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ON THE MODULARITY OF ELLIPTIC CURVES OVER Q:
WILD 3-ADIC EXERCISES

CHRISTOPHE BREUIL, BRIAN CONRAD, FRED DIAMOND, AND RICHARD TAYLOR

INTRODUCTION

In this paper, building on work of Wiles [Wi] and of Taylor and Wiles [TW], we
will prove the following two theorems (see §2.2I).

Theorem A. If E,q is an elliptic curve, then E is modular.

Theorem B. Ifp: Gal(Q/Q) — GLa(F5) is an irreducible continuous represen-
tation with cyclotomic determinant, then p is modular.

We will first remind the reader of the content of these results and then briefly
outline the method of proof.

If N is a positive integer, then we let I';(N) denote the subgroup of SLa(Z)
consisting of matrices that modulo N are of the form

(07)

The quotient of the upper half plane by I'1 (N), acting by fractional linear transfor-
mations, is the complex manifold associated to an affine algebraic curve Y1(N),c.
This curve has a natural model Y1 (V) ,q, which for N > 3 is a fine moduli scheme
for elliptic curves with a point of exact order N. We will let X;(N) denote the
smooth projective curve which contains Y7 (V) as a dense Zariski open subset.

Recall that a cusp form of weight £ > 1 and level N > 1 is a holomorphic
function f on the upper half complex plane $) such that

(‘Cl g)erl(zv)

and all z € 9, we have f((az +b)/(cz +d)) = (cz + d)* f(2);
e and |f(2)|?(Im 2)* is bounded on .

e for all matrices
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The space Si(N) of cusp forms of weight k and level N is a finite-dimensional
complex vector space. If f € Si(IV), then it has an expansion

1) = ealf)emin:

n=1

and we define the L-series of f to be
o0
L(f,5) =) calf)/n.
n=1

For each prime p [ N there is a linear operator T}, on Si(N) defined by

p—1

(FIT)(2) =p~ "> f((z+)/p) + P* " (epz + d)7* f((apz + b) /(cpz + d))
=0

for any

( “ Z) € SLo(Z)

with ¢ = 0 mod N and d = p mod N. The operators T}, for p /N can be simulta-
neously diagonalised on the space Sx(N) and a simultaneous eigenvector is called
an eigenform. If f is an eigenform, then the corresponding eigenvalues, a,(f), are
algebraic integers and we have ¢, (f) = ap(f)c1(f).

Let A be a place of the algebraic closure of Q in C above a rational prime £ and let
Q, denote the algebraic closure of Q, thought of as a Q algebra via A. If f € Si,(N)
is an eigenform, then there is a unique continuous irreducible representation

pra: Gal(Q/Q) — GL2(Q,)

such that for any prime p /NI, ps» is unramified at p and tr py »(Frob,) = ap(f).
The existence of py y is due to Shimura if k¥ = 2 [Sh2|, to Deligne if k& > 2 [De]
and to Deligne and Serre if k = 1 [DS]. Its irreducibility is due to Ribet if & > 1
[Ri] and to Deligne and Serre if & = 1 [DS]. Moreover p is odd in the sense that
det p of complex conjugation is —1. Also, py,x is potentially semi-stable at ¢ in the
sense of Fontaine. We can choose a conjugate of py x which is valued in GLQ(OQ)\),
and reducing modulo the maximal ideal and semi-simplifying yields a continuous
representation

I73%: Gal(G/Q) - GLQ(Ff)v

which, up to isomorphism, does not depend on the choice of conjugate of py¢,».
Now suppose that p : Gq — GL2(Q,) is a continuous representation which
is unramified outside finitely many primes and for which the restriction of p to
a decomposition group at £ is potentially semi-stable in the sense of Fontaine. To
Plcaq,/q,) We can associate both a pair of Hodge-Tate numbers and a Weil-Deligne
representation of the Weil group of Q,. We define the conductor N(p) of p to be
the product over p # £ of the conductor of P|Ga1(6p /q,) and of the conductor of
the Weil-Deligne representation associated to p|Gal(6£ /Q.)- We define the weight
k(p) of p to be 1 plus the absolute difference of the two Hodge-Tate numbers of
p|Ga1(§e /Q,)- 1t is known by work of Carayol and others that the following two
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conditions are equivalent:

o p~ py for some eigenform f and some place \|¢;
o p~ ps for some eigenform f of level N(p) and weight k(p) and some place
AlL.
When these equivalent conditions are met we call p modular. It is conjectured
by Fontaine and Mazur that if p : Gq — GL2(Q,) is a continuous irreducible
representation which satisfies

e p is unramified outside finitely many primes,
. P|Gal(6[ /q,) 1s potentially semi-stable with its smaller Hodge-Tate number

)

e and, in the case where both Hodge-Tate numbers are zero, p is odd,

then p is modular [FM].

Next consider a continuous irreducible representation p : Gal(Q/Q) — GLa(F,).
Serre [Se2] defines the conductor N(p) and weight k(p) of p. We call 5 modular
if p ~ Py, for some eigenform f and some place A|(. We call p strongly modular
if moreover we may take f to have weight k(p) and level N(p). It is known from
work of Mazur, Ribet, Carayol, Gross, Coleman, Voloch and others that for ¢ > 3,
p is strongly modular if and only if it is modular (see [Dill]). Serre has conjectured
that all odd, irreducible 5 are strongly modular [Se2].

Now consider an elliptic curve E,q. Let pg e (vesp. pp,) denote the represen-
tation of Gal(Q/Q) on the f-adic Tate module (resp. the /-torsion) of E(Q). Let
N(E) denote the conductor of E. It is known that the following conditions are
equivalent:

(1) The L-function L(E, s) of E equals the L-function L(f, s) for some eigenform
I

(2) The L-function L(FE, s) of E equals the L-function L(f, s) for some eigenform
f of weight 2 and level N(E).

(3) For some prime ¢, the representation pg ¢ is modular.

(4) For all primes ¢, the representation pg ¢ is modular.

(5) There is a non-constant holomorphic map X;(N)(C) — E(C) for some

positive integer N.

(6) There is a non-constant morphism X;(N(F)) — E which is defined over Q.
The implications (2) = (1), (4) = (3) and (6) = (5) are tautological. The impli-
cation (1) = (4) follows from the characterisation of L(E, s) in terms of pg ¢. The
implication (3) = (2) follows from a theorem of Carayol [Call]. The implication (2)
= (6) follows from a construction of Shimura [Sh2] and a theorem of Faltings [Fa].
The implication (5) = (3) seems to have been first noticed by Mazur [Maz]. When
these equivalent conditions are satisfied we call E modular.

It has become a standard conjecture that all elliptic curves over Q are modular,
although at the time this conjecture was first suggested the equivalence of the
conditions above may not have been clear. Taniyama made a suggestion along the
lines (1) as one of a series of problems collected at the Tokyo-Nikko conference in
September 1955. However his formulation did not make clear whether f should
be a modular form or some more general automorphic form. He also suggested
that constructions as in (5) and (6) might help attack this problem at least for
some elliptic curves. In private conversations with a number of mathematicians
(including Weil) in the early 1960’s, Shimura suggested that assertions along the
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lines of (5) and (6) might be true (see [Sh3] and the commentary on [1967a] in
[We2]). The first time such a suggestion appears in print is Weil’'s comment in
[Wel] that assertions along the lines of (5) and (6) follow from the main result of
that paper, a construction of Shimura and from certain “reasonable suppositions”
and “natural assumptions”. That assertion (1) is true for CM elliptic curves follows
at once from work of Hecke and Deuring. Shimura [Sh] went on to check assertion
(5) for these curves.

Our approach to Theorem [A] is an extension of the methods of Wiles [Wi] and
of Taylor and Wiles [TW]. We divide the proof into three cases.

(1) If Peslca@/qeys) 18 irreducible, we show that pp 5 is modular.

(2) If Peslcaq/qvs)) is reducible, but bg slqa g q(/=3)) is absolutely irre-
ducible, we show that pg 3 is modular.

(3) If Peslca@/qve) is reducible and g slgaq/q/=3) IS absolutely re-
ducible, then we show that F is isogenous to an elliptic curve with j-invariant
0, (11/2)3, or —5(29)3/2° and so (from tables of modular elliptic curves of
low conductor) is modular.

In each of cases (1) and (2) there are two steps. First we prove that pp , is modular
and then that pg ¢ is modular. In case (1) this first step is our Theorem [Bl and in
case (2) it is a celebrated theorem of Langlands and Tunnell [L], [T]. In fact, in
both cases E obtains semi-stable reduction over a tame extension of Qy and the
deduction of the modularity of pg ¢ from that of pp , was carried out in [CDT] by
an extension of the methods of [Wi] and [TW]. In the third case we have to analyse
the rational points on some modular curves of small level. This we did, with Elkies’
help, in [CDT].

It thus only remained to prove Theorem[Bl Let 5 be as in that theorem. Twisting
by a quadratic character, we may assume that p|q.q,,/q,) falls into one of the
following cases (see §2.2)):

(1) P is unramified at 3.

(I3) has order 5.

(I3) has order 4.

(I3) has order 12 and p[q, (g, /q,) has conductor 27.

p(I3) has order 3.

Plcai@,/qs) is induced from a character  : Gal(Q3/Qs(v/—=3)) — Fj5 such
that x(—1) = —1 and

X(V=3) = x(1+3v=3) — x(1 - 3vV-3),

SIS

where we use the Artin map (normalised to take uniformisers to arithmetic
Frobenius) to identify x with a character of Qs(v/—3)*.

We will refer to these as the f =1,3,9,27,81 and 243 cases respectively.

Using the technique of Minkowski and Klein (i.e. the observation that the moduli
space of elliptic curves with full level 5 structure has genus 0; see for example [KI]),
Hilbert irreducibility and some local computations of Manoharmayum [Man], we
find an elliptic curve E,q with the following properties (see §2.2):

® ﬁE,5 ~ P
® Dp 3 is surjective onto GLa(F3),
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e and
(1) in the f =1 case, either oy 3]7, ® Fo ~ ws & wj or

— w *
pE,3|I3 ~ 0 1

and is peu ramifié;
(2) in the f = 3 case,

— w %
pE,3|13 ~ 0 1 )

(3) in the f =9 case, pg 3lr, ® Fg ~ wy ® wi;
(4) in the f = 27 case,

— w *
pE,3|13 ~ 0 1

and is tres ramifié;
(5) in the f = 81 case,
el 1 =
PE 315 0 w
and is tres ramifié;

(6) in the f = 243 case,

— w *
PEslca@,/an ~ | o 1

. . —kerp . N ips

is non-split over Q;rp and is tres ramifié.
(We are using the terms trés ramifié and peu ramifié in the sense of Serre [Se2].
We are also letting w denote the mod3 cyclotomic character and wy the second
fundamental character Is — FJ, i.e.

wo(o) = o(V/3)/V/3 mod V3.

We will often use the equality w = w~! without further remark.) We emphasise
that for a general elliptic curve over Q with pp 5 = p, the representation pg, 5 does
not have the above form, rather we are placing/a significant restriction on E.

In each case our strategy is to prove that pg 3 is modular and so deduce that
p ~ Pp s is modular. Again we use the Langlands-Tunnell theorem to see that pg 5
is modular and then an analogue of the arguments of [Wi] and [TW] to conclude
that pg 3 is modular. This was carried out in [Di2] in the cases f =1 and f = 3,
and in [CDT] in the case f = 9. (In these cases the particular form of 5 5|1, is not
important.) This leaves the cases f = 27, 81 and 243, which are complicated by
the fact that ' now only obtains good reduction over a wild extension of Q3. In
these cases our argument relies essentially on the particular form we have obtained
for Pp slca@,/q,) (depending on pg s|r,). We do not believe that our methods
for deducing the modularity of pg 3 from that of pp 5 would work without this key
simplification. It seems to be a piece of undeserved good fortune that for each
possibility for p[;, we can find a choice for Dy 3]gaiq, /q,) for which our methods
work.

Following Wiles, to deduce the modularity of pg 3 from that of pg, 3, we consider
certain universal deformations of pp 5 and identify them with certain modular de-
formations which we realise over certain Hecke algebras. The key problem is to
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find the right local condition to impose on these deformations at the prime 3. As
in [CDT] we require that the deformations lie in the closure of the characteristic
zero points which are potentially Barsotti-Tate (i.e. come from a 3-divisible group
over the ring of integers of a finite extension of Q3) and for which the associated
representation of the Weil group (see for example Appendix B of [CDT]) is of some
specified form. That one can find suitable conditions on the representation of the
Weil group at 3 for the arguments of [TW] to work seems to be a rare phenomenon
in the wild case. It is here we make essential use of the fact that we need only treat
our specific pairs (g 5,0z 3)-

Our arguments follow closely the arguments of [CDT]. There are two main new
features. Firstly, in the f = 243 case, we are forced to specify the restriction of our
representation of the Weil group completely, rather than simply its restriction to
the inertia group as we have done in the past. Secondly, in the key computation
of the local deformation rings, we now make use of a new description (due to
Breuil) of finite flat group schemes over the ring of integers of any p-adic field in
terms of certain (semi-)linear algebra data (see [Br2| and the summary [BrI]). This
description enables us to make these computations. As the persistent reader will
soon discover they are lengthy and delicate, particularly in the case f = 243. It
seems miraculous to us that these long computations with finite flat group schemes
in g7, §8land 9] give answers completely in accord with predictions made from much
shorter computations with the local Langlands correspondence and the modular
representation theory of GL2(Qs) in §81 We see no direct connection, but cannot
help thinking that some such connection should exist.

Notation. In this paper ¢ denotes a rational prime. In §T11, §41], 42 and §43 it
is arbitrary. In the rest of 1l and in §Blwe only assume it is odd. In the rest of the
paper we only consider £ = 3.

If F is a field we let F denote a separable closure, F2° the maximal subextension
of I which is abelian over F' and G the Galois group Gal(F/F). If Fy is a p-adic
field (i.e. a finite extension of Q) and F’/Fy a (possibly infinite) Galois extension,
then we let I/, denote the inertia subgroup of Gal(F’/Fy). We also let I, denote
Iz, /F,» Frobr, € Gr, /Ir, denote the arithmetic Frobenius element and W, denote
the Weil group of Fp, i.e. the dense subgroup of G'r, consisting of elements which
map to an integer power of Frobg,. We will normalise the Artin map of local class
field theory so that uniformisers and arithmetic Frobenius elements correspond.
(We apologise for this convention, which now seems to us a bad choice. However
we feel it is important to stay consistent with [CDT].) We let O, denote the ring
of integers of Fy, pp, the maximal ideal of O, and kg, the residue field O, /or, -
We write simply G, for Gq,, I, for Iq, and Frob, for Frobg,. We also let Qp»
denote the unique unramified degree n extension of Q, in Qp. If £ is any perfect
field of characteristic p we also use Frob, to denote the p*"-power automorphism of
k and its canonical lift to the Witt vectors W (k).

We write € for the ¢-adic cyclotomic character and sometimes w for the reduction
of € modulo £. We write ws for the second fundamental character I, — F;Q, i.e.

wo(o) = 0([1/(22_1))/81/“2_1) mod ¢/ (=1,

We also use w and wsy to denote the Teichmuller lifts of w and ws.
We let 1 denote the trivial character of a group. We will denote by V'V the dual
of a vector space V.
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If g: A — B is a homomorphism of rings and if X, gpec 4 is an A-scheme, then
we sometimes write 9.X for the pullback of X by Specg. We adopt this notation
so that 9("X) = 9" X. Similarly if § : X — Y is a morphism of schemes over A we
will sometimes write 96 for the pullback of 6 by Spec g.

By finite flat group scheme we always mean commutative finite flat group scheme.
If Fy is a field of characteristic 0 with fixed algebraic closure Fy we use without
comment the canonical identification of finite flat Fy-group schemes with finite
discrete Gal(F/Fy)-modules, and we will say that such objects correspond. If R is
a Dedekind domain with field of fractions F' of characteristic 0, then by a model of
a finite flat F-group scheme G we mean a finite locally free R-group scheme G and
an isomorphism i : G = G x F’. As in Proposition 2.2.2 of [Ra] the isomorphism
classes of models for G form a lattice ((G,4) > (9',4') if there exists a map of finite
flat group schemes § — G’ compatible with ¢ and ') and we can talk about the inf
and sup of two such models. If R is also local we call the model (G, %) local-local if
its special fibre is local-local. When the ring R is understood we sometimes simply
refer to (G,4), or even just G, as an integral model of G.

We use Serre’s terminology peu ramifié and trés ramifié; see .
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1. TYPES

1.1. Types of local deformations. By an ¢-type we mean an equivalence class
of two-dimensional representations

7:I; — GL(D)

over Q, which have open kernel and which can be extended to a representation
of Wq,. By an extended {-type we shall simply mean an equivalence class of two-
dimensional representations

7' Wq, — GL(D')

over Q, with open kernel.

Suppose that 7 is an /-type and that K is a finite extension of Q, in Q,. Recall
from that a continuous representation p of Gy on a two-dimensional K-vector
space M is said to be of type 7 if

(1) p is Barsotti-Tate over F' for any finite extension F' of Qg such that 7|7, is

trivial;

(2) the restriction of WD(p) to Iy is in T;

(3) the character ¢! det p has finite order prime to /.
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(For the definition of “Barsotti-Tate” and of the representation WD(p) associated
to a potentially Barsotti-Tate representation, see §1.1 and Appendix B of [CDT].)
Similarly if 7’ is an extended /-type, then we say that p is of extended type 7' if

(1) p is Barsotti-Tate over F' for any finite extension F' of Qg such that 7’|, is

trivial;

(2) WD(p) is equivalent to 7';

(3) the character ¢! det p has finite order prime to £.
Note that no representation can have extended type 7 unless det 7’ is of the form
x1X2 where x1 has finite order prime to ¢ and where y2 is unramified and takes an
arithmetic Frobenius element to ¢; see Appendix B of [CDT]. (Using Theorem 1.4
of [Br2)], one can show that for £ odd one obtains equivalent definitions of “type 7”
and “extended type 7' if one weakens the first assumption to simply require that
p is potentially Barsotti-Tate.)

Now fix a finite extension K of Q, in Q, over which 7 (resp. 7’) is rational. Let
O denote the integers of K and let k denote the residue field of O. Let

5: Gy — GL(V)

be a continuous representation of Gy on a two-dimensional k-vector space V' and
suppose that Endyg,; V' = k. One then has a universal deformation ring Ry, for
P (see, for instance, Appendix A of [CDT]).

We say that a prime ideal p of Ry o is of type T (resp. of extended type T')
if there exist a finite extension K’ of K in Ge and an O-algebra homomorphism
Ry.o — K' with kernel p such that the pushforward of the universal deformation
of p over Ry, o to K’ is of type 7 (resp. of extended type 7).

Let 7 be an ¢-type and 7’ an irreducible extended ¢-type. If there do not exist
any prime ideals p of type 7 (resp. of extended type 7'), we define Ra o =0 (resp.
Re,/o = 0). Otherwise, define Re,o (resp. Ra/o) to be the quotient of Ry, o by
the intersection of all p of type 7 (resp. of extended type 7'). We will sometimes
write R{, o (resp. R(,l,o) for Re,o (resp. Ralo). We say that a deformation of p is
weakly of type T (resp. weakly of extended type ') if the associated local O-algebra
map Ry,o — R factors through the quotient Ra o (resp. Re,/o)~ We say that 7
(resp. 7') is weakly acceptable for p if either Re,o = 0 (resp. Ralo = 0) or there
is a surjective local O-algebra map O[X] — Re,o (resp. O[X] — Rao). We say
that 7 (resp. 7') is acceptable for p if Re,o # 0 (resp. Re,/o # 0) and if there is a
surjective local O-algebra map O[X] — Re,o (resp. O[X] — Ra/o).

If K" is a finite extension of K in Q, with valuation ring O’ and residue field
k', then O’ ®¢ Re,o (resp. O’ ®¢ Re,lo) is naturally isomorphic to Remk/,o’ (resp.
R‘%@k y o). Thus (weak) acceptability depends only on 7 (resp. 7’) and p, and not
on the choice of K. Moreover 7 (resp. 7') is acceptable for p if and only if 7 (resp.
7') is acceptable for p ®y k'

Although it is of no importance for the sequel, we make the following conjecture,
part of which we already conjectured as Conjecture 1.2.1 of [CDT].

Conjecture 1.1.1. Suppose that 7 is an {-type and 7' an absolutely irreducible
extended {-type. A deformation p: G¢ — GL(M) of p to the ring of integers O" of
a finite extension K'/K in Q, is weakly of type T (resp. weakly of extended {-type
7') if and only if M is of type T (resp. of extended type 7').
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If 7 is a tamely ramified ¢-type, then we expect that it is frequently the case that
T is acceptable for residual representations p, as in Conjectures 1.2.2 and 1.2.3 of
[CDT]. On the other hand if 7 (resp. 7') is a wildly ramified ¢-type (resp. wildly
ramified extended ¢-type), then we expect that it is rather rare that 7 (resp. 7') is
acceptable for a residual representation p. In this paper we will be concerned with
a few wild cases for the prime £ = 3 which do turn out to be acceptable.

1.2. Types for admissible representations. From now on we assume that /¢
is odd. If F is a finite extension of Q, we will identify F* with W2P via the
Artin map. Let Up(¢") denote the subgroup of GLa(Zy) consisting of elements with
upper triangular mod ¢” reduction. Also let Uy(£) denote the normaliser of Ug(¢)
in GL3(Q). Thus U () is generated by Ug(¢) and by

(1.2.1) wy = ( 2 _01 )

If 7 is an f-type, set U, = GLo(Zy) if 7 is reducible and U, = Up(¥) if 7 is
irreducible. If 7/ is an extended /-type with 7/|;, irreducible, set U, = Ug(f). In
this subsection we will associate to an ¢-type 7 an irreducible representation o, of
U, over Q, with open kernel, and to an extended /-type 7/ with 7’|, irreducible an
irreducible representation o,/ of U, over Q, with open kernel. We need to consider
several cases, which we treat one at a time.

First suppose that 7 = x1|1, ® x2|7, where each yx; is a character of Wgq,. Let a
denote the conductor of x1/x2. If a = 0, then set

or =St ®(x1 o det) = St ®(x2 o det),

where St denotes the Steinberg representation of PGLy(F;). Now suppose that
a > 0. Let o, denote the induction from Uy(¢*) to GL2(Z;) of the character of
Up(¢*) which sends

( éaa7 g ) — (x1/x2)(a)x2(ad — £9By).

This is irreducible and does not depend on the ordering of x; and xo.

For the next case, let F' denote the unramified quadratic extension of Qy and s
the non-trivial automorphism of F' over Q. Suppose that 7 is the restriction to
I, of the induction from Wr to Wq, of a character x of Wr with x # x®. Let a
denote the conductor of x/x*, so that a > 0. Choose a character x’ of Wq, such
that X/|17V1FX has conductor a. If a = 1 we set

or = O IwpX) @ (X 0 det),
where O(:) is the irreducible representation of GLg(F¢) defined on page 532 of
[CDYTY.

To define o for a > 1 we will identify GL2(Z,) with the automorphisms of the Z,-
module Op. If a is even, then we let o~ denote the induction from O (1 +€“/2(‘)Fs)
to GLg(Z¢) of the character ¢ of OF(1 + £%/20rs), where, for o € OF and 3 €
(1+¢220ps),

e(aB) = (X' |y X) (@)X (det a3).

If @ > 1 is odd, then we let o, denote the induction from O3 (1 + 0(e=1D/29 )
to GLa(Z¢) of n, where n is the ¢-dimensional irreducible representation of
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051 + £(e=Y/20s) such that n|0;(1+£(a+1>/20w) is the direct sum of the char-
acters

af — (Xl xx") (@)X (det a3)

for « € OF and B € (1 + £(@TV/20ks), where x” runs over the ¢ non-trivial
characters of 0% /Z, (14 (OF).

Now suppose 7’ is an extended type such that 7’|;, is irreducible. There is a
ramified quadratic extension F//Qg and a character x of Wy such that the induction
from Wr to Wq, of x is 7/ (see §2.6 of [(G]). Let s denote the non-trivial field
automorphism of F over Q, and also let o denote the maximal ideal of the ring
of integers Op of F. Let a denote the conductor of x/x®, so a is even and a > 2.
We may choose a character x’ of Wgq, such that x’ |17V1p x has conductor a. We will
identify GL2(Qg) with the automorphisms of the Qg vector space F. We will also
identify Uy(£) with the stabiliser of the pair of lattices p}l D Or. We define o,/ to
be the induction from F* (1 + p‘}/zs) to Up(¢) of the character ¢ of F*(1+ p‘;ﬂs),
where

p(aB) = (' lwhxx") (@)X (det af),

with « € F* and 8 € (1+ paF/2s), where x” is a character of F'*/(0)? defined as
follows. Let 9 be a character of Q, with kernel Z,. Choose # € F* such that for
r € p%h ! we have

([ ) (1 + 2) = ¥(trpyq, (62)).
We impose the following conditions which determine x”:
e " is a character of F*/(0})%
° X”|o; is non-trivial;
e and

X,/(_Q(NF/sz)a/z): Z 1/1($2/NF/QZW)7
Tc€EZ/LZ

where w is a uniformiser in Op.

Finally if 7 is an irreducible ¢-type, choose an extended ¢-type 7" which restricts
to 7 on Iy and set o = 07|y, (0)-

We remark that these definitions are independent of any choices (see [G]).

Recall that by the local Langlands conjecture we can associate to an irreducible
admissible representation m of GL2(Q¢) a two-dimensional representation W D()
of Wq,. (See §4.1 of [CDT] for the normalisation we use.)

Lemma 1.2.1. Suppose that T is an {-type and that 7' is an extended {-type with
7|1, trreducible. Suppose also that w is an infinite-dimensional irreducible admis-
sible representation of GLa(Qy) over Q,. Then:

(1) o, and o, are irreducible.
(2) If WD(x)|1, ~ 7 (resp. WD(w) ~7'), then
Homy, (0,,7) = Q,
(resp.

Homy , (071, 7) = Q,).
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(3) If WD(m)|1, &7 (resp. WD(mw) 27'), then
Homy_(o,,m) = (0)
(resp.
Homy _, (071, m) = (0)).

Proof. The case that 7 extends to a reducible representation of Wgq, follows from
the standard theory of principal series representations for GL2(Qg). The case that
7 is reducible but does not extend to a reducible representation of Wq, follows from
Theorem 3.7 of [G]. The case of 7/ follows from Theorem 4.6 of [G].

Thus, suppose that 7 is an irreducible /-type and that 7/ is an extension of 7 to
an extended /-type. If 0 denotes the unramified quadratic character of Wgq,, then
7' ot 7' ® § and so we deduce that

o 7(1 Or1@s ~ Or/ X ((5 o det)
Thus 0'7-/|Q2< Uo(£) is irreducible. It follows that o, is irreducible. The second and
third part of the lemma for 7 follow similarly. O

1.3. Reduction of types for admissible representations. We begin by re-
viewing some irreducible representations of GLa(Z¢), Up(f) and Up(f). Let 01,0
denote the standard representation of GLo(Fy) over Fy. If n = 0,1,...., — 1 and
it m e Z/(¢ —1)Z, then we let 0, = Symm"(01,0) ® det™. We may think of
On,m as a continuous representation of GLq2(Zg) over F,. These representations
are irreducible, mutually non-isomorphic and exhaust the irreducible continuous
representations of GLa(Z,) over Fy.

If my,mg € Z/(¢ —1)Z we let oy, ,,,
determined by

( ZC Z) — a™td™2.

These representations are irreducible, mutually non-isomorphic, and exhaust the
irreducible continuous representations of Uy(¢) over Fy.

If my,my € Z/({ —1)Z, a € FZ and my # mag, then we let Uf{ml,mQ},a denote

denote the character of Uy(¢) over Fy,

the representation of Uy(¢) over Fy obtained by inducing the character of Q L Uo(0)
which restricts to o, on Up(¢) and which sends —¢ to a. If m € Z/({ —1)Z and

miy,ma2

a € F, , then we let o denote the character of Uy(¢) over Fy which restricts to

m},a
Tpn.m o0 Up(£) and wgicl}l sends wy to a. These representations are irreducible, mu-
tually non-isomorphic and exhaust the irreducible, finite-dimensional, continuous
representations of Uy(¢) over Fy.

We will say that a reducible {-type 7 (resp. irreducible (-type, resp. extended
{-type T with irreducible restriction to I;) admits an irreducible representation o of
GL2(Zy) (resp. Up(¥), resp. (70(6)) over Fy, if o, (resp. o,, resp. o,/) contains an
invariant an—lattice A and if o is a Jordan-Holder constituent of A @ Fy. We will
say that 7 (resp. 7, resp. 7') simply admits o if o is a Jordan-Holder constituent
of A ® F, of multiplicity one.

