 1, z0 ∈ D(m1, . . . ,mk) we have

| ImT kϕ1(z0)− (pk−1 − qk−1 Re z0)[(1 − εk+1) Im ϕ1(zk) + εk Im ϕ1(zk + 1)]|
≤ Cq−1

k | Im zk| log(1 + | Im zk|−1)‖ϕ1‖ .

Proof. We now write (with ε′k = 0 if mk ≤ 2, ε′k = 1 otherwise)

T kϕ1(z0) = (pk−1 − qk−1z0)(ϕ1(zk) + εkϕ1(zk + 1) + ε′kϕ1(zk + 2))

+
k−1∑
j=1

(pj−1 − qj−1z0)T k−jϕ1(zj − 1)

+
k−1∑
j=1

(pj−1 − qj−1z0)εjT k−jϕ1(zj + 1)

+
k∑
j=1

(pj−2 − qj−2z0)R̃(mj)(T k−jϕ1)(zj−1),

(5.43)
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where R̃(mj)(T k−jϕ1) = R(mj)(T k−jϕ1) for j < k but

R̃(mk)(ϕ1)(zk−1) =
∑
m≥1

ϕ′1(−m) + zk−1

∑
m≥1 , |m−mk+1|≤1

ϕ1(−m)

− zk−1

∑
m≥1 , |m−mk+1|>1

[ϕ1(zk +mk −m)− ϕ1(−m)] .

For the last sum R̃
[k]
0 (ϕ1) in (5.43), we have as in (5.39)–(5.41)

| Im R̃
[k]
0 (ϕ1)(z0)| ≤ Cq−1

k | Im zk|‖ϕ1‖ .(5.44)

The first sum R
[k]
1 (ϕ1) is dealt with as in (5.31)–(5.35) to get

| Im R
[k]
1 (ϕ1)(z0)| ≤ Cq−1

k | Im zk| log(1 + | Im zk|−1)‖ϕ1‖ .(5.45)

The middle sum R
[k]
2 (ϕ1) satisfies the same estimate, proved as in (5.36)–(5.38).

By (5.26) we have

| Im [(pk−1 − qk−1z0)ϕ1(zk + 2)]| ≤ q−1
k [C| Im zk| log(1 + |zk|−1) + 1]‖ϕ1‖ .

(5.46)

Similarly, if zk /∈ D(1) (i.e. if εk+1 = 1) we have

| Im [(pk−1 − qk−1z0)ϕ1(zk)]| ≤ Cq−1
k | Im zk| log(1 + |zk − 1/2|−1)‖ϕ1‖ ,(5.47)

according to (5.27). Finally, for ε = 0, 1

| Im(pk−1 − qk−1z0) Re ϕ1(zk + ε)| ≤ Cq−1
k | Im zk|‖ϕ1‖ ,(5.48)

and from (5.43)–(5.48) we get our result.

5.3.8. Starting from Lemma 5.14, we now make use of Propositions 5.15 and 5.16
to obtain a simpler approximation for Im B(z).

Proposition 5.17. For k ≥ 0, m1, . . . ,mk ≥ 1, z0 ∈ H(m1, . . . ,mk) we have

Im B(z0) =
k∑
l=0

Im ϕ1(zl + 1)(pl−1 − ql−1 Re z0)εl

+
k−1∑
l=0

Im ϕ1(zl)(pl−1 − ql−1 Re z0)(1− εl+1) + r(z0)

with ε0 = 1, and

|r(z0)| ≤ Cq−1
k |zk| log(1 + |zk|−1) .

Proof. First, assume z0 ∈ H . Then, from (5.28) and Lemma 5.14 we get

Im B(z) = (1− ε1) Im ϕ1(z0) + Im ϕ1(z0 + 1) + r(z0) ,(5.49)

with

|r(z0)| ≤ C|z0| log(1 + |z0|−1) .(5.50)

As we also have, for z0 ∈ H ,

| Im ϕ1(z0)| ≤ C| Im z0| ,
we obtain

| Im B(z)− Im ϕ1(z0 + 1)| ≤ C|z0| log(1 + |z0|−1) .(5.51)



COMPLEX BRJUNO FUNCTIONS 825

Next consider z0 ∈ H(m1, . . . ,mk) with k ≥ 1, m1, . . . ,mk ≥ 1. Observe that

[1− ε2(1− ε1)](1 − ε2) = 1− ε2 , [1− ε2(1− ε1)]ε1 = ε1 .

In the terms which appear in the right–hand term of Lemma 5.14, we use Propo-
sition 5.15 to deal with Im T lϕ1(z0), l > k, and Proposition 5.16 to deal with
Im T lϕ1(z0), 0 < l ≤ k. We have

|
∑
l>k

Im T lϕ1(z0)− (pk−1 − qk−1z0)
∑
l>0

Im T lϕ1(zk)|

≤ Cq−1
k | Im zk| log(1 + | Im zk|−1) ,

(5.52)

but using (5.28) (since zk ∈ H) we obtain

|
∑
l>k

Im T lϕ1(z0)| ≤ Cq−1
k |zk| log(1 + |zk|−1) .(5.53)

For 0 ≤ l ≤ k, we have in Proposition 5.16 and Lemma 5.14

q−1
l | Im zl| log(1 + | Im zl|−1) ≤ Cqlq−2

k | Im zk| log(1 + | Im zl|−1)

and
k∑
0

qlq
−1
k log(1 + | Im zl|−1) ≤ C

k∑
0

qlq
−1
k log(1 + Cq−2

l q2
k| Im zk|−1)

≤ C log(1 + | Im zk|−1) .

