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1. INTRODUCTION

1.1. The real Brjuno function. Let @ € R\ Q and let (pn/¢n)n>0 be the
sequence of the convergents of its continued fraction expansion. A Brjuno number
is an irrational number « such that > log(;]%“ < 4o0.

The importance of Brjuno numbers comes from the study of one-dimensional an-
alytic small divisors problems. In the case of germs of holomorphic diffeomorphisms
of one complex variable with an indifferent fixed point, extending a previous result
of Siegel [S], Brjuno proved ([Brl], [Br2]) that all germs with linear part A = ™
are linearizable if « is a Brjuno number. Conversely the third author proved that
this condition is also necessary [Yol]. Similar results hold for the local conju-
gacy of analytic diffeomorphisms of the circle ([KH], [Yo2], [Yo3]) and for some
area—preserving maps ([Ma], [Dal]), including the standard family ([Da2], [BG1],
[BG2]). The set of Brjuno numbers is invariant under the action of the modular
group PGL (2,Z) and it can be characterized as the set where the Brjuno function
B : R\ Q — RU{+00} is finite.

This arithmetical function is Z—periodic and satisfies the remarkable functional
equation

(1.1) B(a) = —loga + aB (é) . ae(0,1),

which allows B to be interpreted as a cocycle under the action of the modular group
(see Appendix 5 for details). In terms of the continued fraction expansion of « the
Brjuno function is defined as follows:

“+o00
(1.2) Bla)=> Bj_1(a)loga; ",
j=0

‘ o — pj .
where 81 =1, Bj(a) =|p; —gja| (> 0), o = —% (see Appendix 1

for a short summary of the relevant facts concerning the continued fraction).
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In a previous paper [MMY] we introduced the linear operator

1
Ti@) =af (1) ze 0.0,
acting in the space of Z—periodic measurable functions and we studied the equation
(1-T)By=f,
so that
Bj(x +1)=Bs(z) VzeR,
By(z) = f(x) + «Bs(1/x) Vx € (0,1).

The choice f(x) = —log{z} (where {-} denotes the fractional part) leads to the
Brjuno function B. For other choices of the singular behaviour of f at 0 the
condition By < +o0 leads to different diophantine conditions. On the other hand if
f is Holder continuous, then By is also Holder continuous and this fact could help
to explain the numerical results of Buric, Percival and Vivaldi [BPV].

Acting on LP(]0,1]) the operator T" has spectral radius bounded above by @
(thus (1 — T) is invertible). A suitable adaptation of this argument has led us to
conclude that the Brjuno function belongs to BMO (T') (bounded mean oscillation;
see references [Gal, [GCRF] for its definition and more information).

By Fefferman’s duality theorem, BMO is the dual of the Hardy space H!; thus
one can add an L function to B so that the harmonic conjugate of the sum will
also be L*°. This suggests we look for a holomorphic function B defined on the
upper half plane which is Z—periodic and whose trace on R has for imaginary part
the Brjuno function B. The function B will be called the complex Brjuno function.

Another motivation for the introduction of the complex Brjuno function comes
from results concerning the problem of the linearization of the quadratic polynomial
Py(2) = Mz — 2?) ([Yol], Chapter II). One has the following results:

(1) there exists a bounded holomorphic function U : D — C such that |U()\)] is
equal to the radius of convergence of the normalized linearization of Pj;

(2) for all \g € S*, |U()\)| has a non-tangential limit in Ao (which is still equal to
the radius of convergence of the normalized linearization of Py, );

(3) if A =™ o € R\ Q, Py is linearizable if and only if « is a Brjuno number.
Moreover there exists a universal constant C; > 0 and for all ¢ > 0 there
exists C; > 0 such that for all Brjuno numbers « one has

(1-2)B(a) - C. < —log [U(N)| < B(a) + ' .

In [MMY] the authors proposed the following conjecture (see also [Ma)): the func-
tion defined on the set of Brjuno numbers by a — B(a) + log|U(e?™)| extends
to a 1/2-Holder continuous function as « varies in R. If this were true, then the
function —iB(2) + log U (e?™%*) would also extend to a Holder continuous function
on H.

1.2. The complex Brjuno function. A natural question now is how to extend
the operator T to complex analytic functions. This is achieved as follows: the op-
erator T extends to the space A’([0, 1]) of hyperfunctions u with support contained
in [0,1] (see Section 1.4 for a proof of this fact and Appendix 2 for a very brief
introduction to hyperfunctions). This space is canonically isomorphic to the com-
plex vector space O!(C \ [0, 1]) of holomorphic functions on C \ [0, 1] which vanish
at infinity. The connection between u and the associated holomorphic function ¢
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is commonly written as: u(z) = 5 (¢(z + i0) — p(z — i0)), which is also equal to

JIm @(x +i0) when ¢ is real (i.e. p(Z) = ¢(z)). On O}(C\ [0,1]) the formula for T
reads

1) waE =23 [o(tom)-eom]+ 3 em

m=1

Formally we have

(1.4) (1=T)"0(z) =Y _(T79)(2) = Y (L) (2) ,

r>0 geEM

where the monoid

M={g=<z Z)eGL(Z,Z), d>b>a>0, anddzcza}u{(é ?)}

acts on O'(C\ [0, 1]) according to

15 L)) = a2 o (E2) - o (2] - dettare e (1)

The series (1.4) actually converges in O'(C\ [0, 1]) to a function Y~ ,, ¢. To recover
a holomorphic periodic function on H one sums over integer translates:

(1.6) =y (Z(p) z—n)

ne”Z

To construct the complex Brjuno function one has to take ¢o(z) = —%Lig (%),
where Lig is the dilogarithm (Appendix 3, [O]). Then the above formulas give

- X Ao [ (55) e (D)

(1.7) :D/qe(@
. N ”Z . 1! 1 + 2
+(p" —¢"2) {ng (pfq > — Liy (—q—ﬂ + Zlog 2 q/ } :
qz —p q q q+q
where {%:, p—::} is the Farey interval such that £ = p,ip,, (with the convention

1.3. Main results: Properties of the complex Brjuno function. Our main
result (Corollary 5.8) is that the real part of B is bounded on the upper half plane
(note that this statement is stronger than the result obtained by the above men-
tioned general properties of the harmonic conjugates of BMO functions); moreover
the trace of Re B on R is continuous at all irrational points and has a jump of w/q
at each rational point p/q € Q (see Section 5.2.9).

A numerical study of the function arg U (e27%)
haviour (see Figure 1).

Concerning the boundary behaviour of the imaginary part of B we prove the
following (Theorem 5.19):

(i) if & is a Brjuno number, then Jm B(a + w) converges to B(a) as w — 0 in
any domain with a finite order of tangency to the real axis;

(ii) if v is diophantine, one can allow domains with infinite order of tangency (see
(5.58)).

seems to indicate a similar be-
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1.5

FI1GURE 1. The argument of the function U close to the unit circle:
plot of arg U(0.999¢%) for —7 < z < 7.
The precise behaviour of Jm B at rational points is described by Theorem 5.10.

1.4. Hyperfunctions and operator T. Let u,¢ € L?([0,1]), m € N, m > 1.
We consider

(1.8) Tu(x) = {

Note that Tp,u = (T'u) |[ 1) thus T'= 3" -, T),. We define the adjoint 7}, by

m-+1'm

zu(l/z —m) ifxE[ ! i},

m+1’m

0 otherwise.

/o1 Tru(z)p()de = /0 1 w(@)Thp(x)dz

which gives

Th(e) = — )3w( ! )

(m+x m+x

The previous formula with 1 analytic in a neighborhood of [0, 1] allows us to extend
the domain of definition of T}, to the hyperfunctions u € A’([0,1]) (see Appendix 5

_1
m+1’
1

for a very short summary of hyperfunctions) and to obtain T,,u € A’ T}q

1
m+vy1’ m+'yoD c

More generally, if v € A'([v0,7]), 70 > —1, then Tj,u € A’ ({

A’ ({O, ﬁ}) One has

(1.9) /O Tu(x)(x)de = > /O w(x) T (x)da .

m>1

If 4 is holomorphic in a neighborhood V' of [0, 1], then also T 1) is holomorphic in
V' and one has

1
(1.10) sup| Tl < 2m~3sup fyl
v 2 v

(this follows immediately from the estimates of Section 3.2 choosing V' to be the
complement of a neighborhood of D, with respect to the Poincaré metric on C '\
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[0,1]). Therefore the series > -, T;,u converges in A’([0,1]) to a hyperfunction
which will be denoted T'u. -

Let u € A'([v0,m]), 70 > —1, and let » € OY(C \ [y0,71]) be the associated
holomorphic function, i.e. ¢ is holomorphic outside [y, v1] and vanishes at infinity.
For all m > 1 the holomorphic function associated to Ti,u is Ly given by
equation (1.5) with a =0, b=c=1, d = m. Indeed if z ¢ [0, 1]

(1.11) (Tmu)(e:) = w(Tpc.),
where ¢, (z) = %x 1 =, and
1 1 1 1 1
T c.(z) = = - -
O e (Ex ] (e s =)

0
= l&cz(a:)

—z (cifm(x) - c_m(a:))] .

Z=—m

Thus we are led to define Ty, according to (1.3), as an element of the space
O'(T\ [0,1/(1 + 7))

To construct the complex analytic extension of the functions By (defined in
Section 1.1) our strategy is the following:

1) take the restriction of the periodic function f to the interval [0, 1];
2) consider its associated hyperfunction u; and its holomorphic representative
p € OH(C\ [0,1]).

Then the series (1.6) converges (thanks to Corollary 3.6) to the complex extension
By of the function By. The main difficulty (unless f belongs to some L? space; see
Section 4.3) would be to recover By as non—tangential limit of the imaginary part
of By as Jmz — 0.

1.5. Summary of the contents. Let us now briefly describe the contents of this
article.

In Section 2 we discuss the relation between the monoid M and the full modular
group GL (2,Z). We then describe various automorphic actions of M.

In Section 3, the introduction of a complex analogue of the continued fraction
expansion of a real number allows us to prove the convergence of the series (1.4)
and (1.6) (Corollary 3.6). The main feature of the complex continued fraction is
that it reduces to the real continued fraction when the number is real and it stops
after a finite number of iterations when the number is rational or complex. In the
latter case the absolute value of the imaginary part of the iterates grows at least
exponentially with the number of iterations and when it reaches 1/2 the iteration
stops.

In Section 4 we use the complex continued fraction to study the behaviour of the
series (1.4) when z is close to [0,1]. This is interesting in itself and it will be very
important when applied to the complex Brjuno function in order to prove our main
results. Our study allows us to prove that the restriction of T to the Hardy spaces
HP(C\ [0,1]) N OYC\ [0,1]), 1 < p < +o0, is continuous with spectral radius
bounded above by @ The same result holds also on the space of functions
¢ € OY(C\ [0,1]) with bounded real part.

The complex Brjuno function is finally introduced in Section 5 where we state
and prove our main results.
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In the Appendices we recall the results we need on the real continued fraction,
on the hyperfunctions and on the dilogarithm. Then we show how to relate the
complex Brjuno function with the even real Brjuno function treated in [MMY].
Finally we describe how the real Brjuno function can be viewed as a cocycle under
the action of the modular group.

2. MODULAR GROUP, THE MONOID M AND ITS ACTION

According to (1.4) the inversion of (1 — T') leads us to consider the monoid M
of matrices of GL(2,Z). In this section we study its algebraic properties and we
describe various actions of the modular group and of the monoid M on meromorphic
or holomorphic functions.

2.1. Algebraic properties, notation, structure of the monoid M; relations
of M with the modular group and with Farey intervals.

2.1.1. Notation.
G :GL(Q,Z):{(“ b

. d) s a,0,¢,d €L, g4 :=ad—bc==+1};

H is the subgroup of order 8 of matrices of the form (8 g,) or (g, S) , where

g e {=1,+1}
b
0 1 d

that, if g # id, we have d >b>a >0and d > ¢ > a.

M is the monoid with unit (1 O) made of matrices g = (CCL ) € G such

Z is the subgroup of matrices of the form (é TlL), n € 7.

2.1.2. Let g(m) = <? 7711)7 where m > 1. Clearly g(m) € M. Moreover, M is the

free monoid generated by the elements g(m), m > 1: each element g of M can be
written as g = g(mq)---g(m,),r > 0,m; > 1, and this decomposition is unique
(see Proposition A1.2).

2.1.3. One has
G=7Z-M-H,
i.e. the application Z x M x H — G, (z,m,h) — g=z-m-h is a bijection.

Z such that d > ¢ >0
with the following additional restrictions: a =1lifc=0,andb=a+1ifd=c=1.
We will also often use the following remark, which is an immediate consequence

of the structure of M and of the relation

o) (g 1) =am+1):

2.1.4. The subset Z - M of G is made of matrices g = (Z

one has the partition

1 1 0 1
Z-M—Z~./\/l~<0 1)I_IZ-/\/I~<1 1>.
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2.1.5. Let us consider the usual action of G on C = C U {oc} by homographies:

(Ccl Z) cz = gj j-_(bi The following facts are easy to check:

1. g-[0,1] = [0, 1] if and only if g belongs to the subgroup of order 4 of matrices
of the form + (1 0), + <_1 1).

0 1 0 1
2. The monoid of the elements g such that g - [0, 1] C [0, 1] admits the partition

-1 0 -1 1 1 -1
woa (0 )um( Yea (! )

-1 1 1 1 -1 0
Note that (0 1) = (O 1) ( 0 1).
3. The application g — g -1 = gi b is a bijection of ZM over Q which maps
M onto QN (0,1].

4. The application g — ¢ -0 = b/d maps ZM onto Q and each rational number
has exactly two inverse images. The two elements which map 0 on 1 are

<(1) 1) and <? }) This makes the partition of 2.1.4 less mysterious.

5. The application g — ¢- [0, +00] is a bijection of ZM on the set of Farey inter-
vals (the convention we adopt here implies that [n,+oo] is a Farey interval,
but [—oo,n] is not). For the definition and properties of the Farey partition
of [0,1] we refer the reader to [HW].

6. The application g +— g- 00 =a/c € Q = QU {oco} of ZM on Q is surjective.
Moreover

e g-00 =0 if and only if g € Z;
e g-00=n €7 if and only if

_(n 1+kn _(n —=14+kn )
g(l k >7k217 or g<1 k >;k227

e g-0o=a/e, ¢c>1,if and only if

a a +ka a a'+ka
= > = >
g (C C/ kc) ) k — 1) Or g (C C// kC b k — 1 b

Q

’ "
where {%, %} is the Farey interval which contains a/c.

2.2. Actions of M on some spaces of holomorphic functions.

2.2.1. Let U be an open subset of C. We will denote by O(U) the complex vector
space of holomorphic functions on U. Let I C R be a compact interval and let
k€ Z. If k > 0 (k < 0 respectively), we will denote with O*(C \ I) the complex
vector space of functions holomorphic in C \ I, meromorphic in C \ I, which have
a zero at infinity of order at least k (resp. a pole of order at most |k|).

Let g = (i Z) € G and assume that ¢ is meromorphic in U. We define

(2.1) LW p(z) = (a—ez) b (dz - b) .

a — Cz
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The function Lék)go is meromorphic in g - U. Note that

(Lgk)@), _ kCL§k+1)(p + 59L§k+2) SO/,
(L )" = k(k+ 1)L o + g4 (2k + 2)cLFTH " + LEF

thus, for k£ = —1
(2.2) (L(g_l)SO)” — L§3)<p// )

Note also that if g € Z, then Lgk) does not depend on k.
The formula (2.1) above clearly defines an action of G: if g,¢' € G, k € Z and ¢
is meromorphic in U, then the functions Lg(]k) (L;]f)go) and Lé’;)/go (meromorphic on

g9’ - U) coincide.

2.2.2. Let J denote a compact interval of R and let ¢ € O%(C \ J). The series

(2.3) Z oz —n) = Z Lék)go (for all k)

nez g€z

converges uniformly on compact subsets of C \ R and also on the domains {z €
C,|Imzl>6>0, |Rez| < A}. The sum will be denoted ), ¢; it is a function
holomorphic in C\ R, periodic of period 1 and vanishing at +ico. Thus taking the
quotient by Z it can be represented by means of the variable g = e*27%,

If p € OY(C\ J) with [0,1] C J, then one can decompose in a unique way

z

(2.4) ¢(2) = aplog + ¢o(2) ,

z—1

where ag € C, o € O?(C\ J) and we consider the main branch of the logarithm
in C\ R™. We have

N o z—n 1o z+ N
Z & —n—1 L N_1
n=—N

and this leads to the definition
. —aomi if Imz >0,
(2.5) zz:so(z) = zz:wo(z) + {Jraom. £ e < 0.