For each of the Fy-representations of GLa(Z,), Up(¢) and [70(6) just defined,
we wish to define notions of “admittance” and “simple admittance” with respect
to a continuous representation p : Gy — GLQ(F[). Let p be a fixed continuous
representation Gy — GLa(Fy).
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The representation oy, ,, admits p if either

ﬁ|] N wéfénfm(@rl) 0
2 0 wg—n—m(é-i-l)

_ wl—m *
p|115 ~ 0 w—n—m )

which in addition we require to be peu-ramifié in the case n = 0. (Note that
o0 admits p if and only if the Serre weight (see [Se2]) of p¥ @ w is n + 2.)
e The representation oy, ., simply admits p if oy, »,, admits p.

;nl,mQ admits p if either

_ wé_em"’_mj 0
p|If ~ 0 wé—m,;—émj )
2

where {m;, m;} = {mi, ma} and m; > m;, or

_ wl=m *
plll ~ O wfmz ?

or

or
— wl=m2
pl, ~ ( 0 w—m ) :
(Note that o7, ,,, admits p if and only if some irreducible constituent of
Indg(?&()z‘) e .m, admits p.)

/
miy,m2

_ wl=—m *
p|fz ~ 0 w—m2

_ wl—m2 *
p|1z ~ 0 w—m .

The representation oy, ., simply admits p if

7] wl=-m *

I, ~ _
p £ O w m
is tres ramifié.

The representation Uj[ml,mz},a with my1 # mso admits p if either o

The representation o with my # mq simply admits p if either

or

/

mi,m2
or 0y, m, admits 7 and if (w™'det P)lwq, equals the central character of
O—/{m17m2}7(l' (NOte that in this case o—l{m1,m2}7a|U0(€) = U;nl,WLQ b Uiﬂmml')

The representation Uf{ml ma},a With my#ma simply admits p if (w™tdet )| Wa,
equals the central character of Uf{ml mat.a and either

_ wt=m *
p|fz ~ 0 w2

_ wl—ma2 *
plll ~ O wiml :

or
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e The representation 0',{ mha admits p if
— 0y,.m admits p,
— (w™tdet P)lwq, equals the central character of 0’{m}7a,

— and, if
_ wl—m *
p|le ~ ( 0 W m )

is tres ramifié, then
_ * *
P 0 wmy )’

where x is unramified and sends Frobenius to —a.
(Note that a’{m}7a|U0(5) =0

mm:)
m,m*
e The representation a’{m} . Simply admits p if 0’{m}_a admits p.

We remark that the definition of “o admits the Cartier dual of 5” might look more
natural to the reader. We are forced to adopt this version of the definition by some
unfortunate choices of normalisations in [CDT].

We say that a reducible ¢-type 7 (resp. irreducible ¢-type 7, resp. extended ¢-
type 7/ with 7’|, irreducible) admits a continuous representation 5 : Gy — GLa(Fy)
if 7 (resp. 7, resp. 7') admits an irreducible representation of GLa(Z¢) (resp. Uy(¥),
resp. Up(¢)) over Fy which in turn admits . We say that 7 (resp. 7, resp. 7')
simply admits p if

e 7 (resp. T, resp. 7') admits a unique irreducible representation o of GL2(Zy)
(resp. Up(¥), resp. Us (¢)) over F; which admits p,

e 7 (resp. T, resp. 7') simply admits o,

e and o simply admits p.

Note that the concept of “simply admits” is strictly stronger than the concept
“admits” .

The starting point for this work was the following conjecture, of which a few
examples will be verified in §2.1]

Conjecture 1.3.1. Let k be a finite subfield of Fy, p: Gy — GLa(k) a continuous
representation, T an £-type and 7' an extended (-type with irreducible restriction
to I;. Suppose that det 7 and det 7' are tamely ramified, that the centraliser of the
image of p is k and that the image of T is not contained in the centre of GL2(Q,).

(1) 7 (resp. 7') admits p if and only if Re,o # (0) (resp. Re,/o # (0)), i.e.
if and only if there is a finite evtension K' of Qu in Q, and a continuous
representation p : Gy — GLo(Ok/) which reduces to p and has type T (resp.
has extended type 7').

(2) T (resp. ') simply admits p if and only if T (resp. ') is acceptable for p.

We remark that to check if 7 or 7 simply admits p is a relatively straightforward
computation. On the other hand to show that 7 or 7/ is acceptable for P is at present
a non-trivial undertaking. (The reader who doubts us might like to compare §8 with
g4 6B g6l 871 98 and 9 All the latter sections are devoted to verifying some very
special cases of this conjecture.)
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1.4. The main theorems. With these definitions, we can state our two main
theorems. The proofs very closely parallel the proof of Theorem 7.1.1 of [CDT].

Theorem 1.4.1. Let £ be an odd prime, K a finite extension of Qq in Q, and k
the residue field of K. Let

p: Gq — GLo(K)
be an odd continuous representation ramified at only finitely many primes. Assume
that its reduction

p:Gq — GLa(k)
is absolutely irreducible after restriction to Q(+/(—1)“=1/2¢) and is modular. Fur-

ther, suppose that

Pla, has centraliser k,

pla, is potentially Barsotti- Tate with £-type T,
T admits p,

and T is weakly acceptable for p.

Then p is modular.

Proof. Note that the existence of p shows that 7 is acceptable for p. Now the proof
is verbatim the proof of Theorem 7.1.1 of [CDT] (see §1.3, §1.4, §3, §4, §5 and §6
of that paper, and the corrigendum at the end of this paper), with the following
exceptions.

e On page 539 one should take Usy = U, Vs, = kero, and og; = 0.

e In the proof of Lemma 5.1.1 one must use Lemma [[.2.1] of this paper, in
addition to the results recalled in §4 of [CDT].

e On page 546 replace “Setting S = T(p) U {r} ...” to the end of the first

paragraph by the following. (Again the key component of this argument is
very similar to the main idea of [Kh].)
“Set S =T(p) U{r}; Us =1, Us, where Ug , = U (p) if p € T(p) and
Us, = Usyp otherwise; Vi = [[, Vg, where Vg, = Ui(p®) if p € T(p)
and V§ , = Vg, otherwise; and L = Homouy vz (Me, H (Xvy, 0))[I5].
Then I' = SLy(Z) N (USGL2(Zy)) satisfies the hypotheses of Theorem 6.1.1.
Furthermore

H' (YuGLaz,), Fm) 2 HY(T, Ly @ k)

as a ’i‘ls—module, where M is the module for Usy = GL2(Z;) defined by
the action of GLy(Fy) on L, ® k. Therefore mg is in the support of
H' (Yuara(zo), Fur)-

We now drop the special assumption on 5|7, made in the last paragraph.
Twisting we see that if o is an irreducible representation of GLo(Z;) over F,
admitting p|g,, then

Hl(YUj9 GLa(Z4)> Tov )ms 7 (0).
Moreover if 7 is irreducible and if ¢’ is an irreducible representation of Uy(¥)
over Fy which admits p|g,, then we see using the definition of admits and
Lemmas 3.1.1 and 6.1.2 of [CDT] that
H' Yy, Fov)ms = H' (Yuy aLa(z), F

Indg

La(Zg) Uv)ms 7’& (O)

0(&)
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It follows from the definition of admits and Lemma 6.1.2 of [CDT] that mg
is in the support of Hl(YU/S s FHome (M,,0)), 80 L' is non-zero. Using the fact
that Lemma 5.1.1 holds with U§ replacing Us and oy replacing og and the
discussion on page 541 we conclude that Ng is non-empty.”

O

Theorem 1.4.2. Let ¢ be an odd prime, K a finite extension of Q in Q, and k
the residue field of K. Let

p: Gq — GLy(K)

be an odd continuous representation ramified at only finitely many primes. Assume
that its reduction

p:Gq — GLa(k)

is absolutely irreducible after restriction to Q(+/(—1)“=1/2¢) and is modular. Fur-
ther, suppose that

Pla, has centraliser k,

pla, is potentially Barsotti- Tate with extended {-type 7/,
7' admits p,

and 7' is weakly acceptable for p.

Then p is modular.

Proof. The existence of p shows that 7/ is in fact acceptable for p. Again the proof
now follows very closely that of Theorem 7.1.1 of [CDT]. In this case we have to
make the following changes. All references are to [CDT] unless otherwise indicated.

e On page 539 one should take Us ¢ = Uo(£), Vs = ker o |y, ) and o5, =
o+|uy(e)- One should also define (NIS to be the group generated by Ug and

wy € GLa(Qy) and o to be the extension of og to 175 which restricts to o,
on Up(0).

e In the statement of Lemma 5.1.1 one should replace Homy, (0g,7>) by
Homﬁs (55, 7T°°).

e In the proof of Lemma 5.1.1 one must use Lemma [[21] above in addition to
the results recalled in §4 of [CDT].

e Because 7' is acceptable for p, we know that det 7 of a Frobenius lift is £¢ for
some root of unity ¢. Thus, o, (¢%) = 1 for some s > 0. Hence, og factors
through the finite group és = [75/‘/5632, where ¢ € GL2(Qy).

e In §5.3 choose My so that it is invariant for the action of U (0)/Vs,003Z. Also,
in the definition of Lg replace Gg by és.

e In the proof of Lemma 5.3.1 replace Ug by Us and og by 0.

e Note that wy acts naturally on Yg and Fg. In Lemma 6.1.3 we should
replace the group H}(Ys,Fs) by H} (Ys,Fs)®¢=! and the group H'(Ys, Fs)
by H! (Ys, gs)wezl.

e Replace §6.2 with the proof of the required extension of Proposition 5.4.1
given below.

e On page 547 the isomorphism

H!(Ys,Fs) — Home(H'(Ys,Ts),0)

on line 6 is TIS [wi]-linear. In the next line one should not only localise at m
but restrict to the kernel of w, — 1. Because wf =1on H'(Ys,TFs)m we see
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that the natural map
Hl(Ys, gs)ﬂezl — Hl(Ys, gs)m/(’wg - 1)
is an isomorphism, and so the map
LS i Homo (Ls, O)
is also an isomorphism.
On page 547 the groups H'(Ys, ?S)m(p> and Hl(Ys/,ff"s/)m@) should be re-
S S
placed by their maximal subgroups on which w, = 1.
On page 549 one should also define Vj (resp. V1) to be the group generated
by Vo (resp. V1) and w; € GL2(Qy). Similarly define & to be gy ® w;2.
In Lemma 6.4.1 replace Vg by Vo, Vi by V1 and o by o. In the proof of Lemma
6.4.1 also replace Uy, 1y (resp. Ugugry) by Ugrry (vesp. Ugygr,vy) and
O{rr'} (resp. USU{T,’I"’}) by ai{r,r’} (resp. a-/Su{r,r’})-
On line 20 of page 550 M should be chosen as a model of g. This is possible
because ker o has finite index in Vp, because in turn o,/ (¢°) = 1 for some
s > 0. One should also set L; = H'(Yy,,Fprv )@=, On line 25, we must
replace V; by V;.

e In the proof of Lemma 6.4.2, one must replace V; by Vi and o by o.
e In line 2 of the proof of Lemma 6.4.3, to see that L is a direct summand of

H

Thus

H(Yy,,Fpv) as an O[Ag]-module, one needs to note that H*(Yy, , Fasv )=t
is a direct summand of H'(Yy,, Farv )m, because w? = 1 on H' (Yy,, Farv ).

On line 12 of page 551 replace R?/’,g by R?}g.

Proof of extension of Proposition 5.4.1 of [CDT). Let © = @1 Mp-

First suppose that 7" admits U'{m1’m2}7a with my # mg and that U/{ml,mQ}@
admits p. As in the proof of Theorem [[.41] (especially §6.2 of [CDT] as modified
above), we have

Hl(y{r}a?@v ®3r(a,’

my,mo

) 7 (0):

On the other hand
I(Y{r}, Fov ® ?(a/

)wf:a
’
M mi

Hl(Y{T},fT@v ®3~(a’ )v)we:l

{m1.ma}.a) /My

Wi, = H' (Y, Fov @ Ty

my,mo mi,mo

1%

Thus, using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that

Hl(Y{r}ﬁ{r})ﬂ‘if}l # (0),

so Ny =Ny # 0.
Next suppose that 7/ admits Jf{m} . Which in turn admits p. Assume that p|g,

is irreducible or peu ramifié. By twisting we may reduce to the case m = 0. As in
the proof of Theorem [[L41] (especially §6.2 of [CDT] as modified above), we have

H' (Yo, craz0), v )y, # (0).

2=~2
HI(YU{T}GLQ(Z[)v 3"@02‘5{1'}& # (0),

where a is the Teichmiiller lift of a. Using the embedding

a+we: H (Yy,, cLy(z,): Fov) © Qp — H' (Yiy,Fov) ® Qy,
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we deduce that
Hl(Y{T}a f}'@v)ﬁl’{:}a # (0)7

and so

Ifl(Y'{r}7 Fov ® EF("/{O},O,)V)U)ZZI £ (O)

!
Miry

Thus, using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that
HI(Y{r}ff{r}):ﬁf}l 7# (0),

and so Ny = Nypy # 0.

Finally suppose that 7/ admits oy} , which in turn admits p, and that p|g, is
reducible and tres ramifié. By twisting we may reduce to the case m = 0. Note
that 5, (Froby) = —a. As in the proof of Theorem [[T.41] (especially §6.2 of [CDT]
as modified above), we have

H' (Y}, Fov )y, # (0).

Suppose that 7 is a cuspidal automorphic representation which contributes to
Hl(Y{r}, ?@V)m’{r}, so 7 is a cuspidal automorphic representation of GL2(A) such
that 7, is the lowest discrete series with trivial infinitesimal character, p, is a lift
of p of type ({r}, 1), and hence of type (0,1), and dim W?O(e) =1. As e 1 det p, has
order prime to £, we see that w? acts on WEJO(Z) by the Teichmiiller lift of a?. As 7,
has a Up(¢)-fixed vector but no GLa(Z)-fixed vector, we see that 1+ Upw, ' =0

on W?O(D. On the other hand, the eigenvalue of U, on WEJO(K) reduces to —a. Thus,
wy acts on W?O(D by the Teichmiiller lift of a, so wy acts on HI(Y{T}, ?@v)m/{r} by
the Teichmiiller lift of a. We deduce that
1 we=a
H (Yir), Fov © F(og o) iy, " 7 (0)-
Using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that
HI(Y{r}ff{r})ﬂf}l # (0),
so Ng = Ny # 0. O

2. EXAMPLES AND APPLICATIONS

2.1. Examples. Now we will specialise to the case ¢ = 3. Fix an element ( €
GLa(Z3) with ¢ =1 but ¢ # 1. The following definitions, which concern isomor-
phism classes of 2-dimensional representations into GL2(Qj), do not depend on this
choice. We will consider the following ¢-types. (These are in fact, up to twist, a
complete list of the wildly ramified types which can arise from elliptic curves over
Q3, or, in the case of conductor 243, the extended types. We will not need this
fact. Rather the justification for studying these particular types can be found in
22l More detailed information about the fixed fields of these types can be found
in )

e 71 corresponds to the order 3 homomorphism

75 — Z3[¢]”
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determined by
-1 — 1
4 — (.
e 7_; corresponds to the order 3 homomorphism
Zy[V-1" — Z3[¢)"
determined by

v-1 — 1

4 — 1
1+3v-1 — (.

e 73 is the unique 3-type such that 73| corresponds to the order 6 ho-

) Q3(v3)
momorphism

Zs[V3]* — Zs[(]”
determined by

-1 +— -1
4 — 1

1+V3 — (.

e 7_3 is the unique 3-type such that 7_3] Iq, corresponds to the order 6

3 V=3
homomorphism

Zs[V=3]* — Zs[()"

determined by

-1 — =1
4 — 1
143V/-3 — 1
1+v-3 — (.

Fori € Z/3Z, we will also consider the unique extended 3-types 7, whose restrictions
to GQ:s( v=3) correspond to the homomorphisms

Qs(V=3)* = Qs3(¢)*

determined by

Ve

-1 — 1
(2.1.1) 4 — 1
14+3v-3 — (¢

1++v-3 — (L
Subsequent sections of this paper will be devoted to checking the following special
cases of Conjecture [.3.1]

Lemma 2.1.1. Suppose that p: Gz — GLa(F3) and

_ 1 =
p|13N 0 w

is tres ramifié. Both 71 and T7_1 simply admit p.
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Theorem 2.1.2. Suppose that p: G3 — GLa(F3) and

_ 1 =
p|13N 0 w

is tres ramifié. Both 11 and T7_1 are weakly acceptable for p.

Lemma 2.1.3. Suppose that p: Gz — GLa(F3) and

— w *
p|13 ~ 0 1

is tres ramifié. Both T3 and T_3 simply admit p.

Theorem 2.1.4. Suppose that p: G3 — GLa(F3) and

— w *
p|13 ~ 0 1

is trés ramifié. Both 13 and T_3 are weakly acceptable for p.

Lemma 2.1.5. Leti € Z/3Z. Suppose that p: Gg — GL2(F3) and

— w %
P~ o 1
is trés ramifié. The extended 3-type 7/ simply admits p.

Theorem 2.1.6. Let i € Z/3Z. Suppose that p: G3 — GLy(F3) and

_ w ok
P 0 1
is trés ramifié. Then 7] is weakly acceptable for p.

We remark that in Theorems [2.1.2, [2.1.4] and we could replace “weakly
acceptable” by “acceptable”. This can be shown by using elliptic curves to construct
explicit liftings of the desired type. For Theorems[2.1.2land 22T 4l the results of [Man]
suffice for this. For Theorem 26l a slightly more refined analysis along the lines
of §2.3) is required.

We also remark that it was Lemmas 2.0 P-T.3, BXT.H and Conjecture[3T]which
originally suggested to us that we try to prove Theorems[Z1.2] 214 and 216

2.2. Applications. Conditional on the results stated in §2.1], which we will prove
below, we prove the following results.

Theorem 2.2.1. Any continuous absolutely irreducible representation p : Gq —
GL2(F5) with cyclotomic determinant is modular.

Proof. Choose an element ¢ € GLy(F5) with ZJ =1 but ¢ # 1. (The following
classification will be independent of the choice of ¢.) Then up to equivalence and
twisting by a quadratic character, one of the following possibilities can be attained.

(1) 7 is tamely ramified at 3.
(2) Pla, is given by the character

Q; — F5(()"
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determined by
—i,—= =1
3 C(C-¢)
-1 — 1
4 +— Z,

where i € Z/3Z.
(3) Pleg, =1 is given by the character

Qs(V-1)* — F5(¢)*

determined by

3 — 2

v—1 — 1

4 — 1
1+3v-1 — (.

(4) ﬁ|Gst§) is given by the character

Qs(V3)* — F5(Q)"
determined by

V3 — ¢-¢ !
-1 — -1
4 — 1
1+vV3 — (.
(5) Plaq, = is given by the character
Q3(vV-3)* — F5(()*
determined by
V=3 — (-
-1 — -1
4 — 1
1+3v-3 — 1
1+v=3 — (.

(6) Plag,  =s is given by the character

Q3(V-3)" — F5(0)*

determined by

V3 — T
-1 — -1
4 — 1
1+3vV-3 +— Z
1+v=3 — ¢,

where i € Z/3Z.
To see that one of these cases can be attained, use the following facts, all of which
are easy to verify.
e A subgroup of GLy(F5) with a non-trivial normal subgroup of 3-power order

is, up to conjugation, contained in the normaliser of F5(¢)*.
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e The intersection of SLa(F5) with the normaliser of ¢ in GL(F5) is generated
by ¢ and an element « such that o? = —1 and ala~ ' =( .
o If 3€ F5(0)%, det 3 =3, and afa~! = -3, then 3 = :I:(Z—Zil).

In each case, we may choose an elliptic curve Ey,q, such that the representation
P, 5 of Gz on E1[5](Q3) is isomorphic to plg, and such that the representation
P, 3 of Gz on E1[3](Q;) has the following form (where we use the same numbering
as above).

(1) We place no restriction on pg, 3.
(2) The restriction of pg, 5 to I3 has the form

1 =
0 w
and is tres ramifié. (Use Theorem 5.3.2 of [Manl.)
(3) The restriction of pg, 5 to I3 has the form

1 =
0 w
and is tres ramifié. (Use Theorem 5.3.2 of [Man].)
(4) The restriction of pg, 5 to I3 has the form

w %
0 1
and is tres ramifié. (Use §5.4 of [Man].)
(5) The restriction of pg, 5 to I3 has the form

W *
0 1
and is tres ramifié. (Use §5.4 of [Man].)
(6) Pp, 3 has the form
woox
0o 1)’

is trés ramifié and remains indecomposable when restricted to the splitting
field of p. (Use Corollary 2.3.2 below.)

In each case choose such an E; and fix an isomorphism « : F2 = E4[5](Qj;), such
that the Weil pairing on FE4[5] corresponds to the standard alternating pairing on
F2, following the conventions in §1 of [SBT]. The pair (E1, a) defines a Qs-rational
point on the smooth curve denoted X5 in [SBT]. We can find a 3-adic open set
U C X5(Qs) containing (E1,«) such that if (Es, ) defines a point in U, then
E»[3] = E1[3] as F3[Gs]-modules.

Using Ekedahl’s version of the Hilbert Irreducibility Theorem (see Theorem 1.3
of [E]) and the argument of §1 of [SBT] we may find an elliptic curve £,q and an

F;5[Gq]-module isomorphism § of p with E[5](Q) such that (see also §2 of [Man])
e under 3, the standard alternating pairing on FZ and the Weil pairing on
E[5] agree;
e the representation py, 3 of Gq on E[3] (Q) is surjective onto Aut(E[3](Q));
e and (FE, ) defines a point of U.
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Corresponding to the six types of p considered above, Proposition B.4.2 of [CDT]
ensures that the representation pg 3 of Gq on the 3-adic Tate module of E is

(1) either, up to quadratic twist, ordinary in the sense of Wiles [Wi] or poten-

tially Barsotti-Tate of some tamely ramified type;
) potentially Barsotti-Tate of type 71;
) potentially Barsotti-Tate of type 7_1;
) potentially Barsotti-Tate of type 73;
) potentially Barsotti-Tate of type 7_3;
6) potentially Barsotti-Tate of extended type 7;.
In the first case, E is modular by Theorem 7.2.1 of [CDT]. In the other cases we will
simply write 7 for the type/extended type. We see that 5 5(G3) has centraliser Fs
and the results of §2.1 show that 7 admits p 5,3 and that Tis weakly acceptable for
PE,3- Moreover p E,3|Ga1(6 /Q(v/=3)) is absolutely irreducible and, by the Langlands-
Tunnell theorem (see [Wi]), modular. Thus by Theorems [[.4.]] and [[.4:2 we see
that pg 3 is modular. We deduce that E is modular, so p = pg 5 is modular. |

Combining this theorem with Theorem 7.2.4 of [CDT| we immediately obtain
the following corollary.

Theorem 2.2.2. Ewvery elliptic curve defined over the rational numbers is modular.

2.3. An extension of a result of Manoharmayum. The following facts follow
at once from [Man], particularly the classification given just before Theorem 5.4.2 of
that paper. Consider elliptic curves E over Qs with minimal Weierstrass equation
Y2 = X3+ AX + B, where

A=B+3=0mod9,

so pg 3 has the form ( (6) T ) and is tres ramifié. This leaves three possibilities

for the equivalence class of pp 5. Fix ¢ in GLy(F5) with ZB =1but { #1. The
action of Gq, (/=3) on E[5] (Qs) is via a representation of the form

VB 60T
-1 — =1
4 — 1‘
1+v=3 +—
1+3v=-3 — ¢(,

for some § = +1 and some i € Z/3Z. All nine possibilities for the pair (pp 3,1%)
satisfying these conditions can arise for some such choice of A and B.

Lemma 2.3.1. With the above notation and assumptions, we have § = 1.

Proof. Let F = Q3(v/=3,3,a), where 32 = —/—3 and
o® + Ao+ B = 9v/-3.

F is a totally ramified abelian extension of Qs(v/—3) of degree 6, with uniformiser
@ = a/B. The change of coordinates Y — w!®Y, X — w!®X + « shows that F
has good reduction over F', and the reduction is isomorphic to

Y2=X3-X-1.
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The arithmetic Frobenius of W therefore has trace 3 on E[5]. Since
Npqs(v=3)(@) = V=3(1 — 3v/=3) mod 9v/-3,

we conclude that

- =11
so 6 =1. O
Twisting by quadratic characters we immediately deduce the following corollary.

Corollary 2.3.2. Let py : Gg — GL3(F3) have the form

(1)~ (o2)

and be trés ramifié. Let ps : Gs — GLa2(Fs5) have cyclotomic determinant and
restriction to GQg( J/=3) given by a character

Qs(vV=3)" — F5(¢)*
determined by
- =1
V=3 — ((=¢ )
-1 — -1
4 — 1
1+v-3 +— gl
1+3v-3 — (,
for some i € Z/3Z. There is an elliptic curve E/q,, with E[3](Qs) ~ ps and

E[5](Q;) ~ ps. In particular, the action of I3 on TsE factors through a finite
group and so E has potentially good reduction.

3. ADMITTANCE

In this section we will check Lemmas 2.1.1l R.1.3] and B.1.5. We freely use the
terminology introduced in §.2 and §L.3]

3.1. The case of 7. In this case o, is the induction from Uy(9) to GL2(Z3)
of a character of order 3. Its reduction modulo a prime above 3 has the same

Jordan-Hélder constituents as the reduction modulo 3 of Indgfé()zw 1. Using Brauer

characters, we see that the reduction modulo 3 of Indggggi 1 has Jordan-Holder
constituents oy o, 0 o and o7 ;. Thus, 71 admits 00,0, 02,0, 00,1 and o2 1, the latter
two simply. Lemma 2.T.1] follows in this case.

3.2. The case of 7_1. Let U denote the subgroup of GL2(Z3) consisting of ma-

trices
a b
c d

with a = d mod 3 and b+ ¢ = 0 mod 3, so o,_, is the induction from U to GL3(Z3)
of a character of order 3. Upon reduction modulo a prime above 3 this will have the
same Jordan-Holder constituents as the reduction modulo 3 of IndCU;LQ(Zg) 1. Ify
denotes the non-trivial character of F5 and ¢ a character of Fg of order 4, then this
latter induction splits up as the sum of the representations of GLy(Z3) — GL2(F3)

denoted 1, sp,, and ©(¢) in §3.1 of [CDT]. By Lemma 3.1.1 of [CDT| we see that
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7_1 admits 0g, 02,1 and o0p 1, the latter two simply. Lemma [ZT.T] follows in this
case.

3.3. The case of 713. Let U denote the subgroup of GL2(Z3) consisting of ma-

trices
a b
c d

with ¢ = d mod 3 and ¢ = 0 mod 3. Then o, is the induction from U to Uy(3) of
a character of order 3. Upon reduction modulo a prime above 3 this will have the
same Jordan-Holder constituents as the reduction modulo 3 of Indg‘)(3) 1. Thus,
743 simply admits o, and o1 ;. Lemma [ZT.3] follows.

3.4. The case of 7/. Let x be the character of Q3(v/—3)* as in (211]). Let ¢ be
a character of Q3 with kernel Z3 and which sends 1/3 to {. If € (3v/—3)Z3[vV/—3]

we have
We deduce that if x” is the character used to define o, in §I.2 then x"(v-3) =

C=¢H
Let U denote the subgroup of GLy(Zs3) consisting of matrices

(5 a)

with @ = d mod 3 and b+ ¢ = 0 mod 3. Let U be the group generated by ws (see
(CZT)) and U, so o,/ is the representation of Up(3) induced from a character of U
which sends w3 to 1 and has order 3 when restricted to U. Thus, the Jordan-Hoélder
constituents of the reduction of o7, modulo a prime above 3 are the same as the
[70(3) 1

. .

Let V' denote the subgroup of GL3(Z3) consisting of matrices

(3 1)

with @ = d mod 3. Let V be the group generated by ws and V', and let v denote
the character of V'/V which sends w3 to —1. We have

Jordan-Holder constituents of the reduction modulo 3 of Ind

Indg(l) ~1® Ind“jQSX 7,

where 7 is a non-trivial character of V/U = (VQJ)/(UQY). The reduction modulo
a prime above 3 of this (3-dimensional) representation has the same Jordan-Hélder
constituents as the reduction modulo 3 of 1 ®1 @ v. Thus, 7/ admits af{o} 1 af{l} .

0’3[0}’71 and 0'3[1}’71, the latter two simply. Lemma ZT.5 follows.

4. NEW DEFORMATION PROBLEMS

In this section we begin the proof of Theorems[ZT.2 BXT.4 and XT.6. One could
approach this directly by using the results of [Br2] to attempt to describe Ra o

(resp. Re,/o)' At least one of the authors of this paper (Taylor) thinks that such an
approach holds out more promise of attacking the non-acceptable case, and another
author (Breuil) has indeed made several computations along these lines. However
in the present case it seems to be easier to proceed less directly.
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To this end we will use ad hoc arguments to define deformation problems, which
will be represented by O-algebras S such that

o dimg mg/(pr, mg) <1,
e and the map Ry,o — Re,o (resp. Ralo) factors through S.