5.3.9. We can finally complete the proof of Theorem 5.10.
Let k ≥ 0, m1, . . . ,mk ≥ 1. As we already know, the domain H(m1, . . . ,mk)

meets R in a unique point which is pk/qk. Let us denote x0 = pk/qk and consider
its continued fraction

x−1
i = mi+1 + xi+1 , 0 ≤ i < k , xk = 0

(of course xi is the point of intersection of H(mi+1, . . . ,mk) with R).
Let z0 ∈ H(m1, . . . ,mk), Im z0 > 0. We will then have (−1)l Im zl > 0,

0 ≤ l ≤ k. On the other hand one has, for 0 ≤ l < k,

εl Im ϕ1(xl + 1 + (−1)li0) = (−1)lεl log
1
xl
,(5.54)

and for 0 ≤ l < k − 1

(1− εl+1) Im ϕ1(xl + (−1)li0) = (1− εl+1)(−1)lxl log
1

xl+1
(5.55)

since xl
1−xl = 1

xl+1
when 1− εl+1 6= 0. (5.54) and (5.55) imply that

k−1∑
0

Im ϕ1(xl + 1 + (−1)li0)(pl−1 − ql−1x0)εl

+
k−2∑

0

Im ϕ1(xl + (−1)li0)(pl−1 − ql−1x0)(1− εl+1)

=
k−1∑

0

βl−1(x0) log
1
xl

:= Bfinite(pk/qk) .

(5.56)
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When we set this expression in Theorem 5.10, and compare the result with the
expression for Im B(z0) given by Proposion 5.17, we see that we have to deal with
the following expressions. For 0 ≤ l ≤ k − 1, and εl = 1:

Al = Im ϕ1(zl + 1)(pl−1 − ql−1 Re z0)− Im ϕ1(xl + 1 + (−1)li0)(pl−1 − ql−1x0) .

For 0 ≤ l ≤ k − 2, and εl+1 = 0:

Bl = Im ϕ1(zl)(pl−1 − ql−1 Re z0)− Im ϕ1(xl + (−1)li0)(pl−1 − ql−1x0) .

And when εk = 0:

Ck = Im ϕ1(zk + 1)(pk−1 − qk−1 Re z0)− Im ϕ1(zk−1)(pk−2 − qk−2 Re z0) .

First of all one has

|Re z0 − x0| ≤ Cq−2
k |zk| .

On the other hand, near 1 one has

|ϕ′1(z)| ≤ C|z − 1|−1 .

For 0 ≤ l < k (resp. 0 ≤ l < k − 1) the distances of xl and zl from 0 (resp. 1) are
comparable. Thus, for 0 ≤ l < k

| Im ϕ1(zl + 1)− Im ϕ1(xl + 1 + (−1)li0)| ≤ Cx−1
l |zl − xl| ,

and for 0 ≤ l < k − 1

| Im ϕ1(zl)− Im ϕ1(xl + (−1)li0)| ≤ C|xl − 1|−1|zl − xl| .

We have here |zl−xl| ≤ C|zk|q2
l q
−2
k , x−1

l ≤ Cml+1 and |xl−1|−1 ≤ cx−1
l+1 ≤ cml+2.

We thus get, taking (5.54) and (5.55) into account,

|Al| ≤ C(ql−1q
−2
k |zk| log

1
xl

+ x−1
l |zl − xl|q

−1
l )

≤ C|zk|q−2
k (ql−1 logml+1 + qlml+1)

≤ C|zk|q−2
k ql+1 ,

|Bl| ≤ C(ql−1q
−2
k |zk| log

1
xl+1

+ |xl − 1|−1|zl − xl|q−1
l )

≤ C|zk|q−2
k (ql−1 logml+2 + qlml+2)

≤ C|zk|q−2
k ql+2 .

We thus have
k−1∑
l=0

|Al|+
k−2∑
l=0

|Bl| ≤ C|zk|q−1
k .

Finally we note that when mk = 1, i.e. εk = 0, one has z−1
k−1 = 1 + zk. Thus

ϕ1(zk−1) = (1 + zk−1)
(
π

12
+

1
π

log 2
)
− zk−1ϕ1(1 + zk) ,

which gives

Ck = Im ϕ1(zk + 1)[(pk−1 − qk−1 Re z0) + (pk−2 − qk−2 Re z0) Re zk−1]

+ (pk−2 − qk−2 Re z0) Im zk−1

(
π

12
+

1
π

log 2−Re ϕ1(1 + zk)
)
.
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But we have the inequalities∣∣∣∣ π12
+

1
π

log 2−Re ϕ1(1 + zk)
∣∣∣∣ ≤ C ,

|(pk−2 − qk−2 Re z0) Im zk−1| ≤ Cq−1
k−1| Im zk−1|

≤ Cq−1
k | Im zk| ,

|(pk−1 − qk−1 Re z0) + (pk−2 − qk−2 Re z0) Re zk−1| ≤ qk−2| Im z0|| Im zk−1|
≤ Cq−1

k | Im zk| ,

| Im ϕ1(zk + 1)| ≤ C log(1 + |zk|−1) ,

hence

|Ck| ≤ Cq−1
k | Im zk| log(1 + |zk|−1) ,

and the proof of Theorem 5.10 is complete.