Note that in order to insure the convergence of the series 9z Lgk)ap one must
1 -n

regroup together the terms (é Tf) and (O 1

>, n > 1 (symmetric summation

or Eisenstein’s summation).

2.2.3. Let k € Z and g € M. Since g-[0,1] C [0, 1] if ¢ is meromorphic in C\ [0, 1],
then Lék)go will still be meromorphic in C \ [0, 1]. Moreover if ¢ € O%(C \ [0, 1]),
then also Lgk)go € OF(C\ [0,1]). Thus one has an action of the monoid M on
OF(C\ [0, 1))
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2.2.4. We will now define a new action L, of M on O(C\ [0, 1]) which differs from

the action L_Efl) on (’)_1(@_\ [0,1]) by an affine correction.
All functions ¢ € O~1(C \ [0,1]) can be uniquely written as

(2.6) p(2) = Az + B +p(p)(2) , p(p) € OH(C\[0,1)).
Note that if g = (Ccl Z) € G and ¢¥(z) = Az + b, then

1 _
L(g Jip(z) = A(dz — b) + B(a — cz2)
is still an affine function. Thus the formula
(2.7) Lgp = p(Ly V),
where g € M, ¢ € OY(C\ [0,1]), defines an action of M on O'(C \ [0,1]) which
makes the following diagram commute:

(=1

LT\ [0,1]) —~— O YT\ [0,1])

l 5

C\[o O'(C\ [0,1])

b
d

(2.8) Lyp(2) = (a— cz) {(p (ZZ__CD — (—g)] — gty <—‘—Ci> .

Since this definition differs from that of Lgﬁl) only by an affine correction one
clearly has

(2.9) (Lyw)" = LP¢"
where ¢” € O3(C\ [0, 1]). Equivalently one can say that Ly is obtained by taking

g

More explicitly, if g = (CCL ) € M, then

the double primitive of L§3)g0’ " which vanishes at infinity.
Two other formulas will be used throughout what follows: if ¢ € O'(C\ [0,1]),

g—<ccZ b>€/\/landz¢[ ,—}:g~[0,+oo],onehas

d
Lyp(z) = egc [/01 ¢ <—C—i +Egc(a%cz)> dt — ¢’ (‘%)}

=c 3 a—cz)? /01 o (—g —l—f—:gﬁ) (1—t)dt.

Note that the assumption about z means that the segment whose extremities are
—d/c and (dz — b)/(a — cz) does not intersect the interval [0,1]. The two formulas
are thus nothing else than Taylor’s formulas of first and second order with integral
remainder.

2.2.5. If o € O(C\ I), we denote o - ¢(z) = ¢(2) . o is an involution of O(C \ I)
which preserves all the subspaces O%(C \ I), commutes with p and with the actions
of M on OF. If 6 - ¢ = ¢, then p(z) € R for all z € R\ I, and we say that ¢ is
real holomorphic.

(2.10)
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3. COMPLEX CONTINUED FRACTIONS

Exactly as in the real case treated in [MMY], where the use of the continued
fraction expansion was important for the study of the real Brjuno function, the
introduction of a complex analogue of Gauss’ algorithm of continued fraction ex-
pansion of a real number will be essential for the study of the boundary behaviour
of > \((Lgp)(z) and the construction of the complex Brjuno function. In this
section we first define our complex version of the continued fraction (Section 3.1)
then we use it to estimate the spectral radius of T' (Section 3.2) and to prove the
convergence of the series (1.4) and (1.6) (Corollary 3.6).

3.1. Definition of the complex continued fractions.

3.1.1. We consider the following domains:

Do—{ze((:,|z+1|<1,9%ez>§—1} ,

Dl—{ze(C,|z|>1,

1 1
-l )
D={z€C,|z|<1,|z—i|>1,|z+1i>1,Rez >0},
Hy={z€C,lz—i|<1,|z+1]>1,Tmz<1/2},
H)={2€C,z € Hy},
A=HyUHjUD={z€C,|z|<1,|z+1]>1,|Tmz| <1/2},
Dy =C\ (Dg UAU D)

:{|3mz|>1/2}U{9{ez<?—1}u{9‘{ez>?, |z —1/V3| > 1/V3} .

Figures 2 and 3 show these domains and their image under the inversion S(z) = 1/z.
A fundamental property is the following;:

e if 2 ¢ DU D; (in particular if z € Do), then 1/z — m € Dy for all m > 1;

o if z€ Dy, then1/2—1¢€ Dy and 1/z —m € Dy for all m > 2.

Observe that SD = J,,~;(A + m), where the domains have disjoint interior.
Thus, for z € D, we define

(31) ) =2 —m=(g(m) ™ -2

(we recall that g(m) = (1) ! , m > 1), where m > 1 is the unique integer such
that A(z) € A, |A(z)| < 1. Tterating from zg € D, we define

(3.2) zip1 = A(zi) = A™ (20)

as long as z; = A'(z) € D. The iteration process stops when one of the two following
conditions is verified:

e z; = 0 for some [ > 0; this happens if and only if zy € Q,
e z; ¢ (DU{0}) for some I > 0; this happens if and only if z ¢ R.

For all 0 < i < [, we will denote the integer m;;1 such that

1
(3.3) Zif1 = = Migl, Mig >1.

(3
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1.5

—1.

FIGURE 2. The various domains D; used for the definition of the

complex continued fraction.

Do

A=HyUH{UD

SDO
2 SH!
L~ 0
BY -
1 SD .
-3 -2 V 2 3
SDwo -
SD,
~ SH,
SDy

FIGURE 3. Result of the action of S : z+— 1/z on the domains of

Figure 2.

—3L
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3.1.2. Let Pi-1 Pe) 0 1 0 1 e M, 0 <1 <. Then one has
Gi-1 G 1 m 1 my

the same recurrence relations as for the real continued fraction

(3.4) Dit1 = Mi41Pi + Pi-1 5
Gi+1 = Miy1G;i + ¢i-1 ,

with initial data p_1 = ¢ = 1 and pg = ¢—1 = 0. Moreover
_ bimzitpi P Gi%

3.5 20
(3:5) Gi1zi+q " qi—120 — Pie1

and if one poses
(3.6) Bi(z0) = H zj = (=1)"(qiz0 — pi) ,

then

. Zi - 1
G+ Gi-1zi Qi1+ GZip

Finally one has
(=) Imzo = |Bic1(20)> Im zi = |qi + qi—12:] > Im 2,

321‘ = (1) (Bi-1(20)) 2 = (=1)"(¢i + qi-12:)°
20

Observe that, as |z;11 + 1| > 1 and Re z;41 > ‘/75 — 1 for i < I, we have from (3.7)

o 2v2

(3.8a) 1Bi(20)] < gihleos /127 = T Ak

and, as ¢; < giy1, |zit1] < 1,
1
(3.8D) 18i(0)] = 54i34 -
3.2. The operator T, its spectral radius and the sum over the monoid.

3.2.1. Let v1 > v > —1, I = [y0,7m1], p € OL(C\ I).
For all m > 1 one has (compare with (2.10))

Lymyo() = =2 (¢ (£ = m) = pt=m)) + /(=)

1
4
= —zil/ "’ <—m—|— —) (1 —1t)dt,
0 z

provided that z ¢ [0,1/(y0 + m)], and one has an even simpler formula for the
action at the level of second derivatives

(3.9)

(3.10) LS (z) = =2 7% (1 - m> .

z
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3.2.2. Let € > 0,
(3.11) U.={2€C,Rez<y—corRez >~y +eor|Imz|>ec}.
We have the following

Proposition 3.1. Let y9,71 be as above, I = [y9,v1], J =[0,1/(1 4+ )]

1) For all p € OY(C\ I), the series Y., <1 Lym)¢ converges uniformly on com-
pact subsets K of C\ J to a function_Tgo € OY(C\ J) and there exist € > 0
and Cr > 0 such that supg |To| < Ck supy_ || -

2) For ally € O3(C\I) the series > om>1 L;‘?)m)w converges uniformly on compact
subsets K of C\ J to a function T®)yp € OY(C\ J) and there exist ¢ > 0 and
Cx > 0 such that supy |T®hp| < Ck supy;_ [¥] .

3) For all p € OY(C\ I) one has T® " = (Tp)" .

Proof. Let € > 0. There exists c. > 0 such that for ¢» € O3(C\ I), z € U one has
[(2)] < ezlz| ™ sup [y

If K is a compact subset of C \ J, there exists € = ex such that 1/z —m € U.

for all m > 1 and z € K. Moreover there exist cx > 0 and M = M(vp), such

that |1/z_— m|~t < cgm™! for all z € K, m > M. Consequently, for 2 € K and
1 € O3(C\ I) we have

D

m>1

1 .
(2 <— —m)‘ < desup ||, with ¢ = M 4 c.c3; Z m=3,
& Ue m>M
which proves the second part of the proposition. _

By integrating twice from oo one deduces that for ¢ € OYC\ I) the series
> m>1 Lg(m) converges uniformly on compact subsets of C\ .J to a function Ty €
OY(C\ J). Moreover for any compact K C C\ J there exist c. > 0 and cx > 0
such that for z € K, |(T9)"(z)| = [(T®¢")(2)] < ckl|z|>supy, |¢”| . On the
other hand there exists ¢ > 0 such that supy, [¢"| < ¢supy_, [¢] (by Cauchy’s
formula), hence we get for z € K, [Tp(2)| < ¢x|z|™? supy,_,, |¢] . The third part of
the proposition is immediate. [l

3.2.3. The open set C\ [0, 1] is a hyperbolic Riemann surface which is naturally
equipped with a Poincaré metric. The following well-known fact will be crucial
for the proof of Lemma 3.2: given two hyperbolic Riemann surfaces M, N and an
analytic map f : M — N, either its differential df contracts the hyperbolic metric
or f is a surjective local isometry. In what follows we will denote by dpyper the
Poincaré metric on the Riemann surface under consideration.

Given p > 0 we denote by

(3.12) Vy(Dao) = {2 €T\ [0,1], duyper (2, Doc) < p}

the p-neighborhood of D, in C\ [0, 1].

Lemma 3.2. Let p > 0. For allm > 1 and z € V,(Dso) one has L —m € V,(Duo).
Proof. The Mébius transformation z — 1 —m maps D into itself and C \ [0, 1]

onto C\ [1—m, +oc] which is contained in C\ [0, 1]. Thus it decreases the hyperbolic
distance and the p—neighborhood of the image of D, w.r.t. the Poincaré metric
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of C\ [I —m,+o0c] is contained in the p-neighborhood of D, w.r.t. the Poincaré
metric of C \ [0, 1]. O

3.2.4. Once the existence of the operator T" on holomorphic functions is established
(Proposition 3.1) one can ask for more information on Hardy spaces. The results we

will prove are completely analogous to those obtained for the real Brjuno operator
in [MMY].

Proposition 3.3. Let p > 0. There exists c; > 0 such that for oll r > 0 and
Y€ O3(C\ [0,1]) one has

sup |<<T<3>>w><z>|<c;<“5‘1) sup [i(2)] .

VP(DOO) VP(DOO)

Proof. First of all note that if z € D, and g € M, then ¢g~' -z € D.; thus, taking
into account Lemma 3.2, if z € V,(Dy), then g7z € V(D).

Given an integer r > 0 we denote by M (") the set of elements g of M of the
form g(m4)...g(m;), m; > 1 for all 1 <i <r. Then one has

Ty = 3" L= 3 LTy,
geM(T) gleM(r—l)

/ /
Let ¢/ = (Z, Z,) € MUY and z € V,(Dys); let 2/ = L2=L . For all m > 1 one

a’'—c'z

a v\ [0 1Y\ b d
cd d 1 m) \d+mb +md)"’

from which it follows that

LOTOy)(z) = (0 —d'2)* > v <§ - m> .

m>1

has

Since 2z’ € V,(D), as we have seen during the proof of Proposition 3.1 one has

Zw(ﬁ—m) <c, sup ]

m>1 Vo (Doo)
On the other hand one has |z — V' /d’|™! < ¢, for all z € V,(Ds) and ¥'/d’ € [0,1].
Thus we get |L;§)(T(3)w)(z)| < ¢,(d')~3 . But now it is enough to recall that (see
r—1
Appendix A1) min v v d > C (@) and 3",y @2 < C to obtain the

desired estimate. O

Remark 3.4. In a completely analogous way we may prove that for p > 0 and all
¢ € OHC\[0,1]),

sup |T’“so<z>|§c'p<“52‘1> sup [o()]

VP(DOO) VP(Dac)

Remark 3.5. We may also consider the Hardy space H?(Dy), 1 < p < 400, of
analytic functions ¢ : Do — C such that the subharmonic function |p|P has
a harmonic majorant. It is an immediate consequence of the Riemann mapping
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theorem that this space is isomorphic to H?(D). Indeed if h maps D, conformally
onto D one can use the norm

1/p
el (Do) = llp 0 Al ar (@) = (/SD IsO(Z)I”Ih'(Z)IIdZ|> :

Note that since 0D is a rectifiable Jordan curve, h extends to a homeomorphism
of 0D, onto S! which is conformal almost everywhere. It is immediate to check
that the proof of Proposition 3.3 can be easily adapted so as to show that T is a
bounded linear operator on HP(Dy,) with spectral radius < @

3.2.5. We now have the following important corollary, which establishes the con-
vergence of the series (1.4).

Corollary 3.6. 1) Let ¢p € O3(C\ [0,1]). The family (L§3)1/))96M is summable,
uniformly on compact subsets of C \ [0,1]. Its sum is equal to ZQO(T@))"@/J, will

be denoted 25\34) Y and for all compact subsets K of C\ [0, 1] there exists € > 0 such
that

(3)
su < Ck su .
Kp|ZM vl < Cxcsup Y]

The family (Lég)w)gez.M is summable, uniformly on all domains of the form
{|Rez] < A, |Imz| > 6} (where A and § are positive). Its sum is equal to

>z Zs\?:[) v and will be denoted Z(Z‘O’)M . It is holomorphic in C\ R, periodic of
period 1 and bounded in a neighborhood of +ico.

2) Let p € OYC\ [0,1]). The family (Lyp)gem is summable, uniformly on
compact subsets of C \ [0,1]. Its sum is equal to Y ,~,T"¢ and will be denoted
S mp- The function S, (3 v ) will be denoted Y-, \ . It is holomorphic in
C\ R, periodic of period 1 and vanishes at tico. One has

(%: s0)// — Z'(A‘i) 4,0” , (ZZA:A s0)// — Z(Z‘s)jw 4,0” )

3) > (resp. 25\34)) and (1-T) (resp. (1—=T®)) acting on O'(C\[0,1]) (resp.
O3(C\ [0,1])) are the inverses of one another:

Q-7 =) (1-7)=id
M M

3 3
-1 =0 r®) =i

Proof. 1) The only non—trivial assertions are the summability of the families

(L5 0)gem and (L§V)gezan. Writing g = ¢'g(m) (m > 1.g' € M) for g € M,
g # id, we have

IO = O =2 (5 -m) |

,_ fd Y ;o dz-V
I=\¢ &) =T a—cz"
Now for z € V,(Doo), Lég)w(z)‘ = ¢, (md'dist(z, [0, 1]))73 supy, (p..) [¥| , and the

summability assertions follow (see the proof of Proposition 3.3).

with
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2) Again, the only non—trivial assertion is the summability one, which is obtained
from the first part by integrating twice.
3) The third part of the corollary is immediate. O

4. BOUNDARY BEHAVIOUR OF ),/ ¢

In this section we will study the behaviour of 3 ,, ¢(2) when z is close to [0, 1].
Our main tool for this study will be the complex continued fraction introduced in
the previous section. In this section and in the next one we will for shortness often
denote by ¢ or C various positive universal constants.