An important advantage of this approach is that to calculate mg/(px, m%) one
need only work in the category of finite flat group schemes killed by a prime. Breuil
modules (see §H) for finite flat group schemes killed by an odd prime are significantly
simpler than the general case (of prime power torsion). This is particularly true
when we also use descent data. On the other hand, to suitably define the new
deformation problems is rather delicate. That is what we will do in this section.

4.1. Some generalities on group schemes. In this section, and in §4.2] ¢ will
again be an arbitrary rational prime. Moreover R will denote a complete discrete
valuation ring with fraction field I of characteristic zero and perfect residue field k
of characteristic £. We will let I' denote a finite group of continuous automorphisms
of R and we will let Fy denote the subfield of F’ consisting of elements fixed by
T'. Thus F’/Fy will be finite and Galois with group I". In our applications of these
results it suffices to consider the case where Fj is a finite extension of Qg (although

we will occasionally pass to the completion of the maximal unramified extension of

Lemma 4.1.1. Let G be a finite flat R-group scheme. Scheme theoretic closure
gives a bijection between subgroup schemes of G x F' and finite flat closed subgroup
schemes of G.

(See for instance §1.1 of [Cd].)

Lemma 4.1.2. Let G and G2 be finite flat group schemes over R which have local-
local closed fibre. Suppose that G1 and Go are the only finite flat R-group schemes
with local-local closed fibre which have generic fibres Gy X F' and Go x F' respectively.
Suppose also that we have an exact sequence of finite flat R-group schemes

(0) —G1 — G — G2 — (0).

Then § is the unique finite flat R-group scheme with local-local closed fibre and with
generic fibre G x F.

Proof. Let G4 and §_ denote the maximal and minimal local-local models for G x F'.
The proof that these exist follows the proof of Proposition 2.2.2 of [Ra] and uses
the fact that the Cartier dual of a local-local finite flat group scheme is local-local.
We must show that the canonical map G4 — G_ is an isomorphism. The scheme-
theoretic closure of §1 X F' in G4 must be isomorphic to G; (by uniqueness), so we
have closed immersions §; — Gy extending §; x F — G4 x F. Similarly §1/5;
must be isomorphic to Go. This gives a commutative diagram with exact rows:

0— G — G+ — G —0
! ! !
0— G — G- — G —0

The vertical maps §; — G; and G2 — G5 induce isomorphisms on the generic fibre
and hence are isomorphisms. This is because some power of them is the identity on
the generic fibre and hence is the identity. Working in the abelian category of fppf
abelian sheaves over Spec R, the middle map must also be an isomorphism. O
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When § has ¢-power order, we will let D(G) denote the classical (contravariant)
Dieudonné module of §x k. It is a W (k)-module equipped with a Frobenius operator
F and a Verschiebung operator V. We have FV = VF =/ and for all x € W (k),
Fz = (Froby2)F and Vz = (Frob, ' z)V.

If G is a finite flat R-group scheme, then by descent data for G over Fy we mean
a collection {[g]} of group scheme isomorphisms over R

[9]: G — 7S
for g € T such that for all g, h € I we have
[gh] = (°[R]) o [g]-

Note that this is not descent data in the sense of Grothendieck, since R/R! might
be ramified. However, Spec F’/ Spec Fy is étale, so by étale descent we obtain a
finite flat group scheme (9, {[g]})r, over Fy together with an isomorphism

(9, {[g]})Fo X Fy F'=g XR F'

compatible with descent data. We also obtain a natural left action of I" on the
Dieudonné module D(§), semi-linear with respect to the W (k)-module structure
and commuting with F and V. We refer to the pair (G, {[g]}) as an R-group scheme
with descent data relative to Fy. One defines morphisms of such objects to be
morphisms of R-group schemes which commute with the descent data. By a closed
finite flat subgroup scheme with descent data we mean a closed finite flat subgroup
scheme such that the descent data on the ambient scheme takes the subscheme to
itself. Quotients by such subobjects are defined in the obvious way. Thus we obtain
an additive category with a notion of short exact sequence. Suppose that G is a
finite flat Fp-group scheme. By a model with descent data (or simply model) for G
over R we shall mean a triple (G, {[g]},?), where (G, {[g]}) is an R-group scheme
with descent data relative to Fy and where i : (G, {[g]})r, — G. Sometimes we will
suppress ¢ from the notation. It is easy to check that isomorphism classes of models
admitting descent data for G over R form a sublattice of the lattice of models for
G g over R. The following lemma follows without difficulty from Lemma Tl

Lemma 4.1.3. Let F'/Fy be a finite Galois extension as above, and let (G, {[g]})
be a finite flat R-group scheme with descent data relative to Fy. Base change from
Fy to F', followed by scheme theoretic closure, gives a bijection between subgroup
schemes of (G,{[9]})r, and closed finite flat subgroup schemes with descent data in

(S, {lgl})-

We let FF s denote the category of finite flat group schemes over R and FD g/,
the category of finite flat group schemes over R with descent data over Fy. Let
W (k)[F, V][I'] denote the (non-commutative) W (k)-algebra generated by elements
F, V and [g] for g € T satisfying
[gh] = [g][h] for all g, h € T
[g]F = Flg] and [g]V = V]g] for all g € T
FV =VF = ¢;

[9]x = (gx)[g] for all x € W(k) and g € T;

Fz = (Frobyz)F and Vo = (Frob, ' z)V for all 2 € W (k).

If J is a two-sided ideal in W (k)[F, V][], we will let D/ /g, 5 denote the full
subcategory of FD v/, consisting of objects (G, {[g]}) such that J annihilates D(5).
If (G, {[g]}) is an object of FDp: /g, 5 and if (I, {[g]}) C (G, {lg]}) is a closed finite
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flat subgroup scheme with descent data, then (H,{[g]}) and (G, {[g]})/(H,{lg]})
are again objects of FD g/, 9.

Lemma 4.1.4. For J a two-sided ideal of the ring W (k)[F, V][['], choose objects
(51, {lg]}) and (S2,{lgl}) in FDp//p, 3 so that (Sv,{[g]})r = (52, {l9]})r, Let G
denote the base change of this Fy-group scheme to F', so G has canonical descent
data relative to F'/Fy. Then the sup and inf of §1 and Ga in the lattice of integral
models for G are stable under the descent data on G and with this descent data are
objects of FDpr/p, 9.

Proof. By uniqueness of the inf and sup, they are stable under the descent data
on the generic fibre. It follows from Raynaud’s construction of the inf and sup
(Proposition 2.2.2 of [Ra]) in terms of subgroup schemes and quotients of G; x Go
that the sup and inf are objects of FDpv /g, 5. O

Corollary 4.1.5. Let J be a two-sided ideal of the ring W (k)[F, V][T']. Let
(4.1.1) 0) — G — G— G2 —(0)

be an exact sequence of finite flat group schemes over Fy. Let (G1,{[g]}) and
(9o, 4[g]}) be objects of TD sy 5 such that (S, {lg])m = Gr and (Sa. {lg]})r, =
Ga. Suppose that for all objects (G,{[g]}) of TDps k5 with (3,{[9]})r, = G, the
filtration on (§,{[g]}) induced by the filtration on G has subobject isomorphic to
(G1,{lg]}) and quotient isomorphic to (G2,{[g]}) (without any assumed compatibil-
ity with ({.1.1))). Then there is at most one model for G in FDp: /g, g.

Proof. By LemmaT4, it suffices to prove that if (4, {[g]},?+) and (S, {[g]},7i-)
are two such models with a morphism between them, then the morphism between
them must be an isomorphism. In such a case we have a commutative diagram
with exact rows:

0— 6 — G4 — G2 —0
! ! !
0— G — G- — G —0

The vertical maps §; — G; and G2 — G5 induce isomorphisms on the generic fibre
and hence are isomorphisms. This is because some power of them is the identity on
the generic fibre and hence is the identity. Working in the abelian category of fppf
abelian sheaves over Spec R, the middle map must also be an isomorphism. O

4.2. Filtrations. We keep the notation and assumptions of the previous section.
Let ¥ be a finite non-empty set of objects (Gi, {[g]}) of IDpr /g, (9,¢). (Note the
¢ in the subscript (J,¢), which denotes the two-sided ideal generated by J and ¢.)
Suppose that

Hom((Ss, {[9]}), (5 {[g1})) = Hom((Gi, {g]}) > (S5, {lg]}) o)

(4.2.1) [0 if ¢ # J,
"] finite field ifi=j

(in particular, the objects in ¥ are non-zero and pairwise non-isomorphic). By a X-
filtration on a finite flat Fy-group scheme G' we mean an increasing filtration Fil/ G
such that for all j the graded piece Fil! G/ FilV ' G is isomorphic to (S;(;), {[9]}) r,
for a (unique) (9;(;),{[g]}) € X. The following lemma is proved by the standard
Jordan-Hélder argument.
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Lemma 4.2.1. IfG is a finite flat Fy-group scheme which admits a ¥-filtration and
if H is a quotient or subobject of G which admits a X-filtration, then any X-filtration
of H can be extended to a X-filtration of G. In addition, all X-filtrations of G have
the same length and the same set of successive quotients (with multiplicities).

We say that an object (G, {[g]}) of FDp//p, g is weakly filtered by % if there is

some increasing filtration Fil’ (G, {[g]}) of (S, {[g]}) by closed subobjects such that
for all 7, the graded piece

Fit’ (S, {[g]})/ Fi' ~'(, {[g]})

is isomorphic to an element of ¥. We say that an object (G, {[g]}) of TDp/,p, g is
strongly filtered by 3 if (G, {[g]}) is weakly filtered by ¥ and if for every X-filtration
of (G,{[g]})F, the corresponding filtration of (G, {[g]}) satisfies

Fil’ (S, {[g]})/ Fi' ~'(, {[g]})

is isomorphic to an element of 3 for all j. The following lemma follows at once
from the definitions and from Lemma [£211

Lemma 4.2.2. (1) If (9,{lg]}) and (9',{[g]}) are objects of TDp/,p, 5 which
are weakly filtered by X, then (G, {[g]}) x (9, {[9]}) is also weakly filtered by
X
(2) Zet (9, {[g]}) and (3, {[g]}) be objects of FDpuyz, 5 with (&, {[g]}) a closed
subobject or quotient of (G,{[g]}). Suppose that (G,{[g]}) is strongly filtered
by ¥ and that (9',{[g]})r, admits a X-filtration. Then (§',{[g]}) is strongly
filtered by X.

If any object of FD g/ /g, 5 which is weakly filtered by X is strongly filtered by
¥, then we will let FDpv /g, 55 denote the full subcategory of FD g/ /g, 9 consisting
of objects which are weakly (and therefore strongly) filtered by X.

Lemma 4.2.3. Suppose that any object of FD g/, g5 which is weakly filtered by ¥
is strongly filtered by ¥. Let G be a finite flat Fy-group scheme. If (G1,{[g]}) and
(G2, {lgl}) are two objects of FD g/, 95 with isomorphisms

ij: G — (91" {[g]})Fo

for j =1,2, then there is a unique isomorphism

¢ : (S1{lgl}) — (S, {lgl})

such that on the generic fibre i = ¢ o iy.

Proof. Tt follows from Raynaud’s construction of sup and inf that the sup and inf
of ((S1,{lgl}),i1) and ((G2,{[g]}),i2) are again objects of FDps/p g5. Thus we
may suppose that there exists a map ¢ : (S1,{[g]}) — (G2, {[g]}) such that on the
generic fibre io = ¢ 0 i;. We will argue by induction on the rank of G that ¢ is an
isomorphism.

If (S1,{[g]}) is isomorphic to an element of ¥, then the result follows by our
assumption on .

If (S1,{[g]}) is not isomorphic to an element of ¥, then choose an exact sequence

(0) — (S11,{9}) — (S1.{g}) — (S12,{g}) — (0),

where (G911,{g}) and (G12,{g}) are weakly filtered by 3. Let (Ga1,{[g]}) de-
note the closed subobject of (G2, {[g]}) corresponding to (G11,{[g]})r, and define
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(922, {[9]}) = (G2,{[9]})/(S21,{[g]}). Then we have a commutative diagram with
exact rows

0— %1 — G — G2 —0

! ! !

0— G211 — G2 — G —0

compatible with descent data, where the central vertical arrow is ¢ and where
by inductive hypothesis the outside vertical arrows are isomorphisms. Working
in the abelian category of fppf abelian sheaves over Spec R, we see that ¢ is an
isomorphism. O

The following lemma and its corollary give criteria for the equivalence of the
notions of being weakly filtered by ¥ and of being strongly filtered by X.

Lemma 4.2.4. FizJ and X as above. Suppose that for any pair of (possibly equal)
elements (9, {[g]}) and (§”,{[g]}) in X, the natural map

Extho,, o (8" Ala]}): (9 Ala]}) — Exth, i, (8" {g])r- (9 {lal})m)

is injective. Then any object (3,{[g]}) of FD g/, 5 which is weakly filtered by X is
also strongly filtered by X.

Proof. For brevity, we say “weakly/strongly filtered” rather than “weakly/strongly
filtered by X7 since the data ¥ is fixed for the entire proof. Also, we omit the
specification of descent data from the notation, but it should not be forgotten.

Suppose G is weakly filtered. In order to prove that § is strongly filtered, we argue
by induction on the length of a ¥-filtration of §,, this length being well-defined
by Lemma 2Tl The case of length < 1 is clear. Otherwise, by the definition of
being weakly filtered, there is a short exact sequence of finite flat R-group schemes
(with descent data relative to Fp)

0)—9§ —8§—9" —(0)

with §’ € ¥ and §” weakly filtered (and hence, by inductive hypothesis, strongly
filtered). Let H be any closed subgroup scheme of § (with compatible descent data
relative to Fp) such that Hp, ~ G, r, for some G;, € ¥ and such that (§/H)g,
admits a Y-filtration. We need to prove (in the category of finite flat group schemes
with descent data relative to F’/Fp) that

[ ] 9‘(: ~ 91'0,
e and §/J is weakly filtered.

If the composite map
J'C [N 9 _ 9//

is zero, then H = G’ as closed subgroup schemes of § (with descent data) and
likewise G/H = G”, so we are done. The interesting case is when the composite
map is non-zero. The map G;, r, = Hp, — G, is then non-zero and therefore
must be a closed immersion by the assumption ({.2.1]) on ¥ and a devissage with
respect to a Y-filtration of S'Iéo. We conclude that the map of generic fibre étale
group schemes H x F’ — G” x F’ is a closed immersion.

Taking scheme-theoretic closures, we obtain a closed subgroup scheme H"” — G”
(with unique compatible descent data over Fp) fitting into a commutative diagram
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of group schemes with descent data
K i} g_('ll
1 |
0—9¢— 5§ — 9 —(0

in which the lower row is short exact, the vertical maps are closed immersions and
the top map H — H" induces an isomorphism on generic fibres. By Lemma
we may extend Hp, — G, to a E-filtration on G%, and so, because §” is strongly
filtered by induction, we may extend H"” — G” to a X-filtration. In particular H"
is isomorphic to an object in ¥ and §” /3" is strongly filtered.

Pulling back the short exact sequence

0—¢g —G6—G6" 50
by H"” — G”, we get a diagram
H
!
00— § — 9><9uf}f” — H'" —0

in which the row is a short exact sequence of fppf abelian sheaves and all of the
terms are finite flat group schemes (for the middle, this follows from the flatness
of § — §”). Thus, this bottom row is a short exact sequence of finite flat group
schemes (with descent data). As Hp, = HY, , the sequence

0 — G, — (S xgn H")p, — I, — 0
is split. In particular (§ xg» H")p, and hence G x g~ H" are killed by ¢. By the
hypothesis of the lemma
0—G§ —Gxgr H' — H'— 0
is also split, i.e. we have an isomorphism
G xgn H" =G xpH"

such that §' — G x g~ H" corresponds to injection to the first factor of §' x g H”
and § xXgr H"” — H" corresponds to projection onto the second factor. By our
hypotheses on ¥ we can find a morphism ¢ : H"” — G’ extending

1 ~ / 11 P oy
FO<—9‘CFO‘—>9FO>< Fo_»gFo'

Then our closed immersion H — G’ x g H" factors as

H— 3" P0G xp 0,

As H — G’ xg H" is a closed immersion, o : H — H” must be a closed immersion
and hence an isomorphism. Thus H is isomorphic to an object in X.
Now we turn to the proof that G/H is weakly filtered. Since a: H — H"” is an
isomorphism, it is clear that the natural map
H XRQ, — G Xgr H”
is an isomorphism, and hence that
Hxr§ — 9

is a closed immersion. Thus, the finite flat group scheme G/(H x §’) makes sense
and the natural map

9/(5{ « 9/) . 9///5_(//
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is an isomorphism (as one sees by using the universal properties of quotients to
construct an inverse map). We therefore arrive at a short exact sequence

0_}9/_)9/:}(_)9///9_{//_}0

(compatible with descent data). Since §”/H" is strongly filtered, as we noted
above, and §' € 3, it follows that G/H is weakly filtered. O

Corollary 4.2.5. FizJ and ¥ as above. Suppose that ¥ = {(S,{[g]})} is a single-
ton. Suppose also that we have a short exact sequence

(0) — (S, {lgl}) — (S:{lg]}) — (G2, {l9]}) — (0)

in FD g/, .9, where for any i,j (possibly equal)

Hom((Si, {[g]}), (95, {lg]})) = Hom((Si, {[g]}) o, (S, {lg1}) o)
:{ o FiFd,
finite field if i = 7,
and the natural map
(4.2.2)
Bxtyp,, oo, (G {11} (S5, {91}) — Bxtp, a1 ((Si: {la})ms (S5: {91 R)

is injective. Then any object (3(,{[g]}) of TDp:/p, 5 which is weakly filtered by %
s also strongly filtered by X.

Proof. As (H,{[g]}) is weakly filtered by %, it is weakly filtered by {(91,{[g]}),
(92, {[9]})}, and so by Lemma ELZA is strongly filtered by {(S1, {[g]}), (S2, {[g]})}-
Any Y-filtration of (H,{[g]})r, extends to a {(S1,{l9]}), (G2, {[g]})}-filtration of
(#,{[9]})F,,» which in turn gives rise to a {(S1,{[g]}), (G2, {[g]})}-filtration of
(#,{[g]}). By the injectivity of (ZZZ) we see that this yields a X-filtration of
(3, {[g]}) that induces to our chosen X-filtration of (H, {[g]})r,. O

4.3. Generalities on deformation theory. Again in this section ¢ denotes an
arbitrary rational prime. We let K denote a finite extension of Qg, O the ring of
integers K, px the maximal ideal of O and k its residue field. Note that k has
a different meaning from the previous two sections. Let V' be a two-dimensional
k-vector space and 5 : Gy — Autg (V) a continuous representation. Suppose that
the centraliser of Gy in Endi(V) is k. Let ¥ : Gy — O denote a continuous
character such that (¢ mod pr) = detp. Let 8(p) denote the full subcategory of
the category of finite length (discrete) O-modules with a continuous O-linear action
of Gy consisting of objects which admit a finite filtration so that each successive
quotient is isomorphic to V. Because Endyg, (V) = k, it follows from the usual
Jordan-Hélder argument that 8(5) is an abelian category.

Let 8 be a full subcategory of §(p) stable under isomorphisms and which is closed
under finite products, 8(p)-subobjects and S$(p)-quotients, and which contains V.
We will consider the following set-valued functors on the category of complete
noetherian local O-algebras R with finite residue field k.

e Dy o(R) is the set of conjugacy classes of continuous representations p :
Gy — GL2(R) such that p mod mp is conjugate to p.

° glé.o(R) is the set of conjugacy classes of continuous representations p :
Go — GL2(R) such that p mod mp is conjugate to p and det p = 1.
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° D%_O(R) is the set of conjugacy classes of continuous representations p :
Go — GL2(R) such that p mod mp is conjugate to p and such that for each
open ideal a C R the action p makes (R/a)? into an object of 8.
° Dgg(R) is the set of conjugacy classes of continuous representations p :
G¢ — GL3(R) such that p mod mp is conjugate to p, such that detp = 1,
and such that for each open ideal a C R the action p makes (R/a)? into an
object of 8.
Each of these deformation problems is representable by objects which we will denote
Ry,0, R‘d}’o, R\S/,o and Rﬁg, respectively.
Recall that the following sets are in natural (k-linear) bijection with each other.
(mRv,o /(WKH mﬁ%v,o ))V
The set of deformations of p to k[e]/(g?).
Extyg, (V. V).
H! (Ge,ad D).
These bijections give rise to an isomorphism
(mR%/(pK,m;%))v =~ H'(Gy,ad’p),
as well as bijections between
b (mR‘S,YO /(pKv m?ﬁ/ o ))Vv
o the set of deformations of p to kle]/(e?) which make (k[e]/(¢?))? into an
object of 8,
. Ext,lv[G[LS(V, V), i.e. Ext! in the category of discrete k[Gy]-modules which

are also objects of 8,
e the subgroup H(Gy,adp) C H' (G, ad p) corresponding to Ext,lc[Gl]’s (V, V).

We will set H(Gr,ad’p) = HE(Gy,adp) N H(Gy,ad’ p), so that we get an iso-
morphism

(ngjg/(@Kam?%%))v = Hg(Gr,ad"p).

4.4. Reduction steps for Theorem We now begin the proof of Theorem
212 Making an unramified twist we may suppose that p has the form

1 x
(62)
We may also suppose that O = Zs.
Let F; = F} denote a totally ramified cubic Galois extension of Qs. Let F”,
denote the unique cubic extension of Q3(y/—1) such that F” ; /Qg is Galois but not
abelian, and let F_; denote a cubic subfield of F” ,, so F’,/F_; is unramified.

Let 841 denote the full subcategory S$(p) consisting of Zs[Gs]-modules X for
which there exists a finite flat Op; -group scheme (3, {[g]}) with descent data for

F!,/Qs such that X = (G,{[g9]})q,(Q3) as a Z3[G3]-module. By Lemma ET3] we
see that 811 is closed under finite products, subobjects and quotients. Using Tate’s
theorem on the uniqueness of extensions of 3-divisible groups from F’; to O F,

(Theorem 4 of [T]), we see that the map Ry z, — Ry';. factors through R;gzi;

Thus, Theorem 21,2 follows from the following result which we will prove in §IZ[
Theorem 4.4.1. dim H}  (Gs,ad’p) < 1.
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4.5. Reduction steps for Theorem [Z.T.4l We now begin the proof of Theorem
T4 Making an unramified twist, we may suppose that p has the form

W *
0o 1/
We may also suppose that O = Zs.
Let F 5 denote the degree 12 abelian extension of Qz(1/+3) with norm subgroup

in Qs(v/£3)* topologically generated by +3, 4 and 1 + 34/£3. Note that F}5/Qs
is Galois. We have an isomorphism

Gal(Fl;/Qs(v=E3)) = Oy x Cy x Cs.

Let v3 € I Fl./Qa(VES) be the unique element of order 2. (In later applications
this will be the square of an element of order 4 in Gal(F 5/Q3).) We also let Fli3
denote the fixed field of a Frobenius lift of order 2, so Fly3/Qs is totally ramified.

We will let J+3 denote the two-sided ideal of W (Fg)[F, V][Gal(F5/Qs3)] gener-
ated by

e F+V,
e and [vi] + 1.

Let 843 denote the full subcategory of 8(p) consisting of objects X for which we
can find an object (G, {[g]}) of FDri,/Qs4s Such that X = (9,{l9]})qs(Qs) as a
Z3[G3)-module. By Lemma LT3, we see that 815 is closed under finite products,
subobjects and quotients.

Now choose a finite extension K /Q3 and continuous map of rings f : Ry.z, — Qg
such that the corresponding representation p : G3 — GL2(Ok) is of type 743. Let
G be the corresponding 3-divisible group over Qs. By Tate’s theorem (Theorem
4 of [T]), the base change of G to F5 has a unique extension to a 3-divisible
group G over Op, . By the uniqueness of this extension, it is also equipped with
descent data {[g]} relative to F35/Qs and with an action of O, compatible with
the canonical structure on the generic fibre.

Let 72 € Gal(Q3(v£3)*?/Q3(/E3)) correspond to /£3. We will use the no-
tation of Appendix B of [CDT] (in particular WD and D’(9)), except that we will
write F and F’ in place of ¢ and ¢’. Then

e WD(p)(7§) = —1,
e WD(p)(72), but not WD(p)(72), is a scalar,
e and det WD(p)(72) = 3.

Thus WD(p)(73) = —3. Hence on D'(G) ® Q3 we have
* bil = WD(p)(i) = -1,
o and (F')* = [33] WD(p)(7; *) = —1/3.

We conclude that on D(G) we have

o [il=-1,

o F2=-3

e andso F = —-V.
In particular J13 annihilates D(§) and for all m > 1 the map (f mod 3™) : Ry,z, —
Ok /(3™) factors through Ri/gzi;’ Hence, the map Ry z, — Ry, factors through

R;SZJ"; and Theorem .14 follows from the following result which we will prove in
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Theorem 4.5.1. dim H}_ (G3,ad’p) < 1.

4.6. Reduction steps for Theorem [2.1.61 We now begin the proof of Theorem
2160 We may suppose that O = Zs.

Let F! denote the degree 12 abelian extension of Qsz(v/—3) with norms the
subgroup of Q3(v/—3)* topologically generated by —3, 4, 1 + 9y/—3 and 1 +
(1 — 37)y/—3, where 7 is the unique lift of i to Z with 0 < 7 < 3. Note that
F!/Qs3 is Galois. We identify

Gal(F!/Qs(vV=3)) = (2) x (y3) x (73),

where 7y, corresponds to /—3 and has order 2, v3 corresponds to 1 — 3y/—3 and
has order 3, and 73 corresponds to —1 and has order 2. We also let F; denote the
fixed field of {1,72}, so F;/Qs is totally ramified.
We will let J; denote the two-sided ideal of W (Fg)[F, V][Gal(F!/Q3)] generated
by
e F+V,
o il +1,
o and ([ys] — [ '])h2] — F.
We remark that the ideal J; is unchanged if we change our choice of v/—3.
In §9] we will prove the following result (and explain the unusual looking nota-
tion).

Theorem 4.6.1. There are objects (G, {[g]})2,6), (9 {19]})(6,10), (G {l9]})2,10)
and (9,{[9]})(6,6) in the category FD s q, 9, with the following properties.

(1) For (r,s)=(2,6), (6,10), (2,10) and (6,6) we have p = ((S, {[9]}) (r.5)) Qs (Qz)
as Gs-modules.

(2) For (r,s) = (2,6), (6,10), (2,10) and (6,6) there is a short exact sequence
m 3~®F{/Q373H

0) — (G1.{lg]) sy — (S A9 ) — (S2: {91 rs) — (0),

such that (G1,{[9]}) ) and (S2,{[9]})(r,s) have order 3 and for all a,b €
{1,2} (possibly equal) the natural map

Extho,, o o o (Ga (191D (S5 {1911 o)

- EXt%‘g[GQ:}] ((Saa {[g]})(r,S),ng (9ba {[9]})(r,s),Q3)
18 injective.
(3) If k/F3 is a finite field extension and if (G,{[g]}) is an object of FDp1/q, .3,
with an action of k such that (3, {[g]})qs(Qs) is isomorphic to p® k, then
for some (r,s) = (2,6), (6,10), (2,10) or (6,6) the object (S,{[g]}) of

FDr/qs,3: is weakly filtered by {(S1,{[9]})(r,s): (G2, {[9]}) () }-
(4) For (r,s) = (2,6), (6,10) and (2,10) we have F = 0 on D(G(s)), while
F 7é 0 on D(S(G,G))

Note that for all a,b (possibly equal), we must have

Hom((Sa, {[9]})(r.5), (So: {[91}) r.5)) = Hom((Sa, {[9]})r.9).Qs+ (Sb: {191} r.5).Qs)

[0 ifa#b,
- F3 1fa:b



878 C. BREUIL, B. CONRAD, F. DIAMOND, AND R. TAYLOR

For (r,s) = (2,6), (6,10), (2,10) and (6, 6), we let 8; (, 5) denote the full subcat-
egory of 8(p) consisting of objects X which are isomorphic to (3, {[¢g]})q, for some
object (3, {[g]}) of FDr;/qQs.7:.{(5.{[g]}) .0y} - BY Lemma@Z2] Corollary and
Theorem [£.6.1] we see that 8i,(r,s) is closed under finite products, 8(p)-subobjects
and 8(p)-quotients. In §9] we will also prove the following two results.

Theorem 4.6.2. For (r,s) = (2,6), (6,10), (2,10) and (6,6) we have
dim Hg, = (G3,ad”p) < 1.
Theorem 4.6.3. For (r,s) = (2,6), (6,10) and (2,10) and for any N > 1 there

exists a continuous representation
pn : Gq, — GLo(F3([T])/(T™))
such that
o detpy =€,
L] fO?” some object (SN, {[g]}) Of SFDF{/Q&(L.7}:\)){(5’{[9]})(“5)} we have

pn = (9n{[91}),(Qs)

(where (J;, F) denotes the two-sided ideal of W (Fo)[F, V][|Gal(F!/Q3)] gen-
erated by J; and F),
e and p mod (T?) % p @ k[[T]]/(T?).