Remark 5.18. We recall that the term involved in Theorem 5.10 satisfies

(pk−1 − qk−1 Re z0) Im ϕ1(zk + 1) =
(
q−1
k log

1
|zk|

)
(1 + o (1)) ,

as zk → 0.

5.3.10. Here we consider the imaginary part of B near Brjuno numbers. For H > 0
let

WH = {w ∈ H , Im w ≥ |Re w|H}(5.57)

and for 0 < h < 1/2 let

W̃h = {w ∈ H , Im w ≥ exp[−|Re w|−h]} .(5.58)

Then we have

Theorem 5.19. 1) For any Brjuno number α and any H > 0 we have

lim
w→0 , w∈WH

Im B(w + α) = B(α) .

2) Let α be an irrational diophantine number and 0 < h < 1/2 such that

lim inf
q→∞

‖qα‖Zq1/h−1 = +∞ ,

where ‖ ‖Z denotes the distance from the nearest integer. Then

lim
w→0 , w∈W̃h

Im B(w + α) = B(α) .

Proof. We begin by stating a useful lemma (whose proof is an easy adaptation of
the arguments of 5.3.9 and is left to the reader).

Lemma 5.20. Let k ≥ 1 and m1, . . . ,mk ≥ 1, and let pk/qk be the point of
intersection of H(m1, . . . ,mk) with R. For all x ∈ D(m1, . . . ,mk) ∩ R one has

|Bfinite(pk/qk)−
k−1∑

0

βl−1(x) log
1
xl
| ≤ Cxkq−1

k ,

where (xi)i≥0 is the continued fraction of x.
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Assume now that α ∈ (0, 1) is irrational with continued fraction

α = 1/m1 + 1/m2 + · · ·+ 1/mk + · · · .
Let (pk/qk)k≥0 denote the sequence of the partial fractions. Let w be a point close
to 0 and z = α + w. For | Im z| ≤ 1/2, z belongs to a domain V (p/q) (defined in
Section 5.3.1) and we distinguish two cases.

(I) Here we assume that p/q = pk/qk is one of the partial fractions of α. One
then has by Proposition A1.1

|α− pk/qk| ≥ (2qkqk+1)−1 .

(I.1) If w ∈WH one gets

|z − pk/qk| ≥ c−1(qkqk+1)−H ,

thus

|zk|−1 ≤ cq−2
k (qkqk+1)H

and
1
qk

log |zk|−1 ≤ q−1
k [c+H log qk+1 + (H − 2) log qk] ,

which is small when α is a Brjuno number and k is large. Lemma 5.20,
Remark 5.18, and Theorem 5.10 lead to the desired conclusion.

(I.2) If w ∈ W̃h we will have

|z − pk/qk| ≥ exp[−c(qkqk+1)h] ,

thus

|zk|−1 ≤ cq−2
k exp[c(qkqk+1)h]

and
1
qk

log |zk|−1 ≤ cqhk+1q
h−1
k ,

which is small if α satisfies the diophantine condition we have assumed and k
is large. Once again the conclusion follows from Lemma 5.20, Remark 5.18,
and Theorem 5.10.

(II) Here we assume that p/q is not one of the partial fractions of α. We denote
by (p′l/q

′
l)0≤l≤L the partial fractions of p/q and by k the largest integer such

that p′k/q
′
k = pk/qk. Clearly one has k < L and p′L/q

′
L = p/q. By a classical

result ([HW], Theorem 184, p. 153)

|α− p/q| ≥ 1
2q2

.

For w ∈ W̃h one has

|z − p/q| ≥ exp[−cq2h] ,

thus

|zL|−1 ≤ cq−2 exp[cq2h]

and
1
q

log |zL|−1 ≤ q−1cq2h ,
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which is small since h < 1/2. Taking into account Theorem 5.10, Lemma 5.20,
and Remark 5.18 we only need to check that Bfinite(pk/qk) and Bfinite(p/q)
are close.

Let us introduce

ρ = max
k≤l<L

q′−1
l log

q′l+1

q′l
(l − k + 1)2 .(5.59)

By Lemma 5.20 we have

|Bfin(pk/qk)−Bfin(p/q)| ≤ cq−1
k + cρ ,

and we must show that ρ is small. Let l be such that

ρ = q′−1
l log

q′l+1

q′l
(l − k + 1)2 .(5.60)

We have

|p/q − p′l/q′l| ≤
1

q′lq
′
l+1

.

On the other hand, if w ∈ W̃h and z = w + α ∈ V (p/q), one has

|z − p/q| ≤ cq−2

from which it follows that

|p/q − α| ≤ c(log q)−1/h ,

thus

|α− p′l/q′l| ≤
1

q′lq
′
l+1

+ c(log q)−1/h .(5.61)

By the choice (5.60) of l we have

q′l+1 = q′l exp[
ρq′l

(l − k + 1)2
] ,

which implies

(log q)−1/h ≤ (log q′l+1)−1/h = [
ρq′l

(l − k + 1)2
+ log q′l]

−1/h .

When w approaches zero, q must be large so k must be large too and if ρ is not
small one has by (5.59)

[
ρq′l

(l − k + 1)2
+ log q′l]

−1/h ≤ 1/10q′−2
l

since h < 1/2.
We will also have 1

q′lq
′
l+1
≤ 1

10q
′−2
l , thus by (5.61)

|α− p′l/q′l| ≤
1
5
q′−2
l .