4.1. Decomposition into principal and residual terms.

4.1.1. We begin our study of the boundary behaviour of )~ ¢(z) by considering
the case when z is close to 0.

Proposition 4.1. 1) Let I = [y9,71], 70 > —1. There exists ¢ = ¢y > 0 such that
for all p € OY(C\ I) and for all z € Dy U Hy U H}y one has

(4.1) To(z) = > &' (=m)| < erlz|log(1 + |2] ") sup|g| ,
m>1 U
where U ={z € C,|Tmz|>1/20rRez <y —1lorRez >y +1}.
2) There exists ¢ > 0 such that for all p € OY(C \ [0,1]) and for all = € Dy U
Hy U Hj one has

(4.2) 1D e(z) —e(z) = D (D @) (=m)| < elz|(1 + 10g|2|_1)81__'51p ol -
M oo

m>1 M

Proof. We will only prove (4.2), since the proof of (4.1) is essentially the same.
Let ¢ =3 s ¢. One has

p=0+T@=0+ > Loum-

Let z € Do U Ho U Hj. We will consider the cases m > 3|z|~! and m < 3|z|~!
separately.

If m > 3|z|7! the segment [—m, —m + 1] is contained in the closed half plane
{Rew < —2/3} and one has

N e 5 t
Lym@(2) = = | (1= (=m+ Dyt

Applying Cauchy’s estimate, it follows that |Lyq,.)@(2)] < clz|"'m™3supp_ @] .
Since by Remark 3.4 supp__ |¢] < csupp_ [p| one gets

3" Lymy@(2)| < clzlsuply] -
m>3|z|~1 Do

In the case m < 3|z|~! we separate the three terms constituting Ly(,,,)@(2) and we
obtain
| (=m)| < Cm72SDup|s5|7 |2@(—=m)| < em™"|z[sup|g] ,

oo

- 1 1 -
zp|—m+ - )| <c—m+—|"" sup|p|,
z z Do
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thus
Y Lyem@(z) = > F(=m)| < clzl(1+1og|z| ") sup gl
m<3|z|~1 m>1 Do
and the assertion is proved. O

4.1.2. Next we consider the behaviour near z = 1:

Proposition 4.2. There ezists ¢ > 0 such that for all p € O (C\[0,1]) and z € D,
one has

(4.3) T@()er(——l) S ¢ (om) < cle = 1lsuplel.

m>1

< clz = 1)1 +log|z — 1]~ ) sup|g| .
Do

(4.4) ‘ng +zap(1—1>

Proof. For z € Dy we have — 1 € Dy. Moreover, there exists ¢ > 0 such that for
m > 2 and w on the segment with endpoints 1 —m and 1/z — m we have

(4.5) ¢/ (-w)] < em ™ suplg] .

Since

Tcp()+zs0<——1> > ¢(= —ZZ{sO(l—

m>1 m>2

from (4.5) one easily deduces (4.3).
Let @ =3\, . We have ¢(2) = p(2) + TP(z) , and

T2 w(l—l)—¢(1—1)+za<—m> L1253 @ m).
By (4.3) one has
T <>+w(1—1) 3 ¢ m)| <elz = 1lswal

We also have supp,_ |@| < csupp__ || and by (4.2)
1 - _
go(——l) gp——l +th —m)| < |z —1|(1 +log|z — 1| ') sup|yp]| .
m>1 Doo
As > o4 @’(—m)‘ <csupp_ |p| < csupp__ ¢| , we get the second inequality. [

Remark 4.3. Tt is easy to check that the estimates in Proposition 4.2 are valid if z
is such that z — 1 € A.
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4.2. Boundary behaviour and continued fraction. Let £k > 1 and let mgq, ...,
my, be integers > 1. We denote by D(mq,... ,mg) the set of zg € D for which the
complex continued fraction is

zil=mip + 2, 0<i<k,

(3

with z; € D for 0 < i < k and zx € A. In the following we set for 0 < i < k

o 0 ifmi:].,
STV ifmy>1.

Proposition 4.4. For ¢ € O'(C\ [0,1]) we have in D(m, ... ,mx)

TkSO(ZO) = (Pr—1 — @—120)[e(zk) + ©(z — 1) + ez + 1)]

(4.6) Zio—
— (Pr—2 — qu—220)(1 + 2p—1)eR—19 <—1L> + R¥ () (20) -
+ Zp—1
The remainder term R¥(¢) is holomorphic in int D(my, ... ,my), continuous in
D(myq,...,my) and satisfies there
—k
V5 +1
(4.7) |RI () (20)] < ck < . sup [¢]
Proof. One has
(4.8) To(20) = —20lp(21) + (21 — 1) + e19(21 + 1)] + R™ () (),
with
R™) () (20) = > ¢'(=m) — 2 > [p(21 +m1 —m) — p(—m)]
m>1 m>1,|m—mq|>1

+ 20 Z ¢(=m) .
m>1,|m—m1|<1
For zy € D(m1), one easily checks that |[R(™)(¢)(z0)| < csupp_ || and that

R(™) () is holomorphic in the neighborhood of D(m;).
Iterating (4.8) k times we have

k—1
T p(z0) = | [ (—20)le(zk) + (2 — 1) + erep(zr + 1)]
1=0
k—1 j—1
(4.9) ) ([T 2@ 0z = 1) + £, TF (2 + 1))
j=1 i=0
k 7—2
+ Z H NT* ) (2-1) -

~
I
-

We have here Hé_l(—zi) =pi—1—qi—1%0 and |p—1 — q—120| < cql_1 . The function

k j—2

(4.10) R (2 :Z H IR (TFI ) (25_1)
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is holomorphic in a neighborhood of D(my, ... ,my) and satisfies there

k 7](7
_ _; V41
By o)l < e ap sup Tl < k( - suplg]

j=1

The function

k—1
X iy
(4.11) R (z0) = Y (pjo1 = g5-120) T (2 — 1)
j=1
is holomorphic in the interior of D(m1,... ,my) (and even in a neighborhood of
D(ma,...,my) if my > 1). Applying Proposition 4.1 (k — j) times to each term of
the sum we see that it is continuous in D(myq,... ,my) and satisfies there

(%] — - Vi+1 *
(B o)l < eI gy sup T 7] < ok | 25— | suplg].
j=1 > o0

The function

S

-2
(4.12) R[Qk] (Z()) = (pj_l — Qj_lzo)Eka_jQO(Zj + 1)

<.
Il
—_

is holomorphic in a neighborhood of D(my,...,my) and satisfies, according to
Propositions 4.1 and 4.2,

(k] = 1 k—j—2 Vh+1 B
Ry (20)] < e ) g5 sup [TFI 2] ek | == sup|] -

=1 o0
Finally, we apply Proposition 4.2 to (pg—2 — qk—220)ex—1T¢(2k—1 + 1) and by sum-
ming up the different contributions to (4.9) we get the desired result. O

4.3. HP—estimates.

43.1. Let 1 < p < +4o0o. We consider the space HP(H*) of functions F €
OY(C \ [0,1]) whose restrictions to both H* and H~ belong to the Hardy space
HP of these half-spaces, endowed with the norm

(4.13) IFl meqasy = I1F lue e + [1F la- [z -

See references [Dul, [Sf] for details. Then, it is a classical result [Ga] that F' €
HP(H*) if and only if the associated hyperfunction u belongs to LP([0,1]) and that
the correspondence is an isomorphism of Banach spaces.

But we know [MMY] that T acting on LP?([0,1]) has spectral radius < @
Consequently the same is true for T acting on HP (H*).

4.3.2. For the case p = oo and on the larger domain C\ [0, 1] we have the following

Proposition 4.5. The restriction of T to H>(C\[0,1])NO(C\|[0,1]) is a bounded
operator on this space with spectral radius < @
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Proof. Let k> 1, ¢ € H*(C\[0,1])NO(C\0,1]) and 2o € C\ [0, 1]. We estimate
|T*p(20)| in various cases.
(1) If zg € Do we have

—k
V541
IT*p(20)| < ¢ < 5 sup o] ,

according to Remark 3.4.
(ii) If zo € Do U Hy U H)) we have, according to Proposition 4.1 and Remark 3.4,

2

oo

1\
[T%¢(20)] < esup [TF | < ¢ < i ) sup || -
Do
(iii) If zo € Dy we have, according to Proposition 4.2,

1
Tro(z0)] < ¢ [sup T + ‘T’“@ (z—o - 1) H

oo

which gives, for k = 1, |Typ(z0)| < c||¢||m~, and for k > 1, according to
Proposition 4.1,

—k
_ V541
IT*p(20)| < esup [TF 2| < ¢ < 5 sup o] -

(iv) If z9 € D has continued fraction zi_l =mj1+2i41 with 0 <i <1, z, € A\ D,
l < k, we apply Proposition 4.4 to write

TFp(20) = (=1 — @i—120) [T (1) + T (2 — 1) + e T" Loz + 1)]

1 > + RU(T* 1) (2) .

(o — a1 1 e TRl
(Pi—2 — qi—220)(1 + z1-1)e1—1 SD<1+ZZ—1

Here, we have z;, z; — 1 and %le in Do, U Do U Hy U Hf , hence the

value of T*~!¢ at these points is in absolute value less than csupp,_ [T "1y
(Proposition 4.1). We also have, according to Proposition 4.2 and Proposition
4.1,

k1 cllepll e fk=1+1,
T ezt Dl < {csupDoo |TF1=2p| ifk>1+1.

On the other hand we have

—1
\/5+1>
2 b

Ipi—2 — q—220] < quill <c (

\/3+1>_l

-1 — q—120] < CQfl <c ( 5

and thus from the estimate of R in Proposition 4.4 and from Remark 3.4
we have

-
cl (“5“) o]l o ifk=1+1,

T (z0)| < —k
ck( 2“) supp__ || ifE>1+1.

B
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(v) If zg € D has continued fraction zi_l =myp1 + zip1 with 0 < i < k, 2z, € A,
we again apply Proposition 4.4 to get

+ EkSO(Zk +1)]

) R () (z0) |

T*p(20) = (Pe—1 — qe—120)[(2) + ©(2

—1)
— —9 — Qh— 1
(Pr—2 — qr—220)(1 + 2x—1)ekK— 190( 1+Zk -

which gives

—k
_ V541
IT*o(20)| < cqply @l + ck ( 5 sup el -

By collecting the estimates obtained in (i)—(v) we get the desired result. O

4.3.3. Let us now consider the conformally invariant version of HP, 1 < p < +o0.

The application w +— z = % is a conformal representation of D on C\ [0, 1];

letting w = 2™ one finds z = cos? @ and thus |dz| = 2|siné|| cos8|db, i.e. df =

dx . . p 1 . . .
2D We can therefore identify LP(T') with the direct sum of two copies

of LP([0,1], 2\/%) (one for each side of [0,1]). Now let ¢ € OY(C\ [0,1]) N

HP(C\ [0,1]), which we will assume to be real. The associated hyperfunction u is

u=TJmp(z+10), and u € LP([0, 1], %) We have the following
Proposition 4.6. For p > 1 the operator T defines a bounded operator on the

p dx : e d VE-1
space LP([0,1], QW) and its spectral radius is < Y5
Proof. One has Tu(z) = zu (% — m) if ﬁ <z< #, thus
1/m d 1/m 1 p d
/ |Tu(x)|p7x < m1/2*p/ u <_ — m) _ar
1/(m+1) 2y/x(1 - =) 1/(mt1) | \Z 2/(1 - x)

1 —-1/2
1 d
Sml/%p/ [u(s)P {1 - R 3
0 s+m (s +m)

<m0 [ ugees 4 my 2
<m u(s)[P(s+m —.
0 Vs
Summing over m > 1 we have
1/p
—p—1
”T“”Lp([o,u,dz/z\/M) = Z m=r lull Le(o,1),d2/vz) »

m>1

which proves the first assertion.

As far as the spectral radius is concerned, let us consider an integer k > 1 and
the set Z(k) of the intervals of definition of the branches of A*. For I € Z(k) one
has (we denote by x; the center of T

)
» dx B Ply, 2P dx
/1 A | —— / By ()P [u(AP2)|

2y/z(1—z) 2y/z(1—z)

< TP er(1 - 2r)]) " / [u(A¥) P
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since ¢! [x7(1 —x;)]_l/Q < [z(1 —3[:)]_1/2 < eclzr(1 —x;)]_l/Q forallz € I, I €
Z(k) and k > 1; also ¢ |I| < Br_1(x) < ¢|I| for all z € I. From this we get

dx
J it S S P e Bl
(since A* has bounded distortion on I).

Taking the sum over all the intervals I (i.e. the branches of A¥), since the
I € Z(k) form a partition (mod 0) of [0, 1], one obtains

P
k
T el 0,1y, e ) S / \/7H Iz g0.10) [1%1(%>)<|I|] 7
which proves the second part of the proposition. O

Corollary 4.7. For p > 1, the operator T maps O'(C\ [0,1]) N H?(C\ [0, 1]) into
itself, is bounded and its spectral radius is < @

Proof. Let o € OY(C \ [0,1]) N HP(C \ [0,1]) be real, and let u = Im p(x + i0) be
the associated hyperfunction. For k > 0 the function of O'(C\ [0, 1]) associated to
T*u is T*p. Using the conformal representation of C \ [0, 1] onto D and the fact
that the Hilbert transform is bounded on L?(df) one obtains the desired result. O

4.3.4. Here we consider the operator > ,, acting on the space H'(C \ [0,1]) N
ON(C\ [0, 1))

Lemma 4.8. For all g € M the restriction to H*(C \ [0,1]) N OY(C\ [0,1]) of L,
is a bounded operator of this space into itself.

Proof. Tt is sufficient to consider the case g = g(m), m > 1. One then has

Lg(m):aoT*loXloXOoToo'oLmoTm7

where
Tm is the isomorphism ¢(z) — ¢ (£ —m) of H'(C\ [0,1]) onto
HYC\ [1/(m +1),1/m]); _
Lm is the canonical injection of H'(C\ [L/(m + 1),1/m]) into H*(C \ [0, 1]);

o is the bounded operator ¢ — ¢ — ¢(00) of HY(C\ [0,1]) into H*(C \ [0,1]) N
ON(C\ [0, 1));

7 is the isomorphism ¢ — ¢1(w) = ¢ ((wﬂ) ) of HY(C\ [0,1]) onto H(D),
whose restriction to H'(C \ [0,1]) N O}(C \ [0,1]) is an isomorphism onto
{1 € H'(D), ¢1(0) = 0};

Xo is the isomorphism ¢1(w) — Loy (w) of {¢1 € H'(D) , ¢1(0) = 0} onto
H'(D);

X1 is the multiplication operator by the function — (w+1) € H>*(D) into H*(D).

O

We now want to estimate the norm of L, acting on H(C\ [0, 1])n O (C\ [0, 1]).

Proposition 4.9. There exists a constant K > 0 such that, if g € M 1is different
10 0 1
from (O 1), <1 1> (thus d > b > 0) one has

Lyl < Kd=%/2[min(b,d — b)] /2 log(1 + d) .
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Proof. A function ¢ € H'(C \ [0, 1]) has non-tangential limits at almost all points
of the boundary and

! ) 1 o
0 2 33(1—.1?) 0 2 .13(1—1‘)

On the other hand a function ¢ € H*(C \ [0, 1]) verifies
(O] < Cltl Il Vit € (=1,0),

4.14
419 ()] < C(t—1)" 2|l VEe (1,2),

as one can check directly by applying Poisson’s integral formula. Moreover, if it
belongs to H*(C \ [0,1]) N O*(C \ [0,1]) the same argument leads to the estimates

(4.15)
o) < Clel el s ' () < Clalllella . 19" ()] < Clz P llellan

for all z such that |z — 1/2| > 1. B
Given these preliminary elementary estimates, let ¢ € HY(C \ [0,1]) N

OYC\ [0,1]), g = ((z Z) € M, withd >b>0. Let $ = Lyp; ¢ is holo-

morphic outside the interval with end points b/d and (a + b)/(c + d). We must
1 |g(z+i0)|dz

estimate [, Wercey
x —x

define an interval I, of the following form:
N 0 1
(i) ifg= <1 m),mZQ, I, =10,3/2m];

s 1 m-1
(ii) 1fg:<1 m ),mZZ,Igz[l—S/Zm,l];
(ili) in all the other cases one has ¢ > a > 0, £ = & 4 22 [ is the interval with

gi; and 2 — 22: clearly I c [0,1].

and by symmetry it is enough to consider @¢(z 4 i0). We

end points % +
We will now directly estimate the integral of %\/;—?df on I, and on [0, 1]\ I,.