(We are not asserting that py and Gy are independent of the choice of (r, s),
though in fact we believe that py is independent of this choice.)
From these results we can easily draw the following consequence.

Corollary 4.6.4. For (r,s) = (2,6), (6,10) and (2,10) we have
€85 (rs) ~u
Ry g, = Fy[[T]).

Proof. By Theorems [.6.21and we see that R;SZS(>/(3) = F3[[T]] and that if

. .. . 84 (rs . . .
R is an Artinian quotient of R;’Z’; ) /(3) corresponding to a (necessarily unique;

see Lemma ELZ3) object (5, {[g]}) of FDr//Qs.(3:,3).{(5.{[6]}) (0} then F = 0 on
D(9).
Now suppose R is any Artinian quotient of R;SZ;) which corresponds to an

object (G,{[g]}) of the category ?QF{/Qsﬂm{(&{[g]})<r,s>}' Let G = (9,{[g]})q, and
consider the exact sequences

(0) — G3] — G — 3G — (0)
and
(0) — 3G — G — G/3G — (0).
By Lemma .23, we have exact sequences

(S {lg]}) — (X {[g]}) — (0)

and

(0) — (K, {lg]}) — (S {lg]}) — (3. {lg]}) — (0)

in ?DF{/Qsﬂm{(&{[g}})<r,s>} such that the composite

(S, {lg]}) — (X, {lg]}) — (G:{lg]})
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is multiplication by 3. In particular we have exact sequences
(0) — D(X) — D(S)
and
(0) — D(H) — D(§) — D(X) — (0),
such that the composite
D(§) — D(X) — D(S)

is multiplication by 3. As F = —V = 0 on D(H) we see that F and V factor

through maps D(X) — D(S), i.e. we can write F = 3F' and V = 3V’ for some

endomorphisms F' and V' of D(G). Thus 3 = 9F'V’ equals zero on D(G)/9D(9)

and so D(X) = 0. We conclude that X = (0), so that 3G = (0) and 3R = (0).
Thus

€,8; (r,s 6 8; r,s
Rv,z},( = vz; '/(3) = F3[[T]].
O

We now modify the argument in §4.41 Choose a finite extension K/Qjz and
continuous map of rings f : Ry z, — Q5 such that the corresponding representation
p: Gz — GLa(Ok) is of extended type 7/. Let G be the corresponding 3-divisible
group over Qs. By Tate’s theorem (Theorem 4 of [I]) G has a unique extension
to a 3-divisible group § over Op/. By the uniqueness of this extension, § comes
equipped with descent data {[g]} relative to F//Qs and with an action of O,
compatible with the canonical structure on the generic fibre.

Let 72 € Gal(Q3(v/—3)*?/Q3(1/=3)) correspond to v/—3. We will use the no-
tation of Appendix B of [CDT] (in particular WD and D’(9)), except that we will
write F and F’ in place of ¢ and ¢’. Then

* WD(p)(1}) = -1,
o WD(p)(73) = -3,
o and WD(p)(32)(WD(p)(73) — WD(p)(73) ") = 3.
Thus on D’(G) ® Q3 we have
o [7i] = WD(p)(7}) = —L
o (F')* =[73] WD(p )% %) = —13,

e and [y2]([ys] = [v3]) = 3F".
We conclude that on D(G) we have

o il =-1,

o F?2 = -3

o and [yo]([y5 '] — [s]) = 3F .
Hence also

e F=-V,

o and [12]([ys] — [ ']) = F.
In particular J; annihilates D(9).

Thus (G[px], {[g]}) is an object of FDpr/q, 5, such that (S[pk],{[g]})qs corre-
sponds to pROk /pr. By TheoremE G I we see that (S[px], {[g]}) is weakly filtered
by {(917 {[g]})(r,s)a (927 {[g]})(r,s)} for some (Ta 3) = (2a6)7 (67 10)7 (27 10) or (676>
We will prove (r,s) = (6,6). By Theorem Gl and Lemma [IZ4 (S[px], {[9]})
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is strongly filtered by {(1,{[9]})(rs)> (S2: {[9]})r9)}- As (Slpx]; {[9]})qs is fil-
tered by p, using Theorem [LG.1] we see that (Glpk],{[g]}) is weakly filtered by
(9,{19]})(r,s)- For all m > 1 we have

(Slox]/Slew "1 Algl}) — (Sloxl, {lg]}).
so for all m > 1 the object (G[p],{lg]}) is also weakly and hence strongly filtered
by (9, {[9]})(rs) for the same (r,s). Thus, for all m > 1, the map (f mod p™) :
Ryz, — OK//( ™) factors through R6 8’ . By Corollary [£.6.4] we see that

(r,s) = (6,6), so the map Ryz, — RV"’Z3 factors through R:}%;Bﬁ) and Theo-
rem follows from Theorem EG2

4.7. Some Galois cohomology. In this section we will begin the proofs of The-
orems [LZ4T] L5l and EEG2. We will let 8 denote one of the categories 841, 843 or
8i,(r,s)- We will let x = w in the cases 811 and x = 1 otherwise. In all cases

_ Xw %
g < 0 x )
is treés ramifié.

The maps w® x — p and p — X induce a commutative diagram with exact rows
and columns:

(0)
) !
Extp, (g, (w® X, w ® X)
!
Extp qq(0:7) —  Extp, g, (@ ®X,D)
! !
0) — EXt%ms[c,g] 6x) — EXti“g[Gg] Px) — EXtFJ (] (W ® X, X)

We will let 6y denote the composite map
Extp, 16,5, 7) — Exti,jq,(w @ x, X),
and 6, (resp. 6,) the induced mapping
ker 8y — Ext%g[cs] (X, X)

(resp.

ker g — Ext%S[Gﬂ (WX, w® X))
We will also let 6; (resp. 6,,) denote the induced mapping

ker g — Exty, e, (X, X) — Exti; 7.7 (x, X)

(resp.

ker 6y — Ext%g[gs] (WRx,w®x) — Extiﬂs[h](u) ® X, w ® X))
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If we reinterpret our Ext-groups as cohomology groups and use the isomorphism
p" ~ P ® w, our diagram becomes:

(0)
!
Hl(G37F3)
!
H'(G3,adp) — HYG3,70w®YX)

! !
0) — HYG3,F3) — HY G3p0wey) — H'(G3,w)

Fix a basis of F3 so that p takes the form

wx *
0 X /)

Then any extension of p by 7 in characteristic 3 may be represented by a matrix
p op
0 p )’

_ f11 P12 1 _
¢<@1¢m>€z@&mm

represents the class of this extension in Exth[cg] (p,p) = H'(G3,adp). Moreover

o 0o([¢]) = [p21] € H' (G3,w),
o if ¢91=0, then 6:([¢]) =[p22] € H' (G5, F3) and 6,,([¢]) =[¢11] € H' (G3, F3),
e and [¢] € H'(G3,ad’p) if and only if 0 = [¢11 + ¢2o] € H' (G, F3).
In particular we have 6; = —0,, on H'(G3, ad’ p) Nkerby.
We have an exact sequence

where the cocycle

0) —p@x — ad’p— w — (0),

(5)— (0 )

where the first map sends

and the second map sends

Thus we get an exact sequence
(0) — H'(Ga,p® x) — H'(Gs,ad’p) 2 H' (Gs,w)

and so we may identify H'(Gs,ad’ ) Nker  with H*(G3,5® x). We also have an
exact sequence

(4.7.1) 0) —w—px —1—(0),
which gives rise to an exact sequence
(0) — F3 — H'(G3,w) — H'(G3,p© x) — H'(G3,F3) — H*(G3,w).

If we identify H'(Gs,7 ® x) with H'(G3,ad”5) N kerfp, then the latter map
HY(G3,p®x) — H'(G3,F3) is identified with 6, = —61.
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Lemma 4.7.1. The sequence
(O) — F3 B Hl(Gg,W) — Hl(G?)aﬁ@ X) I Hl(I3aF3)
1S exact.

Proof. The key point is that p is trés ramifié (compare with Proposition 6.1 of
[DiT]). Tt suffices to show that the composite

H'(Gr,,F3) — H'(G3,F3) — H*(G3,w)

is injective. Suppose that z € H'(G3,F3) maps to zero in H?(G3,w); then by Tate
duality = is annihilated by the image of the map H°(G3,F3) — H'(G3,w) coming
from the short exact sequence

0) —w—(FPex) ®w-—1-—(0)
Cartier dual to (ETT). As (p® x)¥ ® w is tres ramifié we see that the image of
H(G3,F3) — H'(G3,0) = Q5 /(Q5)°
is not contained in Z3 /(Z)3. Thus
x € Hom(QJ /Z5,F3) = H' (Gr,,F3) C H'(G3,F3) = Hom(QJ, F3)
must be zero (see Proposition 3 of §1 of Chapter XIV of [Sel]). O

Corollary 4.7.2. The maps

0, : H'(G3,ad’p) Nker 6y — H'(I3,F3)
and

0, : Hl(Gg,adOﬁ) Nkerfy — H'(I3,F3)
have the same kernel and this has dimension 1 over Fs.

Theorems [£.4.1], £5.1] and now follow from the following results, which
we will prove later. One advantage of these new formulations is that, with one
exception, they refer only to Exté(ﬁ, p) and make no mention of the determinant
or ad’ P, concepts which we found tricky to translate into the language of integral
models.

Theor:am 4.7.3. (1) by : Extéil(ﬁ, p) — HY(G3,w) is the zero map.
(2) 0. : Extg_ (p,p) — H'(I3,F3) is the zero map.
(3) 0, : Hél(Gg,adO p) — H'(I3,F3) is the zero map.

Theorizm 4.74. (1) 0: Extéi3 (p,p) — HY(G3,w) is the zero map.

(2) 0, : Extéﬂ(ﬁ, p) — H1(I3,F3) is the zero map.
Theorem 4.7.5. Suppose that i € Z/3Z and (r,s) = (2,6), (6,10), (2,10) or
(6,6).

(1) 6o : Extéi iy (PP) = H(G5,w) is the zero map.

(2) Bither 0, : Exty,  (5,p) — H'(I3,F3) or0y : Exty,  (5,p) — H'(I3,F3)

s the zero map.

The deduction of Theorems[Z.Z.1] [E.5.Tland from these results is immediate.
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5. BREUIL MODULES

In this section we recall some results from [Br2] (see also the summary [Brll]) and
give some slight extensions of them. Three of the authors apologise to the fourth
for the title of this section, but they find that the term “Breuil module” is much
more convenient than “filtered ¢;-module”.

Throughout this section, ¢ will be an odd rational prime and R will be a com-
plete discrete valuation ring with fraction field I of characteristic zero and perfect
residue field k of characteristic ¢.

5.1. Basic properties of Breuil modules. We will fix a choice of uniformiser m
of R and let

Er(u) = u® — LGy (u)
be the Eisenstein polynomial which is the minimal polynomial of 7 over the fraction
field of W (k), so G (u) € W(k)[u] is a polynomial with unit constant term G (0) €

W (k)* (and degree at most e — 1). The ¢*" power map on k[u]/u® is denoted &,
and we define

(5.1.1) en = —0(Gr(u)) € (k[u]/u)*.

It is very important to keep in mind that these definitions, as well as many of the
definitions below, depend on the choice of the uniformiser 7.

The category of £-torsion Breuil modules (or “¢-torsion Breuil modules over R”,
or simply “Breuil modules” or “Breuil modules over R”) is defined to be the cate-
gory of triples (M, My, ¢1), where

e M is a finite free k[u]/u*-module,

e M is a k[u]/u®’-submodule of M containing u® M,

e ¢ : My — M is ¢-semi-linear and has image whose k[u]/u®’-span is all of
M.

(A morphism (M, My, ¢1) — (N, Ny,%1) is a morphism f : M — N of k[u]/u®’-
modules such that fM; C Ny and ¥1 0o f = f o ¢ on M;.) We define the rank of
(M, My, ¢1) to be the rank of M over k[u]/u®*. Breuil modules form an additive
category (not abelian in general) in the obvious manner and this category does not
depend on the choice of w. It is denoted ¢1—modR or d)l—modF/. The induced
¢-semi-linear map of k-vector spaces

¢y My JuMy — M/uM
is bijective (because it is onto and # M; /uMy = # M [u] < # Mu] = # M /uM).
In particular, a map of Breuil modules

(Mv Mlv ¢1) - (Mlv Mllv ¢ll)
is an isomorphism if and only if the map M — M’ on underlying k[u]/u*~-modules
is an isomorphism.

Lemma 5.1.1. Suppose that
0—M —M-—M'—0
is a complex of Breuil modules. The following are equivalent.

(1) The underlying sequence of k[u]/u®‘-modules is exact.
(2) The underlying sequence of k[u]/u®‘-modules is exact as is the sequence

0— M, — M; — M/ —0.
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(3) The complex of vector spaces
0— M /u— M/u—M"/u—0
18 exact.

Proof. The second statement clearly implies the first. The first implies the third as
Breuil modules are free over k[u]/u’. It remains to show that the third condition
implies the second. Using Nakayama’s lemma and the freeness of Breuil modules
we see that

0—M —M-—M'—0

is an exact sequence of k[u]/u®*-modules. Using the bijectivity of ¢, we see that
the natural map

fi: My — J\/[/ll

is surjective modulo w and therefore is surjective. It remains to check that the
inclusion of k[u]/u®*-modules M} C ker(f;) is an equality. Since f; is compatible
with f: M — M” via the inclusions M; € M, M{ € M” and also via the maps ¢;
and ¢, it is obvious that ker(f1) C ker(f) = M’ and that ¢ (ker(f1)) € M. Since
ker(f1) contains M}, which in turn contains u® M, we see that (M, ker(f1), ¢1) is
a Breuil module! Then (M’, M}, ;) — (M, ker(f1), ¢1) defined via the identity
map on M’ is a map of Breuil modules which is an isomorphism on underlying
E[u] /u®’-modules, so it must be an isomorphism of Breuil modules. This forces
ker(f1) = M. O

When the equivalent conditions of this lemma are met we call the sequence of
Breuil modules

0—M —M-—M'—0

ezxact.
For any Breuil module (M, My, ¢1), we define the Frobenius endomorphism ¢ :
M — M by
1
(5.1.2) p(m) = —o1(um),

Cr
where ¢ is defined as in (5I1l). Note that this depends on our choice of uniformiser.
We let N : W(k)[[u]] — W (k)[[u]] denote the unique continuous W (k)-linear
derivation satisfying Nu = u, i.e. N = ud%. This operator “extends” to any Breuil
module. More precisely, we have the following lemma.

Lemma 5.1.2. Let M be an object of ¢1—m0dR. There is a unique additive opera-
tor N : M — M (the monodromy operator) satisfying the following three conditions:
(1) N(sz) = N(s)z +sN(z), s € k[u]/u, z € M,
(2) Nogpi =¢oN on My,
(3) N(M) C uM.
Moreover, any morphism of Breuil modules M — M’ automatically commutes with
N.

Proof. Let’s start with unicity. Recall we have an isomorphism k[u]/u @pp,e1/yer
1 (My) = M ([Bx2], 2.1.2.1). Suppose there are two operators N and N’ satisfying
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(1), (2) and (3) above, so A = N — N’ is k[u]/u®*linear and satisfies A¢; = ¢pA
and A(M) C uM. Thus,

Ay (M1) = dAM;) C p(uM) C uM,

s0 A(M) = A(k[u]/u® @gpepjuee ¢1(M1)) C ufM. Tterating Agy (M) C pA(M) C
M so A(M) C uz2M, and so on. As u® = 0, we get A = 0. For the existence,
let Ngo= N ®1 on

k;[u]/ud Ok[ut]/uct P1 (Ml) ~ M,

and note Ny satisfies Ny(sz) = N(s)x + sNp(z). Call a derivation of M any
additive operator satisfying this relation and define successive derivations of M by
the formula

Njp1(s ® ¢1(x)) = N(s) @ ¢1(x) + 5¢(N;(2)),
for j > 0. Note that N;; is well defined by the following observations.
e N(u's) = u’N(s) and N;(uz) = uz+uN,(z) imply that Nj 1 (u‘s@¢1(z)) =
Njt1(s ® ¢1(ux)).
o If ¢1(x) = 0, then € u®M (see (1) of Lemma 2.1.2.1 of [Brl]) and so
Nj(z) € u*M and ¢(N,(x)) = 0.
As No(M) C uM, we have (Nj11 — N;)(M) C u?'M, so N; = Nj4q for j > 0.
This N; satisfies (1), (2) and (3). O

The reason for introducing Breuil modules (and putting the factor ¢! in the
definition of ¢) is the following theorem.

Theorem 5.1.3. (1) Given the choice of uniformiser m for R there is a con-
travariant functor M, from finite flat R-group schemes which are killed by ¢
to d)l—modR and a quasi-inverse functor G .
(2) If G is a finite flat R-group scheme killed by ¢, then G has rank €" if and only
if M (S) has rank r.
(3) If G is a finite flat R-group scheme killed by ¢, then there is a canonical
k-linear isomorphism

D(g) ®k,Frobg k= Mﬂ'(g)/U‘Mﬂ‘(g)
Under this identification, F ® Froby corresponds to ¢ and V & Frob[1 cor-
responds to the composite
——1
Vine : M /uM 25 My fu My — M JuM.
(4) If
O—>9I—>9—>9”—>O

is a diagram of finite flat group schemes over R which are killed by ¢ and if

0— Mw(gu) — Mﬂ"(g) — Mﬂ"(gl) — 0

1s the corresponding diagram of Breuil modules, then the diagram of finite
flat group schemes is a short exact sequence if and only if the diagram of
Breuil modules is a short exact sequence.
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Proof. See §2.1.1, Proposition 2.1.2.2, Theorem 3.3.7, Theorem 4.2.1.6 and the
proof of Theorem 3.3.5 of [Br2]. In 3.3.5 of [Br2] it is shown that M (G)/uM-(9)
can be k-linearly identified with the crystalline Dieudonné module of §x k. In 4.2.14
of [BBM] the crystalline Dieudonné module of G x k is identified with D(G)®k, rob, k-
The equivalence of the two notions of exactness can be deduced from the compat-
ibility of M, with Dieudonné theory, from Lemma [5.1.1} and from the fact that a
complex of finite flat group schemes over R is exact if and only if its special fibre
is exact (see for example Proposition 1.1 of [ded]). O

5.2. Examples. For 0 < r < e an integer and for a € k*, define a Breuil module
M(r,a) by

o M(r,a) = (k[u]/u*)e,

o M(r,a); = (k[u]/u“)u"e,

e ¢1(u"e) = ae.
It is easy to check that ¢, is well defined (and uniquely determined by the given
conditions). We will refer to e as the standard generator of M(r, a) and write §(r, a)
for Gz (M(r,a)). The following lemma is easy to check.

Lemma 5.2.1. (1) Any Breuil module of rank 1 over k[u]/uc is isomorphic to
some M(r, a).

(2) There is a non-zero morphism M(r,a) — M(r',a’) if and only if ' > r,
7 =rmod{—1 and a/a’ € (K*)*~L. All such morphisms are then of the
form e — butr'=1)/(=D¢! where b1 = a/d’.

(3) The modules M(r,a) and M(r',a’) are isomorphic if and only if r = v’ and
a/a’ € (K*)'=Y, or equivalently if and only if there are non-zero morphisms
M(r,a) — M(r',a") and M(r',a’) — M(r,a).

(4) If we order the M(r,a) by setting M(r,a) > M(r',a’) if there is a non-

zero morphism M(r';a’) — M(r,a), then the set of isomorphism classes of

M-(9)’s as G runs over models of a fized finite flat F'-group scheme G of
order £ is well ordered.

) On M(r,a) we have Ne =0, so N o ¢y =0.

) G(r,a) is étale (resp. multiplicative) if and only if r = e (resp. r = 0).

) G(0,1) = pe and S(e, —G(0)) = Z/{Z.

5
6
7
8) The Cartier dual of §(r,—G,(0)) is G(e —r,1).

NS SN

Proof. The first three parts are easy computations. For the fourth part note that
two finite flat group schemes G and G’ of order £ over R have isomorphic generic
fibres if and only if there is a non-zero morphism § — §’ or §’ — G. The fifth part is
another easy computation and the sixth part follows on computing the Dieudonné
module using Theorem 1.3,

By 3.1.2 of [Br2] we see that the affine R-algebra of the group scheme attached
to M(r,a) is

T Ta

Gr(m)

where @ is a lift of a to W(k). This has constant generic fibre if and only if
—7m¢7"a/Gr (1) € F'is an (—1)t" power. This occurs if and only if r = e mod £—1
and —a/G,(0) € k is an (£ — 1) power. Thus M(e, —G,(0)) corresponds to the
étale group scheme Z/¢Z over R.

RIX]/(X* + X),
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Next, we show that the group scheme G corresponding to the Breuil module
M(0,1) is isomorphic to pe. By using the relation between Breuil modules and
Dieudonné modules (see Theorem B.I3) we see that the Dieudonné module of the
closed fibre of G is isomorphic to the Dieudonné module of the closed fibre of .
This forces G = 1, since we may consider Cartier duals and observe that a finite
flat R-group scheme G is étale if and only if its special fibre is étale, and then
§18.5.15 of book IV of [EGA] may be used.

This establishes the seventh part. The final part follows from parts four and
seven. |

Now suppose that 0 < r;s < e are integers and choose a,b € k™ and f €
umax(Orts=e)ky] /4. We can define an extension class

(0) — M(s,b) — M(s, by, a5 f) — M(r,a) — (0)
in zj)l—modR by
M(s, bsrya; f) = (k[u] /u)e @ (k[u] /u*)e,
M(s,b;r,a; f)1 = (u’e,u"e’ + fe),
¢1(u’e) = be and ¢ (u"e + fe) = a€’,
the standard generator of M(s,b) maps to e,
e e maps to 0 and € maps to the standard generator in M(r, a).

The following lemma is also easy to check.

Lemma 5.2.2. (1) Any extension of M(r,a) by M(s,b) in ¢1—mod , is isomor-
phic to M(s,b;r,a; f) for some f € u™*Or+s=e)[y] fuct.
(2) Two such extensions M(s,b;r,a; f) and M(s,b;r,a; f') are isomorphic as
extension classes if and only if

f'—f=u*h—(b/a)u"h*

for some h € k[u]/u®*, in which case one such isomorphism fives e and sends
e toe — (b/a)h‘e.

We remark that f € w7 +s=)k[y] /uct is required so that M(s, b; 7, a; f)1 D
u® M(s, byr,a; f). We will write G(s, b;r, a; f) for G (M(s,b;r, a; f)).

We will also need some slight extensions of these results to allow for coefficients.
To this end let &¥'/F; be a finite extension linearly disjoint from k and write &'k
for the field ¥’ ®p, k. For 0 < r < e an integer and for a € (k'k)*, define a Breuil
module, M(k’; r,a), with an action of k' by

o M(K';r,0) = ((Kh)[ul/u)e,

o M(Kr,a)1 = ((Kk)[u]/u)u"e,

o ¢1(u"e) = ae.
We will let ¢ denote the automorphism of k’k[u], which is the identity on &’ and
which raises elements of k[u] to the ¢! power. The following lemma is easy to
check.

Lemma 5.2.3. (1) Any Breuil module with an action of k' which is free of rank
[k : k] over k[u]/u’ is isomorphic to some M(k';r, a).
(2) There is a non-zero morphism M(k'; r,a) — M(K';7',a’) if and only if v’ > r,
" =rmod {—1 anda/a’ € ¢p(b)/b for someb € (K'k)*. All such morphisms
are then, of the form e — Yu''="/=D¢/ where b e (K'k)* and (') /b =
aja’.
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(3) The modules M(k'; 7, a) and M(K';r',a’) are isomorphic if and only if r = 1’
and a/a’ € ((K'k)*)?~ 1.
(4) On M(K';r,a) we have Ne =0 and so N o ¢1 = 0.
(5) Sx(M(K';7,a)) is étale (resp. multiplicative) if and only if r = e (resp.
r=0).
Now choose 0 < r, s < e integers, a,b € (k'k)* and f € u™*Or+5=¢)(k/k)[u] /uc’.
We define an extension class
(0) — M(K';s,b) — M(K'; 5,b;7,a; f) — M(K';7,a) — (0)
in ¢1—mod , with an action of k" by
M(K's s, b5, a5 f) = ((K'k)[u] /u)e @ ((K'k)[u] /u)e,
MK s,b57, a5 f)1 = (u'e,u"e’ + fe),
¢1(u’e) = be and ¢ (u"e + fe) = a€/,
the standard generator of M(k’; s,b) maps to e,
e maps to 0 and €’ to the standard generators in M(k’;r, a).

Then the following lemma is easy to check.

Lemma 5.2.4. (1) Any extension of M(K'; 7, a) by M(K'; s,b) in ¢1—mod , with
a compatible action of k' is isomorphic to M(k';s,b;r,a; f) for some [ €
umax(07r+s—e)(k/k)[u]/ueél

(2) Two such extensions M(K'; s,b;r,a; f) and M(K'; s,b; 7, a; f') are isomorphic
(as extensions) if and only if

f'=f=uh—(b/a)u$(h)

for some h € (K'k)[u] /u®’, in which case one such isomorphism fizes e and
sends €' to € — (b/a)p(h)e.

We will write G(k';r,a;s,b; f) and S(k';r,a) for S(M(k';r,a;s,b;f)) and
Gx(M(K'; r,a)) respectively.

5.3. Relationship to syntomic sheaves. Let us first recall some of the notations
of [Brl] and [Br2]. Let Spf(R)syn be the small {-adic formal syntomic site over R,
S the ¢-adic completion of W (k)[u, “z.—:e]ieN, Sp, = S/¢"S, E, = Spec(S,) and for
any X € Spf(R)syn:

OZT;S(:{) = HO((xn/En)criSa o%n/E,,)a
where X, = X xp R/{" is viewed over E, via the thickening (Spec(R/{(™) —
E,,u— m). It turns out O is the sheaf of S,,-modules on Spf(R)syn associated

n,m

to the presheaf (cf. the proof of Lemma 2.3.2 in [Br2]):

DP
X (Wak)u] @g w, 09 Wa(T(%1,01,)) )
(5.3.1)

n DP
= (W)l fu") @4,y Wi (D(X1, 01,)))
Here, the subscript “¢™” means we twist by the n*”* power of the Frobenius when
sending W, (k) to Wy, (k)[u] and the exponent “DP” means we take the divided
power envelope with respect to the kernel of the canonical map:
Wa (k) [u] ©@pnw,, (k) Wn(l'(X1,0x,)) — D%y, 0x,)
s(u) ® (woy «eoy Wp—1) s s(m) (W + el 4+l ),
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where w; is a local lifting of w;, these divided powers being required to be compatible
with the usual divided powers ; (¢z) = f—,:cz (i.e. we take the divided power envelope
relative to the usual divided power structure on the maximal ideal of W,,(k)). Note

that the latter map induces a canonical surjection of sheaves of S,-modules on
SPf(R)syn:

05 — O,
where 0,,(X) = I'(X,,, 0x,). We denote by J5% the kernel of this surjection. For
any n, let ¢ : S, — S, be the unique lifting of Frobenius such that d(u) = uf

iel

and qb(“z—f) = Y—. The sheaf Of/%* is equipped with the crystalline Frobenius ¢,
which is also induced by the map s(u) ® (wo, ..., wn—1) — ¢(s(w)) ® (w, ..., ws ;)
on the above presheaf (£.31). (Here ¢ on W, (k)[u] is Frobenius on W, (k) and
takes u to u’.) Since ¢ divides ¢(z) — zf, we get ¢(J5%) C L0 for all n, so we
can define an S;-linear ¢ = % geris by the usual “flatness” trick (see §2.3 of [Br2]).
Let N : S, — S, be the unique W, (k)-linear derivation such that N(u) = u and
N (v (u®)) = eu®y;—1(u®) = iey;(u®). Finally define:

. (CTis cris
N: On,ﬂ' - On,w

to be the unique W, (k)-linear morphism of sheaves which on the presheaf (G31)) is
given by N(v;(>-s@w)) = (O, N(s) @w)y;—1(d_ s®w). Note that Nogp = lpo N,
so Nog¢y=¢doN on J5s.

Let G be a finite flat group scheme over R, which is killed by ¢. Viewing G as a
formal scheme over R, it is an object in Spf(R)syn. Viewing it as a sheaf of groups
on Spf(R)syn, its associated Breuil module is defined as:

(1) Mﬂ'(g) = Homgpeaves of groups(9; {I‘T:rs) ®s, k[u]/ud,

(2) Mﬂ'(g)l = image of Homsheaves of groups(g’ H?}S) ®Sl k[u]/ueé in MW(9)7

(3) ¢1 is induced by ¢1 ® ¢,
where the Si-module structures are induced by the compatible S; actions on Off}f
and J§7i¢ (see §3.2 and §2.1.2.2 of [Br?]). Here S; — k[u]/u® is the surjection that
sends u to u, v;(u®) to v;(u®) for i <l and ~;(u®) to 0 for ¢ > I.