But (once again thanks to [HW], Theorem 184, p. 153) this implies that p′l/q
′
l is

one of the partial fractions of α and it must be pk/qk by definition of k. So one has
l = k and

|α− pk/qk| ≤
1

qkq′k+1

+ c(log q′k+1)−1/h ,
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with q′k+1 = qk exp(ρqk). This leads to the conclusion that ρ is small if α verifies the
diophantine condition of the second part of the theorem. If α is a Brjuno number
and w ∈WH the condition

|z − p/q| ≤ cq−2

implies the stronger inequality

|α− p/q| ≤ cq−2/H ,

thus

|α− pk/qk| ≤
1

qkq′k+1

+ cq
′−2/H
k+1 ,

where, once again, q′k+1 = qk exp(ρqk). Therefore ρ must be small in this case
too.

Remark 5.21. A careful examination of the previous proof leads to a slightly
stronger version of the first part of Theorem 5.19 (inspired by the work of Risler
[Ri]). The set B of Brjuno numbers α has an injective image into l1(N) as follows:

α 7→ (βl−1 logα−1
l )l≥0 .

Let K be a subset of B such that its image is relatively compact in l1(N). Then
the convergence

lim
w∈WH , w→0

Im B(w + α) = B(α)

is uniform w.r.t. α ∈ K.
We recall that a subset K of l1(N) is relatively compact if and only if
(i) ∀n ≥ 0, ∃Cn such that ∀(ul)l≥0 ∈ K one has |un| ≤ Cn;
(ii) ∀ε > 0 ∃n0 such that ∀(ul)l≥0 ∈ K one has

∑
l>n0
|ul| ≤ ε.

A1. Appendix 1: Real continued fractions

In this appendix we recall some elementary facts on standard real continued
fractions (we refer to [MMY], and references therein, for more general continued
fractions).

We will consider the iteration of the Gauss map

A : (0, 1) 7→ [0, 1] ,(A1.1)

defined by

A(x) =
1
x
−
[

1
x

]
.(A1.2)

Let

G =
√

5 + 1
2

, g = G−1 =
√

5− 1
2

.

To each x ∈ R \ Q we associate a continued fraction expansion by iterating A as
follows. Let

x0 = x− [x] , a0 = [x] ;(A1.3)

then x = a0 + x0. We now define inductively for all n ≥ 0

xn+1 = A(xn) , an+1 =
[

1
xn

]
≥ 1 ,(A1.4)
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thus

x−1
n = an+1 + xn+1 .(A1.5)

Therefore we have

x = a0 + x0 = a0 +
1

a1 + x1
= · · · = a0 +

1

a1 +
1

a2 +
.. . +

1
an + xn

,(A1.6)

and we will write

x = [a0, a1, . . . , an, . . . ] .(A1.7)

The nth–convergent is defined by

pn
qn

= [a0, a1, . . . , an] = a0 +
1

a1 +
1

a2 +
.. . +

1
an

.(A1.8)

The numerators pn and denominators qn are recursively determined by

p−1 = q−2 = 1 , p−2 = q−1 = 0 ,(A1.9)

and for all n ≥ 0

pn = anpn−1 + pn−2 , qn = anqn−1 + qn−2 .(A1.10)

Moreover

x =
pn + pn−1xn
qn + qn−1xn

,(A1.11)

xn = − qnx− pn
qn−1x− pn−1

,(A1.12)

qnpn−1 − pnqn−1 = (−1)n .(A1.13)

Let

βn =
n∏
i=0

xi = (−1)n(qnx− pn) for n ≥ 0, and β−1 = 1 .(A1.14)

From the definitions given one easily proves by induction the following proposition
(see [MMY]).

Proposition A1.1. For all x ∈ R \Q and for all n ≥ 1 one has

(i) |qnx− pn| = 1
qn+1 + qnxn+1

, so that 1
2 < βnqn+1 < 1 ;

(ii) βn ≤ gn and qn ≥ 1
2G

n−1 .

Note that from (ii) it follows that
∑∞

k=0
log qk
qk

and
∑∞

k=0
1
qk

are always convergent
and their sum is uniformly bounded. With the notation of Section 2.1, equation
(A1.5) can be written xn = g(an+1)xn+1, thus we have x0 = g(a1)g(a2) · · · g(an)xn.
The following characterization of the monoidM defined in Section 2.1 is therefore
relevant.
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Proposition A1.2. Let g(m) =
(

0 1
1 m

)
, where m ≥ 1. M is the free monoid,

with unit, generated by the elements g(m), m ≥ 1: each element g of M can be
written as

g = g(m1) · · · g(mr) , r ≥ 0 , mi ≥ 1 ,

and this decomposition is unique.

Proof. Let M∗ be the monoid with unit generated by the g(m),m ≥ 1. If m ≥ 1,
then one has g(m) ∈M and Mg(m) ⊂M, thus M∗ ⊂M.

Conversely let g ∈ M, g 6= id. We now prove that there exists a unique integer

m ≥ 1 such that
(
a′ b′

c′ d′

)
= g′ = g(g(m))−1 ∈ M , which leads to the conditions

b′ = a , d′ = c , a′ = b−ma , c′ = d−mc . We consider separately three cases.
1) a = 0, thus b = c = 1 and g = g(d), where d ≥ 1. If there were m ≥ 1 such

that g′ = g(g(m))−1 ∈ M, and g′ 6= id, one should have b′ = 0, thus a′ = 0
and a′d′ − b′c′ = 0, which is impossible.