We begin with the latter.
If € [0,1] \ I, ¢ is holomorphic in a neighborhood of « and one has

1
d t
~ =2 _ —1 _ 1 _ o
P(x) = ¢ “(a — cx) /0 (I—=1t)p ( c+€gc(a—cx))dt'
We have

g
4.16 I,=—2 2=
(1.16) vl c[-22.32

cla — cx)

d Zd}

thus the values of the second derivative in the integral are < C'c®d=3||¢| g1, by the
third estimate of (4.15), and one has

()] < Cd™?|lz —b/d| " lla

since x — a/c and x — b/d are comparable outside I,. We thus obtain

p(x £+ 10)|dx _ dx
/[0 1\1 u = cd 3H¢HH1/

z(1—x) 0.1\, V(1 — ) |x— ‘
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An easy estimate of this last integral gives

/ [P AT 4572 min (b, d — b))~ 1/2 log(1 + min(b,d — b))
0,1\ (1l —x)

For the integral inside I, we distinguish the three different contributions to ¢ =
L(g)e. First of all one has (applying the second estimate of (4.15))

el (=d/e)| < Ced™ ||
and

< Cetd 2 [min(b,d — b)] "2 ||| |

| 7=

thus

071 / d c dx . —
[ I ming a0l

For « € I, by applying (4.15) and (4.16) one has
|(a — ca)p(=d/c)| < Ced™?|lp|lan

from which follows the same estimate above for the second term. We are left with
I:/ |a—cx||g0(y:|:i0)|dx Y= dr —b
I

)

; z(l —x) S a-—cx’

Inside I, one has % < Cd~'?[min(b,d — b)]~*/? ; on the other hand one
z(l—=x
_ = i0)]dy
h + dr = 2 |50 Y
as f[ lo(y £40)|de = ¢ 2 [ T /7

complement in R of the interval [—3—d —i} (if ¢ > 1; when g = <0 1) or

, where this integral is taken on the

c’ 3c 1 m

1
One then has

3/2 | .
o(y £1i0)|dy 2 -2
PV = < octd -
/—1/2 (y+d/c)> — Il
/_1/2 lp(y £i0)|dy
—d/3c (y+d/c)2

(1 mT; 1), m > 2, the integral is taken from —m/3 to 4+00).

d
< Ced~ g 1 log (1 n ;) |

and the same for f33/(12/ °. Finally one has
p(y £10)|dy _
[ BRI < o el
yi>3d/e (Y +d/c)
Putting the various bounds together one gets

+0)|d
|sp x 110 |dx < Cd~*?min(b,d — b)] "% log(1 + d/c)| ¢l a -
Va1l —1z)

To conclude the proof it is now enough to note that log(1 + d/c) < log(1l + d) and
log(1 + cmin(b, d — b)) < log(1 + d?) < 2log(1 + d). O
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Corollary 4.10. The series Y || Lg| g is convergent. ) ,, defines a bounded
operator of H*(C\ [0,1]) N OY(C \ [0, 1]) into itself: moreover T is a contraction of
this space, its spectral radius being bounded above by @

Proof. Let k > 1. We will take the sum of || Ly|| g1 on the elements g € M which
are the product of exactly k generators g(m). The branch of A associated to g

atb b
c+d’ d

are comparable. The length [d(c + d)]~" of I(g) is bounded below by $d~?2, thus

Kd3log(1+d d
Kd~"log(1 +d) < K'd 'log(1 —|—d)/ @
b(1-2) 1(9) Va(l — )

When we sum on the elements g considered, the intervals I(g) form a partition of
[0, 1] mod 0, thus we get

has domain [ ] = I(g) and on this interval the max and the min of z(1 — x)

Ll <

> ILgllz < K" max [d~" log(1 + d)],
mi,...,m
i mi g=g(m1)--a(my) ’
which gives the desired result. O

4.4. Real holomorphic functions with bounded real part. We denote by £
the space of functions ¢ € O'(C \ [0, 1]) whose real part is bounded and endowed
with the norm [|¢[|g = supg, (o 1 | Re | . We then have for |Tm 2| < 1/2

() |9m ()| < = logl(2v3 ~ 2)] Im =[] el

as one can prove from the analogous estimate for functions in the unit disk D
1+ |w|
1—|w|’

2 A
|Im ®(w)| < = sup |Re®(e*™?)|log
T 9e0,1]

applying the conformal representation of C\ [0,1] — D, w = (\/z — vz — 1)

Proposition 4.11. The restriction of T to E is a bounded operator with spectral

radius < @

Proof. Let p € E, k> 1, 29 € C\ [0,1]. We estimate Re T*¢(zg) in various cases.
(1) If zg € Do we have

—k
V5 +1
|Re T*p(20)| < |T*p(20)] < ¢ ( 5 Sbuplwl :

and, on the other hand, for all p € E, supp__ | < Cllo|E -
(i) If zo € DoUHoU H|, or if z9 € D1, k > 1, or if z9 € D has continued fraction
zi_l = Mmit1 + 2zit1, 0 <4 < I, with 2; € A\ D, | < k — 1, we have obtained
in the proof of Proposition 4.5 the estimate

—k
V541
IT*p(20)] < ck< SDup|<p| :

2

(iii) If z9 € D1, k = 1, we have from Proposition 4.2

‘Tgo(zo) + 200 (i - 1>

< csup gl
20

oo
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moreover

1
'%ezoiﬁegp<z——1
0

)\ < Cllgle .

and

1
’3m (— - 1)‘ > C7Im zl;
20

hence from (x)
o 1
‘szongo <Z— - 1)‘ <Clele -
0

If 2o € D has continued fraction z;l = Mmit1 + 2i+1, 0 < @ < k — 1, with
zr—1 € A\ D, the only term in the proof of Proposition 4.5 which gives
some trouble is (pr—2 — qr—220)ek—2T¢(zk—1 + 1) (the others are once again

—k
dominated by Ck (@) supp_ |¢|). In fact, from Proposition 4.2, we are

even left with

( — ) (1 + ) 71 -1
Plk— —220)Ek— Zk—1)® .
k—2 qk—220)Ek—2 k—1 1 et

We have here (pr—2 — qr—220)(1+ 2k—1) = (Pr—2 — qk—220) — (Pk—1 — qr—120) ;
hence

Re[(pr—2 — qr—220)(1 + zx-1)]] < Cq s,
[Im[(pe—2 — qr—220)(1 + 2k—1)]| € Cqu—1|TIm zo| < Cqi ;| Tm 21

and

1
— —1)|>ct! 1] .
‘jm<1+2k_1 >‘C |3mzk 1

Thus, from (*) we get

1 _
Re(pr—2 — qr—220)(1 + zk—1)p | ———— — 1) | < Cq. My el ,
1+ 2z

—k
and finally |Re T*¢(z0)| < Ck (@) lelle -

If zg € D has continued fraction z;l =myy1 + 2i+1, 0 <@ < k, with 2 € A,
we apply Proposition 4.4. We have

|Re(pr—1 — qr—120)| < C(I;;l ;
| Im(pe—1 — qk—120)| < qr—1|Im 20| < Cqr—1q;, % Im 2] ;
hence, for e = —1,0, 1, from (x)
|Rel(pr—1 — qr—120)e(zk +9)]| < Cay Il -
We deal similarly with

2p
Re | (pr—2 — qr—220)(1 + zp—1)¢p <_#Zkl1)]
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(see (iv) above) and conclude that

—k
V5 +1
|Re T*p(20)| < Ck ( 5 lelle -

5. THE COMPLEX BRJUNO FUNCTION

In this section we introduce and study the complex Brjuno function. Preliminar-
ily we need some further results on the monoid M and on the algebraic properties

of Y yand Do, .
5.0.1. Let us recall that one has
1 1 0 1
IM=IM <0 1) U ZM (1 1> .

More precisely, if one denotes M* = M\ {1}, one has

Ml 1)ord ) =reeio 1))

5.0.2. Let ¢ € O(C\ [0,1]). Let

(5.1) pr=|Lp \tLy 4 o€ OYC\[1/2,2]) .
1) 6

The family (L,¢)germ is uniformly summable on compact subsets of C \ [0, 1], thus

Do) —p(z) =) wi(z) —p(z—1).
M M

On the other hand 3, 1 = ¢1 + Y. (Tp1) and Ty € OY(C\ [0,1]). We can
therefore conclude that

(5.2) ez = lpr+ Y (Ten)],
ZM

Z M

where the definition of Y, 1, ¢1 € OY(C\ [1/2,2]), is obtained by extending the
one given for functions in O'(C \ [0, 1]).

Remark 5.1. One has

1
63 e ==x|p(2-1) —e-D] + D4 ele - ).
from which it follows that

501 (3) = -lole - D= (=Dl + 3¢/ + 20 (- 1)

z

and

oa(2) +261 (1) = (4 -1+ 1)



810 STEFANO MARMI, PIERRE MOUSSA, AND JEAN-CHRISTOPHE YOCCOZ

5.1. The dilogarithm.

5.1.1. Let us define

1. /1
(5.4) vo(2) = 7Tle (Z) ;
where the dilogarithm is taken with its principal branch in C\[1, +o0] (see Appendix
3 for a short summary of the properties of the dilogarithm and [O] and references
therein for more details). The function ¢ belongs to O!(C \ [0,1]). It is real on
the real axis outside [0, 1] and its only singular points are 0 and 1. It is bounded
outside of any neighborhood of 0 and

1
(5.5) 3mapo(x:|:i0)::|:10g5, 0<z<1,

thus the relation with the real Brjuno function B is clear: B(x) = [(1 —T)~'f](z)
with f(x) =, c;, Im@o(z +i0 — n).

5.1.2. Let us now consider

(5.6) 01 = L(1 1>+L(O 1) o € OY(C\ [1/2,2]) .
0 1 11

Since pg(—1) = 7/12 and ¢j(—1) = < log2 one has

K

1 . z . 1 T 1
(5.7) v1(2) = — |:ZL12 <1 — z) — Liy (mﬂ + ﬁz—i— ;10g2.

The function ¢, is real. It admits as unique singularities the points 1/2, 1 and 2
and has two cuts along (1/2,1) and (1,2). It can be continuously extended to 1/2
and 2 and it is bounded outside any neighborhood of 1. Moreover

o [Erlog—t— if1/2<z <1,
(58) jmwl(xizo){ilogﬁ ifl<z<2.
Note that if 1/2 < 2 < 1, then
x
1 =1 1 1—2)log(l—x).
rlog Ogl_x+xogx+( z)log(l —z)
One also has
(5.9) D tzon (L) =42 (Z 4 Llog2
. pr(2) tzo1 | ) = 2)\ 5t los2) .

Lemma 5.2. The function ¢1(z) +ilog(1 — z) is continuous on H* and its value
at 1 is %logQ—f— %

Proof. Applying (A3.7) to (5.7) twice one gets

1 1 1-—

1 1-
+% log(1 — z) — zlog® Z} .
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11—z

In this expression the function Liz(z — 1) — zLiy (1=

z = 1. Moreover

) is regular and vanishing at

1- 1- 1-—
log?(1 — z) — zlog? A log?(1 — z) — log? ST Ey (1 — 2)log? & ,
—z —z

where (1 — z)log? 1== vanishes at z = 1, and
1—
log?(1 — 2) — log? Ao log?(—z) + 2log(—2) log(1 — 2) .
-z

In a neighborhood of 1 in H* one has log(—z) +im = O (|z — 1|), thus

. 1
log?(1 - 2) — log” —= = 7* — 2ilog(1 — 2) + O <|Z — 1flog = 1|) '

This lemma leads to the following important

Corollary 5.3. The real part of p1 is bounded in C\ [1/2,2]. It has an extension
to a continuous function on C\ {1} and

1 U T
5.10 lim R =—log2+—F—-.
(5:10) Jim, Reg(@) = Zlog2+ 35 F 5
This corollary is the motivation for using ¢ instead of ¢ as the starting point
of the construction of the complex Brjuno function. Equation (5.2) shows that this
leads to the same result.

5.2. A natural compactification of H'. By Lemma 5.2 above, fRe 1 extends
continuously to HT\ {1} with limits at 1 along rays. This means that Re ¢, extends
continuously to the compactification of Ht obtained from H+ by blowing out 1 into
a semicircle (corresponding to all rays in HT which end in 1). If we want to obtain
a similar result for the complex Brjuno function ), ,, ¢o we have to do the same
thing at every point of Q.

5.2.1. We will consider
e+ et Ox T, 7
H =HYUR\QU(Qx [-5,+3])
(where Q = Q U {00}) equipped with the topology defined by the following funda-

mental system of neighborhoods at any point z € H™:
a) if zo € H', a fundamental system of neighborhoods is given by {|z — 2| < e},
0<e<TImzg;

b) if ap € R\ Q, a fundamental system of neighborhoods is given by the sets
(e >0)

Ve(ag) ={z € H' | |z — ag| < &}
U{aeR\Q, |a—ap| <&}

U{(a,f))e(@x [—E +q , |a—ao|<6} ;

272
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c) if ap € Q, a fundamental system of neighborhoods of (ag,7/2) (resp.
(oo, —m/2)) is given by (0 < e < )
Ve(ag,m/2) ={z € H" | |2 —ap| <e, 0 < arg(z — ap) < €}
U{aeR\Q,0<a—ag<ce}

uf@oeax[-2,+3
U{(ao,0), 1/2—e<0<7m/2},
Ve(ag,—m/2) ={z € H' |, |z —ao| <&, ® > arg(z —ag) > 7 — ¢}
U{aeR\Q,0<ay)—a<ce}
u{(a,e) €Q x [—%Jrg
U{(ao,0), —7/2<0< —7t/2+¢} ;

} ,O<a—a0<e}

} ,O<a0—a<e}

d) if ap € Q, —7/2 < Oy < 7/2, a fundamental system of neighborhoods of
(a,00) is given by (0 < e < m/2 — |6p])

Vo(ao,00) ={z € HT | |z —ap| <€, g —e <7/2—arg(z — ag) < Oy + ¢}

u{(ao,é))eQx [—%,Jrg] , 90—€<9<90+6} ;

e) a fundamental system of neighborhoods of (oo,7/2) (resp. (o0,—7/2)) is
given by (0 <e <)
Ve(oo,m/2) ={z € H" , |z| > e, 7 >argz > 7 —¢}
U{a eR\Q, a< -1}

T,T ol
U{(a,@)e(@x[—z,—i—z} , < —¢€ }
U{(c0,0), 1/2>60 >m/2—¢} ,
Vi(oo,—m/2) ={z € HT, |z| > !, 0 <argz < e}
U{a e R\Q, a>c'}
_r.T -1
U{(a,é))e@x[ 2,—1—2} , a>¢ }
U{(c0,0), —m/2<0 < —7/2+¢€};
f) if —7/2 < 6y < 7/2, a fundamental system of neighborhoods of (00, 6y) is
given by (0 < e <m/2— |6o|)
Ve(oo,00) ={z € HT , |2| >, Oy —e <argz—7m/2 < Oy + ¢}
U{(OO79)7 |9_00| <€} .

5.2.2. One can check that the axioms for a system of neighborhoods are verified.
The following is the only non—trivial property: if ( € HT and V is a neighborhood
of (, then there exists a neighborhood W of ¢ such that V is a neighborhood of
each point of W. This must be checked directly for each of the above listed cases.

5.2.3. It is clear that the topology of H* induces on H* the usual topology and
that HT is an open dense subset of HT.
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5.2.4. The space H is compact and Hausdorff. More precisely there exists a home-
omorphism of I onto H* whose restriction to D is a homeomorphism onto H*. One
can therefore give to H* the structure of a topological manifold with boundary;
the boundary is OHT = H* \ H' and is homeomorphic to S

5.2.5. The action of PSL(2,Z) on H™ by homographies has a continuous extension
to an action on H*: just define

a b ac+b
<c d>~a n Va e R\Q,

ca+d’
(5.11) , Y
a a — T
(C d) (,0) = <Ca+d,9>  VaeQ, Ve [—5,+5} .
Let I denote a compact non—trivial interval in R and g = <a cbl) € PGL(2,Z).