We record for future reference the following straightforward observation.

Lemma 5.3.1. If we denote by A (resp. pr;, i € {1,2}) the coproduct (resp. the
two projections)

g XSpec(R) §— 97
then for any sheaf of commutative groups F on Spf(R)syn we have:

Homsheaves of groups(ga ?) = {LC S f}'(9) | (A* - pI‘T - pr;)(x) = 0}

cris

'+ induces an operator N on Homgheaves of aroups (9, OF"%),

1,7

The operator N on O
hence on M (9).

Lemma 5.3.2. The above operator N on M, (S) coincides with the operator N
defined in Lemma E 12

Proof. By unicity in Lemma T2 we only have to prove that N satisfies N(M,(G))
C uM,(9), since the other conditions are automatically satisfied. It’s enough to
prove that N(¢1(z)) = (¢oN)(z) € uM,(G) for any x € M, (G)1. But u®*fpoN =
0 on O™ because it is so on (k[u]@I'(X1, 0%, ))””. Thus one also has u** ‘o N =
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0 on Homgroups (G, O572), hence on M (G). This implies poN (M(G)) C u*M,(3) C

1,7

uM,(G) since M, (G) is free over k[u]/u. O

5.4. Base change. In this section we will examine the relationship of the functor
M, with two instances of base change. First we consider unramified base change.
Let k' be a perfect field of characteristic £ which is an extension of k and R’ =
R @w ) W(K'). Choose 7' = m ® 1 as uniformiser in R'. If X € Spf(R)syn, let
X' = Spf(R') xgpt(r) X and define:
O3 (8) = O 2(X) and G772 (X) = 3570 (%),

As in the proof of 2.3.2 of [Br2|, we have that Ofﬂfl is the sheaf on Spf(R)syn
associated to the presheaf:

DP
X (Wl @gnw, ) WalT(EL, 0x,)))
DP
= (WalW) ] @4 w, ) Walk' 24 T(%1,0x,)))

Define S), as S, but with k" instead of k. There is a canonical isomorphism of
sheaves:

O ©s, 81 = 0713 @w, )y WalK) = 0773
coming from the obvious isomorphism:

(W (K[l /u") @ gn w1y W (D(X1, Ox,))

~

= (W (k) [l /u™") @gn w1y Wa (K @1 T(¥X1, Ox,))

. . . . . y ~ !
and one easily sees it induces an isomorphism 5% @, 1) Wa (k') — 3572 . More-
over, we have the following obvious lemma.

Lemma 5.4.1. The diagram of sheaves on Spf(R)syn:

97 Owa Walk) = 7
| 6100 o1 |
057 @, k) Wn(K') = O5%
s commutative.

Using the identification from §5.3, Lemma (B3 and Lemma BZT] (for n = 1),
together with obvious functorialities, we obtain after tensoring by k[u]/u® the
following corollary.

Corollary 5.4.2. Let G be a finite flat group scheme over R, which is killed by £.
Let k' [k be an extension of fields with k' perfect and let 7' = m ® 1, a uniformiser
for R' = R @w @y W(K'). Then there is a canonical isomorphism in the category
(bl—mOdR

(Mx(9) @1 K, Ma(9)1 @1 K61 ® 6) = (Mar(§), Merr (91,61 )
compatible with composites of such residue field extensions.

We will now turn to the case of base change by a continuous automorphism
g: RS R. Forany s = Y wu' € W(k)[[u]], let @s =3 g(w;)u’ and s =
3 é(w;)u?, where g and ¢ act on W (k) through their action on k. Choose Hy,(u) €
W (k)[[u]] such that g(m) = wH,(m). Notice that H,(u) € W(k)[[u]]*. Define

g W(k)[[u]] = W(k)[[ul]] by (35 wiu') = 3= g(w;)u' Hy(u)".
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Lemma 5.4.3. There is a unique element 4t(u) € W(k)[[u]] such that, if 4¢ is
defined by (> wiut) = S d(w;)(u*(1 + Lyt(u)))?, one has Go 46 = ¢pog.
Proof. One has to solve in W (k)[[u]]:

4
1+ 09t (uH, (u)) = ( ) O H,(u

(where the two sides clearly belong to 1 + (W (k)[[u]]). As Hy(u) € W(k)[[u]]*,
there is a unique Ky € uW (k)[[u]]* such that K (u)H,(K4(u)) = u, so we have

O

For any object M of (;bl—modR7 define ¢, : My — M by the following formula:

(5.4.1) 991 (2) = d1(2) + gt (u)N(d1(2))

where N is as in Lemma [5.1.2]
For any X € Spf(R)syn, let 9X = Spf(R) X 4« spr(r) X and define:

059 (%) = OFH(OX) and IO (X) = JTE ().
Then Of:frs’(g) is the sheaf on Spf(R)syn associated to the presheaf:

DP
X e (W)l @gn w0 Wa (D01, 00x,)))
DP
= (Wn (k)[u] ®¢7L,W,L(k) W, (R ®g,R F(xlv OX1))> .
Let g : S, — S, be the unique ring isomorphism such that
R ueiJrj ueiJrj it
g (sz) = g(wi)——Hy(u) -
for 0 < j < e, i > 0. There is a canonical isomorphism of sheaves:

OS:;LTS ®Snag S OC"MLS (9)

coming from the obvious g-semi-linear isomorphism:

(W (k) [l /u™") @gn wi, k) Wa(T(¥1, 0x,))

= (Wa(R)[ul/u") ©gn,w,, (1) Wi (R @g,1 (X1, 0x,))

8@ (Wo, ooy Wp—1) — g(8) @ (1 @ wp, ..., 1 @ Wp—1)

. . . . . C"”LS
and one easily sees it induces an isomorphism 30”9 ®s8,,.5 Sn — In.n @,

Define 4¢ : S, — S, as in Lemma and define:
¢ OCT7,9 SN OCT7,9

n,mw

to be the unique morphism of sheaves which is induced by 4¢(1:(> s @ w)) =

Y% (>2 g0(s) @ ¢(w)) on the presheaf (B3I (see §o3l and note that this is well
defined). Since 4¢(d5%) C LOZE, we can define 4¢, =

n,m’

3(;,41:: .
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Lemma 5.4.4. The diagram of sheaves on Spf(R)syn:

IT ®s,5 8, = daw?
L o6,@0 ¢1 |

~

: cris, (g)
OF% ®8,,5 S0 — Onix

1s commutative. Moreover we have on Jg72
;

> log(1 + ¢ i N
g¢1=;(0g( +£ gt(U))> Moo

where N is defined as in §5.3.

Proof. By working modulo "1, i.e. with 3%’1‘91,# and 4¢, and looking on the above
presheaves, the proof is completely straightforward. O

Let G be a finite flat group scheme over R which is killed by ¢. Note that
thanks to Lemma and the formula for ;¢, in Lemma [5Z7] the operator
M7(9)1 — Mx(9) induced by the map 4¢, : 3%’“? — Oﬁfﬁf is precisely the operator
denoted 4¢, earlier in this section (see (5:A1)). Using this, together with Lemma
£33, LemmalB.4.4 (for n = 1) and obvious functorialities, we obtain, after tensoring

by k[u]/u’, the following corollary.

Corollary 5.4.5. Let g : R — R be a continuous automorphism.
(1) Let G be a finite flat group scheme over R, which is killed by £. Then there

s a canonical isomorphism in the category ¢1—m0dR:
(M,,(S) Rl juet,g KUl /u, M (G)1 @ppugjuet g klul /u, g, @ ¢>
< (Ma(9). Ma (791, 61 )

(2) If f ' § — 9 is a morphism of finite flat R-group schemes killed by ¢
and My (f) is the corresponding morphism in ¢1—mod ., then Mx(f) also
commutes with the 4¢, and there is a commutative diagram in ¢1—modR :

M (f)®1

M (') @pupyuet,g (klul/u) =" Ma(G) @ppu) juct,g (klu]/u)
L 1
M, (°9) M M. ()

(3) If g1, g2 are two continuous automorphisms of R and if we choose the unique
Hgy,q € W(k)[[u]] such that g2g1 = g2 0 g1 on W (k)[[u]], then on

(M (9) @rpug et gy K[l /u) @ uct gy Kl /u 2 M (S) @ppag juet gz klul/u,
one has g,(g, 0, @ ¢) @ P = g,9, 0, @ P.

Corollary 5.4.6. Let G be a finite flat group scheme over R, which is killed by .
To give a morphism of schemes [g] : § — G such that the diagram of schemes

s 2 g
1 1
Spec(R) Spec(s) Spec(R)
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is commutative and the induced morphism G — Spec(R) X g spec(r) 9 is @ morphism
of group schemes over R, is equivalent to giving an additive map g : M (G) —
M4 (G) such that both of the following hold:

(1) For all s € k[u]/u® and x € M(5), g(sx) = g(s)g(x).
(2) IM=(9)1) C Mx(9)1 and 109 =g o ¢1 + g(gt(u))go N o ¢1 with 4t as in
Lemma and N as in Lemmal[5. 1.2

Proof. Note that the last condition is equivalent to ¢1 0 g = go 4¢,. The first two
conditions are equivalent to giving a morphism g : M;(9G) — M,(9) in (;bl—modR7
which is equivalent to the last two by Corollary [5.4.5 O

Finally we make some computations that concern the dependence of the above
compatibilities on the choice of Hy(u). Let f(u) be an element of (k[u]/u®); =
u®(k[u] /u®’) and define, for any M in ¢1—mod ., the additivemap 17 : ¢1(My) — M
via

{—1 i—
(=t

1f:1+(z

1=

F@)')N,

where N is as in Lemma B2 Using kfu]/u®* @) jyee ¢1(M1) ~ M, we extend
15 to all of M by the formula:

Lp(u'z) = u'(1+ f(u)'1f()
for x € ¢1(My). If © € My, one checks that:

1p(¢n(u')) = w1y (1 (x)) = 1p(u" e (2)
so 1 is well defined. Moreover, it is clear that 1 (M) C M. Let

crzs ~ cris
]'f 1,7

be the unique isomorphism of sheaves coming from the semi-linear isomorphism of
presheaves:

~

(klu]/u*) @x T(X1,0%,) —  (k[u]/u) @41 (0(X1, O0x,))
S(u)®(w07"'7wn71) — s(u(l—f—f(u)))@(wo,,wn,l)

(see B3.TI).

Let G be a finite flat group scheme over R killed by ¢ and recall that
Mﬂ'(g) Homgpeaves of groups(g Ocrm) ® k[u]/uee

Lemma 5.4.7. The operator 15 on M, (SG) is induced by the operator 1; on

cris
1,7 -

Proof. One can check that the operator 1; on O§™% satisfies 17 0 ¢1 = ¢1 +

1,7
log(1 + f)N o ¢1, where N is defined as in §5.3] and log(1 + f) is the usual ex-
pansion of log in S7, which makes sense because of the assumption that u®|f and

because of the divided powers ;(u®) = “1—6,1 After tensoring with k[u]/u’, we get

1;=1+ (Eé ! Lf(u)i)N on ¢1(Mx(9)1) which clearly implies the two 1¢’s
are the same. O

Let g = 1 and choose Hy(u) = 1+ f(u) for some f € E,(u)W(k)[[u]] (see the
start of §5.11 for the definition of E;(u)). Recall from Corollary that we have
a canonical isomorphism Mx(5) @y juce,g (K[u]/u) = M (99).
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Lemma 5.4.8. The map 1y is the composite M (G) = Mz (9G) = M (G), where
the first map is the one in Corollary [5.4.9 and the second comes from the obvious
isomorphism G = 9G. In other words, once Hy(u) = 1+ f(u) has been chosen,
1 Mo(G) — M<(G) is the map corresponding to the identity 1g : § — G under
the equivalence of Corollary [5.7.6.

The proof is straightforward by looking at the usual presheaves and using Lemma
B4 We remark that 1 is not necessarily the identity even though 1g is. However,
with f =0, 1 is the identity.

5.5. Reformulation. In this section, we will reformulate Corollary

Lemma 5.5.1. There is a unique element ty(u) € W (k)[[u]] such that if ¢g4 is
defined by ¢y (> wiut) = " d(w;)(u*(1 + £ty(u)))?, one has Go ¢ = ¢y 07.
Proof. One has to solve in W (k)[[u]]:

u’ Hy(u)" = u(1 + 0ty (u)) D Hy(u (1 + lty(u))).

As Hy(u) € W(k)[[u]]*, there is a unique Ly € uW (k)[[u]]* such that Ly(uHy(u)) =
u. Applying Ly to u = Ky(u)Hy(K4(u)) (cf. the proof of Lemma BEZ3), we get
Ly(u) = Kg(u). We must solve:

@O K (ulH. (1)t
1+ Oty (u) = W&“WW

O

Lemma 5.5.2. There is a unique A\g(u) € 1+ uW (k)[[u]] such that if Ny = AN,
then Ngog = go N. Similarly, there is a unique jA(u) € 1+ uW(k)[[u]] such
that if ¢N = 4AN, then go 4N = N og. Moreover, Ngo ¢g = €y 0 Ny and
gNogp="Lgp04N.

Proof. Since N is a derivation, so is AN for any A € W (k)[[u]]. One has to solve
Ag(W)N(uHy(u)) = uHy(u) and !(Jg))\(qu(u)) =1+ N;gs('g;)), which amounts to:

O (T

where K is as in the proof of Lemma (.43 The commutation relations with the
Frobenius follow from No¢ ={lpo N, p,0g=gop, Ngog=goN,Go 06 = ¢og,
go 4N = N og and the fact g is bijective on W (k)[[u]]. O

We also denote by ¢N = jAN and Ny = A\¢N the corresponding derivations on
k[u] /uc’. For any object M of ¢1—mod ., define ¢1,5 : M1 — M by the formula

Prg(x) = ¢1(x) + tg(u)N(¢1 (),
where N is as in Lemma B.T.2, and we recall that we defined 4¢, in (B41]). One
checks that ¢y 4(u®) = ¢, (u®) = ¢1(u®) = cr (see (BLT)). Note that we also have
$140G =G0 gb,, Nyog=GgoN,Goyp, =103, Go N =N o7 in klu]/u.
Lemma 5.5.3. Let M be an object of d)l—modR; then there is a unique operator
Ny : M — M satisfying the following three conditions:
(1) Ny(sz) = Ny(s)x + sNy(z), s € k[u]/u®, x € M,
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(2) Ngg1,g(z) = ¢gNg(x), © € M1, where ¢g(y) = é‘ﬁl,g(uey) ify €M,
(3) Ng(M) C uM.
The same statement holds for ¢N, ¢ and 4¢1.

Proof. The proof is the same as for Lemma [.1.2] using the fact we still have
isomorphisms

Blul /0™ @ppunypuse $1,4(Ma) = M
(resp. with 3¢, replacing ¢1 4). O
Lemma 5.5.4. For M an object of qbl—modR, Ny = AgN and ¢N = 4jAN, where

Ny, ¢N are as in Lemma [20.3, Ay, gA as in Lemma D2 and N as in Lemma
B2

Proof. By unicity of N4, one has to check \y/V satisfies the three conditions of
Lemma 553 The first and last are obvious. Note that N¢;(u®z) = ¢N(u®z) =0
80 ¢1,4(uz) = ¢1(uz), which implies ¢ = ¢4 on M (¢, is as in Lemma[5.5.3). One
computes:
Ag(W)N)o g1y = Ag(u)(1+ N(tg(u)))poN,
bg o (Ag(W)N) = (d))/\g(ue)(b oN.
But the equality N o ¢g(u) = oy o Ny(u) in W (k)[[u]] (from Lemma E5.2) yields
Ag(w)(1+ Nty () = PAg(u’) € €W (k)[[u]].
We thus get (AgN) o ¢1,4 = ¢4 0 (AgN), hence condition (2). For 4N, the proof is
completely similar. [l
Lemma 5.5.5. Let M be an object of d)l—modR and g : M — M an additive map
such that for all s € k[u]/u®® and x € M, g(sz) = §(s)g(z) and g(M;) C M;.
Ifgodr = ¢p1409, then go N = Nyoyg. Similarly, if ¢p10G = go 4¢,, then
N o /g\ = §O gN.
Proof. We prove the first case, the other one being the same. As in the proof of
Lemma B2 we define Ngo, Ng1,..., with Ny = Ny ; for 4 large enough, using
E[u] Juct Dkjut] uct $1,9(M1) = M. It is enough to show go N; = N, ; 0 g for all i.
Suppose go N;_1 = Ny ;_10g and let s € k[u] /u® and 2 € M;. Then
Ngig(sor(z)) = Ngi(g(s)d1,4(9(x)))
Ng(9(5))b1,4(9(x)) +g(s)1,9Ng,i-1(9(x))

= g(N(s)p1(x)) + (S)¢1,gg( —1(z))

= 9(N(s)p1(x)) +9(s01(Ni-1(x)))

= gNi(s¢1(z)),
so go N; = Ny, 0§ by linearity. One easily checks by a similar computation that
Ngoog=go Ny, hence the result follows by induction. O

)
+9
+9(s¢

Lemma 5.5.6. Let M be an object of (bl—mod and g : M — M an additive map
such that for all s € k[u]/u®* and x € M, §(sx) = §(s)g(x) and g(M1) C My. Then
the following two conditions are equivalent:

(1) ¢prog=god1+g(gt(u))go N o¢r,

(2) and god1 = ¢10g+1tg(u)N o1 0g.
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Proof. One has to show ¢1 0g = go 4¢, is equivalent to go ¢ = ¢1 40g. We prove
(1) = (2), the other case being the same. On M, we have go ¢ = ¢ o g, because
@ = ¢g = 40, as in the proof of Lemma[5.5.4l By Lemmas (5.4 and (.59, we have
goN = §(g)\_1)N og. Thus we get from (1), using N¢1 = ¢N,

god1 = 6107 — Gyt (w)g( Au) ) Nodiog.
Playing the same game over Wy (k)[[u]] with the relation pog =go ¢+ g(4t(u))go
N o ¢, which is easily checked to hold in Ws(k)[[u]], we again end up with go ¢ =
$0 G —g(yt(u)g(yA(u) 1N o ¢ oG in Wa(k)[[u]]. But we also have in Wa(k)[[u]]
the equality:
gop=gog+ity(u)Nogog.
Thus —g(,t(u))g(;A(w) 1) = t,4(u) in k[u]/u, so relation (2) holds. O
We can now derive the variant of Corollary[5.4.6] which we will use.

Corollary 5.5.7. Let G be a finite flat R-group scheme killed by ¢. Let g: R = R
be a continuous automorphism, choose Hy(u) € W (k)[[u]] such that g(m) = nHy(r)
and define § : k[u]/u — k[u]/u® by gOZwiu') = 37 g(wi)u'Hy(u)". To give a
morphism of schemes [g] : § — G such that the diagram of schemes

s 2 g
! |
Spec(R) Spects) Spec(R)

is commutative and the induced morphism G — Spec(R) X g spec(r) 9 45 an morphism
of group schemes over R, is equivalent to giving an additive map g : M (G) —
M5 (G) such that both of the following hold:

(1) For all s € k[u]/u® and x € M(5), g(sx) = g(s)g(x).

(2) GM(9)1) CMz(9)1 and gopr = (1+ty(u)N)o 107, with ty as in Lemma

and N as in Lemmal5.1.2

Moreover, [g] is an isomorphism if and only if g is. Assume these are isomorphisms.
Choose H g, sgc\h that g/*\l(u) =g Yu) on W(k)[[u]], i.e. Hy1(u) =g "(u)/u.
Then the map g—! that corresponds to [g]~! is equal to g=1. Also, if g1, ga are two
automorphisms of R and if we choose Hy,, Hy, as above, then [g1]o[g2] corresponds
to g2 o g1 provided we choose Hy,q, such that g2(g1(w)) = uHg, g (u).

Proof. The equivalence is clear thanks to Corollary (.4.6 and Lemma The
fact that [g1] o [ge] corresponds to g2 o g1 is automatic using Corollary and
the functor § — M,(G). Applying this to g1 = ¢g and go = g~ !, we see that
1g = [g] o [g] ! corresponds to g/:1 0g. But by Lemmal[5.4.8 1g corresponds to 15
with f defined by (g/:1 og)(u) =u(1+ f) in W(k)[[u]]. We see that f = 0 and that
1 is the identity on M(G). Thus g/—\1 =g on M,(9). O

5.6. Descent data. Assume now that R is endowed with a continuous left faithful
action of a finite group I'. Then I becomes the Galois group of the fraction field
F’ of R over some subfield. For each g € T', choose Hy(u) € W (k)[u] so that
g(m) = wHy(m), with the one condition that H;(u) = 1. Recall from Lemma B35l
that this uniquely determines elements t,(u) € W (k)[[u]] such that

' Hy(u) = uf (1 + Lty ()@ Hy (u (1 + €t (u))).
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Moreover, for any pair g1, g2 € I', there is obviously a unique fg, g, (u) €
Er(u)W (k)[[u]] such that

/g\l © §2(u) = gl/o\gQ(u(l + f91792 (’U,)))
If M is an object of d)l—modR, then we will denote by 14, 4, the unique k-linear
map M — M such that for z € M; we have

o 1 (01()) = (14 (S 0 00 (0)))N) (61(2)), where N is as in
Lemma [5.1.2,
e and 1y, g4, (u'd1(x)) = u'(1+ fg,,9. (1)) Ly 45 (61 (2)).
(See §5.4 where we denoted 14, 4, by 1y, )
Suppose that G is a finite flat R-group scheme. Recall that by descent data on
G for T" we mean isomorphisms of finite flat group schemes

l9] : G =95

for g € T', such that

[gh] = (°[R]) o [g]
for all g, h € T'. Equivalently we may think of [g] as a map of schemes § — G over
g* : Spec R — Spec R which induces an isomorphism of group schemes § — 9G. In
this picture the compatibility condition simply becomes

[gh] = [h][g].

Theorem 5.6.1. Suppose that G is a finite flat R-group scheme killed by £. Fiz
Hy(u) as above for all g € T.

(1) To give descent data on G relative to T is equivalent to giving additive bijec-
tions G : Mz (G) — Mz(9) for all g € T so that g takes M (G)1 into M(9)1
and:

o Glwuim) = gw)(uH,(w)ig(m) for m € Ma(S), w € k,
® gogr = (1+1ty(u)N)odrog on Mx(G)1,
e lr=1andgiogs=gig201g, g,-

(2) The above equivalence is functorial in G and is compatible with classical
Dieudonné theory in the following sense: if the action {G}ger on M (9)
corresponds to descent data {[g]} on G, then the g-semi-linear map D([g])
induced on the contravariant Dieudonné module D(G) and the g-semi-linear
map g mod u induced on M (G)/uM(G) are compatible via the isomorphism

of Theorem [ 13

Proof. Part (1) is a consequence of Corollary B57 Lemma [5.48 and the choice
Hy, = 1. The functoriality in (2) follows from Corollary B4, and the last statement
there comes from 9(G x k) = 9Gxk, the functoriality of the isomorphism in Theorem
and the reduction modulo u of Corollary B.4.5 O

Suppose that 7 € R'. Then we may take H,(u) = 1 for all g € T. With this
choice we see that t;,, = 0, fg,9, = 0 and 14 4, = 1 for all g1,g2 € I'. In this
case to give bijections g : M, (G) — M (9) as in the lemma is equivalent to giving
an R-semi-linear I'-action on M, (G) which commutes with v and ¢; and preserves
M, (G)1. Thus (M (9)F, M~ (9)}, ¢1) is a Breuil module over R from which we can
recover M, (G) by tensoring with W (k) over W (k). In other words, étale descent
for group schemes translates in the obvious manner for Breuil modules if we choose
7 to be I'-invariant.
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To build an action of I on G using Theorem B.6.1], the conditions g 0 ga = g1 g2 ©
1,4, 4, are not very convenient to check in practice since there are too many of them.
It is useful to have the following variant. Choose d € Z~( and a group surjection
0 : Ty — I', where I'y is the free group on d generators 71, ...,74. The group I'y
still acts on R (via its quotient I') and for each i € {1,...,d}, choose elements
H,,(u) € W(k)[[u]] such that mH.,(m) = ~;(m). This determines isomorphisms #;
on W (k)[[u]] and k[u]/u® and, by composition, isomorphisms 7 for all v € Ty.
Note that if v € ker(6), then H,(u) = u(1 + f,(u)) for some f, € E(u)W (k)[[u]].
For such v, denote by 1, the unique k-vector space endomorphism of any object
M of d)l—modR such that for x € My we have

o1, =1+ (Zf;ll %fv(u)i)N on the image of ¢1,

o and 1, (u'¢1 (7)) = u' (1 + f,(u))' 1y (1 (2)),
where N is as in Lemma[5.T.2. (See §5.4] where we denoted 1., by 1y .) Let R be a
subset of ker(#) such that ker(é) is the smallest normal subgroup of I'y containing

R.

Corollary 5.6.2. With the above notation, to give descent data on G for T is
equivalent to giving additive bijections 7; : Mr(G) — Mx(9) for j € {1,...,d} so
that ; takes Mz(9)1 into M,(9)1 and:

o Ji(wu'm) = v;(w)(uHs, (u))'5;(m) for m € Mx(5), w € k,

b %O¢1 = (1+t’)'j(u)N)o¢1 O% on MW(S)D

o ify =1ty € R, where iy € {1,...,d}, nj € Z, and i # i1 for
1< j <m, and if we define 7 =72 o--- o™ then 7 = 1,.
Proof. Straightforward from Corollary F5.7 and Lemma [E4.8. O

We define a category (;51DDF,/(F,)F of Breuil modules with descent data for T' in

the obvious way. This category is additive but not necessarily abelian. We call a
complex in ¢ DDF'/(F')F ezact if the underlying complex in qbl—modR is exact. In
the natural way, we extend M, to a functor from FD g /(prr to (leDF’/(F’)F'
5.7. More examples. In this section we will determine the possible descent data
on a rank one Breuil module. Let I" be as in §5.6

Lemma 5.7.1. Suppose that G is a finite flat R-group scheme of order ¢ and that
its generic fibre admits descent data over (F')T'. Then there is unique descent data
on G over (F")' extending any choice of descent data on G x F' over (F")V. If
M (9) 2 M(r,a) and if v € T satisfies y(w)/m =1 mod (r), then

(e) = Hy (u) /e,
where H.,(u) """/~ denotes the unique (£ —1)*" root of H.(u)~"* in k[u]/u with

constant term 1.

We remark that since Aut(M(r, a)) = (Z/¢Z)* by consideration of the geometric
generic fibre, the choice of isomorphism M (G) = M(r, a) does not matter.

Proof. We first claim two such finite flat group schemes G and §’ have isomorphic
generic fibres if and only if there is a non-zero morphism § — §’ or § — G. By
Lemma B.Z1] we see that if G is a finite flat F’-group scheme, then the lattice of
models for G over R is well ordered. Suppose all the integral models are §; < --- <
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Gn. For 4 € T, any isomorphism [y] : G = G must then induce isomorphisms
[v]: G; = 7G; for all i = 1,...,n. The first part of the lemma follows.

Let M = M(r,a), so M is a free k[u]/u®-module of rank 1 with the usual basis
element e. The submodule M; is spanned by u"e and ¢, (u"e) = ae. From Theorem
B.2.1l we have N o ¢; = 0, which implies that

Yod1=¢107.
For v € I'1, H,(0) = 1 mod 4. Clearly
7 :cu'e — cu'H,(u)'7(e)

is a bijection if and only if J(e) = &, e for some unit &, € (k[u]/u®)*. Evaluating
Jo ¢} = ¢} o7 on the element u"e € My, we get

& = Hv(u)rgfs
in k[u]/u®‘. Thus,
¢ = €’YH’?M/(471)

for some unit e, € F'.