2) a = 1, thus b, c ≥ 1 and d = bc ± 1. We therefore have b′ = 1 and a′ = 0
or a′ = 1. If a′ = 0, then b = m and c′ = d − bc, which is admissible if
and only if d = bc + 1. If a′ = 1, then b = m + 1 from which it follows that
c′ = d−mc = bc±1−mc = c±1, which is admissible if and only if d = bc−1,
and then b, c ≥ 2.

3) a > 1. Since a′ ∧ b′ = 1 the relation 0 ≤ a′ = b −ma ≤ b′ = a determines
uniquely m ≥ 1 and one has 0 < a′ < b′. But one also has b′ = a ≤ c = d′

and |a′d′ − b′c′| = 1, from which one easily gets d′ ≥ c′ ≥ a′.

A2. Appendix 2: Hyperfunctions

A2.1. We follow here [H], Chapter 9. Let K be a non–empty compact subset of
R. A hyperfunction with support in K is a linear functional u on the space O(K)
of functions analytic in a neighborhood of K such that for all neighborhoods V of
K there is a constant CV > 0 such that

|u(ϕ)| ≤ CV sup
V
|ϕ| , ∀ϕ ∈ O(V ) .

We denote by A′(K) the space of hyperfunctions with support in K. It is a Fréchet
space: a seminorm is associated to each neighborhood V ofK. One has the following
proposition.

Proposition A2.1. The spaces A′(K) and O1(C\K) are canonically isomorphic.
To each u ∈ A′(K) there corresponds ϕ ∈ O1(C \K) given by

ϕ(z) = u(cz) , ∀z ∈ C \K ,

where cz(x) = 1
π

1
x−z . Conversely to each ϕ ∈ O1(C \ K) there corresponds the

hyperfunction

u(ψ) =
i

2π

∫
γ

ϕ(z)ψ(z)dz , ∀ψ ∈ A ,

where γ is any piecewise C1 path winding around K in the positive direction. We
will also use the notation u(x) = 1

2i [ϕ(x+ i0)− ϕ(x − i0)] for short.
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A2.2. Let T1 = R/Z ⊂ C/Z. A hyperfunction on T is a linear funtional U on the
space O(T1) of functions analytic in a complex neighborhood of T1 such that for
all neighborhoods V of T there exists CV > 0 such that

|U(Φ)| ≤ CV sup
V
|Φ| , ∀Φ ∈ O(V ) .

We will denote by A′(T1) the Fréchet space of hyperfunctions with support in T.
For U ∈ A′(T), let Û(n) := U(e−n) with en(z) = e2πinz. The doubly infinite
sequence (Û(n))n∈Z satisfies

|Û(n)| < Cεe
2π|n|ε

for all ε > 0 and for all n ∈ Z with a suitably chosen Cε > 0. Conversely any such
sequence is the Fourier expansion of a unique hyperfunction with support in T.

Let OΣ denote the complex vector space of holomorphic functions Φ : C\R→ C,
1–periodic, bounded at ±i∞ and such that Φ(±i∞) := limIm z→±∞Φ(z) exist and
verify Φ(+i∞) = −Φ(−i∞).

Proposition A2.2. The spaces A′(T1) and OΣ are canonically isomorphic. To
each U ∈ A′(T1) there corresponds Φ ∈ OΣ given by

Φ(z) = U(Cz) , ∀z ∈ C \K ,

where Cz(x) = cotg π(x − z). Conversely to each Φ ∈ OΣ there corresponds the
hyperfunction

U(Ψ) =
i

2

∫
Γ

Φ(z)Ψ(z)dz , ∀Ψ ∈ A(T1) ,

where Γ is any piecewise C1 path winding around a closed interval I ⊂ R of length
1 in the positive direction. We will also use the notation

U(x) =
1
2i

[Φ(x+ i0)− Φ(x− i0)]

for short.

The nice fact is that the following diagram commutes:

A′([0, 1]) −−−−−→ O1(C \ [0, 1])

∑
Z

y
y ∑

Z

A′(T1) −−−−−→ OΣ

Here, the horizontal lines are the above–mentioned isomorphisms and
∑

Z is defined
in 2.2.2.

A3. Appendix 3: Some properties of the dilogarithm

A3.1. The classical dilogarithmic series (see [Le], [O] for more information) is de-
fined by

Li2(z) =
+∞∑
n=1

zn

n2
(A3.1)
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and it is convergent for |z| ≤ 1. Since − log(1 − z) =
∑+∞
n=1

zn

n , dividing by z and
integrating one obtains the analytic continuation of the dilogarithm to C \ [1,+∞)
by means of the integral formula

Li2(z) = −
∫ z

0

log(1 − t)
t

dt =
∫ z

0

(∫ t

0

dζ

1− ζ

)
dt

t
,(A3.2)

which we will use as a definition of the dilogarithm. Note that [1,+∞) is a branch
cut.