Lemma 5.4. Assume that —d/c ¢ I (so that g -1 = I' is also a compact interval
of R). If o € ON(C\ I) has the following properties:

(i) @ is real,

(ii) the harmonic function Re o on H' has a continuous extension to Ht,
then the function Lyp € OY(C\ I') also has these two properties.

Proof. Tt is enough to distinguish three cases:

(a) If « is real and irrational one has

Re Lyp(a) = (a — ca) {mw <ZO‘__C§> — <—g>} — gty (-‘-i) .

Note that, from the assumption —d/c ¢ I, it follows that ¢(—d/c) and
@' (—d/c) are both real.
(b) If &« = 0o and 0 € [, +Z] is arbitrary, then Re Lyp(c0,0) = 0.

(c) Finally, if « is a rational number and 6 € [—%, —l—g] is arbitrary, one has

Re Lyp(a,0) = (a — ca) [me o (do‘ - b,599> oy (-%)} —egc (-é) .

a— co c
O
5.2.6. If I is a non-trivial compact interval of R, we denote by Cg(C \ I) the space

of holomorphic functions ¢ € O(C \ I) which are real and whose real part on HT
extends to a continuous function on HT. This is a Banach space with the norm

ol = sup{| Rep(2)| , z € H'}
(5.12) = sup{|Rep(z)|, ze HT}
= sup{|Re p(2)| , z € OH}

(the equality of all these norms is a trivial consequence of the maximum principle).
Cr(C\I)isa real closed vector subspace of the Banach space E(I) of holomorphic
functions in O(C \ I) with bounded real part with respect to the norm

(5.13) lelleay = sup |Rep(2)]
z€C\I

(generalizing the definition used in Section 4.4 for the particular case I = [0, 1]).
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d
an operator of Cg(C \ I) into Cg(C\ g- I). From its definition it is easy to see that
this operator is bounded.
Let us assume now that I C (—1,400), I = [y0,71]. For all m > 1, Ly,
defines a bounded operator of Cg(C \ I) into Cr(C \ [1/(m +v1),1/(m +70)]). If
pE CAR(@ \ I), then

Ifg= (CCL b) € PGL(2,Z) verifies —d/c ¢ I, then, by Lemma 5.4, L, defines

Ty = Z Lg(m)gp

m>1
is holomorphic, real and belongs to O'(C \ [0,1/(1 + vo)]).

Proposition 5.5. The function Ty belongs to Cx(C \ [0,1/(1+ 0)]) and the op-
erator T from éR(@ \ I) into this space is bounded. More precisely, for k > 0,
2k < j < j' <281 one has

I Y. Lymelle < Crl+ k)27 gl ,

j<m<g’
thus the series ) Re Ly, @ is uniformly convergent in H.

Proof. As in the proof of Proposition 4.9, by Poisson’s formula one has the estimates

lo(2)] < Crlel lelle
(5.14) [De(2)| < Crlzlllelle
1D*p(2)] < Crlz|llelle

provided that dist (z,7) > 1 and ¢ € Cg(C \ I).
Now let k& > 0, and let j,j’ be such that 28 < j < j: < 21 Let us also
denote ¢ = > i< Lyim)p- Clearly we get ¢ € Cr(C\ Ir), where I}, =

1 1 ; o o o+
[m, T |- By the maximum principle the supremum of |Re ¢, ;| on H

is attained at a point of the boundary H™ of the form a € R\Q, or (o, ), a € Q,
—m/2 < 6 < m/2, such that a € I. Note that > . o [¢'(=m)| < C27oll ¢
and ., o5 [p(—m)| < Ol - If @ is irrational and contained in I}, one has

by

j<m<23’

o

1
9@¢<__n0‘gcu+kﬂﬂé

and the same estimate holds if & € QN I, for all § € [—7/2,7/2]. Since |a| <
C27F for o € I, one obtains the desired inequality which also implies all the other
properties. O

Proposition 4.11 leads to the following

Corollary 5.6. The spectral radius of T on Cg(C \ [0,1]) is less than or equal to
@. > m defines a bounded operator on this space.

Proof. Cr(C\ [0,1]) is a closed subspace of E([0,1]). O
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5.2.7. One constructs a compactification Em of H* /Z adding the point ico and
glueing (R\ Q)/ZU(Q/Z x [-7/2,7/2]) in the same way we proceeded for HT. One
obtains a topological manifold with boundary homeomorphic to ﬁ./_T\he rest/riﬂon
of this homeomorphism to H'/Z is onto D*. The boundary OH*t/Z = H*/Z \
(H*/Z U {ico}) is once again homeomorphic to S!.

5.2.8. If I is a compact non-trivial interval of R and ¢ € O(C \ I), we defined in
(2.5) the 1-periodic holomorphic function )", ¢ on H* which extends continuously
to 700.

Proposition 5.7. Assume that ¢ € Cg(C\I). Then >4 ¢ has the following prop-
erties:

(1) Re(>", ¢) is bounded on H' and the function which it defines on H' /Z has

—

a continuous extension to Ht /Z.
(ii) One has

sup|9{e(z ©)| < Csup|Re | .
H+ ~ H+

We postpone the proof of this proposition after the statement of the two following
consequences:

Corollary 5.8. If ¢ € Cg(C\ [0,1]), then Y zm @ has a bounded real part which

-

extends continuously to Ht /Z and verifies

sup|9%eZg0| < Csup|Reyp| .
H+ Zm H+

Corollary 5.9. Let po(z)= —%Lig (1); the complex Brjuno function B=3, o

z

has a bounded real part which extends continuously to Ht /Z.

Proof of Corollary 5.9. Let ¢ be defined as in (5.6). Then ¢; € Cg(C \ [1/2,2]),
Ty € Cr(C\ [0,2/3]) and >~ Ty1 € Cr(C\ [0,1]). Thus o1 + > Ty1 €
Cr(C\ [0,2]). Applying (5.2) to ¢ we get the desired result. O

Proof of Proposition 5.7. Tt is not restrictive to assume I = [0, 1].
Let us consider the holomorphic function Fy associated to the hyperfunction

o f @ i0se<1/2,
Y= \1—2 if1/2<z<1.

One has

1 z—1/2 z—1
Fo(z):; [zlog z/ +(1_2)1ng—1/2

with the principal branch of the logarithm: if z ¢ [0,1], then (z — 1/2)/z and
(z—=1)/(z = 1/2) do not belong to [—o0, 0].
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One can easily check that Fy |g+ extends continuously to HE. At infinity one
has (with 2 =z — 1/2):

e 272 (1) N e 2
e T\ 7) %
11 L
——E—g—FO(Z ),
s 1 1\, :-1/2
1-2)1 — (-2 )1
(1=2)log 775 (2 Z) &3
11
— 0 5—2
3 s 7O,
thus
1
Fo(z) = —— -2
0(2) = =7 —+0(")

(this could also be checked directly by observing that fol u(z)de = 1/4).
It is easy to verify that:

e the real part of Fy is bounded in C \ [0, 1];
o the real part of )", Fy is bounded in H.

Let ¢ € Cr(C \ I); consider the unique decomposition
o = c(p)Fo + ¢,

where ¢f € O2(C\ [0,1]) N C(C\ [0,1]), c(¢) € R. One has le*lle < Cllells and
le(¢)| < Cll¢llg, i-e. this decomposition is continuous.

Thus we are led to consider only the case ¢ € O2(T \ [0,1]) NCr(CT \ [0,1]). But
in this case ), ¢ converges uniformly on all domains {| e z| < A} and this fact
immediately leads to the assertions of the proposition. [l

5.2.9. Note that the topology induced by Hm on HY/Z U (R\ Q)/Z is the same

as the topology induced by C/Z. Therefore the continuity of Re ), \, w0 on HT/Z
implies that the real part Re ), \, o of the complex Brjuno function is continuous
on H*/Z U (R \ Q)/Z in the usual sense. The value Re ), @o(ao,7/2) (resp.
(o, —7/2)), with ag € Q/Z, is the right (resp. left) limit of Re ",  po(a), as
a € (R\Q)/Z tends to ag

Recalling Lemma 5.2, one has

Rep1(1,7/2) —Repr (1, —7/2) = —7
and more precisely
Rep1(1,0) =Rep1(1,0) — 6.
If ap € Q, g # 1, then
Re p1(ag, ) = Re 1 (ap,0)
for all § € [—7/2,7/2]. Thus by (5.2) one obtains that for all p/g € Q (p Ag=1)

(5.15) %engo(p/q,G) =%eZ¢o(p/q,0) —0/q.
ZM ZM

Thus the real part Re ", \, po of the complex Brjuno function has at each rational
p/q € Q/Z a decreasing jump of 7/q.
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5.3. Boundary behaviour of the imaginary part of the complex Brjuno
function.

5.3.0. Notation. We simply denote by ||| the norm (5.13) in the Banach space
E(I).
We set po(z) = —<Lis (1) asin (5.4) and ¢y as in (5.6), thus by (5.2)

(5.16) B=Y(p1+> . Te1) = ¢o.
Z M ZM

We have 1 € E([1/2,2]), Ty1 € E([0,2/3]) and T ¢, € E([0,1]) for all k > 2.
In this section we want to estimate the imaginary part of the 1-periodic function
B near the real axis. We have

(5.17) {lamzl<1/2} = | J(A+n).
nez
For r > 1, mq,... ,m, > 1, we recall the definition of D(mq,... ,m,) given in

Section 4.2, namely the set of zg € D such that the continued fraction is

(5.18) zl=zii4+mip, 0<i<r, ze€D, z €A.

We also set

H =HyUH})=A\int D
(5.19) _
H(my,... ,m;)=D(mq,...,m,) \ int U D(ma,...,my41)

Mypq12>1

Then we have

(5200  {|gmzl<1/2b={JJ U [Hlm,...,m)+n]UR\Q,

ne€Zr>0my,... myp>1

where the sets in the righ-hand term have disjoint interiors.

5.3.1. A set H(mq,... ,m;)+ n meets R in a unique point, which belongs to Q.
Conversely, any rational belongs to exactly two such sets: if p/q € Q has continued
fraction p/g =n+1/mi+1/mao+---+1/m, with m, > 2 when ¢ > 1 (i.e. r > 0),
these two sets are H+n and H(1)+n—1,if p/¢g =nand r =0, H(my,... ,m,)+n
and H(my,...,m, —1,1)+n if » > 0. The union of these two sets will be denoted
by V(p/q); the boundary of V(p/q) NH™ is formed by parts of the three horocycles,
attached to p/q, p'/q and p”/q" (where [p'/q’,p"”/q"] is the Farey interval with
“center” p/q; when p/q = n € Z we have p'/q’ =n —1, p"/¢" = c0), which are
deduced from Im z = 1/2 by the action of SL (2,Z) (see Figure 4).

5.3.2. We plan to compare, when z € V(p/q), the imaginary part of B(z) to the
truncated real Brjuno function

r—1
(5.21) Brinite(0/0) = Y Bi—1(p/a) log [ (p/q —n)] ",

J=0
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/ /
1 2 3 4

(V3/2,1/2)

After transformation z — 1/Z :

(V3/2,1/2)

After iteration of the process :

aw Q)
H(1,1)
H2,1)
<> hilla»_
0 1 1 1 2 3 1
4 3 2 3 4

FIGURE 4. The partition of the strip 0 < Im z < 1/2 by the sets
D(my,...,m,) and H(mq,... ,m;).

where p/q is as above and A is the Gauss map (A1l.1). The point is that we want
the dependence on p/q to be explicit in this comparison (i.e. all the constants ¢ are
independent of p/q). This will be achieved by the following

Theorem 5.10. For k>0, my,... ,mp > 1, 290 € H(may,...,my) one has
Im B(20) = Binite(Pk/q) + (Pk—1 — qr—1Re 20) Im @1 (21, + 1) + 7(20)
with
|7 (20)| < eq;; 'z Tog(1 + [z ")

for some positive constant ¢ independent of k,m1,... ,my.
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The strategy of the proof of the theorem is to start from the formula
Im B(z) = Z ijTKgal(z +n),
neZ k>0

and to consider each term separately, putting most of them in the remainder part,
and replacing the others by simpler expressions. What makes the proof a little
lengthy is that while T*p; € E([0,1]) for & > 1, we have ¢, € FE([1/2,2]) and
T, € E([0,2/3]), which leads to the need to distinguish several cases (Sections
5.3.3 through 5.3.7) before giving its complete proof (Section 5.3.9).

5.3.3. Recall that T%¢; is real and T* ¢, (Z) = T p1(z), hence Im T*p1 (2) vanishes
on R outside of

[1/2,2] for k=0,
[0,2/3] fork=1,
[0,1] fork>1.

As we have, on the other hand,
(5.22) ¥ (2)] < Ok |2 |l
for all p € E(I), K € C\ I compact, z € K, we obtain for z € A
| Im @1 (2 +n)| <cen 2| Imz|||ei], ifn#0,1,2, ne€Z,
(5.23)  |ImTp1(z+n)| <en?|TImz||Te| , ifn#-1,0, neZ,
| Im Trp1 (2 +n)| < en 2| Imz||T |, ifk>1,n#-1,0,1,ncZ.

Since, by Proposition 4.11, we have || T*¢;|| < CkG~"|¢1||, with G = (v/5 4+ 1)/2,
we obtain

Lemma 5.11. For z € A\ [0, 1], if we write
ImB(z) =Tmpi(z) + Imei(z+ 1)+ Tme1(z + 2)
(5.24) +ImTpi1(z—1)+TmTei(z)

+ Z [Im T p1(z — 1) + ImTFp1(2) + Im T o1 (2 + 1)] +1o(2) ,
k>1

then we have
(5.25) ro(2)| < CTmz[lea] -
5.3.4. One has
()] < Clog(1 + |2 — 1/21)
in the neighborhood of 1/2 and
01 (2)] < Clog(1+ |z =27
in the neighborhood of 2. Therefore, for z € A\ {0} we have
(5.26) |TIme1(z +2)| < C|TIm z|log(1 + |2|71) ,
and, for z € A\ D(1)
(5.27) | Im 1 (2)| < C|TIm z|log(1 + |z —1/2]71) .
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Next we have
Lemma 5.12. For k> 1 and z € A\ {1} we have
| Im T p1(2 = 1)] < C|Imz|log(1 + |z = 17T ]|
Proof. We have
| Im T o1 (2)| = |Im | 2 Z <Tk1g01 (% — m> — Tklcm(—m))
m>1
We distinguish two cases:

(a) If | Im 271 = |2|72|Im 2| > 1, we choose mq > 1 such that

1
‘— +mo| < Clz|2|TImz| and O 2|7t <mo < Clz| 7t .
z

One then has
1
‘Tk_lgol (; - m) - Tk_lapl(—m —my)

from which it follows that

[ Im 2| T o |
[2[2(m 4 mo)?

<C

1
230 (10 (2= m) = T ha(om - o)) || < Clam T

m>1

On the other hand

mo
Imz Y T Yoy (=m)| < €| Im 2[log(1 + 2| DT ]
1

from which the lemma follows in this case.
(b) If | Im 2~ < 1 we choose mg > 1 such that —mg < Rel/z < —mg + 1, thus

1
ImTF 1, <; - m>

1
\me [T’f—lsal (; - m) TRy (= — moﬂ \ < Clm +mo) | T ]|

< Cl1Imz||2] 72 (m +mo) | T eu |,

We thus obtain

1
Re z| |J TF 1oy (= - < C|Imz||TH
31 j3m 3 7 (2= m)| < Clam Tl

m>1

1
e Y [0 (2= m) =T (= mo)] | < CLAlIT

m>1

< Clog(1+ [ THIT* ],

mo
> T i (—m)
1

which give the desired result. O
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Lemma 5.13. 1) If z € D(1) \ D(1,1) we have
| 3m Ty (2)] < C|Im z|log(1 + |z —2/3|71) .
2) For k> 1, z€ A\ {0} we have
| Im T 1 (2 + 1) < C|Im 2| log(1 + |2| ™) T* >l -

Proof. In the first case, in the domain considered, we have 1/z — 1 € A\ D(1),
hence, by (5.27),

1
‘jm V1 (; - 1)‘ < C|Imz|log(1 + |z —2/371).
On the other hand we have

mefor (2-1) - m—n” <2,

and for m > 2

1
‘801 (; —m> — @1(—7”)‘ < Cm™ el

1
gngn (= m)| < om?amslil

from which the first inequality of the lemma follows.
In the second case we use Lemma 5.12 to get

1
ImT* 1o, ( — 1)‘ < C|Im z|log(1 + |2 YT 2],
z+1
and deduce the second inequality as above. [l

5.3.5. For z € A, k > 1, we set (as in Section 4.2) e, = ex(z) = 0 if z belongs to
some D(myq,... ,my) with my =1, e, = 1 otherwise.