Since Breuil module descent data always induces a k-linear action of the inertia
group on the k-vector space M /uM and in this case dimy M /uM = 1, the action
of the element «y of ¢-power order on M /uM must be trivial. Thus e, = 1. O

6. SOME LOCAL FIELDS

In order to apply the methods of §H, we need some more explicit information
about the fields F’ introduced in §4. In this section we will collect this essentially
elementary information. In each case we will give an explicit description of the
Galois group Gal(F’/Qs). This is needed to carry out the delicate Breuil module
calculations in subsequent sections. We will also specify a uniformiser 7 of F’ and
partially calculate the following polynomials and power series (depending on our
choice of 7).

o G(u) € W(kp:)[u], a polynomial of degree at most e(F’/Qs) — 1 such that
7 has minimal polynomial u*F'/Qs) — 3G (u) over Qs.

e ¢ = —G(u)® mod (3,u?(F'/Qs)),

e For v € Gal(F’/Qs3), the unique polynomial H,(u) € W (kg )[u] of degree
at most e(F’/Qs) — 1 such that y(7)/m = H, (7).

e In some cases power series ¢, and f, ./ as in §5.01

6.1. The case of F|. Recall that 71 corresponds to the order 3 homomorphism
Z; — GL2(Qy)
is determined by

-1 — 1

4 — (,

where det ( = 1 and ¢ = 1 but ¢ # 1. Recall also that F] = Fy is any totally
ramified cubic Galois extension of Q3. We may take F] = Fy = Qs[r], where 7 is
a root of X3 —3X? 4+ 3. One may check that the other roots of X3 — 3X?2 4 3 are
72 — 27 and 3+ 7 — 72, so Gal(F]/Q3) is generated by one element ~3, which sends
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7 to w2 — 27 and satisfies y5 = 1. Also, 7 is a uniformiser for F}, so
o G(u) =u?—1,
o ¢ =1—u’mod (3,u?),
o H (u)=u—2.
6.2. The case of F’ ;. Recall that 7_; corresponds to the order 3 homomorphism
Z3[V-1" — GL2(Qy)
determined by

v-1 — 1
4 — 1
14+3v-1 — (,

where det ( = 1 and ¢® = 1 but ¢ # 1. Recall also that F’;/Qz(v/—1) is the unique
cubic extension such that F’;/Qs is Galois but not abelian and that F_; is any
cubic subfield. We may take F_; = Q3(7) and F’; = F_1(y/—1), where 7 is a root
of X3 —3X?2+46. The other roots of X®—3X2+6 are (v/—17% —7+3(1 —+/-1))/2
and (—v/=17% — 7 + 3(1 + v/=1))/2. Thus, Gal(F’,/Qs3) is generated by two
elements v, and -y3 defined by

« po(m) = .
2D = VT
Bolr) = (VT2 — 7+ 3(1 — VT2,
and 3(v~1) = v~1L.

We have 72 = 73 = 1 and 2773 = 372, and 7 is a uniformiser for F’ ;. Thus

o G(u) =u? -2,

o c; =—1—ubmod (3,u?),

o H,(u)=1,

o H(u)=((vV-1-1u*+ (3 —-+v-1)u—2)/4

6.3. The case of Fj. Recall that 73 is the unique 3-type such that 73|;
corresponds to the order 6 homomorphism

Z3[V3]* — GL2(Qy)

Q3(V3)

determined by
-1 — -1
4 — 1

1+V3 — ¢,

where det ¢ = 1 and ¢ = 1 but ¢ # 1. Recall also that F} is the degree 12 abelian
extension of Q3(v/3) with norm subgroup in Qs(v/3)* topologically generated by
3, 4 and 1+ 3v/3. We also let 77 denote the unique element of I 1/Qs(V3) of order
3 and we let F3 denote the fixed field of some Frobenius lift of order 2.

We claim that Fj = Qs(v/3)(v/—1,a,3), where a is a root of X3 — 3X + 3
and B a root of X2 — /3. To verify this, set F” = Q3(v3)(vV—1,a,3). We
must check that F”/Qz(v/3) is abelian and that Npi jqyvs)(F")* contains 3, 4,
and 1 4 3v/3. To see that F”/Q3(V/3) is abelian, note that if a is one root of
X3 — 3X + 3, then the other roots are (2v/3a? — (—=3v/3 + V=b)a — 4v/3)/2v/=5
and (—2v3a? — (3v/3 + v/=5)a + 4v/3)/2/=5 (where for definiteness we choose
V=5 € 1+ 3Z3). Note that Npniqy(vay(@/B) =3 and Np, g, (yv3)(1+a) = 5%,
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Note that Gal(F4/Qs(v/3)) is generated by three commuting elements 2, 77
and 3 of respective orders 2, 2 and 3. They may be defined by
e 2vV—l=—v—-1 yf=70and pa=q;
o 1iV—1=V-1,9if=-Band yjo =o;
o y3v/—1=+/—1,v38 = fand y3a = (—2v3a%—(3v3+v/=5)a+4v/3)/2/=5.
Choose an element v € Ir;/q, — IFg/Qg(\/ﬁ)' Then 72 € (72,73). As yy3y 1 =~2
we may alter our choice of v so that 42 € (v2). As 7v/3 = —/3 we see that

3 = £v/—13, so 4% = 42. We will rename ~ as 74 and suppose it chosen so that
a8 = v/—18. Thus, Gal(F3/Qg) is generated by elements 72, 3 and 74 satisfying

o3 =7=71=1,
® Y2773 = ’73’72,1

® Va2 = V2V

[ ]

and 7473 = 7374

The element 77 is the unique element of I F1/Qs(V3) of order 2 and hence coincides
with our previous definition. The element 5 is a Frobenius lift of order 2 and so we
may take F3 to be its fixed field, i.e. F3 = Qs(m), where m = /(3 is a uniformiser
for F§. (We are not asserting that v2 equals the element denoted 72 in §41) One
can check that

y3(m)/m = 1 + 7° mod 7.

Note also that (y2,74) projects isomorphically to the quotient of Gal(F3/Qs) by
the wild inertia subgroup.
We conclude

G(0) =1,
¢ = —1mod (3,u),
H,(u) =1,

(u)

H’Y4(u) =~V _]-a
(u) = 1+ u® mod (3,u?),

ty = fg.g0 =0 for g,g" € (y2,74).

6.4. The case of F’ ;. Recall that 7_3 is the unique 3-type such that T,3|1Q3(\/js)
corresponds to the order 6 homomorphism

Zs[V=3]* — GL2(Qs)
determined by

-1 +— -1
4 — 1
14+3V/-3 — 1
1+v=3 — ¢,

where det ¢ = 1 and ¢ = 1 but ¢ # 1. Recall also that F” ; is the degree 12 abelian
extension of Q3(y/—3) with norm subgroup in Q3(v/—3)* topologically generated
by —3, 4 and 1+ 3y/—3. We also let 72 denote the unique element of IFI_S/QB(\/:;S)
of order 3 and we let F_3 denote the fixed field of some Frobenius lift of order 2.
We claim that F'; = Q3(v/=3)(v/—1,, ) where « is a root of X® — 4 and

B a root of X? 4+ /=3. To verify this, set F”' = Qz(v/=3)(v—1,a,8). Then
F"/Qs(v/—3) is abelian and so we must check that N, q,,/=3)(F")* contains -3,
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4 and 14+3/=3. But note that we have the identities Npijqyv=s)((@a=1)/8) = =3,
N jqo(v=)(@) = 4% and Npw g, (y=3)(1 = 8) = (1 +V=3)°.
Note that Gal(F}/Qs(v/—3)) is generated by three commuting elements o, 3

and 3 of respective orders 2, 2 and 3. They may be defined by

¢ 2V"T = ~y~T, 76— and 10 — o

o /1= +/~1,733=—pF and yia = q;

e y3v/—1=+v—1, 738 =3 and y3a = (—1 — vV/=3)ar/2.
Choose an element v € I /q, — Ipr /q,(v/=5) 50 v2 € (v2,7v3). As yy3y ! =143,
we may alter our choice of v so that 72 € (v}). As yv/—3 = —/—3 we see that
3 = £v/—13, so 4% = 42. We will rename v as 74 and suppose it chosen so that
748 = /—13. Thus, Gal(F}/Q3) is generated by elements 7o, 3 and 74 satisfying

1

e B=7=7=1
® Y2773 = ’73’72,1

® Va2 = V2V

[ ]

and 7473 = 7371
The element 7 is the unique element of I F’ /Qa(v=3) of order 2 and hence coincides

with our previous definition. The element -5 is a Frobenius lift of order 2 and so
we may take F_3 to be its fixed field, i.e. F_3 = Qg(m), where 7 = a/f is a
uniformiser for F’ ;. (We are not asserting that 2 equals the element denoted o
in §) One can check that

y3(m) /7 = 1 + 7° mod 7.

Note also that (y2,74) lifts tame inertia.
We conclude

G(0) = —1,
e ¢; =1mod (3,u),
b H’Y2(u) = ]-a
o Hou(w) = V7T,
o H,(u)=1+u?mod (3,u?),
o lyg=foq =0forg,g" € (2,7):

6.5. The case of F. Here i € Z/3Z and we will let 7 denote the unique lifting of ¢
to Z with 0 <7 < 3. Recall that 7] is the unique extended 3-type whose restrictions
to Gq,(y=3) correspond to the homomorphism

Q3(V=3)* — GL2(Q;)
determined by

Ve
-1 +— -1
4 — 1
1+3v/-3 — ¢
1+v-3 — (',

where det( = 1 and ¢> = 1 but ¢ # 1. Recall also that F/ is the degree 12
abelian extension of Q3(y/—3) with norms the subgroup of Q3(v/—3)* topologically
generated by —3, 4, 1+ 9v/=3 and 1 + (1 — 37)y/—3. We let 72, 73 and +7 denote
the elements of Gal(F}/Qs) which correspond respectively to /=3, 1 — 3y/—3 and
—1.
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We claim that F! = Q3(v/=3)(v/—1,, 3), where « is a root of X3 — 3(1 + 37)
and (3 a root of X2 + v/=3. To verify this, set F’' = Qz3(v/-3)(v/—1,a,0), so
F"/Qz(v/=3) is abelian and we must check that Np. q, /=5 (F")* contains —3,
4,1+9y/=3, and 1+ (1—37)y/—3. But note that Ny 1qy(v=n)(a/B) = —3(1+37)%,
Npnjqyv=s(1+a)=(4+ 97)* and

N (/=3 (B(/=3—a)/a) = (1+ V=3 +3i) /(1 + 31)*
=1+ (1 -37)yv/—3mod 9.

Note that v2 is an element of Ipi 1y (y=3) of order 2, yo # 42 but also has order
2, and 73 is an element of Irr Qs (v=3) of order 3. Thus,

o 1iV=1=Vv-119if =—Band yjo =o;
e v/—1=—y/—1 and oo =«
e 13v/—1=+/—1and 130 = 0.
Moreover /=3 is a norm from Q3(v/—3)(a, 3), because o/ 3 has norm v/—3(1+37)2,

SO

* 12(8) =P
The determination of v3(a) is more delicate. Let § be a root of X3 —
(1+3y/=3), 50 § = 1+ +/=3u, where p is a root of Y? — /=3Y2 —Y + 1. Thus
Qs(v/—3)(8)/Qs(v/—3) is unramified and

Frobs(8)/6 = (1 +v=3u%)/(1 + vV=3u) = (=1 + v=3)/2 mod 3.

The norms from Qs(v/—3)(0)* to Qsz(v/—3)* are generated by Zs[y/—3]* and
3v/~3. The norms from Q3(v/~3)(a)* to Q3(v/~3)* are generated by 1+9Zs3[v~3],
1+ (1 —37)v/—=3, 4, —1 and v/—3. The norms from Qz(v/—3)(,d)* to Qz(v/—3)*
are generated by 1+ 9Z3[v/—=3], 1 + (1 — 37)v/=3, 4, —1 and 3/—3. Thus

(73, Frobs) € Gal(Qs(v=3)(@)/Qs(v/—3)) x Gal(Q3(v—3)(6)/Qs(~/—3))
=~ Gal(Qs(v=3)(a,8)/Q3(v/=3))

corresponds to v/—3(1 — 3v/=3) € Q3(v/=3)*. As da has norm to Qz(y/—3) the
product of (v/=3(1 —3v/=3))% and —(1 +37)(1 + 3v/=3)/(1 — 3v/=3)2, we conclude
that (73, Frobs) fixes da. Thus v3(a)/a = §/ Frobz(8) = (=1 — v/=3)/2. In other
words

e 35(0) = (-1 - VTB)as2.

Choose an element v € Ir;/q, — IF;/Qg(\/—_3)' Then 42 € (v2,73). As yy37~ 1 =
v3 we may alter our choice of v so that v2 € (73). As yv/—3 = —/—3 we see
that 73 = £v/—13 and so 72 = v2. We will rename 7 as 4 and suppose it chosen
so that y43 = v/—13. Thus, Gal(F//Qs) is generated by elements 72, 3 and 74
satisfying
B=r=7=1
Y2V3 = 7372,1
Yav2 = Y24
and 7473 = 7374
The element s is a Frobenius lift and it has fixed field F; = Qs(w), where 7 = o/
is a uniformiser for F/. One can check that

vit(m)/m = —(1F (1+ 31)2a%) /2.
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We conclude
G(u) = —(1 + 37)*,
cr = 1 mod (3,u39),
H’Y2 (u) = ]-a
H’Y4(u) =V _]-a
Hﬁl(u) =1 F u5 mod 3,
_ 6 12
t%‘il(u) = —1Fu’ mod (3,u*?),
tg = fg,g =0 for g,g" € (v2,74),
f%’ﬂ’%‘il(u), f%‘il’%’m(u) = 0 mod (3, u12).

7. PROOF OF THEOREM H.4_T1]

In this section we will keep the notation of §.4land either §6.11 or §6.2 (depending
on whether we are working with 81 or §_1). We will set § = £1 in the case of 84;.
We will write F' for Fly; and F’ for F ;. If § (resp. M) is a finite flat Op-group
scheme (resp. Breuil module over O ) we will write §’ (resp. M) for the unramified
base change to O .

7.1. Rank one calculations. We recall from Lemma 2] that the only Op-
models for (Z/3Z),r are §(3,0) = (Z/3Z) )0, and §(1,0), and the only Op-models
for (u3),r are §(0,1) = (u3) /0, and §(2,1). In each case, by Lemmal5.7.T] the base
change to Ops admits unique descent data over Qs compatible with the canonical
descent data on the generic fibre of Z/3Z (resp. pg) over Qz. We will refer to this
descent data as the standard descent data on these finite flat group schemes.

7.2. Rank two calculations.

Lemma 7.2.1. The group of extensions of M(2,1) by M(1,9) over Op is param-
etrised by ¢ € Fz. The Breuil module M(1,5;2,1;¢) corresponding to ¢ is free of
rank two over Fs[u]/u® with a basis {e1,e,} such that

e M = <ue17u2€w + cey),

o ¢1(uei) = der, ¢1(u’e, + cer) = ey,

e N(e;) =0, N(e,) = cue;.
The standard descent data on M(2,1) and M(1,6)" extends uniquely to descent
data on M(1,8;2,1;¢)'. The corresponding representations Gz — GLa(F3) are of

the form
w ok
0 1

and are peu ramifié. Any such peu-ramifié extension arises for a suitable choice of
c.

Proof. The classification of extensions of Breuil modules follows from Lemma (5. 221
Next, we compute N on M = M(1,6;2,1;¢). (We will not in fact need the result of
this computation of N, but the calculation is given here as a representative sample
of calculations needed later in more complicated settings.) By the last part of
Lemma 5.2, N(e;) = 0 and N(e,) = ge; for some g € F3[u]/u®’ divisible by u.
In F3[u]/u® we compute

cr = —¢(Gr(u)) = —(u? = 0)° = —u® + 3,



THE MODULARITY OF ELLIPTIC CURVES OVER Q 905

SO

Using the defining properties of N, we compute in F3[u]/u®

N(e,) = No¢i(u’e, +ce;)
= ¢oN(u’e, + cey)
= ¢(—u’e, +u?N(e,))

= ﬁ(—zﬁew +u’N(ey))

s

= ﬂ(—u?’(uQew +cey) + cude; +u’N(e,))
Cr

3

= ﬁ(cu e1)

Cr
since u5N(ew) € uSM = u? - udM C «®M; and the Frobenius-semi-linear ¢; must
kill »3 M;. Thus,

6 6
N(e,) = ﬂ(cu2 ‘uep) = Ccigﬁl(uel) = cou

C7T s Us
To see existence and uniqueness of the descent data on M(1, §;2, 1; ¢)’ compatible
with the standard descent data on M(1,d)" and M(2,1)" we will work on the side of
finite flat group schemes. Because §(1,;2, 1;¢)" is the unique extension of §(1, §)’
by §(2,1)" with generic fibre §(1,6;2,1;¢)’ x F’ (by Lemma ETZ2), uniqueness
reduces to the corresponding questions on the generic fibre, which follows from the
injectivity of

e = cuﬁel.

Hl(Gg,w) — HI(GF/,W).

For existence it suffices to exhibit a continuous representation Gs — GL2(F3) of

the form
W *
0 1

which is peu ramifié but not split, with restriction to Gr corresponding to a local-
local finite flat Op-group scheme §. By Theorem 5.3.2 of [Man| we can find an
elliptic curve E,q, such that E[3] furnishes the desired example. This also proves
the final two assertions of the lemma. O

Lemma 7.2.2. Suppose that F\ isa totally ramified abelian cubic extension of Qs
and suppose that § is a local-local finite flat O -group scheme killed by 3 such that
G x ﬁl is an extension of Z/3Z by ps. Then G X0z, ﬁl =G xq, ﬁl for some finite
flat Qs-group scheme G.

Proof. As in the proof of the last lemma we see that M, (G) = M(1,1;2,1;¢) for

some ¢ € Fs. As the only action of Gal(F}/Qs) on a one-dimensional Fs-vector
space is trivial, we see that each such c gives a class in H! (G £y w) which is invariant

by Gal(F;/Qs). But
H'(G,w) < H'(G, ) 17/9),

and so the lemma follows. O
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Lemma 7.2.3. The group of extensions of M(1,0) by M(2,1) over Op is iso-
morphic to the group of linear polynomials ¢ + c'u in F3u]. The Breuil module
M(2,151,8; ¢+ c'u) corresponding to ¢+ c'u is free of rank two over Fsu]/u® with
a basis {ey,e1} such that

o M(2,1;1,8; ¢+ c'u)y = (uey,,uer + (c + cu)ey),

o ¢1(u’e,) = ey, ¢1(uer + (c + cu)e,) = de;.
Fach M(2,1;1,8;c+ cu)’ admits unique descent data compatible with the standard
descent data on M(1,8) and M(2,1)'. As ¢, vary over F3 the corresponding de-
scent to Qs of the generic fibre of G- (M(2,1;1,0; c+c'u)’) runs over all 9 extensions
of us by Z/3Z. The corresponding representation of Gs is peu ramifié if and only
if c=0.

Proof. The classification of extensions of Breuil modules follows from Lemma (5. 221
The uniqueness of the descent data on M(2,1;1,d;¢ + c'u)’ follows from Lemma
and the injectivity of H'(G3,w™) — H'(Gr/,w™!) as in the proof of Lemma
[CZ1l Note that Frobenius vanishes on the Dieudonné module of §(2,1;1, §; ¢+ c'u)
if and only if ¢ = 0. Thus the lemma will follow if for each 3-torsion extension G of
w3 by Z/3Z over Q3 which is tres ramifié, we can find a finite flat O p-group scheme
G such that

e the generic fibre of G is isomorphic to G x F,

e the closed fibre of G is local-local,

e and Frobenius is not identically zero on D(S).

The splitting field of G contains a cube root of 3v for some v = 1 mod 3, where
the three choices of v mod 9 correspond to the three choices of tres ramifié p. The
calculations in §5.3 of [Man] give explicit additive reduction elliptic curves E and
E’ over Qs with F[3] ~ E'[3] ~ G, where E acquires good supersingular reduction
over the non-Galois cubic ramified extension

Qs[X]/(X® - 3X +2b),

with b2 = 1 + 3v, and E’ acquires good supersingular reduction over the abelian
cubic ramified extension of Q3 with norm group generated by 3v mod (Q3)?. The
appropriate § are provided by the 3-torsion on the Néron models of E or E’ over
OF. O

Corollary 7.2.4. Suppose that G is a finite flat Op-group scheme and that {[g]}
is descent data on §' = G x O such that (§',{[g]})qs(Qs) corresponds to p. Then

M(9) 2 M(2,1;1,8;¢+ cu)
for some c,c’ € F3 with ¢ # 0.

Proof. From the connected-étale exact sequence and its dual we see that § x Fg3
must be local-local. The corollary now follows from Lemma [.2.3 and the discussion

of 711 O

Lemma 7.2.5. The group of extensions of M(1,8) by M(1,0) over Op is iso-
morphic to the group of linear polynomials b + b'u in Fs[u]. The Breuil module
M(1,6;1,8;b+ b'u) corresponding to b+ b'u is free of rank two over Fslu]/u® with
a basis {e, €'} such that

o M(1,0;1,8;b4bu); = (ue,ue’ + (b+ b'u)e),

o ¢1(ue) = de, ¢1(ue’ + (b+b'u)e) = de’.
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This extension splits over an unramified extension if and only if b= 0. If F'/Qg is
non-abelian, then any descent data on M(1,—1;1,—1;b+ b'w)’ compatible with the
standard descent data on M(1,—1)" satisfies

Foe = e,72e =€, 75 (e) = H (u)’e, 15'(e) = H 21 (u)de’ + h g1 (u)e,

where

Proof. The classification of extensions of Breuil modules follows from Lemma [5.2:2]
The computation of which of these split over an unramified extension follows from
Lemma and Corollary

Now suppose that F’/Qs is non-abelian. By Lemma [E7.T] the only issue is to
compute h,(0). Since H.,(0) = 1 mod 3, by evaluating the congruence

3 0¢) = ¢} o3 mod uM(1,—1;1,—1;b+ b'u)

on ue’ + (b + b'u)e and comparing constant terms of the coefficients of e on both
sides we get

1—H,(u)\*
N e
= h’)’s (0)3 - bH’{/3 (0)3 = h’)’s (0)3 + bH’{/3 (O)
in Fy, where we have used the equality H/_ (0)> = —1 mod 3 (see §6.2).

In other words h., (0) is a root of T% — T+ bH!_(0) = 0. Since H_(0)* = —1, we
must have h., (0) = —bH’_(0)+a for some a € F3. Since y2(H,,(u)) = H - (u) and
Yo (hyg(u)) = h,y;l(u) are forced by the identity v2(7) = 7, we see that h,y;l(o) =
—bH;,1 (0) + a for the same a € F3. The identity

3

—

P o3t o) = @) mod uM(1, —1;1, —1;b 4 b'u)’
then implies h,(0) + h,-1(0) = 0, so a = 0. O

Lemma 7.2.6. The group of extensions of M(2,1) by M(2,1) over Op is isomor-
phic to the group of quadratic polynomials vanishing at 0, (b+b'w)u, in Fa[u]. The
Breuil module M(2,1;2,1; (b+b'u)u) corresponding to (b+b'u)u is free of rank two
over Fa[u]/u® with a basis {e,e'} such that

o M(2,1;2,1; (b + bu)u); = (u’e,u?e’ + (b + b'u)ue),

o ¢1(u’e) =e, ¢1(u?e’ + (b+ bu)ue) = €.
This extension splits over an unramified extension if and only if b= 0. If F'/Q3 is
non-abelian, then any descent data on M(2,1;2,1; (b+ b'u)u)’ compatible with the
standard descent data on M(2,1) satisfies

Y3(e) = Hy,(u)’e, F3(€') = Hyy(u)°€ + hyy(u)e,
where
oy (0) = —bH, (0).

The sign in h.,(0) = —bH!_(0) will be very important in §7.41 The proof of this
lemma is essentially the same as that of Lemma[T.2.5] but we repeat it anyway.
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Proof. The classification of extensions of Breuil modules follows from Lemma (5. 221
The computation of which of these split over an unramified extension follows from
Lemma and Corollary

Now suppose that F’/Qs is non-abelian. By Lemma B7T] the only issue is to
compute h,(0). Since H.,(0) = 1 mod 3, by evaluating the congruence

30 ¢} = ¢} oF3 mod uM(2,1;2,1; (b+ bu)u)

on ue’ 4+ (b + b'u)e and comparing constant terms of the coefficients of e on both
sides we get

3
N e
= hy, (0)3 - bH’{/3 (0)3 = hay (0)3 + bH’{/3 (0)

in Fy, where we have used the equality H_(0)* = —1 (see §6.2).

In other words h(0) is a root of T — T +bH!,_(0) = 0. Since H!_(0)* = —1, we
must have h., (0) = —bH’_(0)+a for some a € F3. Since y2(H,,(u)) = H - (u) and
Yo (hyg(u)) = h,y;l(u) are forced by the identity v2(7) = 7, we see that h,y;l(o) =
—bH;g_1 (0) + a for the same a € F3. The identity

—

3075t 0@ = ¢h mod uM(2,1;2,1;b+ b'u)
then implies h,(0) + h,-1(0) = 0, so a = 0. O

7.3. Rank three calculations.

Lemma 7.3.1. Suppose that G is a finite flat group scheme over Op which is killed
by 3. Suppose that there is a filtration by closed finite flat subgroup schemes G1 C
G2 C G such that G1 = G(1,9), G2/51 = G(2,1) and §/G2 = G(1,6). Suppose finally
that Go X, F' descends to Qs in such a way that it is a trés ramifié extension of
w3 by Z/3Z. Then

5/91=5(2,1) ®S(1,9)
compatibly with the extension class structure.

Proof. Let M = M- (G) and N = M-(G/91). Using Lemmas [[.Z]] and [.23] we see
that we can write

o M= (Fs[u]/u’)e @ (Fs[u]/u’)e, @ (Fs[u]/u’)eq,
o My = (uey,u’e, + bej,ue| + (c+ c'u)e, + fer)
for b, ¢, € F3 with ¢ # 0 and with f € F3[u]/u®. It suffices to show b = 0. Since
we must have u3 M C My, we see that
(c+ du)(u’e, + bey) — u?(ue| + (¢ + cCu)e, + fer) + ue)
= (be + bcu — u’fle; € My .

The Breuil module N is spanned as a F3[u]/u-module by e; and e, so by Lemma
271 u must divide be + bc'u — u?f. As ¢ # 0 we must have b = 0, as desired. [

Combining this with Lemma[ZZZT]and the injectivity of H(G3,w) — HY(GF/,w)
we get the following corollary, which is also the first part of Theorem E.7.3]
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Corollary 7.3.2. The natural map
0o : Extg, , (5,p) — H'(Gs,w)
18 zero.

7.4. Conclusion of the proof of Theorem H.4.7l Consider first the case of F}.
We still have to explain why

0., : H} (G3,ad’ p) — H'(I3,F3)
is zero. Suppose x € Hél(Gg, ad’ ) does not map to zero in H'(I3,F3).

By our hypothesis on z we may choose a totally ramified abelian cubic exten-
sion F}/Qs such that z restricts to zero under the natural map H'(Gs,ad’p) —
H'(Gp,,F3). Then the image of x under the natural map H'(G3, ad’p) —
H'(Gp,,p ® w) is the image of some T € H'(Gp,w) under the natural map
H'(Gp,w) = H(Gp,p®@w). The element T parametrises a finite flat Fi-group
scheme H which is an extension of us by Z/3Z and which is a subquotient of the
restriction to G 7 of the extension of p by itself parametrised by x. It follows that
H has a finite flat model 3o (see Lemma ELT.T]) and the special fibre of H must

1

be local-local (if T = 0, then the extension of p by itself parametrised by x splits
over F7 and this is clear, while if x # 0 we would otherwise get a contradiction
from the connected-étale sequence). By Lemma [[.2.2, we may therefore lift 7 to
H'(G3,w). Using the commutative diagram

Hl(Gg,w) — Hl(Gg,ﬁ(@w)

res | | res

Hl(Gﬁlaw) - Hl(Gﬁlvﬁ(&w)
and noting that the right-hand vertical map is injective we conclude that

x € Hg (Gs, ad’p) c HY(G3,p®w)

is in the image of H(G3,w) — H'(G3,p ®w), a contradiction with the hypothesis
that even the image of z in H!(I3,F3) is non-zero.

Now consider the case F/ = F’, which is non-abelian over Q3. We must show
that

0. : Extg_ (p,p) — H'(I5,F3)

is zero.
An element 2 € Extg (P, p) gives rise to a finite flat O_,-group scheme § killed
by 3 and descent data {[g]} for F”,/Qszon§" = Gxp,, F’,,suchthat (5, {[g]})q,
—1

corresponds to the extension of p by itself classified by x. Let N denote the Breuil
module for G and let N’ = N ® Fg. According to Lemmas 211, [T23] [T25] 26

and [L3 Tl we see that we can write
N = (Fslu]/u’)e, @ (F3[u]/u’)er & (Fs[u]/u”)el, & (Fs[u]/u”)e}
with
(7.4.1) Ny = (u’e,, ue; + (c + du)ey, u’e,, + (au + d'u?)e,,
ue) + (c+ cu)el, + (b+ b'u)e; + he,),

where h € F3[u]/u® is some polynomial and where a,a’,b,b’,¢,c € F3 with ¢ # 0
(as p is trés ramifié). By Lemma [[L2.0 what we must show is that a = 0.
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Note that H! (0) # 0 in Fg by §6.20 By Lemmas .71 and [L2ZT] the action 73
is determined by

/

Ta(ew) = Hyg(u)’ew, Fa(er) = Hyy(u)’er + gog(u)el,,
’5/\3(6;) = H’Ys (u)ﬁe{u + h’)’s,w (u)eu-ﬂ

%(e;) = H’m (U')Bell + Gy, (u)efu + h’Y37lel + G’Ys (u)ewa

where g, (1), G, (u) € Folu]/u® and h., ., and h., 1 are as in Lemmas [[.2.6 and
[(.2.5] respectively.
Due to the requirement 43(N7) € N7, we must have

y3(uey + (c+ cu)el, + (b+ bu)er + h(u)e,) € N},
and this element is obviously equal to

(UH%)(H%ell + g’)’se{u + h’)’salel + G’Ysew) + (C + CI’LLH%)(HSSG{U + h737wew)
+(b + b/U'H’m)(H'?y)gel t s ew) + h(U'H’YJ)HsJ €.