Since

Li2(z) = z

∫ 1

0

log t
tz − 1

dt ,

one obviously has that

Li2

(
1
z

)
= −

∫ 1

0

log t
z − tdt ,(A3.3)

which shows that Li2
(

1
z

)
is the Cauchy–Hilbert transform of the real function

ϕ0(t) =
{
− log t if t ∈ [0, 1] ,

0 elsewhere.(A3.4)

Note also that

Im Li2(t± i0) = ±π log t ,(A3.5)

where t ∈ [1,+∞). Moreover

|Li2(z)| = O(log2 |z|) as |z| → +∞ .(A3.6)

A3.2. Euler’s functional equations.

Li2(z) + Li2

(
1
z

)
= −1

2
(log(−z))2 − π2

6
,(A3.7)

Li2(z) + Li2(1 − z) = − log z log(1− z) +
π2

6
,(A3.8)

where z varies in C \ [0,+∞] and C \ ((−∞, 0] ∪ [1,+∞)) respectively.

A3.3. Special values.

Li2(1) =
π2

6
, Li2(−1) = −π

2

12
,

2Li2

(
1
2

)
=
π2

6
− (log 2)2 , Li2(2 ± i0) =

π2

4
± πi log 2 .

A4. Appendix 4: Even Brjuno functions

In [MMY] we also considered an even version of the Brjuno function and we
proved that this differs from the one considered here by a 1/2–Hölder continuous
function. In this appendix we explicitly state the relation among the two associated
complex Brjuno functions.
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A4.1. Let σ denote the matrix
(
−1 1
0 1

)
which corresponds to x 7→ 1− x.

At the real level, replacing periodic even functions with functions on [0, 1/2] and
null outside this interval, the operator Teven acting on L2([0, 1/2]) (for example)
can be written explicitly as

Tevenf(x) =
∑
m≥2

xf

(
1
x
−m

)
+
∑
m≥3

xf

(
m− 1

x

)
.

At the complex level (i.e. after the identification ofA′([0, 1/2]) to O1(C\[0, 1/2]))
one gets

Tevenϕ =
∑
m≥2

Lg(m)ϕ+
∑
m≥2

Lg′(m)ϕ ,

where g′(m) =
(

0 1
−1 m+ 1

)
= g(m)σ .

A4.2. We want to consider

(1− Teven)−1 : O1(C \ [0, 1/2])→ O1(C \ [0, 1/2])

and then one will have to make the resulting function even and periodic, thus one
will take ∑

Z

(1 + Lσ)(1− Teven)−1 : O1(C \ [0, 1/2])→ Oeven(H/Z) .

Note that Z t Zσ = Z t σZ.
When we expand (1+Lσ)(1−Teven)−1 we obtain a sum

∑
Lg where the matrices

g have the form

g = ε0g(i1)ε1g(i2) · · · g(ir)εr

with r ≥ 0, ik ≥ 2 and εk ∈ {1, σ}.
Note that σg(i) = g(1)g(i − 1) for all i ≥ 2, thus all matrices of the form

ε0g(i1)ε1 · · · g(ir) belong to the monoid M.

A4.3. Let r ≥ 0,

M(r) = {g(j1) · · · g(jr) , jk ≥ 1}

and let M̂(r) denote the part of M(r) made of matrices which can be written as a
product ε0g(i1)ε1 · · · g(is). We have the following

Lemma A4.1. Each matrix g ∈ M̂(r) can be written in a unique way as a product
of matrices ε0g(i1)ε1 · · · g(is). Moreover one has M(0) = M̂(0) = {1} and for all
r > 0

M(r) \ M̂(r) = M̂(r−1)g(1) .

Proof. Uniqueness is evident (just consider the first place at which the product
ε0g(i1)ε1 · · · g(is) differs from ε′0g(i′1)ε′1 · · · g(i′s′)). The second assertion follows eas-
ily from the remark that M̂(r) is indeed made of matrices g = g(j1) · · · g(jr) which
end with an even number of g(1)’s.
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Let M̂ =
⊔
r≥0 M̂(r) and

∑
M̂ =

∑
g∈M̂ Lg. One clearly has

(1 + Lσ) ◦ (1 − Teven)−1 =
(∑
M̂

)
◦ (1 + Lσ)

and by the previous lemma∑
M

=
∑
g∈M

Lg =
∑
r≥0

∑
g∈M(r)

Lg =
∑
r≥0

( ∑
g∈M̂(r)

Lg +
∑

g∈M(r)\M̂(r)

Lg

)

=
∑
r≥0

∑
g∈M̂(r)

Lg +
∑
r≥1

∑
g∈M̂(r−1)g(1)

Lg =
(∑
M̂

)
◦ (1 + Lg(1)) .

We are therefore led to conclude that

(1 + Lσ) ◦ (1− Teven)−1 =
(∑
M

)
◦ (1 + Lg(1))−1 ◦ (1 + Lσ) .

A4.4. It is not hard to check, as we did for the monoid M in Proposition A1.2,
that a matrix g belongs to the monoid M̂ if and only if d ≥ 2b > 0, c ≥ 2a ≥ 0,
d ≥ Gc, where G =

√
5+1
2 . Moreover the decomposition g = ε0g(i1)ε1 · · · g(ir) is

unique.

A5. Appendix 5: The real Brjuno function as a cocycle

In this Appendix we show how to interpret the real Brjuno function as a cocycle
under the action of PGL(2,Z) on R \Q. To this purpose we first recall some basic
definitions taken from the cohomology of groups. We refer to [Ja] and [Se] for more
information and the proofs.