Starting from Lemma 5.11, we use (5.26) to deal with Im ¢1(z 4+ 2), (5.27) to
deal with Jm ¢;(z) when € = 1, Lemma 5.12 to deal with Im T*p;(z — 1), and
Lemma 5.13 to deal with Jm T%p;(z + 1), and also with Jm Tp;(2) when &1 = 0,
€9 = 1. This gives

Lemma 5.14. For z € A\ [0,1] we have
ImB(z)=(1—¢e1)Tmp1(2) +Tmp1(z+ 1)+ [1 —e2(l —e1)] Tm Tp1(2)

+ Z Im T o, (2) +ro(z) + r1(2)
k>1

and
r1(2)] < C|Im 2|log(1 + | Tm 2|l -
We next recall that, by Proposition 4.1, we have, when z € H, k > 1
(5.28) | Im T ey (2)] < C|z|log(1 + |z|71)sDup | T oy .
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5.3.6. In the following two steps, we obtain for 3m T*¢;(z) an approximation sim-
ilar to Proposition 4.4, first for large k (Proposition 5.15), and then for small
k (Proposition 5.16). Here we assume that k& > 1, my,...,m; > 1 and 29 €
D(mq,...,mg) and let I > 0 and ¢ = Tlo;.

Proposition 5.15. For k > 1, my,... ,my > 1, z0 € D(my,... ,mg), I > 0 we
have
|ImT " o1 (20) — [Im T o1 (2k)|(Pr—1 — g1 Re 2))|
1T 21| if 1> 1,
leall  ifl=1.
Proof. As we did in the proof of Proposition 4.4 we write
(5.29)

< C’qk_1| Im zg|log(1 + | Tm zk|71) X {

(pj—1 — @j—120)T" T p(z; — 1)
1

T*¢(20) = (pr—1 — qe—120)¢(2k) + 4

k
j=

k
+ Z(ij —gj-120)6;T" T p(z; + 1)

~
I
-

(pj—2 — qj—220) RV (T* ) (2 1)

M=

+

<.
Il
—

= (pr—1 — @e—120)0(z1) + B () (20) + B () (20) + BRI () (20),
where

R(mj)(w)(zj—l) = Z ' (—m) + Zj—1 Z Y(—m)

m>1 m>1, [m—m;|<1

- Zj-1 > [(z; +mj —m) —p(—m)] .

m>1,|m—m;|>1

(5.30)

We will use repeatedly the following inequalities:

(5.31) | Im(wiwe)| < Jw1||Tmwa| + |wa|| Imwq|,
(5.32) pj—1 — aj—120] < cq;
(5.33) | Im(pj—1 = gj—120)| = gj—1|Im 20| < Cqj1q;| Im 2| .

By Proposition 4.1, as I > 0, for 1 < j < k we have
(5.34) IT*9p(2; — 1) < Csup |[TFIH 1|,

oo

and, by Lemma 5.12,
(5:35)  [ImT*p(z; — 1) < C[Im 2] log(1 + |z — 1 HITFI+11g
We observe that for j < k—1
log(1+ |z — 1|71) < Clog(1 + |zj41]7") < Clog(1 +myy2)
and one also has
log(1+|zx-1 —1|71) < Clog(1+ |2x| ™) < Clog(1+|Im 2| ™) ,
log(14 |z, — 1]71) < log(1 + | Im 2|7 1) .
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Thus, from (5.31)—(5.35) we get
|3m R () (20)] < Cg; | Im 2l log(1 + | Imz T |
Similarly, by Lemma 5.13, we have, for j <k, >1or j<k,I>1

(5.36) |ImT* 7 p(z; + 1) < C|TIm zj|log(1 + |2 ~HIT* 720
and, by Proposition 4.2,
(5.37) IT* (2 +1)| < CSDup |Th=H=20, | .

On the other hand, when j = k, [ =1 (i.e. T*"Jp = Tp1) one has
[Im Te1(z, + 1)| < ClTmzi|[Ten ]
[Te1(zk + 1)| < O[T

(note that as T'p; € E([0,2/3]), zi + 1 is well separated from the boundary). This
gives

IT* 2ol (1> 1),

af A (k] -1 -1
(5.38) [TIm Ry (¢)(20)] < Cqy, " | Im z|log(1 + |z1|77) x { ol =1

Finally one has
(5.39) [RU™) () (z;-1) < Cllell
(5.40)  |Im R (9)(zj-1)] < CIIll| Tm zj—1]log(L + m;) + Re zj—1| Im 2]

< om;H 3m 2]

giving

(5.41) |3m Ry (¢)(20)] < eqi [ Tm 2] [T -

To conclude our proof we only need to observe that

(5.42) | Im(pr—1 — ak-120) Re p(zk)| < Cay | Im 2| T on |

to get the desired result. O
53.7. For k > 1, my,... ,mp > 1, 29 € D(mq,...,my) we will now consider

Im T*pi(20) (i.e. the case I = 0 left out from Proposition 5.15):
Proposition 5.16. For k> 1, my,... ,mg > 1, 20 € D(my,... ,my) we have
| ImT 01 (20) — (Ph—1 — qr—1 Re 20)[(1 — exr1) Im @1 (2k) + €6 Im o1 (2 + 1)]|
< Cqy; | Im zi|log(1 + | Tm 2|~ oal -
Proof. We now write (with &) = 0 if my, < 2, ¢}, = 1 otherwise)
T*p1(20) = (Pr—1 — qr-120) (01 (2k) + €xp1(2k + 1) + o1 (21 + 2))

k—1
+> (i1 = g5-120)TF T r(z - 1)

> S
T

+ Z(ij —gj-120);T" 71 (25 + 1)
J

(5.43)

I
—

+) (pi—2 — qj—220)R™N(TF T 1) (2j-1),

IR

Il
—

J
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where R(™i)(T*=Jp,) = R™)(T* ) for j < k but

RO™) (1) (zk-1) = Y h(=m) + 21 > p1(—m)
m>1 m>1,|m—m;+1|<1
— Zk-1 > [p1(zk + my —m) — 1(—=m)] .

m>1, |m—mg+1[>1
For the last sum R([)k}(gol) in (5.43), we have as in (5.39)—(5.41)
(5.44) |9m R (1) (z0)| < Cait | Im zillenl]
The first sum R[lk] (1) is dealt with as in (5.31)—(5.35) to get
(5.45) |9m B (1) (20)| < Cai ™ Im 2| log(1+ | Im 2| Hljenll

The middle sum ng] (1) satisfies the same estimate, proved as in (5.36)—(5.38).
By (5.26) we have
(5.46)
| Im[(pr—1 — gr-120)¢1 (21 + 2)]| < ¢ [C]Im 2| log(1 + |z ™) + 1 nll -
Similarly, if 2z ¢ D(1) (i.e. if eg41 = 1) we have
(547) | Im[(pr-1 — qr—120)91 (21)]| < Ca* | Im 2| log(1 + |21 — 1/2] 7))l
according to (5.27). Finally, for e = 0,1
(5.48) | Im(pr-1 — qr-120) Re g1 (zk + )| < Ca; ' Im z el
and from (5.43)—(5.48) we get our result. O

5.3.8. Starting from Lemma 5.14, we now make use of Propositions 5.15 and 5.16
to obtain a simpler approximation for Jm B(z).

Proposition 5.17. For k>0, my,... ,my > 1, z0 € H(mq,... ,my) we have
Im B(z) = Z mp1(z+ 1) (pi—1 — qi—1 Re z0)ey
1=0
f—

+» Impi(z)(pi—1 — q—1Rez0)(1 — g141) + 7(20)
0

=

with g = 1, and
[7(20)| < O *[zk| log(1 + |24 ") -

Proof. First, assume zg € H. Then, from (5.28) and Lemma 5.14 we get

(5.49) ImB(z) =(1—¢e1)Ime1(z0) + Tmp1(z0 + 1) + r(20) ,
with
(5.50) I7(20)| < C|zo0|log(1 + |20 7).

As we also have, for zg € H,
| Tm p1(z0)] < C|TIm 2],
we obtain

(5.51) | Tm B(z) — Im @1 (z0 + 1)| < Clzo|log(1 + |zo|71) .
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Next consider zg € H(mq, ... ,my) with k > 1, mq,... ,my > 1. Observe that
[l—ex(l—e1)](l—e2)=1—¢e9, [l—ea(l—c1)le1=¢1.

In the terms which appear in the right—hand term of Lemma 5.14, we use Propo-
sition 5.15 to deal with Im T'p1(20), I > k, and Proposition 5.16 to deal with
Im T 1 (20), 0 < | < k. We have

|ij T'o1(20) — (Pr-1 — Qr—120) ij T o1 (2k)|
(5.52) 1>k 1>0

< Cg ' 3m 2| log(1 + | Im 2 ) |
but using (5.28) (since 2z € H) we obtain

(5.53) 1> Im Tl (20)] < Cap t|zkl log(1 + |2k ) -
1>k

For 0 <1 < k, we have in Proposition 5.16 and Lemma 5.14
g | Im zi|log(1+ | Im 2| ™Y) < Cqigy, 2| Im 2| log(1 + | Im 2| ™)

and
k k
> agy log(1+[Imz|™1) < C> qgy M log(1+ Ca; g | Im 24| ™)
0 0

< Clog(1+|Imz,| ™).
|

5.3.9. We can finally complete the proof of Theorem 5.10.

Let £k > 0, my,...,mi > 1. As we already know, the domain H(mq,... ,myg)
meets R in a unique point which is p/qx. Let us denote xg = pi/qr and consider
its continued fraction

x;lzmi+1+$i+1, 0<i<k, zp=0

(of course x; is the point of intersection of H(m;y1,... ,my) with R).
Let 20 € H(my,...,mg), IJmzy > 0. We will then have (—1)!Tmz > 0,

0 <1 < k. On the other hand one has, for 0 <1 < k,

1
(5.54) g1Im 1 (z; + 1+ (=1)40) = (—=1)'e; log it

1
and for 0 <l < k-1

. 1
(5.55) (1 —e141) Im i (2 + (=1)40) = (1 — g141)(—1) 'z log p—
+1
since 2L = xllﬂ when 1 —e;41 # 0. (5.54) and (5.55) imply that
k—1

ij p1(z 4+ 14 (—1)'0)(p1—1 — q—170)es
0

k—2

(5.56) z_: Im 301(1'1 =+ (—1)%0)(}71,1 — ql,lxo)(l — El+1)
0

_|_

E

-1

[
=[]

1
Bl—l(@"o) log x_z = Bfim'te(pk/Qk) .
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When we set this expression in Theorem 5.10, and compare the result with the
expression for Im B(z) given by Proposion 5.17, we see that we have to deal with
the following expressions. For 0 <1 <k — 1, and ¢; = 1:

A =Tmei(z+1)(pi-1 — q—1Re 20) — Impr (2 + 14 (=1)40) (pr—1 — qr—170) -
For0<I<k—-2 and g/41 =0:
B, = Imo1(21)(pi—1 — q1—1 Re 20) — Im 1 (21 + (=1)40) (p1—1 — qi—170) -

And when ¢, = 0:

Cr =Tmoi(zi + 1)(Pr—1 — qr—1Re20) — Im @1 (2k—1)(Pr—2 — qu—2 Re zo) .

First of all one has

|Rezg — 20| < C’q,;2|zk| .
On the other hand, near 1 one has
)l < Clz— 1

For 0 <1 <k (resp. 0 <1 < k —1) the distances of ; and z; from 0 (resp. 1) are
comparable. Thus, for 0 <1 < k

| Imo1(z+1) = Imer(z + 1+ (=1)40)| < Ca; e — 2
and for 0 <l < k-1
| Im 1 (z1) = Im o (2 + (=1)'i0)] < Clag = 1|z — ] -
We have here |z; — ;| < C|zk|q12q,;2, J;fl < Cmyyq and |z, — 1|71 < cxljrll < cmyto.
We thus get, taking (5.54) and (5.55) into account,
Al < Clamagfanllog -+ o7z = ailg )

< Cleklay, * (-1 log M1 + qmus1)
< Clailay *ais1

_ 1 _ _
1Bi| < Clqi-14; *|zk]log —— + |o — 1|7z — wilg; )
Ti4+1

< Clzkla;, * (@11 log muta + qrmus2)
< Clzklay *qis2 -
We thus have

k—1 k—2
STIAL+Y B < Claklgy
=0 =0

Finally we note that when my = 1, i.e. ¢x = 0, one has zk__l1 =1+ 2. Thus

s 1
o1(zr—1) = (1 4+ 21-1) (E + - log2> -z (L4 21)
which gives
Cr =Tmoi(zk + 1)[(pr—1 — qu—1 Re 20) + (Pr—2 — qr—2 Re 20) Re zp—1]

~ s 1
+ (pr—2 — qr—2Rezo) Im 21 (ﬁ + — log2 —Rep1 (1 + zk)> .
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But we have the inequalities

T 1
— — — <
12—|—7Tlog2 Rep1 (14 z)| < C,

|(Pr—2 — qu—2 Re 20) Im zp—1| < Cqp ;| Tm 21|
< Cq,;1|3mzk| ,

|(p—1 — qr—1Re 20) + (Pr—2 — qu—2 Re z0) Re zp—1| < qu—2| Im 20|| IM 21—1
< Cq,;1|fimzk| ,

| 3m @1 (2 +1)| < Clog(1 + |zx|7Y)
hence
Ci| < Cq; ' Im 2| log(1 + 2| 71)
and the proof of Theorem 5.10 is complete.
Remark 5.18. We recall that the term involved in Theorem 5.10 satisfies

_ 1
(Pr—1 — qe—1 Rezo) Tm 1 (2 + 1) = (qk Yog @) (I1+0(1)),
as z — 0.
5.3.10. Here we consider the imaginary part of B near Brjuno numbers. For H > 0
let

(5.57) Wy ={weH, Imw>|Rew|"}
and for 0 < h < 1/2 let
(5.58) Wy ={weH, Imw > exp[—|Rew| "]} .

Then we have

Theorem 5.19. 1) For any Brjuno number « and any H > 0 we have

lim  JmB(w+a) = B(«) .

w—0, weWgy
2) Let « be an irrational diophantine number and 0 < h < 1/2 such that

1/h—1

lim inf ||qo||zg =400,
q—00

where || ||z denotes the distance from the nearest integer. Then

lim  JImB(w+a)=B(a).
w—0,weWy

Proof. We begin by stating a useful lemma (whose proof is an easy adaptation of
the arguments of 5.3.9 and is left to the reader).

Lemma 5.20. Let k > 1 and mq,...,my > 1, and let pyp/qr be the point of
intersection of H(mq,... ,my) with R. For all x € D(my,... ,mi) NR one has

k-1
1 _
| Bfinite(Pr/ k) — E Bi—1(x)log J?_l| < Criqy ',
0

where (z;)i>0 is the continued fraction of x.
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Assume now that o € (0,1) is irrational with continued fraction

a=1/mi+1/mo+-+1/mu+--.

Let (pr/qr)r>0 denote the sequence of the partial fractions. Let w be a point close
to 0 and z = a+ w. For |Imz| < 1/2, z belongs to a domain V(p/q) (defined in
Section 5.3.1) and we distinguish two cases.

y

(L.1)

(1.2)

(1)

Here we assume that p/q = pi/qr is one of the partial fractions of a. One
then has by Proposition Al.1

o = pi/ar| > (2arqx+1)""
If w € Wy one gets

|z — pr/ak| > ¢ Hawar) ™,
thus

2]~ < eq; * (qrqrs1)™

and
1 B _
o log |z] ™" < g e+ Hlog qry1 + (H — 2) log qi]

which is small when « is a Brjuno number and k is large. Lemma 5.20,
Remark 5.18, and Theorem 5.10 lead to the desired conclusion.
If w € W}, we will have

|z — pi/qr| > exp[—c(qrar+1)"]
thus

26| 7! < gy ? exple(qrgrin)”]

and
1 -1 ho h—1
q_k log |zx| 7" < CQi119,

which is small if « satisfies the diophantine condition we have assumed and &
is large. Once again the conclusion follows from Lemma 5.20, Remark 5.18,
and Theorem 5.10.