We now try to express this as a linear combination of the generators of N} listed
in (ZAJ), while working modulo (u3 N, u?e,) C Nj. Using that H.,(0) =1 in Fy
and h(uH.,) = h(u) mod u?, we arrive at the expression
H,,(ue} + (c+ cu)el, + (b +bu)es + he,)
+ (C((]‘ — H“/3)/u) 1 9vs

" ) (u?el, + (au + d'u?)e,,)

1-H

# (Htona 3 (F5252)) (e + (e Cuen) + P e

where
Fyy(u) = uHy, Gy, + (¢ + CuH oy, )y o + (b + V'uH ) gy, + h(u)(1 — Hy,)
- (a + alu)(c(l - H’YJ)/U + g’Ys) - (C + Clu)(H’Ysh’Ys,l + b((l - H’Ys)/u))

in Fo[u]/u®. In particular, ¢(1—H,(u))/u+ g, =0 mod u and F,, (u) = 0 mod u?.
The condition ¢((1 — H,,)/u) + g4, = 0 mod u can be reformulated as

95(0) = cH, (0).

Since F,,(u) = 0 mod u?, we have to have F,,(0) = 0. But a direct calculation
using g.,(0) = cH’_(0) and the definition of F,; gives

Fy,(0) = 0+ hyy w(0) + bg45(0) + 0 — 0 — c(hy,,1(0) — bHY,(0))
= C(h%,w(o) - h“/371(0) - bH”Yg (O))a
so the non-vanishing of ¢ forces
h’m,w (O) - h’)’s,l(o) = bH’lYg (0)
Lemmas and give us the values
Doy w(0) = —aHﬁYS(O), hys,1(0) = —bHﬁY3 (0).

Thus (—a+0b)H! (0) = bH!_ (0), and so a = 0. This completes the proof of Theorem
and hence of Theorem ATl
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8. PROOF OF THEOREM H.5.1]

In this section we will keep the notation of &5 and either §63 or §6.4 (depending
on whether we are working with 83 or §_3). We will set § = £1 in the case of 843
(so that ¢, = 6 mod (3,u)). Note the signs. We will write F' for Fi3, F’ for F/,
and J for J13. If G (resp. M) is a finite flat O p-group scheme (resp. Breuil module
over Or) we will write §' (resp. M) for the base change to O p.

8.1. Rank one calculations. We remark that with our choice of polynomials
Hy(u) in §6.3 and §6.4], any object M in qleDF,/Q3 has an action of (y2,v4) (via

72 and 74, the action of v, being Frobs-semi-linear). Also, since v3 and 2 commute,

Hy, =1and H_t (u) € Zs3[u], we see that J, must commute with v by Corollary
E62

We recall from Lemma BEZT] that the only models for (Z/3Z),r over Of are
§(r,6) for r = 0,2,4,6,8,10,12 with §(12,0) = (Z/3Z),0,, and the only models
for (u3),p over O are §(r, 1) for r = 0,2,4,6,8,10,12 with §(0,1) = (u3)/0,. In
each case, the base change to Op/ admits unique descent data over Qs such that
descent of the generic fibre to Qs is Z/3Z (resp. ps). (See Lemma B7.1.) We
will write G ; (resp. G ) for the corresponding pair (5(r,d) x Opr, {[g]}) (resp.
(G(r,1) x Ops,{[g]})). We will also let M., (resp. M. ) denote the corresponding
object of d)lDDF,/QS. In particular, for x = 1 or w, the underlying Fg[u]/u3¢-
module has the form (Fg[u]/u®*%)e, with e, the standard generator, though we
write e rather than e, if x is understood.

We have the following useful lemma.

Lemma 8.1.1. Let 0 <7 < e =12 be an even integer. The descent data on M;}l
is determined by

Tale) =e. File) = ~(—vVD)%e, 73 (e) = H zi(u) " e,

73
and the descent data on M, , is determined by

w

Ta(e) =e. File) = (—v=1)""%e, ¥ (e) = H, 21 (u)""/%e.
In particular, v} = 1 on D(S,,,) if and only if vi = ~1 on D(;.,,) if and only
if r=2,6 or10.

Proof. Certainly 72(e) = e. We have already seen in Lemma [5.7.1] that descent
data must exist in each case, so our task is to compute the unique units &,,,§,,+1 €
(Folu] /u3®)* so that

Ji(e) = &yne, Fl(e) =& e
corresponds to generic fibre descent data for the mod 3 cyclotomic or trivial char-

acter on G3. The case of y3%! follows from Lemma [5.7.1]
From the condition

Yao¢i(u"e) = ¢y ofu(u’e)
we get &2, (u) = (—v/—1)", so
00 () = (VT2

The non-zero morphisms M, ; — Mi2,; are given by e — +4312-7)/2¢ and the

non-zero morphisms Mg, — M, ., are given by e — +u?"/2e. Thus, it suffices to
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check that yie = e on MllQ,l and yie = e on M . In both cases we have shown
that 74e = e and so we only need to check that v4 = 1 on D( 12,1) and D(Sp ).
That is, we have to show that the Op/-group scheme maps Z/3Z — 74(Z/3Z) and
13 — "4 ug arising from the canonical generic fibre descent data induce the identity
on the special fibres. This is easy. O

Lemma 8.1.2. Let M be an object of ¢1—mod . corresponding to a finite flat group
scheme G and let {[g]} be descent data on §' = G x Op: relative to Qs. Assume that
(9',{g})q, can be filtered so that each graded piece is isomorphic to Z/3Z or s

and so that the corresponding filtration of (M, {g}) in (;leDF,/Q3 has successive

quotients of the form M;"j,xj with v; € {2,6,10} and x; € {1,w}. Then v = —1
on M' JuM' and there exists a basis {e;} of M over Fs[u]/u3¢ so that for all j
* e € (M1)7
e e; is an eigenvector of the Fg-linear map 43 on M,
o e, lies in the part of the filtration of M which surjects onto M/TJ’XJ_ and this
surjection sends e; onto the standard basis vector e of M;"j,xj over Fo[u] /uC.

Proof. Since 72 acts linearly on M’ /u M’ and (v#)? = 1, the action of 7 must be
semi-simple. The eigenvalues of 72 are all equal to —1, so necessarily 72 = —1 on
M JuM'.

We now argue by induction on the number of Jordan-Holder factors in the generic
fibre, the case of length 1 being clear. Thus, we can assume we have a short exact

sequence in ¢1DDF,/Q3,

0—>N’—>M'—>M’nx—>0,

so the lemma is known for N’. We just have to find ey € ¢1(M;) mapping onto
the standard basis vector e in er,x such that e is an eigenvector of 74. Since
P (MY) — ¢4 (M. )1) is a surjective map of Fo-vector spaces which is compatible
with the semi-simple Fg-linear endomorphism 74 on each side, we can find e €
#,(M}) mapping onto e with ef, an eigenvector of A4, say Ju(eh) = (vV—1)*'e).
Since

~ ~ ~ P ~ F1 +1_
Y1072(e)) =F2 075 (e)) =F2(V—-1"€}) = V=1 Fa(e}),

the element eg = (1/2)(e{, + F2(e})) maps to e and is an an eigenvector for 7.
Also, eg € ¢} (M) is Jo-invariant and J, commutes with ¢}, so eg € ¢1(M1). O

8.2. Models for p.

Proposition 8.2.1. There exists a unique object (§',{[g]}) of FDp:/q,,5 such

that (9',{[g]})q, corresponds to p. If we set (M(p)',{g}) = M~(9,{[g]}), then
(M(p),{9}) is an extension of M/QM by M/ml in ¢1DDF,/Q3. Moreover Frobenius
is not identically zero on D(9').

Proof. Let (', {[g]}) be an object of D /q, 5 such that (§', {[g]})q, corresponds
to p, and set (M, {g}) = M. (9, {[g]}). As in the discussion following Theorem
B.6.1l we have canonically M ~ Fg ®p, M for a Breuil module M over O, with J,
acting as 7o ® 1. By Lemma B.1.1] there is a short exact sequence of Breuil modules
over Op,

0 — M(s,0) — M — M(r,1) — 0,
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with r, s € {2,6,10} and this is compatible with descent data after base change to
Op/ in the sense that we obtain an exact sequence

0—>M;,1 — M —>M;,w — 0,

compatible with descent data. Because p is tres ramifié, it follows that p|g,, is
non-split, so the sequence

0 — M(s,0) — M — M(r,1) — 0

is non-split.

We first show that we must have (r,s) = (2,10). Since p is self-dual, in order
to prove (r,s) = (2,10) we may use Cartier duality (and Lemma [5.2:T) in order to
reduce to the case where r + s < e = 12. We will first rule out cases with r > s and
then the case (r,s) = (2,6).

By Lemmas and RT2, we can write

M = (F3[u)/u®)e; @ (F3[u]/u0)el,, My = (u®ei,u"el, + he;)
for some h € F3[u]/u3¢ so that
1 (u’er) = dey, ¢1(u"el, + hei) =¢e,
and
Fuler) = ~(—vVTD er, Auel) = (—vVTI) el

Recall from Lemma[5.2.2]that the “parameter” h gives an isomorphism of abstract
groups

(F3u]/u®®)/{u’t — ou"t3|t € Fa[u]/u®®} ~ Ext@F (M(r, 1), M(s,9)).
It is easy to see that
F4(M7) S M), Faod) =) oFs on M
if and only if 74 (u"e/,+he;) € Mj and F4(e),) = ¢} 0F4(u"€e/,+he;), or equivalently
(V=1)""2h(u) = —(—vV—=1)*?h(—v/=1u) mod u'?*.
This says exactly that
(8.2.1) j=2—(r+s)/2mod4

for any j < 12 + s with a non-zero u’ term appearing in h.
If (r,s) = (6,2) this would force h = 0 mod u?, yet {u?t — JuSt®|t € Fa[u]/u®0}
contains all multiples of 1?2, so

0— M(2,0) — M — M(6,1) — 0

is split, a contradiction.
When (r,s) = (10,2) or (r,s) = (2,2) we see that h = h(0) mod u*, yet

u(Fau]/u®®) C {u’t — su"t*|t € Fs[u]/u’®},
so the choice of €/, may be changed in order to arrange that
h e Fs3

(though making this change of basis of M may destroy the “diagonal” form of 7).
Since

0 — M(s,0) — M — M(r,1) — 0
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is non-split, necessarily h # 0, so by rescaling €/, it can be assumed that h = 1.
Then Vi(el,) = €1 mod uM (by Theorem BE1.3)) and

p(e) = —(0/ca)u127 e = 21277 "9e; mod uM.

This forces r + s = 12. In particular, (r,s) = (2,2) is ruled out.
For (r,s) = (10,2), a splitting of the generic fibre p|r is induced by the Breuil
module map

M(0,1) — M
defined by
e— u’e +udfe; = u(u'e, +e1) + (uf —u¥)ues,

where f € Fslu]/u3% satisfies f2 —6f = u5 (i.e. f = —6u® —u!'® and a constant
c € F3 can even be added to this if = 1). But p|g,, must be non-split, so this
rules out (r,s) = (10, 2).

The remaining case with r > s is (r,5) = (6,6). In this case {u’t — Ju"t3|t €
F3[u]/u3%} contains all multiples of u®. But we have j = 0 mod 4 for all j < 12+4s =
18 such that a non-zero u/ term appears in h, so again (at the expense of possibly
making the 44-action non-diagonal) we may assume

h=c+cu*
for some ¢, ¢’ € F3. Writing J4(e,) = (v/—1)e/, +h, (u)e1, the commutativity of 74
and ¢ amounts to h,, = —6h3 , so h,,(u) = by/=4 for some b € F3. The condition

Y4’
Fi(el)) = e, forces b = 0, so 7, still has diagonal action. This analysis shows that

the map of F3-vector spaces

Bxty,pp,, o (M Ms1) — Exty, _noa (M(6,1),M(6,6)

has at most a 2-dimensional image. If ¢’ + dc = 0, then the Breuil module map
Fo ® M(0,1) — M/

defined by

er— cou’e; +ud(ulel, + (c + cut)ey)
gives a splitting of the corresponding representation of Ggs. Thus the image of
(8.2.2) Ext@w% (MG, MG 1) — Extp1g,.1(1,0)
is at most one dimensional and, because p|g,, is non-split, the pair (¢, c’) corre-
sponding to a model of p satisfies ¢’ + dc # 0.

At this point, we treat the cases § = +1 separately. Consider first the case § = 1.
We must have

Ys(e1) = Hy,(u) %er, As(el,) = Hy,(u) e, + hq, (u)er,

where h., (u) € Folu]/u% lies in F3[u]/u3% because 43 commutes with 7>. Evaluat-
ing Y300} = ¢} 043 mod uM’ on ube, + (c+cu*)e; € M) and using our knowledge
of H,,(u) mod 3, we arrive at

s (0) = 80y (0)° + (c+ ),
which is impossible for h.,(0) € F3 with § = 1 because ¢ + ¢ = ¢+ 0’ € F5.
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Now let us turn to the case § = —1, still in the case (r,s) = (6,6). In this case
Ext%g[gg](l,w) — Ext%g[GF,](l,w) is injective and so by (BZX2) we see that the
image of

1 1
EXt¢1DDF//Q3 (MG s M 1) — Extg, (¢, (1, w)

is at most one dimensional. Thus to exclude the case (r,s) = (6,6) and § = —1, it
suffices to show that this image contains the peu ramifié line (as 7 is trés ramifié). By
Proposition 5.2.1 of [Man], there is an elliptic curve E}Qg which has supersingular
reduction over Qz(v/—1, 3), with P 3 @ non-split, peu ramifié extension of 1 by w.
The representation py 3|p is non-split (again because H'(Gs,w) — H'(Gpr,w) is
injective in the § = —1 case). Let N’ be the Breuil module corresponding to the
3-torsion on the Néron model of E' xq, F’, so N’ admits descent data {g'} via
the universal property of Néron models. The filtration of p induces a short exact

sequence in ¢1DDF,/Q3

0— My, — N {7’} — My, —0

for some even a,b with 2 < a,b < 10. The Néron model of E’ xq, Qs(v/—1, )
has local-local 3-torsion, and the induced local-local integral models G, and Gy of
the diagonal characters w|Q3( v=1,3) and 1|Q3( /=1,3) must be the unique local-local
models (uniqueness follows from Corollary 1.5.1 of [Ra]). Moreover, Corollary 1.5.1
of [Ra] makes it clear that base change to Ops takes the order 3 group schemes
So and G7 to the integral models that lie in the middle of the well-ordered sets of
integral models of w|ps and 1|p/. It follows that a = b = 6, so the map

1 1
EXt¢1DDF//Q3 (M%,w M%J) — Extp, (g, (1, w)

indeed hits the peu ramifié line.

We next exclude the case (r,s) = (2,6). As a first step, we check that there is
at most one possibility for the underlying Breuil module M (ignoring the extension
class structure) if (r,s) = (2,6). We can write

M = (F3[u]/u®)e; @ (Fs[u]/u®)el,, M; = (ube;,u’e/, + he;)

for some necessarily non-zero h € Fs[u]/u3¢ with

o1 (uber) = dey, ¢1(u’el, + hey) =€,
and

Fa(er) = —v=lei, Au(e))=—v~Tlel.
The combined conditions 7,(M}) € M and ¢} 07, = 34 0 ¢} on M) are equivalent
to

h(u) = —h(—v/—1u) mod u'®.

Since {uSt — su?t3|t € F3lu]/u3®} contains u® — §u? and all multiples of u?, we
may change e/, (at the expense of possibly losing the diagonal form for 44) so that
h = cu? for some ¢ € F3. Since h is necessarily non-zero, we may rescale to get
h = u?, so there is indeed at most one possibility for the underlying Breuil module
M when (r,s) = (2,6).

Again we treat the cases § = £1 separately. Consider first the case § = —1. We
have seen above that there is an extension &g = (N',{g'}) of Mg, by Mg, in
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(;51DDF,/Q3 corresponding to a non-split, peu ramifié extension of 1 by w. Pulling

back €¢,¢ by a non-zero map
! !
MQ,w MG,w

in ¢1DDF,/Q3 given by e — Fufe, we get an extension €s¢ of M'Q’w by ngl in
¢ DD, Qs corresponding to a non-split, peu ramifié extension of 1 by w. The

underlying Breuil module of €5 ¢ must be isomorphic to Fg ®@g, M for our uniquely
determined M (with h = u?). By the injectivity of H(G3,w) — H'(GF/,w) in the
0 = —1 case, we conclude that Fg @, M cannot admit descent data giving rise to
a trés ramifié element in Ext%S[Gﬂ (1,w). This rules out the case (r,s) = (2,6) and
§=-1.

Now turn to the case (r,s) = (2,6) and 6 = 1. We will show that with the Breuil
module M constructed above (with h = u?), the Breuil module M’ = Fg ®p, M
does not admit descent data relative to F//Qs (with 72 = 72 ® 1, without loss of
generality). One checks that N(e;) = N(el,) =0, so

No (bl =0.
We must have
Ys(e1) = Hoy(u)"er, As(el,) = Hyy(u) 7€), + hoy (u)er
for some h,, € Fglu]/u3¢. As usual, since 73 and 92 must commute, we have
ho, € F3lu]/u®. The condition 73(M}) € M] is equivalent to

/’)73(’(1,26; + U2€1) S Mll,
which amounts to
By (u) = H{f - H;gg = 0 mod u?,
SO
-3 -9
hVS B Hmv, + Hw,

ul

Az (u?el, + uer) = Hyy(u) " (u’e), + u’er) + < ) H2 uley.

As N o ¢1 = 0, we have
Y3 0 ¢h = ¢ 073
on Mj. Evaluating this identity on u?e/, + u?e; € M; gives
. 3
ho— o [T T L
vs — st ud ’

S0 h, is a cube. Thus, h., = uSg., for some g, € Fa[u]/u.
Since H3, =1+ u°® mod u'?, we compute

H;gg — HVE?’ = 45 mod u'?,

b\ 3
hqy = HS, - <(L43> + u6> mod u”
u

95 (0) = grs (0)3 +1

SO

and
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in F3. This is absurd. This rules out all possibilities for (r,s) aside from (r,s) =
(2,10). Uniqueness now follows from Corollary [Z1T5

From Theorem 5.4.2 of [Man] and Proposition B.4.2 of [CDT] we see that there
is an elliptic curve E/q, such that E[3](Qs) = p and pg 3 has type 743. Let €
denote the Néron model of £ xq, I’ over O,. By the Néron property of € 9, we
see that £[3°°] has descent data over Qs. As in §4.0 we see that J annihilates the

Dieudonné module of £[3%°] x Fg. Thus M(p)" = M, (E[3]) in ¢1DDF,/Q3 and it

follows that Frobenius is non-zero on D(g').
8.3. Completion of the proof of Theorem HZ.5.1l

Lemma 8.3.1. Let (§',{[g]}) be the unique object of FDp/,q,5 such that
(9. {l9]})qs corresponds to p. Set (M(p)',{g}) = M (5,{[g]}). The natural map
of groups

Exts, pp,, o (V@) {5}, M(@)', {g}) — Ext@p,/% (M1, M),
using pushout by (M(p)',{g}) — MIQM and pullback by Mlm,l — M(p),{g}), is
zero.

Proof. Let (JVE,, {g}) represent a class in EXt@p'/% (M), {9}), M(p),{9}))
and let (M’,{g}) be its image in EXt<1;$1DDF, (M1, M5 ). By Lemma [.2.2]
M =Fyg @M with 7 = v, ® 1 and

M = (Fs[ul/u*)e, © (Fslu]/u®)ey, Mi = (u’eu,u'e) + (c+ cu)es),
with ¢, ¢’ € F3. Also,

b1 (u’e,) = ey, é1(ut’e) + (c+cu)e,) = de),

/Q3

and
Ji(ew) = —V—le,, Aale}) = vV—lej + hy,(u)e,

for some h.,, € Folu]/u3C.
The properties 74(M}) € M} and 34 0 ¢} = ¢} 074 on M) amount to

d=0, hy = —5h‘34u24,
$0 hy, = 0. If ¢ = 0, then N o ¢ = 0, s0 73 0 ¢y = ¢} 073 on M;. From this we
readily see that (M', {g}) is split in ¢1DDF,/Q3, as desired.

Now assume ¢ # 0; we will deduce a contradiction. Consider the rank three
Breuil module with descent data

(NAGY) = O 4G}/ (W1, {3}

where Mjg 1 — M(p) — M. Then N has an ordered basis {ew, €], e} with
respect to which

N1 = (u?e,,, u'%] + e, u’e,, + he| + (b + bu)e,)

for some b, b’ € Fg and h = a + a’u* + a”"u® € Fo[u]/(u*%) defined modulo {u'®t —
Sut3} (see[BZT)). Since our base field F’ has absolute ramification degree 12, N
contains

u?e/, = u'(u?e, + he| + (b +b'u)e,) — h(u'e| +e,) + (h —u'(b+ b'u))e,.
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From the list of generators of Ny, it is not difficult to check that in the above
expression for u'2e/, € N1, u? must divide the coefficient of e,,. Thus a = 0.
We must have N /(e,,) = M(p)’. Since a = 0, M(p) has basis {e}, e/} and

M(P)1 = (u'le],u’el, + (a'u* + a""u®)e}).
Since ¢ for M(p) satisfies
o1(u'le)) = de, ¢1(u’e, + (a'u' + a"ud)e)) = €,

it follows immediately that ¢ = 0 mod uM(p), which (using Theorem B.T3)) con-
tradicts Proposition B.2.1] O

Corollary 8.3.2. The natural map
0o : Extéis(ﬁ,ﬁ) — HY(G3,w)
18 2€ro.

Theorem A 7.4] and hence Theorem [4.4.1] now follow from the first case of the
following lemma. We include the second case to simplify the proof.

Lemma 8.3.3. The maps of groups
1 1
EXt¢1DDF,/Q (Mo, Mig1) — Extp,(g,(1,1),

3
Ext@wqg (M, M5 ) — Extg (g, (@, w)
have images inside the line of extension classes that split over an unramified exten-
sion of Qs.
Proof. Since
HY(G3,Z/3) — H*(Gp/,Z/3)

is injective and induces an isomorphism between the subgroups of unramified classes,
it suffices to check that

1 1
EXt(ﬁlDDF,/Q3 (Mllo,lv MllO,l) I EthSl—modF(]" 1)7

1 1
EXtanDF,/Q3 ( l2,w7 ,2,w) - EXt(blfmodF (w’ w)
have images consisting of elements split over an unramified extension of F. By
Cartier duality it suffices to consider only the second map.
Consider a representative (M, {g}) of an element in Exté)1 DD
AZ "R

Lemma [5.2.2] ensures that we can write
M = (Fa[u]/u®)e, @ (F3u]/u*%)e),, M = (u’e,,u’e], + he,)

w

(M5, M5 ,)-

'/Qs3

for some h = ¢ + c'u + ¢"u?® with ¢, ¢/, ¢’ € F3 and
b1 (u’e,) =e,, é1(u’e, +he,)=el.
We have
Falew) = —vV—Tlew, Fu(e,) =—v~1e} +hy, (u)e,
for some h.,, € Fo[u]/u3%, and the condition 74(M]) C M} is equivalent to

h(u) = —h(—v/—1u) mod u?,
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so ¢ = ¢ = 0. The Breuil module extension class M over Op (ignoring descent
data) therefore only depends on the parameter ¢/ € F3. We then have a splitting
F;3 @, M(2,1) — F3 @, M determined by

/
e— ae, +e,,

where a € Fg satisfies a® = a + ¢”. O

9. Proor oF THEOREMS M.6.1], [4.6.2 AND [1.6.5]

In this section we will keep the notation of §4.6] and §6.0 We will write F' for
F;, F' for F] and J for J;. If G (resp. M) is a finite flat Op-group scheme (resp.
Breuil module over Or) we will write §’ (resp. M) for the base change to Op.

9.1. Rank one calculations. We remark that with our choice of polynomials
Hy(u) in §6.5] any object M in gi)lDDF,/Q3 has an action of (7y2,74) via 72 and 7y.

(The action of 9 is Frobs-semi-linear.) Since 73 and 72 commute and Hﬁl(u) €

Z3[u] we see that 3, must commute with 75! (see Corollary (.6.2).

By Lemma [5.2.1] the only models for (Z/3Z),r over Op are §(r,1) for r =
0,2,4,6,8,10,12 with §(12,1) = (Z/3Z),¢,., and the only models for (u3),F over
Op are §(r,1) for r = 0,2,4,6,8,10,12 with §(0,1) = (u3)/0,. Lemma 5.7.1]
ensures that the base changes to O/ admit unique descent data over Q3 such that
descent of the generic fibre to Qs is Z/3Z (resp. p3). We will write G, ; (vesp. G} )
for the corresponding pair (§(r,1) xo, Ops,{[g]}) (resp. (§(r,1) X0, Op,{[g]})).
We will also let M%l (resp. M:nw) denote the corresponding object of ¢; DDF,/Q3.

We have the following useful lemmas, for which the proofs are identical to the
proofs of Lemmas[8.1.1] and

Lemma 9.1.1. Let 0 <17 < e =12 be an even integer. The descent data on M, 1
is determined by

ale) = e, File) = —(—VD)e, 13 (e) = H,x (u) ",

and the descent data on M, , is determined by

Tale) = e, Fale) = (—vV=1)"%e, 77 (e) = H, 1 (u) "/ .

In particular, v3 = —1 on D(S,1) if and only if v = —1 on D(S,..,) if and only
if r=2,6 or10.

Lemma 9.1.2. Let M be an object ofgbl—modF corresponding to a finite flat group
scheme G and let {[g]} be descent data on §' = G xXo, Op over Qs. Assume that
(9, {g})q, can be filtered so that each graded piece is isomorphic to Z/3Z or us
and so that the corresponding filtration of (M, {g}) in (;51DDF//Q3 has successive
quotients of the form Mlm,x]' with v; € {2,6,10} and x; € {1,w}. Then ~vi = —1
on M' JuM' and there ezists a basis {e;} of M over F3[u]/u3® so that for all j

® € € ¢1 (Ml);

o e; is an eigenvector of the Fo-linear map Y1 on M,

e e; lies in the part of the filtration of M which surjects onto M;mxj' and this

surjection sends e; onto the standard basis vector e of Mlm,x]' over Folu] /u3C.
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9.2. Models for p. Recall that we are assuming that 5 has the tres ramifié form

(51)

and is not split over F’. We will let ¢1 DD denote the full subcategory

F'/Qs,9

of ¢1DDF,/Q3 consisting of objects M’ for which the ideal J acts trivially on
(M//UM/) ®F9,Frob3 F9~
Proposition 9.2.1. Suppose that (M, {g}) is an object of ¢1 DD such that

F'/Qs,d
(M, {9})qs is an extension of Z/3Z by uz. Then we have an exact sequence

0) — Mls,1 — M — M;,w —(0)

with (r,s) = (2,6), (6,10), (2,10) or (6,6). Moreover we can write M' = M ®p, Fo
with Y, = 1®@Frobs, where M has an F3[u]/(u®%)-basis {e1, e/} with e, the standard
basis element of M(s,1) and e, mapping to the standard basis element of M(r,1).
More precisely we have the following exhaustive list of extension class possibilities,
all of which are well defined. (N denotes the monodromy operator described in

Lemma[51.2)
(1) (r,s) = (2,6): The natural map

1
EX@IDDF,/QSJ (M, MG 1) — Extp,(cy(1,w)
is an isomorphism, with elements parametrised by pairs (c,c1) € F3 corre-
sponding to
M, = (uSey,u’el, + cu®er), ¢1(uley) = e, é1(u’el, + cu’e;) =€/,
(so N o ¢y =0) with
Ja(e1) = —V—lei, Fule),) = —v—1e,

—

vil(er) =e1, 15l(e) = (1 +u'®)(e, + crule;).

The pairs with ¢ = 0 are the ones which generically split over F'. In all
cases ¢ =0 mod uM.
(2) (r,s) = (6,10): The natural map

EXtélDDF,/QN (Mg, Mg 1) — EXti‘g[Gg](Lw)

is an isomorphism, with elements parametrised by pairs (c,c1) € F3 corre-
sponding to

M = < 1061, ’U,GG; + cu6e1>, 01 (uloel) =e1, @1 (uﬁe; + cuﬁel) = e;
(so N o ¢y =0) with
Ja(er) = V—ler, Au(e]) = v-1e],

’Y:sil(el) =(1F Uls)eh ’Yg,il(ei,) = ei, + cquley.

The pairs with ¢ = 0 are the ones which generically split over F’'. In all
cases ¢ = 0 mod uM. These cases are Cartier dual to the (2,6) cases above.
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(3) (r,s) =(2,10): The natural map

EXtéleDF,/Q&J (M, Mg 1) — EXti‘g[Gg](Lw)

is an isomorphism, with elements parametrised by pairs (c,c1) € F3 corre-
sponding to
M = (u'ler,u?e, + cube;), ¢1(u'er) =e1, ¢1(u?e, + cube;) =€
(so N o ¢y =0) with
Fuler) = vV—Tei, Au(el) = —v—1el,

(o) = (LFu)er, 77 (L) = (1+u'™)(el, + cruey).