A5.1. Group cohomology. Let G be a group and M an abelian group with a
left G–action, i.e. a structure of a left ZG–module. Recall that for n ≥ 0, one
defines

(i) the abelian group of n–cochains Cn(G,M), whose elements are applications
from Gn to M .

(ii) the coboundary operator dn : Cn(G,M)→ Cn+1(G,M):

(dnf)(g0, . . . , gn) = g0f(g1, . . . , gn) +
n−1∑
i=0

(−1)i+1f(g0, . . . , gigi+1, . . . , gn)

+ (−1)n+1f(g0, . . . , gn−1) ;

(iii) the abelian subgroups of n–cocycles Zn(G,M) = Ker dn and of n–coboun-
daries, Bn(G,M) = Im dn−1;

(iv) the n–th cohomology group Hn = Zn(G,M)/Bn(G,M).

Identifying C0(G,M) with M , one has H0(G,M) = Z0(G,M) = {m ∈M ; gm
= m for all g ∈ G} with M . An application c : G→M is a 1–cocycle iff c(g0g1) =
g0c(g1) + c(g0) , and a 1–coboundary iff c(g) = g ·m−m for some m and all g ∈ G.



COMPLEX BRJUNO FUNCTIONS 837

A5.2. Automorphic factors, cocycles and coboundaries. Let G be a group
acting on the left on a set X . Let A be an abelian ring, A∗ the multiplicative group
of invertible elements of A, and M a A–module. A function χ : G×X → A is an
automorphic factor if the application G×MX −→MX given by

(g, ϕ) 7−→ g · ϕ : g · ϕ(x) = χ(g−1, x)ϕ(g−1 · x) ∀x ∈ X ,

defines a left action of G on MX : one must have

χ(g0g1, x) = χ(g0, g1x)χ(g1, x) .

One has therefore given to MX the structure of a Z[G]–module. The coboundary
of an element ϕ ∈MX is given by d0ϕ(g) = g · ϕ− ϕ , i.e.

d0ϕ(g)(x) = χ(g−1, x)ϕ(g−1 · x)− ϕ(x) ∀x ∈ X .

A 1–cocycle is an application c : G→MX verifying g0 · c(g1)− c(g0g1)+ c(g0) = 0 ,
i.e., letting č(g) = c(g−1):

č(g0g1) = c(g−1
1 g−1

0 ) = c(g−1
1 ) + g−1

1 c(g−1
0 ) = č(g1) + g−1

1 č(g0) ,

or, equivalently, č(g0g1, x) = χ(g1, x)č(g0, g1 · x) + č(g1, x) ∀x ∈ X .

A5.3. Action of PGL(2,Z) on R \ Q. Let us consider G = PGL(2,Z) and
X = R \ Q, the action being given by the homographies. The transformations
T (x) = x + 1 and S(x) = x−1 generate PGL(2,Z). One has the following more
precise result:

Proposition A5.1. Let g ∈ PGL(2,Z) and let x0 ∈ R \ Q. There exist r ≥ 0 and
elements g1, . . . , gr ∈ {S, T, T−1} such that

(i) g = gr · · · g1;
(ii) let xi = gixi−1 for 1 ≤ i ≤ r, then xi−1 > 0 if gi = S.

Moreover one can require that gigi−1 6= 1 for 0 < i ≤ r, and in this case r, g1, . . . , gr
are uniquely determined.

Proof. First we prove the existence. Let U(x) = −x. We consider five cases:
1. If g = T±1, any x0, one takes r = 1, g1 = T±1.
2. If g = U and x0 ∈ (0, 1), then r = 6 and g1 = S, x1 = x−1

0 ; g2 = T−1,
x2 = 1−x0

x0
; g3 = S, x3 = x0

1−x0
; g4 = T , x4 = 1

1−x0
; g5 = S, x5 = 1 − x0;

g6 = T−1, x6 = −x0.
3. If g = U and x0 ∈ (n, n+ 1), n ∈ Z, one is led to consider the previous case

by using U = T−nUT−n.
4. If g = S it is immediate if x0 > 0, and if x0 < 0 one is led to consider case 3

by using the relation S = USU .
5. One has the cases g = S and g = T±1 for all x0. Since S and T generate

PGL(2,Z) this implies the existence in all possible cases.
We can now prove uniqueness. It is sufficient to show that if r > 0 and

g1, . . . , gr ∈ {S, T, T−1}, x0 ∈ R \Q verify

gr · · · g1 = 1 and xi−1 > 0 if gi = S (1 ≤ i ≤ r) ,
then there exists 1 < i ≤ r such that gigi−1 = 1. We prove this by contradiction:
let r be minimal, r > 0.

If x0 < 0 one must have r ≥ 2, g1 = T and gr = T−1, thus r ≥ 3 and
gr−1 · · · g2 = 1, which contradicts the minimality of r.
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One is led to assume x0 > 0. Clearly one must have xi > 0 for all i ∈ [0, r]. Let
i1 < i2 < · · · < ik denote the indices i such that gi = S. The integer k > 0 is even
because of the determinant sign. Let us assume that xi1−1 > 1. Then xi1 ∈ (0, 1),
thus xi2−1 = xi1 + (i2 − i1 − 1) > 1. Therefore xil−1 > 1 for all 1 ≤ l ≤ k.
But then

∏r
1

dgi
dxi−1

(xi−1) < 1, in contradiction with the assumption gr · · · g1 = 1.
If there exists l such that xil−1 < 1, then one permutes circularly all gi and xi
(mod r) until one is back to the case previously considered. Finally if xil−1 < 1 for
all 1 ≤ l ≤ k, then

∏r
1

dgi
dxi−1

(xi−1) > 1, which is again in contradiction with the
assumption gr · · · g1 = 1.