Here we assume that p/q is not one of the partial fractions of a. We denote
by (p;/4;)o<i<r the partial fractions of p/q and by k the largest integer such
that p}./q, = pr/qx. Clearly one has k < L and p} /q} = p/q. By a classical
result ([HW], Theorem 184, p. 153)

1
- >
la —p/q| > 2

For w € Wh one has

|z —p/q| > exp[—cg®"],
thus

% expleq®"]

2ol < eq”
and

1
aloglzLI‘1 <q leg®,
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which is small since h < 1/2. Taking into account Theorem 5.10, Lemma 5.20,
and Remark 5.18 we only need to check that Bfinite (Pr/qr) and Bfinite(P/q)
are close.

Let us introduce
!

_ =1y g 2
(5.59) p = max q log p (l—k+1)°.

By Lemma 5.20 we have
| Bin(pi/ ) — Bin(p/q)| < cqp* +cp

and we must show that p is small. Let [ be such that
/
(5.60) p=q tlog qlq—tl(z —k+1)2.
1
We have

1
/ /
r/a—p/ql < 5.
|/ 1 l| QZIQI/+1

On the other hand, if w € W, and z =w+a € V(p/q), one has

|z —p/q| < cq™?
from which it follows that
Ip/a—al < c(logq)™/"
thus
1 _
(5.61) v = p/q}| < ——— +c(logq) /"

Q%41
By the choice (5.60) of I we have

Y pqll
Q1 = exp[m] )
which implies
P4
(l—k+1)
When w approaches zero, ¢ must be large so k must be large too and if p is not
small one has by (5.59)
[ P4
(I—k+1)2

~1/h

(logq)~"/" < (logqj,,) V" = + log q]

+logq)] /" < 1/10g,2

since h < 1/2.

: 1 1
We will also have ——— < =
99141 10

g2, thus by (5.61)

1 ,_
jor = pi/ail < z47%
But (once again thanks to [HW], Theorem 184, p. 153) this implies that p;/q; is
one of the partial fractions of a and it must be py/qx by definition of k. So one has
l=Fkand

1 _
la — pr/qr| < ol + c(log qj,4 1) h

k41
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with g}, 41 = qx exp(pgx). This leads to the conclusion that p is small if « verifies the
diophantine condition of the second part of the theorem. If « is a Brjuno number
and w € Wy the condition

2 —p/al < eq?
implies the stronger inequality
la —p/a| < eq M,
thus
loe — pi/qi| < 1, +CQ;;121/H7
kg1

where, once again, ¢, 11 = qrexp(pgr). Therefore p must be small in this case
too. O

Remark 5.21. A careful examination of the previous proof leads to a slightly
stronger version of the first part of Theorem 5.19 (inspired by the work of Risler
[Ri]). The set B of Brjuno numbers « has an injective image into ! (N) as follows:

o — (ﬁl—l log 041_1)120 .
Let K be a subset of B such that its image is relatively compact in [*(N). Then

the convergence

wer}l{H’leOJm B(w+ «) = B(a)
is uniform w.r.t. o € K.
We recall that a subset K of I*(N) is relatively compact if and only if
(i) Vn > 0, 3C,, such that V(u;)i>0 € K one has |u,| < Cp;
(ii) Ve > 0 3ng such that V(u;);>0 € K one has > ;. |u| <e.

A1l. APPENDIX 1: REAL CONTINUED FRACTIONS

In this appendix we recall some elementary facts on standard real continued
fractions (we refer to [MMY], and references therein, for more general continued

fractions).

We will consider the iteration of the Gauss map
(Al1.1) A:(0,1)—[0,1],
defined by

1 1
Al.2 Ale)=——-| — | .
(A12) @=-5-|7]
Let
1 —1
G = \/3 + g = G71 = L .

2 ’ 2
To each x € R\ Q we associate a continued fraction expansion by iterating A as
follows. Let

(A1.3) xo=z—[z], ao=][z];

then x = ag + x¢9. We now define inductively for all n > 0

(Al1.4) Tnt1 = A(zn), apt1 = {i} >1,

LTn
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thus
(A1.5) ot = app1 + g

Therefore we have

1 1
(Al.ﬁ) r=ag+ X9 =0aop+ =.--=aqag+ 1 ,
a1+
ai + 1
ap+ o+ ——
Ay + Ty
and we will write
(A1.7) T =[ag,a1,... ,0n,...] .
The nth—convergent is defined by
n 1
(A1.8) p—:[ao,al,... ,ap) = ao + T
n ay + — 1
as+ o+ —
an
The numerators p, and denominators ¢, are recursively determined by
(AL.9) p-1=q¢-2=1, po=q1=0,
and for allm > 0
(AL.10) Pn = @nPn-1+Pn-2, Gn=ann-1+ qn—2 -
Moreover
(A1.11) p= PntPnitn
Gn + Gn—1Tn
(A1.12) xn:_M 7
qn—1T — Pn—1
(A].].?)) gnPn—1 — Pndn—-1 = (_1)n :
Let
n
(A1.14) Bn = sz =(-1)"(gnx —pp) forn>0, and f_1=1.
i=0

From the definitions given one easily proves by induction the following proposition
(see [MMY]).

Proposition Al.1. For all z € R\ Q and for allm > 1 one has

: _ _ 1
(1) lgnz —pal = Gn+1 T qnTni1

s n 1, m-1
(il) Bn < g™ and g, > 7G .

, so that % < Brgny1 <1

Note that from (ii) it follows that >~ log—:’“ and Y 7 i are always convergent
and their sum is uniformly bounded. With the notation of Section 2.1, equation
(A1.5) can be written z,, = g(an+1)Tn+1, thus we have xo = g(a1)g(az) - - - g(an)xn.
The following characterization of the monoid M defined in Section 2.1 is therefore
relevant.
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(1) 7}1 , where m > 1. M is the free monoid,

with unit, generated by the elements g(m), m > 1: each element g of M can be
written as

Proposition A1.2. Let g(m) =

g:g(ml)g(m’r)v 7"207 miZ ]-;
and this decomposition is unique.

Proof. Let M* be the monoid with unit generated by the g(m),m > 1. If m > 1,
then one has g(m) € M and Mg(m) C M, thus M* C M.
Conversely let g € M, g # id. We now prove that there exists a unique integer

!/

m > 1 such that (Z, =g = g(g(m))~t € M, which leads to the conditions

b/
d/
V=a, d=c, dd =b—ma, ¢ =d—mc. We consider separately three cases.

1) a =0, thus b = ¢ =1 and g = g(d), where d > 1. If there were m > 1 such
that ¢’ = g(g(m))~! € M, and ¢’ # id, one should have b’ = 0, thus a’ = 0
and a’d’ — b'¢’ = 0, which is impossible.

2) a =1, thus b,c > 1 and d = bec = 1. We therefore have ¥’ = 1 and o’ = 0
ora =1 Ifa =0, then b = m and ¢ = d — be, which is admissible if
and only if d = bc+ 1. If @’ = 1, then b = m + 1 from which it follows that
¢ =d—mc=bctl—mec = cx1, which is admissible if and only if d = bc—1,
and then b,c > 2.

3) a > 1. Since a’ Ab = 1 the relation 0 < ¢’ = b —ma < bV = a determines
uniquely m > 1 and one has 0 < a’ < V/. But one also has b/ = a < c=d’
and |a’'d — V'd'| = 1, from which one easily gets d’ > ¢’ > d'.

[l

A2. APPENDIX 2: HYPERFUNCTIONS

A2.1. We follow here [H], Chapter 9. Let K be a non-empty compact subset of
R. A hyperfunction with support in K is a linear functional u on the space O(K)
of functions analytic in a neighborhood of K such that for all neighborhoods V' of
K there is a constant Cy > 0 such that

lu(p)| < Cv sup lol, YoeO(V).

We denote by A’(K) the space of hyperfunctions with support in K. It is a Fréchet
space: a seminorm is associated to each neighborhood V of K. One has the following
proposition.

Proposition A2.1. The spaces A'(K) and O'(C\ K) are canonically isomorphic.
To each u € A'(K) there corresponds p € OY(C\ K) given by

w(z) =ulc,), V2e C\ K,
1

rx—z"

where c.(z) = 1 Conversely to each p € OY(C \ K) there corresponds the

hyperfunction
i
o7

u(®) / P()(2)dz , Vb € 4,

where «y is any piecewise C' path winding around K in the positive direction. We

will also use the notation u(x) = %Z[go(x +0) — p(z —i0)] for short.
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A2.2. Let T' = R/Z C C/Z. A hyperfunction on T is a linear funtional U on the
space O(T!) of functions analytic in a complex neighborhood of T' such that for
all neighborhoods V' of T there exists Cy > 0 such that

|U(®)| < Cysup|®|, VOPeOV).
%

We will denote by A’(T!) the Fréchet space of hyperfunctions with support in T.
For U € A(T), let U(n) := U(e_,) with e,(2) = €?™™*. The doubly infinite
sequence (U(n)),ez satisfies

U(n)| < C.e?rInle

for all € > 0 and for all n € Z with a suitably chosen C. > 0. Conversely any such
sequence is the Fourier expansion of a unique hyperfunction with support in T.

Let Os; denote the complex vector space of holomorphic functions ® : C\R — C,
1—periodic, bounded at +ico and such that ®(+ico) := limg,, .40 P(z) exist and
verify ®(+ico) = —P(—ic0).

Proposition A2.2. The spaces A'(T') and Oy, are canonically isomorphic. To
each U € A'(TY) there corresponds ® € Oy, given by

O(z) =U(C.), V2 € C\ K |

where C,(x) = cotg m(z — z). Conversely to each ® € Oy, there corresponds the
hyperfunction

vw) =, /F B(2)U(2)dz , YU € A(TY),

where T is any piecewise C' path winding around a closed interval I C R of length
1 in the positive direction. We will also use the notation

U(z) = %[@(x +1i0) — ®(x — i0)]

for short.

The nice fact is that the following diagram commutes:

A'([0,1]) O(C\ [0,1])
.| B
ATy —— Os

Here, the horizontal lines are the above-mentioned isomorphisms and ) , is defined
in 2.2.2.

A3. APPENDIX 3: SOME PROPERTIES OF THE DILOGARITHM

A3.1. The classical dilogarithmic series (see [Le], [O] for more information) is de-
fined by

+oo

(A3.1) Lis(z) = Y %

n=1
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and it is convergent for |z| < 1. Since —log(l — z) = :z %", dividing by z and
integrating one obtains the analytic continuation of the dilogarithm to C\ [1, 4+00)
by means of the integral formula

(A3.2) LiQ(z)——/:wcu—/oz(/otldfCJ%

which we will use as a definition of the dilogarithm. Note that [1,4+00) is a branch
cut.
Since

1
logt

Li = dt

i2(2) Z/O tz—1 """

one obviously has that

1 M ogt
A . L. — = —
(A3.3) 12 (z) /0 z—tdt’

which shows that Lis (%) is the Cauchy—Hilbert transform of the real function

(A3.4) po(t) = {—lggt if t €[0,1],

elsewhere.

Note also that
(A3.5) JImLisg(t £ 10) = £mlogt,
where t € [1, +00). Moreover
(A3.6) |Lig(2)| = O(log? |2|) as |z| — +o0 .
A3.2. Euler’s functional equations.

1 1 2
(A3.7) Liz(z) + Lio <—> = —~(log(—2))* - = |

z 2 6

2

(A3.8) Lis(2) + Lis(1 — 2) = —log zlog(1 — 2) + % :

where z varies in C \ [0, +o0] and C\ ((—o0, 0] U [1, +00)) respectively.

A3.3. Special values.

N

2

™ ™
Lis(1) = = | Lis(-1) = ——
12( ) 6 12( ) 192 °
1 2 2
9Lis <§> = % — (log2)?, Lis(2 £1i0) = % + milog2 .

A4. APPENDIX 4: EVEN BRJUNO FUNCTIONS

In [MMY] we also considered an even version of the Brjuno function and we
proved that this differs from the one considered here by a 1/2-Hélder continuous
function. In this appendix we explicitly state the relation among the two associated
complex Brjuno functions.
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A4.1. Let o denote the matrix (_01 i) which corresponds to x — 1 — x.

At the real level, replacing periodic even functions with functions on [0,1/2] and
null outside this interval, the operator T,,e, acting on L?([0,1/2]) (for example)
can be written explicitly as

Toenf @) = S af (3 =m) + 3 af (m-1) .

m>2 m>3

At the complez level (i.e. after the identification of A’(]0,1/2]) to O'(C\[0,1/2]))
one gets

Tevenp = Z Lg(m)@ + Z Lg’(m)sov
m>2 m>2
0 1
where ¢'(m) = (_1 — 1) =g(m)o .

A4.2. We want to consider
(1 = Teven) ™ = O(C\ [0,1/2]) = OY(C\ [0,1/2))

and then one will have to make the resulting function even and periodic, thus one
will take

> (14 Lo)(1 = Teven) ™ OM(T\ [0,1/2]) = Ocven(H/Z) -

Z

Note that ZU Zo =Z UoZ.
When we expand (14 L,)(1—Tepen) ' we obtain a sum Y L, where the matrices
g have the form

g = cog(i1)e1g(iz) - - - g(ir)er

with r >0, i, > 2 and ¢, € {1,0}.
Note that og(i) = g(1)g(i — 1) for all ¢ > 2, thus all matrices of the form
e09(i1)e1 -+ - g(ir) belong to the monoid M.

A4.3. Let r >0,
M ={gGr) - g(r) » i > 1}

and let M™ denote the part of M) made of matrices which can be written as a
product eog(i1)eq - - - g(is). We have the following

Lemma A4.1. Fach matrix g € M) can be written in a unique way as a product
of matrices £0g(i1)e1 - - - g(is). Moreover one has M©) = M©) = {1} and for all
r>0

MO\ ME) = M=V g(1) .

Proof. Uniqueness is evident (just consider the first place at which the product
eog(i1)er - -+ g(is) differs from eg(i})e] - - - g(i%,)). The second assertion follows eas-
ily from the remark that M is indeed made of matrices g=9(1) - g(jr) which
end with an even number of g(1)’s. O
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Let M = Lo M) and Y= deﬂ Lg. One clearly has

(1+Lo)o (1= Teven) " = <Z) o(1+Ly)

M

and by the previous lemma

IEDIAS D INZED M (D VREND VIR

geM r20 ge M) 20  ge M) gEMN\ M)
Y X 4y ¥ L= (X)et+ta)
r>0 ge/(,[‘(r) r>1 geM\(r—l)g(l) M

We are therefore led to conclude that

(1+Ls)o(1- Teven)il = (Z) o(1+ Lg(l))71 o(l+Ly,).

M

A4.4. Tt is not hard to check, as we did for the monoid M in Proposition Al.2,
that a matrix g belongs to the monoid M if and only if d > 2b > 0, ¢ > 2a > 0,
d > Gc, where G = @ Moreover the decomposition g = e0g(i1)e1 - - g(ir) is
unique.

A5. APPENDIX 5: THE REAL BRJUNO FUNCTION AS A COCYCLE

In this Appendix we show how to interpret the real Brjuno function as a cocycle
under the action of PGL(2,Z) on R\ Q. To this purpose we first recall some basic
definitions taken from the cohomology of groups. We refer to [Ja] and [S€] for more
information and the proofs.

A5.1. Group cohomology. Let G be a group and M an abelian group with a
left G-action, i.e. a structure of a left Z¢ module. Recall that for n > 0, one
defines

(i) the abelian group of n—cochains C™(G, M), whose elements are applications
from G™ to M.
(ii) the coboundary operator d" : C"(G, M) — C"T1(G, M):

n—1
(dnf)(goﬂ s 7gn) = gOf(gla cee 7gn) + Z(_l)iJrlf(gOa <5 9190415 - - - 7971)
=0
+ (_1)n+1f(go7 s 7gn—1) 5

(iii) the abelian subgroups of n—cocycles Z™(G, M) = Ker d" and of n—coboun-
daries, B"(G, M) = Im d"~*;
(iv) the n—th cohomology group H" = Z"(G, M)/B™(G, M).