Corollary A5.2. Let A be an abelian ring, and let the maps T and S be such that
t : R\Q→ A∗, s : (0, 1)∩ (R\Q)→ A∗. There exists a unique automorphic factor
χ such that

χ(T, x) = t(x) for all x ∈ R \Q = X ,

χ(S, x) = s(x) for all x ∈ X ∩ (0, 1) .

Proof. Let s(x) = (s(x−1))−1 for all x ∈ X ∩ (1,+∞). The map s is therefore
defined on X ∩ (0,+∞) and one must have

χ(S, x) = s(x) for all x ∈ X,x > 0 .

a) The uniqueness of χ follows from the existence in the previous proposition: if
g ∈ PGL(2,Z) and x0 ∈ X one must have

χ(g, x0) =
r∏
i=1

χ(gi, xi−1),(A5.1)

where g1, . . . , gr and x1, . . . , xr are defined in the proposition and

χ(T, x) = t(x) for all x ∈ X ,

χ(T−1, x) = (t(x− 1))−1 for all x ∈ X ,

χ(S, x) = s(x) for all x ∈ X,x > 0.

b) The existence of χ follows from the uniqueness in the previous proposition:
here we use (1) with r minimal (i.e. gigi−1 6= 1 for all 1 < i ≤ r) to define χ and
one must check that

χ(g′g, x0) = χ(g′, gx0)χ(g, x0) .

Let y0 = xr = gx0 , g′ = g′s · · · g′1 , following the previous proposition, and let

g′′ = g′g , g′′i =
{
gi if 1 ≤ i ≤ r ,
g′i−s if r < i ≤ r + s ,

xi = yi−r .

Then g′′ = g′′r+s · · · g′′1 satisfies the conclusions of the proposition. The decompo-
sition may not be minimal (since one may have g′1gr = 1) but one can obtain a
minimal decomposition by deleting g′1gr if g′1gr = 1, then (if g′1gr = 1) by deleting
g′2gr−1 if g′2gr−1 = 1, and so on. Given the definition (1) of χ the automorphic
property is now verified if

χ(g, g−1x)χ(g−1, x) = 1

when g = T, T−1 or S and x > 0 if g = S, which is immediate to check.
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Corollary A5.3. Let A be an abelian ring, χ an automorphic factor, M an A–
module MX with the structure of the Z[G]–module defined by χ. Let

čT : X →M ,

čS : X ∩ (0, 1)→M

denote two maps. There exists a unique cocycle č : G×M →M such that

č(T ;x) = čT (x) for all x ∈ X ,

č(S;x) = čS(x) for all x ∈ X ∩ (0, 1) .

Proof. One must have

č(T−1;x) = −χ(T−1, x)čT (x − 1) for all x ∈ X
and

č(S;x) = −χ(S, x)čS(x−1) for all x ∈ X , x > 1 .

Moreover, if g = gr · · · g1 and x0 are given as in the proposition, then

č(g;x0) =
r∑
i=1

(č(gi, xi−1)χ(gi−1 · · · g1, x0))(A5.1′)

from which the uniqueness follows. The proof of existence is the same as the one
given for Corollary A5.2.

A5.4. The real Brjuno function as a cocycle. Let A = R, t(x) = 1 and
s(x) = εxν with ε ∈ {−1,+1}, ν ∈ R and apply Corollary A5.2. Then

χ(T n, x) = 1 , for all n ∈ Z , x ∈ X ,

χ(S, x) = εxν , for all x ∈ X , x > 0 .

If x0 ∈ (0, 1), one has seen that U = T−1STST−1S, thus

χ(U, x0) = εxν0ε

(
1− x0

x0

)ν
ε

(
1

1− x0

)ν
= ε .

From U = T nUT n it follows that χ(U, x) = ε for all x ∈ X , and from S = USU
it follows that χ(S, x) = εε|x|νε for x < 0, or χ(S, x) = ε|x|ν for all x ∈ X . One
concludes that one must have

χ(g, x) =
{

|cx+ d|ν if ε = +1 ,
det(g)|cx+ d|ν if ε = −1

for all g =
(
a b
c d

)
∈ PGL(2,Z).

Consider now the functional equations

Bf (x) = xBf (1/x) + f(x) , x ∈ (0, 1) ∩ R \Q ,
Bf (x) = Bf (x+ 1) , x ∈ R \Q ,

where f : (0, 1) ∩ R \Q→ C is given. Now we look for Bf : R \Q→ C, and we
easily see that the relevant automorphic factor is the case ε = +1, ν = +1 above
(other values of ν have also been considered in [MMY]). By Corollary A5.3, there
exists exactly one 1–cocycle cf such that

Cf (T, x) =0 ∀x ∈ R \Q ,
Cf (S, x) =f(x) ∀x ∈ R \Q ∩ (0, 1) .
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The 1–cocycle is a 1–coboundary if and only if the functional equations have a
solution Bf , in which case we have cf = −d0(Bf ). These considerations also apply
and may become fruitful in case we restrict CR\Q to one of its C[G]–submodules,
for instance measurable functions.
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