Identifying C°(G, M) with M, one has H(G, M) = Z°(G, M) = {m € M ; gm
=m for all g € G} with M. An application ¢ : G — M is a 1-cocycle iff ¢(gog1) =
goc(g1) + ¢(go) , and a 1—coboundary iff ¢(g) = g-m —m for some m and all g € G.
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A5.2. Automorphic factors, cocycles and coboundaries. Let G be a group
acting on the left on a set X. Let A be an abelian ring, A* the multiplicative group
of invertible elements of A, and M a A-module. A function x : G x X — A is an
automorphic factor if the application G x M¥X — MX given by

(9.0) =g -9 g o@)=x(g " 2)plg™" -a) Vo e X,
defines a left action of G on MX: one must have
X(g091, %) = x(90, 912)x (91, ) -
One has therefore given to M the structure of a Z[¢l-module. The coboundary
of an element ¢ € M¥ is given by d%¢(9) =g-¢ — ¢, i.e.
d°p(g)(x) = x(g7" 2)plg™" - 2) —p(z) Vo € X .
A 1-cocycle is an application ¢ : G — M verifying go-c(g1) — c(gog1) +¢c(go) =0,
i.e., letting ¢(g) = c(g1):
c(gogr) = clgr 'g0 ") = elgr ) + g1 elgo ) = &lgr) + g1 'elg0)
or, equivalently, ¢(gog1, ) = x(91,%)¢(go, 91 - ) + ¢(g1,2) Vo € X .
A5.3. Action of PGL(2,Z) on R\ Q. Let us consider G = PGL(2,Z) and
X = R\ Q, the action being given by the homographies. The transformations

T(z) = 2+ 1 and S(z) = 27! generate PGL(2,Z). One has the following more
precise result:

Proposition A5.1. Let g € PGL(2,Z) and let xo € R\ Q. There exist r > 0 and
elements g1,... ,g» € {S, T, T~} such that

(i) g=gr-g1;
(ii) let ; = giwi—q for 1 <i<r, thenx;—1 >0if g, =S.
Moreover one can require that g;g;—1 # 1 for 0 < i < r, and in this case r,g1,... , g

are uniquely determined.

Proof. First we prove the existence. Let U(z) = —x. We consider five cases:
1. If g = T*', any x¢, one takes r =1, g = T*+!.
2. If g = U and 29 € (0,1), then r = 6 and gy = S, x1 = x5'; go = T7Y,

1—x. _ _ _Zxo . — _ _1 . — — .
Ty = tig3 =05, 23 =12 =T, x4 = =55 95 =5, x5 = 1 — xg;

xg 7
g6 =T, xg = —xo.

3. If g=U and 29 € (n,n+ 1), n € Z, one is led to consider the previous case
by using U =T "UT~™.

4. If g = S it is immediate if g > 0, and if g < 0 one is led to consider case 3
by using the relation S = USU.

5. One has the cases g = S and g = T*! for all 5. Since S and T generate
PGL(2,Z) this implies the existence in all possible cases.

We can now prove uniqueness. It is sufficient to show that if » > 0 and
g1+ 5 gr €{S, T, T71}, 29 € R\ Q verify
gr-rg1=1 and ;01 >0ifg; =5 (1<i<r),
then there exists 1 < ¢ < r such that g;g,_1 = 1. We prove this by contradiction:
let 7 be minimal, r > 0.

If 1o < 0 one must have r > 2, gy = T and ¢, = T~', thus r > 3 and
gr—1---g2 = 1, which contradicts the minimality of r.
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One is led to assume zp > 0. Clearly one must have x; > 0 for all ¢ € [0, r]. Let
i1 < ig < -+ < iy denote the indices ¢ such that g; = S. The integer k£ > 0 is even
because of the determinant sign. Let us assume that z;, 1 > 1. Then z;, € (0,1),
thus 2;,—1 = @, + (ia — i1 — 1) > 1. Therefore z;, 1 > 1 for all 1 < [ < k.
But then [T} djfil (z;—1) < 1, in contradiction with the assumption g, ---¢g1 = 1.
If there exists [ such that z;_; < 1, then one permutes circularly all ¢g; and z;
(mod r) until one is back to the case previously considered. Finally if z;, 1 < 1 for
all 1 <1 <k, then []] dgfil (z;—1) > 1, which is again in contradiction with the
assumption g, ---g; = 1. / O

Corollary A5.2. Let A be an abelian ring, and let the maps T and S be such that
t:R\Q— A* s :(0,1)N(R\Q) — A*. There exists a unique automorphic factor
x such that

X(T,z) =t(z) for all e R\ Q =X,
x(S,z) = s(zx) for all z € XN (0,1).

Proof. Let s(z) = (s(z71))~! for all z € X N (1,4+00). The map s is therefore
defined on X N (0, +00) and one must have

X(S,z) =s(x) forall x € X,z >0.

a) The uniqueness of x follows from the existence in the previous proposition: if
g € PGL(2,Z) and zp € X one must have

T
(A5.1) X(g:w0) = [ [ x(gs> i),
i=1
where ¢1,...,¢, and 21, ... ,x, are defined in the proposition and

x(T,z) =t(z) for all z € X,
X(T7 )= (t(x—1) " foral x € X,
x(S,z) = s(x) for all x € X,z > 0.

b) The existence of x follows from the uniqueness in the previous proposition:
here we use (1) with r minimal (i.e. g;g;-1 # 1 for all 1 < i < r) to define x and
one must check that

x(9'g,w0) = x(g', 970)x(g, 20) -
Let yo =z, = gzo, ¢ =g, -¢), following the previous proposition, and let

" ’ 7 9i ifl1<i<r,
9i =

g :gg) 97/;75 if?"<i§7"+$, xi:y’i—'r"

Then ¢"” = g,',,---g{ satisfies the conclusions of the proposition. The decompo-
sition may not be minimal (since one may have gjg, = 1) but one can obtain a
minimal decomposition by deleting ¢/ g, if g9, = 1, then (if ¢{g, = 1) by deleting
gb9r—1 if ghgr—1 = 1, and so on. Given the definition (1) of x the automorphic
property is now verified if

x(9,9  )x(g ™t a) =1
when g = 7,7~ or S and = > 0 if g = S, which is immediate to check. |
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Corollary A5.3. Let A be an abelian ring, x an automorphic factor, M an A-
module MX with the structure of the ZI%)-module defined by x. Let

ér : X - M,
és : XN(O,1) > M
denote two maps. There exists a unique cocycle ¢ : G x M — M such that
é(Tsx) = ép(x) for all x € X,
é(S;x) = ég(x) for all x € X N(0,1).
Proof. One must have
HT™ Y x) = —x(T Y a)ér(z — 1) forall z € X
and
&(S;x) = —x(S,x)és(z ) forallz € X, 2 > 1.

Moreover, if g = g, - -+ g1 and xg are given as in the proposition, then

T

(A5.1) é(g;x0) = Z(é(gi,xi—l)x(gi—1 “+g1,%0))

i=1
from which the uniqueness follows. The proof of existence is the same as the one
given for Corollary A5.2. O
A5.4. The real Brjuno function as a cocycle. Let A = R, ¢(z) = 1 and
s(z) = ex” with e € {—1,4+1}, v € R and apply Corollary A5.2. Then
x(T",x)=1, foral n€eZ,x € X,
x(S,x) =€z, foral z€ X, 2 >0.

If zg € (0,1), one has seen that U = T-1STST~1S, thus

].—{Eo v 1 v
U P— v =
X(U, zo) = exfe ( 0 > € <1 —a?o) €

From U = T"UT™ it follows that x(U,z) = € for all z € X, and from S = USU
it follows that x(S,z) = ee|z|’e for < 0, or x(S,z) = €|z|” for all x € X. One
concludes that one must have

(g,2) = |cz + d|¥ ife=+1,
X\9, L) = det(g)|cx +d|¥ ife=-1

a b

for all g = (c d
Consider now the functional equations

By(z) = xBs(1/z) + f(z), x€(0,1)NR\Q,

Bp(x) = Bf(z +1), zeR\Q,
where f : (0,1)NR\ Q — C is given. Now we look for By : R\ Q — C, and we
easily see that the relevant automorphic factor is the case e = +1, v = +1 above

(other values of v have also been considered in [MMY]). By Corollary A5.3, there
exists exactly one 1-cocycle ¢y such that

Cy(T,z) =0 VzxeR\Q,
Cy(S,z) =f(x) YzeR\QN(0,1).

€ PGL(2,7Z).
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The 1-cocycle is a 1-coboundary if and only if the functional equations have a
solution By, in which case we have ¢y = —d°(B #). These considerations also apply

and may become fruitful in case we restrict C¥\? to one of its C¢-submodules,
for instance measurable functions.

[BG1]

[BG2]
[BPV]
[Br]
[Br2]
[Da]
[Da2]

[Du]
[Ga

[GCRF]
[HW]

(H]

[Ja]

[KH]

[Le]
[Ma]
[MMY]
[O]

[Ri]

[Se]
[St]

[Yol]

REFERENCES

A. Berretti and G. Gentile, Scaling properties for the radius of convergence of the Lind-
stedt series: the standard map, J. Math. Pures Appl. (9) 78 (1999), no. 2, 159-176. MR
2000c:37054

A. Berretti and G. Gentile, Bryuno function and the standard map, University of Roma
(Italy), Preprint (1998).

N. Buric, I. Percival and F. Vivaldi, Critical function and modular smoothing, Nonlin-
earity 3 (1990), 21-37. MR [90m:58062

A. D. Brjuno, Analytical form of differential equations, Trans. Moscow Math. Soc. 25
(1971), 131-288. MR [50:9476

A. D. Brjuno, Analytical form of differential equations, Trans. Moscow Math. Soc. 26
(1972), 199-239. MR 150:9476

A. M. Davie, The critical function for the semistandard map, Nonlinearity 7 (1994),
219-229. MR 95£:58067

A. M. Davie, Renormalisation for analytic area—preserving maps, University of Edin-
burgh preprint (1995).

P. L. Duren, Theory of HP Spaces, Academic Press, New York, 1970. MR [42:3552

J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. MR
83g:30037

J. Garcia—Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related
Topics, vol. 116, North Holland Mathematical Studies, Amsterdam, 1985. MR.87d:42023
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth Edi-
tion), Oxford Science Publications, 1979. MR 81i:10002

L. Hoérmander, The Analysis of Linear Partial Differential Operators I, vol. 256,
Grundlehren der mathematischen Wissenschaften, Springer—Verlag, Berlin, Heidelberg,
New York, Tokyo, 1983. MR [85g:35002a

N. Jacobson, Basic Algebra I and II, Freeman, San Francisco, 1980. MR [50:9457, MR
81g:00001

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,
vol. 54, Encyclopedia of Mathematics and its Applications, Cambridge University Press,
1995. MR 96c¢:58055

L. Lewin, Polylogarithms and Associated Functions, Elsevier North—Holland, New York,
1981. MR 83b:33019

S. Marmi, Critical functions for complex analytic maps, J. Phys. A: Math. Gen. 23
(1990), 3447-3474. MR [92b:58199

S. Marmi, P. Moussa and J.-C. Yoccoz, The Brjuno functions and their reqularity prop-
erties, Commun. Math. Phys. 186 (1997), 265-293. MR [98e:58137

J. Oesterlé, Polylogarithmes, Séminaire Bourbaki n. 762, Astérisque 216 (1993), 49-67.
MR 94m:11135

E. Risler, Linéarisation des perturbations holomorphes des rotations et applications,
Mémoires Soc. Math. France 77 (1999). CMP 2000:17

C. L. Siegel, Iteration of analytic functions, Annals of Mathematics 43 (1942), 807-812.
MR 14:76¢

J.-P. Serre, Cohomologie Galoisienne, vol. 5, Lecture Notes in Mathematics, Springer—
Verlag, Berlin, 1973. MR 53:8030

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, 1970. MR 144:7280

J.-C. Yoccoz, Théoréme de Siegel, mombres de Bruno et polynémes quadratiques,
Astérisque 231 (1995), 3-88. MR [96m:58214


http://www.ams.org/mathscinet-getitem?mr=2000c:37054
http://www.ams.org/mathscinet-getitem?mr=90m:58062
http://www.ams.org/mathscinet-getitem?mr=50:9476
http://www.ams.org/mathscinet-getitem?mr=50:9476
http://www.ams.org/mathscinet-getitem?mr=95f:58067
http://www.ams.org/mathscinet-getitem?mr=42:3552
http://www.ams.org/mathscinet-getitem?mr=83g:30037
http://www.ams.org/mathscinet-getitem?mr=87d:42023
http://www.ams.org/mathscinet-getitem?mr=81i:10002
http://www.ams.org/mathscinet-getitem?mr=85g:35002a
http://www.ams.org/mathscinet-getitem?mr=50:9457
http://www.ams.org/mathscinet-getitem?mr=81g:00001
http://www.ams.org/mathscinet-getitem?mr=96c:58055
http://www.ams.org/mathscinet-getitem?mr=83b:33019
http://www.ams.org/mathscinet-getitem?mr=92b:58199
http://www.ams.org/mathscinet-getitem?mr=98e:58137
http://www.ams.org/mathscinet-getitem?mr=94m:11135
http://www.ams.org/mathscinet-getitem?mr=4:76c
http://www.ams.org/mathscinet-getitem?mr=53:8030
http://www.ams.org/mathscinet-getitem?mr=44:7280
http://www.ams.org/mathscinet-getitem?mr=96m:58214

COMPLEX BRJUNO FUNCTIONS 841

[Yo2] J.-C. Yoccoz, An introduction to small divisors problems, From Number Theory to
Physics (M. Waldschmidt, P. Moussa, J.-M. Luck and C. Itzykson, eds.), Springer—Verlag,
1992, pp. 6569-679. MR 194h:58148

[Yo3] J.-C. Yoccoz, Analytic linearisation of analytic circle diffeomorphisms, in preparation.

DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITA DI UDINE, VIA DELLE SCIENZE
206, Loc. Rizzi, 1-33100 UDINE, ITALY

E-mail address: marmi@dimi.uniud.it

Current address: Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 1-56126
Pisa, Italy

E-mail address: marmi@sns.it

SERVICE DE PHYSIQUE THEORIQUE, CEA /SACLAY, 91191 GIF-SUR-YVETTE, FRANCE
E-mail address: moussa@spht.saclay.cea.fr

COLLEGE DE FRANCE, 3 RUE D’ULM, F-75005 PARIS, FRANCE, AND UNIVERSITE DE PARIS-SUD,
MATHEMATIQUES, BATIMENT 425, F-91405 ORSAY, FRANCE
E-mail address: jean-c.yoccoz@college-de-france.fr


http://www.ams.org/mathscinet-getitem?mr=94h:58148

	1. Introduction 
	1.1. The real Brjuno function
	1.2. The complex Brjuno function
	1.3. Main results: Properties of the complex Brjuno function
	1.4. Hyperfunctions and operator T
	1.5. Summary of the contents

	2. Modular group, the monoid M and its action 
	2.1. Algebraic properties, notation, structure of the monoid M; relations of M with the modular group and with Farey intervals
	2.2. Actions of M on some spaces of holomorphic functions

	3. Complex continued fractions 
	3.1. Definition of the complex continued fractions 
	3.2. The operator T, its spectral radius and the sum over the monoid

	4. Boundary behaviour of M 
	4.1. Decomposition into principal and residual terms 
	4.2. Boundary behaviour and continued fraction
	4.3. Hp--estimates 
	4.4. Real holomorphic functions with bounded real part 

	5. The complex Brjuno function 
	5.1. The dilogarithm 
	5.2. A natural compactification of H+ 
	5.3. Boundary behaviour of the imaginary part of the complex Brjuno function

	A1. Appendix 1: Real continued fractions
	A2. Appendix 2: Hyperfunctions
	A2.1 
	A2.2 

	A3. Appendix 3: Some properties of the dilogarithm 
	A3.1 
	A3.2 
	A3.3 

	A4. Appendix 4: Even Brjuno functions 
	A4.1 
	A4.2 
	A4.3 
	A4.4 

	A5. Appendix 5: The real Brjuno function as a cocycle
	A5.1. Group cohomology
	A5.2. Automorphic factors, cocycles and coboundaries
	A5.3. Action of @tempe *pdf@llx pdf@lly pdf@urx pdf@uryRectPGL(2,Z) on RQ 
	A5.4. The real Brjuno function as a cocycle

	References