The pairs with ¢ = 0 are the ones which generically split over F'. In all
cases ¢ =0 mod uM.
(4) (r,s) = (6,6): The natural map

EXt(1151 DD (M/G,w’ M%,l) I EXt%‘g[Gﬂ (17 W)

F'/Qg,7
is an isomorphism, with elements parametrised by pairs (c,c’) € F3 corre-
sponding to

My = (u®er, ulel, + (c+ dut)er), ¢1(uer) =e1, ¢1(u’e, + (c+ cu')er) =€,

(it is easily checked that N(ei) =0 and N(el,) = c'u®*’e;) and

Ji(er) = —vV—lei, Ju(e),) =V—1el,
) =er, 2 (el) = e, + (e cul? — du)er
In particular, ¢ = 0 mod uM if and only if c = 0.

In the first three cases, the peu ramifié condition on a class in Extiﬂs[cg}(l,w) 18
equivalent to the vanishing of c1. In the fourth case it is equivalent to the vanishing

of c.
Proof. By Lemma [0.T.Tl we have an exact sequence
(0) — M, — M — M., — (0)
with r; s € {2,6,10}. As usual
My = (u®eq,u"el, + hey).

In the cases (r,s) = (2,2) and (6,2) as in the proof of Proposition 2.1 we may
take h = 0. We will show that in the case (r,s) = (10,2) we also have h = 0.
Following the proof of Proposition [B:2-1] we may suppose that h € F3. Without loss
of generality we can take h = 1 and look for a contradiction. Again following the
proof of Proposition and using

My = 2e1,u10e:J +e1)

we find that ¢e/, = —e; mod uM. Also

’Y?)ilel = (1iu18)e1,

=

'y?lei} = (1Fu®e, +hii(u)e;
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for some hyq(u) € Folu]/(u®%), which must actually lie in Fs[u]/(u?®) (using, as
usual, the fact that 72 and 73 commute). Thus

—e; = ¢el,
’73'72—’}’3

(7 2)
(Vs — 73 )(%)
(h1(0) — h_1(0))e; mod uM’'.

(e0)

. . i ’ / .
The inverse linear maps vi ' on M’/uM’ have matrices

( (1) hﬂl(o) )

with respect to the basis {e1,€/,}, so that h_1(0) = —h1(0). Thus h1(0) = 1. On
the other hand evaluating J3¢] = #;73 mod uM’ on u'%¢/, + e; and comparing
coefficients of e; gives hy(0) = 0, a contradiction.

Thus if any case (r,2) arises, the underlying Breuil module must be a split
extension

M = (F[ul/(u®®))er @ (Fa[ul/(u™))el,, M = (u®e1,u’e]),
¢1(u’er) = ey, p1(u"el,) = e
(so N o ¢y =0), with

2€1 = €1, 72e, =¢€,,

Yaer = V—lei, el = (—v-1)"%,.

We also have

Vi ler = Hoai(u)Pe; ~itel, = Hooi(u) /%), + hii(we;
for some hiy € F3[u]/(u®). Since N o ¢y = 0, we have 73'¢| = @i’
M). Evaluating this on u"e/, and comparing coefficients of e; gives hii(u) =
u3(7"_2)hi1(u)3H7§E1(u)3’“. This forces hyi(u) = 0 if » # 2. If r = 2 it forces
ha1(u) = cx1(1 4+ u'®) for some c41 € F3. We will show ¢_1 = ¢; = 0. Indeed,
evaluating the congruence

¢ = (3572 — 73 52) mod M’
on €/, gives
0=¢(e,) = (c1 — c_1)e; mod uM’

so that ¢c_1 = ¢;. On the other hand the congruence

As7a = Y3 L mod uM’

(o )00 =)= =) (e 7))

in M5(F3), so c_1 = —c1. Thus c.1 = ¢; =0 and hyy =0 for r = 2 as well. Thus
for r = 2, 6 and 10 the Breuil module with descent data M’ is split, so p is split, a
contradiction.

This rules out the possibilities (2,2), (6,2) and (10, 2). Using Cartier duality we
can also rule out (10,10) and (10,6). We are left with the four possible pairs (r, s)

gives
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as asserted in the proposition and must determine which possibilities arise in each
case.

Next consider the case (r,s) = (2,6). Using the same analysis as in the (r,s) =
(2,6) case in Proposition [BZZT] we find that the possibilities for the Breuil module
M are the ones in the statement of the proposition (and N o ¢; = 0 is easy to
check), though we only know that

aler) = —v/=le, Fa(e]) = —V/=1e}, + ho,(u)es
for some h.,, (u) € Fg[u]/u35. The conditions
Fa(M) S My, Fao ¢y = ¢} 0T on My
are equivalent to
b\ 3
h~, = 0 mod ut, Ry = — <ﬁ) .

The solutions to this are h,, = ay/—1u® for a € F3. Replacing €/, by e/, + aue;
preserves our standardized form but makes h,, = 0:

Sa(er) = —vTer, Au(el) = —v/Te.,.
The wild descent data must have the form
o) =1, 13 (€L) = (1 £ ut)el, + haa(wer

for some hyq € Fo[u]/u3¢. The conditions

M) SM, F ot = ors on M
(recall N o ¢1 = 0) are equivalent to

hit = 0mod u?, hyq = (1+ u18) (%)3 ,
whose solutions are

hir = coru®(1 £ u'®)

for some c4+1 € F3. Since N o ¢; = 0, we have

i1 /1\1 A
Y3 073 ©¢y =,
SO
C_1 = —C.

Using Lemma and Corollary [£.6.2] we see that all of these possibilities are
well defined. We also see that J annihilates M/uM ® Fy. It is straightforward to
check that generic splitting over F’ (which is equivalent to generic splitting over
F) is equivalent to ¢ = 0, and that such splitting is compatible with descent data
(i.e. descends to Qg3) if and only if ¢ = ¢; = 0. For dimension reasons, the map on
Ext!’s is therefore an isomorphism.

Now consider the case (r,s) = (2,10). Here we have

M; = <U1061, ’U,QQL + hel)
for some h € F3[u]/u®°, with

¢1(u'er) = e, ¢1(u’el, + hei) =,
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and
Fa(er) = V—Tei, Au(e,) = —v~Tlel.
In order that
Fa(My) S My, Faodh = ¢foFs on M,
it is necessary and sufficient that
h = h(—v/—1u) mod u?2.

But {u!%t —u?t3|t € F3[u]/u36} is spanned by u'® —u'l, w12 —u8 ull —u® ul®—u?2,
and all multiples of u'®, so we may suppose

(9.2.1) h=c" + dut + cub,

for some ¢”,c, c € F3, at the expense of possibly losing the diagonal form of 7.
The monodromy operator satisfies

N(e1) =0, N(e,) = ("ul - u'® + "u*)e;.
Since the wild descent data must take the form
e = (17 uer, (L) = (1 u™)el + harer
for some hiy € Folu]/u3®, we compute
%E(uQe:J + hep) = H%l (u)(1 £ u'®)(u?e, + her) + fr1(u)er,
where
(9.2.2)  fii(u) = —hH%l(u)u +u'®) 4 qu%lhﬂ + (L Fu'®)h(uH, ).
Thus, in order that ';3;1 (M]) € M/, it is necessary and sufficient that fi; satisfies
f+1 =0 mod utY.

Using (0.2.1)) and Ha=17F u% mod 3, this amounts to
(9.2.3) hiy = +c"u* mod u®.
However, N o ¢ (M1) C u®M, so

;350(;5’1 E(;S’lo%\l mod u® M’

when evaluated on Mj. This gives

£\
hir = <i> mod uS.

110

Since h1 is a cube modulo u%, by (Z3) we must have ¢’ = 0, and so N o ¢y =

0 mod u'® M. Thus, 'y?,ﬂ and ¢}, commute modulo u'® M’ when evaluated on M7,
so we get

_ (fa)’ 18
(9.2.4) hit1 == | modu"®,
u

and hi, is a cube modulo u'8.
On the other hand, with ¢’ = 0, we see from ([0.2.3) that

h41 =0 mod ud.
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Because h41 is a cube modulo u'®, we get the slight improvement
hiq1 = 0 mod .

Combining this with the vanishing of ¢”, we deduce from (@:2:2) that fi; =
+c/ul® mod u'l, so by (0:24)

hi1 = £ mod w.

This forces ¢/ =0, so N o ¢; = 0. Thus, 'y?l and ¢} commute on M7, so

far )’
hir = <W
in Fg[u]/u3¢. Using h = cu® this becomes (via (T2:2))
B\
o 18 +1
h:l:l = (1:|:U )<$> 5
S0
hy1 = ciluw(l + ’u,lg)

for some c41 € F3. As before, we get c_1 = —cy.
Now we “diagonalise” 74. Since we have

Yaler) = V—lei, Aa(e}) = —v—le| + hy,(u)er
for some h.,, € Fol[u]/u3®, the conditions
Fa(M}) S My, Faody =¢)oqs on M)
are equivalent to

o \?
hMEOmoduS, hw——(z};) ,

which is to say

hyy = av/—1u'?
for some a € F3. Replacing €/, by €/, +au'?e; then puts us in a setting with a = 0.
Thus all extensions have the form asserted in the proposition. It is easy to check
that in each case J annihilates (M/uM) ® Fy.

Pushout by the non-zero map M%J — MI10,1 in (;51DDF,/Q3 induced by e — ufe
takes our (2,6) examples to our (2,10) examples (compatibly with the labelling of
parameters ¢, ¢1 as in the statement of the proposition). Thus all 9 possibilities for
(¢,¢1) do occur and we get an isomorphism of Ext!’s as asserted. Moreover, generic
splitting over F’ (which is equivalent to generic splitting over F') is equivalent to
¢ = 0, and such splitting is compatible with descent data (i.e. descends to Qs) if
and only if ¢ = ¢; = 0.

Using Cartier duality and the case (r, s) = (2,6), we see that in the case (r,s) =
(6,10) the map of Ext!'’s is an isomorphism. It is easy to check that the objects
in our asserted list of 9 possibilities for (r,s) = (6,10) are well defined and that
pullback by the non-zero map J\/['Q’w — Mg’w induced by e — u%e takes these to our
(2,10) examples (compatibly with the labelling of parameters ¢, ¢1).

Finally, we turn to the case (r,s) = (6,6). Choosing a basis with respect to
which 7, has a diagonal action, the conditions

(9.2.5) Fa(Mi) S MY, Fao¢h =107 on M)
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are equivalent to
h(u) = h(—v/—1u) mod u'®.
Since {u®t — ut3|t € F3[u]/u35} consists of multiples of u”, we may change e/, to
get
h=c+du
for some ¢, ¢’ € Fg, with
Fa(er) = —V—lei, Aa(el,) = v—le[ + hy,(u)er

for some h,, € Folu]/u®. Feeding this into (9.25) we get h,, = —h3 , so0 h,, =
v/ —1a for some a € F3. Replacing €/, by e/, — ae; returns us to the setting with
“diagonal” q4-action and preserves the standardizations we have made so far.

It is easy to compute N(el,) = cu’e; (and we know N(e;) = 0). The “wild”
descent data is

l(er) =e1, 15l(el,) =€, +hire

for some 41 € Folu]/u®. Using the congruence for ¢ +1 in §6.5 the identity

Yo dh = (1+t2-N)odhony!

on Mj amounts to the condition

hil _ h:jtl e= clu12 _ CIU3O7

whose solutions are

hay = cag F du'? — du

for some c41 € F3. The identity
fyétl o'y?:fl =1mod uM
implies ¢_1 = —c;. Thus
~Vyv(e,) =d(e,) = —ce; mod uM’, (3072 — 73 2)(e),) = —cre; mod uM’.
Thus J annihilates (M/uM) @, Fg if and only if ¢; = c.
By Lemma and Corollary (5.6.2], it is easy to see that all of these objects
are well defined. The kernel of

(9.2.6) Exthpp , (Mg M) — Exthig,(1,w)

'/Qs,9
consists of pairs (¢, —c), where generic splittings are induced by any of the (non-
zero) Breuil module maps
M(0,1) — M
defined by
er— u’el, + (¢u’ + cu®)e; = u(c + u?é)ule; + ud(u®e, + (c — cut)ey)
with ¢ € F3. Thus, the pairs (¢, ') corresponding to the p which are split over F’

(or equivalently, split over F’) are exactly those for which ¢ + ¢’ = 0. The map

1
EXtélppF//%j (M, MG.1) — Extp, (g, (1, w)

is therefore injective, because the splitting given above respects descent data if and
only if ¢ =¢; = 0.
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It remains to establish which of the given extensions of Breuil modules corre-
spond to peu ramifié extensions of Z/3Z by us over Qs. We noted above that
the maps among the ExtélDD a ’s in the (2,6), (6,10), (2,10) cases induced by

Sy 27 3

pushout /pullback along e — uSe are compatible with the parametrisation by pairs
(¢,c1). With a little more care, one checks that the maps

(Mlﬁ,uw Mlﬁ,l)

1
e EXt¢1DDF

1 1
Exty, pp (M, M) «— Ext} pp

F1/Qs9 F/Qs.

(M%,wv Mll(),l)

induced by e — wue send the pair (¢, ¢’) in the middle to the pair (c+¢’, ¢) on either
end (to construct the necessary commutative diagrams of short exact sequences in
the two cases, use the maps

(e/,,e;) — (u®e/, — cer,e1), (e,,e1)— (e, + e, u

/Q3,7
6

661)

respectively). This reduces us to checking the (6,6) case.

By Corollary 2.3.2, the two trés ramifié extensions, p; and psy, of 1 by w which
are non-split over I arise from elliptic curves, £y and Es, over Qg for which pg; 3
is potentially Barsotti-Tate with extended type 7/ (see §6.5). Let G; denote the
3-torsion in the Néron model of E; over Op. From the universal property of Néron
models we see that §; = §; X0, Op inherits descent data {[g]} over Q3. By
the same argument used at the end of §40 we see that (G, {[g]}) is an object of
¢1DDF//Q3,J' Moreover we see that F # 0 on D(G;). Since all non-(6,6) cases
above have ¢ = 0 mod uM, by the parts of Proposition which we have already
proved we see that Mx (5, {[g]}) is an extension of Mg , by Mg ; and correspond to
a pair (¢, ') with ¢ # 0 (since F # 0) and c+¢’ # 0 (by our analysis of ([22.0)), since
p; is non-split over F'). Hence M, (94, {[g]}) and M (55, {[g]}) must correspond in
some order to the lines ¢’ = 0 and ¢ = ¢/ in F3.

As a non-split peu ramifié extension of 1 by w remains non-split over F’, we see
that the peu ramifié line in

(M%,w’ M%,l) = EXt]I?J[Gg] (]‘ﬂ W)

cannot correspond to ¢ + ¢’ = 0. By the above analysis it cannot correspond to
¢ =0or ¢— ¢ =0. Thus it must correspond to the remaining line ¢ = 0. O

Ext!
91DD /g0

The properties of ¢ in the cases listed in Proposition[9.2.3] make it clear that the
(6,6) case there is “different”. We will see further manifestations of this difference
later.

9.3. Further rank two calculations.
Lemma 9.3.1. For (r,s) = (2,6), (6,10) and (2,10) we have
Exty pp (M5 1, M;.,) = (0).

F'/Q3,7

Proof. The (6,10) case follows from the (2,6) case by Cartier duality. Thus, we
assume 7 = 2, s € {6,10}. Let (M, {g}) be such an extension. By Lemma [RT.2]
(M, {g}) arises from a Breuil module over O of the form

M = (Fs[ul/u*)e, ® (Fs[ul/u®®)e}, Mi= (u’e,, u’e] + hey)
with

b1(u’e,) = ey, ¢1(u’e] +he,) =¢]
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and
Falew) = —V=Tew, Fule}) = —(~V=1)"’€},

where h € Fs[u]/u3S.
The combined conditions

Fa(My) CM), Fao¢) =) o, on M
are equivalent to
(V=1)"2h(u) = (V=1)h(—v/~Tu) mod u'*.

Treating the cases s = 6 and s = 10 separately, we conclude from Lemma
that we may change €] so that h = 0 when s = 6 and h € F3 when s = 10. As a
result of this change, we only have

Fa(ew) = —V-Tew, Fu(e}) = —(~v=1)*%e] + ho, (u)e..
However, with h € F3 when s = 10 and h = 0 when s = 6, the condition
Faodh = ¢hoAs on My
forces h., = —u3(3_2)h?§4, so that in fact h,, = 0 after all.
When h = 0, so M is split in ¢—mod, (compatibly with 74 on M), and it
is easy to check (using N = 0) that the “wild” descent data '?3;1 must also be

diagonal, so we have the desired splitting in ¢1 DD , Qs

It remains to consider the case (r,s) = (2,10) with h = ¢ € F3. It is easy to
compute

N(e,) =0, N(e}) = —cue,,.
The wild descent data must have the form
75 (o) = (1 £ u®)ey, 237 (e]) = (1F u'®)e] + hare,
with h4q € Fg[u]/UBG.
It is straightforward to check that v (M}) € M/, and then the condition

Lo = (L+ b,z N) o ¢ 03T
on M) gives
hir = feu'? + A3 (1 F u'®) + cu®.
The unique solution to this is
hiy = c(£u'? +u3).

Thus Y372 —’ygl% = 0 mod u, while ¢(e}) = —ce,, mod u. This forces ¢ = 0. With
¢ = 0 we obviously have only the split extension class. O

Lemma 9.3.2. The natural map

EXtél DD (M%,17 Mlﬁ,w) I Ethl?g[G\;] (wﬂ 1)

F'/Q3.,9

is an isomorphism, with elements parametrised by pairs (c,c') € F3 corresponding
to

M = (Fsul/u™)e, @ (Fslu]/u*®)e, Mi = (u’eu,u’e] + (c + cu)ey),
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where
#1(ule,) = ey, ¢1(ule) + (c+ut)e,) =e), N(e,) =0, N(e})=cue,
and the descent data is

:7\4(90.1) =+v—ley, /')74(911) =V _1e,15

13 ew) = eu 15 (e]) = € + (e F Cul? — e,

Proof. The proof is identical to the proof of the case (r,s) = (6,6) in Proposition
@27, except +/—1 is everywhere replaced by —v/—1 and when we study splitting
we give M(0, 1) the descent data for the trivial mod 3 character (which amounts to
using J4(e) = —e rather than 74(e) = e). O

Lemma 9.3.3. Forr € {2,10}, the maps

1 1
EXt¢1DDF//Q3 (M;,w’ M;“,w) - EXth[Gg] (wa w)

and

EXtéleDF, M1, M) — EXti“g[Gg](L 1)

/Q3 (
are injective and have image consisting of the 1-dimensional space of classes which
split over an unramified extension of Qs.

Proof. The cases r = 10 follow from the cases r = 2 using Cartier duality. Thus
we suppose r = 2. We treat only the case of MIQ’W, the case M'Q’I being exactly the

same except that —v/—1 replaces /—1 everywhere.
Let (M',{g}) represent an element in Exté)lDD L (M5, M5 ). Lemma
Rt Sy 4 3 ’ )

ensures the existence of an ordered F3[u]/u®6-basis e,,, e/, of M such that

M, = (u’e,,u’el, + he,), ¢1(u’e,) =e,, ¢1(u’el, +he,) =e,
with

Falew) = —v~Teu, Fa(e)) = —v~1e.
Carrying out the usual calculation,
(9.3.1) Fa(My) S MY, @107 =Fs0¢; on My
if and only if
= —h(—v/—1u) mod u'*.

Combining this with Lemma .22, we may change €/, so that h = cu?, with ¢ € F3,
at the expense of possibly losing the diagonal form of 74. But with h = cu? and
Ja(el,) = —v—1e, + ho,(u)e,, the conditions (@.3.1) imply h,, = —h3,, and so
hy,(u) = (v/=1)a for some a € Fs. Then 7§ = 1 forces a = 0, so 4 still has
diagonal form.

It is easy to check that N(el,) =0, so N o ¢; = 0. Thus, we must have

(9.3.2) vilog) =g onit

on M. Since the wild descent data has to be of the form

vil(en) = (1 £ u'®e,, 7i'(e)) = (1+u'®)e, + hise,
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for some hyy € F3u]/u®6, evaluation of (I32) on u2e/, + cu’e, € M; gives hiy =
(1 £u'®)h3,, so har = cx1(1 + u'®) for some c1; € Fz. The relation 'ygd 0 0
Foqd(e,) =€, forces cx1 = 0.

We now have described all possibilities in terms of the single parameter ¢ € Fg,
and it is straightforward to use Corollary[5.6.2to check that all of these examples are
in fact well defined. Generic splittings over unramified extensions of Q3 correspond
to the maps

F3 ®p, M(0,1) — F3 @p, M
given by
e — au’e, + u(uel, + cu’e,),
where a € F3 satisfies a® = a + ¢. Such generic splittings can be defined over Qs
(i.e. without extending the residue field) if and only if ¢ = 0. O

Lemma 9.3.4. (1) The map of groups
Ext@w% (Mg 1, MG 1) — Extg gy (1,1)
s an isomorphism.
Explicitly, the group EXt@F,/QS (MAI,ME’I) is parametrised by pairs
(¢,c') € F2 corresponding to
M = (Fs[u]/u>®)e; @ (Fs[u] /u®)e], M; = (uSeq,ule) + (cu® + cub)ey),
with

p1(uler) = e1, ¢1(ule] + (cu® + ub)er) = e,

N(e1) =0, N(e})) = —cu*'e;
and descent data

Fa(er) = —vV—1le1, Ju(e}) = —v—1ej,

'ygd(el) = ey, 73 (el) =e] + c(iu +ul® -t 4 u30)e1.

The classes in EXth[Gg] (1,1) which split over an unramified extension of Qs
correspond to the pairs with ¢ = 0.
(2) The map of groups

EXt(lleD (M/G,w’ M%,w) I EXt%‘g[Gﬂ ((JJ, (JJ)

F'/Qg

s an isomorphism.
Explicitly, the group EXt@F,/QS (M%M,M’GM) is parametrised by pairs
(¢,c') € F% corresponding to
M = (Fa[u]/u*®)e, @ (F3[u]/u*)e,, My = (ule,,ule], + (cu® + cu’)e,),
with

¢)1(u6ew) =€y, ¢1(u e + (Cu + Cluﬁ) ) = e:n

N(e,) =0, N(el,) = —cu**e,
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and descent data

:}74(60_,) =v-ley, :7\4(91.;) =V _1e:.n

il (ew) = ew, 15(e),) =€), +c(+u’ £ u'® —u* +u0)e,.

The classes in Ext%S[Gﬂ(w,w) which split over an unramified extension of
Qs correspond to the pairs with ¢ = 0.

Proof. We treat the first part of the lemma; replacing v/—1 with —1/—1 throughout
gives the proof of the second part.
As usual, we can find an ordered F3[u]/u3®-basis ey, €] of M so that

My = <’U,6€1,’U,Ge/1 + hel), b1 (uﬁel) =e1, 1 (uﬁe'l + hel) = e'l,

and J4(e1) = —v/—1leq, As(e}) = —v/—1e}. The conditions 74(M]) € M) and
A1 0 @y = ¢y 0744 on M amount to

h(u) = —h(—v/—1u) mod u'®.

Since {uSt — uSt3|t € Fs[u]/u®0} consists of multiples of u”, we can change the
choice of €] so that

h = cu® + c/u®
for some ¢,c’ € F3, where we may a priori lose the diagonal form of 7;. But the
same kind of calculation as in Lemma [0.3.3 shows 74 (e}) = —v/—1e} + ay/—1e; for
some a € F3, so the condition 7} = 1 forces a = 0 (i.e. A4 still has diagonal action).
It is straightforward to compute the asserted formula for N, and then the wild

descent data can be computed exactly as in our previous computations of wild
descent data; this yields the formulas

'y?,il(el) = e, 'y?,il(e'l) =€) + (caq + c(Fub £u'® —u?* £u3%))ey,

where c11 € F3. Modulo u, the linear action of 'y?,il'yyyflfyi’ sends €} to €] —cyieq,
but 7?%1747:?172 =1, s0 ¢ce = 0 for e = +£1. Thus, we obtain the asserted list of
possibilities. The well-definedness of these examples follows from Lemma and
Corollary .62

It is easy to see that there is a non-zero map F3 ®@p, M(0,1) — F3 ®p, M if and
only if ¢ = 0, in which case such non-zero maps are precisely those induced by

e — au’e; + ud(ule) + cuey),
where a € F3 satisfies a® = a + ¢/. The verification that ¢ = ¢ = 0 corresponds

to being in the kernel of our map of Ext!’s is now clear, since X3 = X + ¢ has a
solution in F3 if and only if ¢/ = 0. O

9.4. Completion of the proof of Theorem[4.6.T1 Everything in Theorem LGl
is now clear except for the third assertion, which we now prove. Let (9, {[g]}) be
as in the third part of that theorem. We may suppose that §' = G xg,. Op/ for
some 9/Op- The filtration on p ®F, k gives a filtration

0) — S0 — G — 51 — (0),

which is compatible with the descent data over Q3. According to Lemma [5.2.3] we
have M (SGw) = M(k; rw, fu) and My (G1) = M(k;r1, f1) for some 0 < ry,7, < 12
and some f1, f., € k[u]/u35. We will let x denote either 1 or w. In particular
Mz(Gy)1 = u™>Mx(Gy) for x = 1,w. From this one can conclude that if H is
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a subquotient of G, then M (H); = <M, (J(). Quite generally, for any Breuil
module M over O with My = u” M and any short exact sequence of Breuil modules

0—M —M—M"—0,
we must also have
My =u" M, M =u"M".

Indeed, M — M” is a surjection taking M; onto M7, so the assertion for M” is
clear. Since M’ is an F3[u]/u?¢-module direct summand of M and

M =M NM; =M nu™ M,
the assertion for M’ is likewise clear. We conclude that (M, (S, ), {g}) admits a

filtration with successive quotients M'wa. Thus 7, € {2,6,10}.
Consider a fixed surjection of F3[G3]-modules

PRk —»p.

This gives rise to a finite flat O p-group scheme H with descent data on H' = Hx O g
over Qs corresponding to p and an epimorphism

§—H
compatible with descent data. Consider the commutative diagram

0— M;(H1) — M;(H) — M (H,) —0

! 1 1
0= Mx(G1) — Mz(9) — Mz(Sw) —0

where the top row corresponds to the non-split filtration of p. The middle vertical
map is an isomorphism of the source onto an F3[u]/u?6-module direct summand
of the target, so the left vertical map is as well, because an injection of Fa[u]/u>¢
into a free F3[u]/u35-module must be an identification with such a direct summand
(consider torsion). This forces Mn(H1) = M, ; and so, by Proposition @21
we see that r1 # 2. Repeating the analogous argument applied to a submodule
7 C p® k one sees that r, # 10.

Thus (9, {[g]}) is weakly filtered by {Ss 1, Grw} for (r,s) = (2,6), (6,10), (2,10)
or (6,6), as desired.

9.5. Completion of the proof of Theorem A.6.3. Write Ay for F3[[T]]/(TY).
For (r,s) = (2,6), (6,10) and (2,10), we will define a Breuil module My, 5) over
Op and descent data {g} for Gal(F'/Qs) on M?\/’,(r,s) = My (r,s) @F; Fg such that
My (r,s) and (JV[/N,(T’S), {g}) have compatible actions of Ay (and 72 = 1 ® Frobs).
More specifically set ¢ = 2, 6 or 8 according as (r,s) = (2,6), (6,10) or (2,10).
Viewing p as an extension class, it corresponds to a particular pair (c,c1) € F3
in Proposition Fix these values. Motivated by the idea of deforming the
formulae in Proposition [@.2.1], we are led to define

My, (rs) = (An[u]/u*)er ® (An[u]/u)e],,
(M, (r )1 = (u®er,u"e, + (c + T)u'er)
with
o1 (usel) =e1, 1 (u"efd + (C + T)utel) = e;.
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It is straightforward to check that No¢; = 0 on My (,. ). We may define Ay-linear
descent data on M?\/’,(r,s) by setting 72 = 1®Frobs and using the following formulae.

(1) When (r,s) = (2,6), set
Ya(er) = —V—1ey, Faley,) = —\/—_13(1,,

75 ter) =er, 73 '(el) = (1 u'®)(e], + cruler).

(2) When (r,s) = (6,10), set
Fa(er) = V—ley, Au(e,) = V—1lel,

vil(er) = (1 Fu'®er, vit(el) = (e, + crule;).

(3) When (r,s) = (2, 10), set
Jaler) = V—ley, Aule,) = —v-le,

vEler) = (1 Fu'®)er, yil(e)) = (1+u®)(e, £ cru'?er).

It is readily checked that this defines an object of ¢ DD, 1Qs.9 with an action
of Ay. Let Gy (rs) and (G (r5)" {[g]}) be the corresponding finite flat O p-group
scheme and finite flat O gp/-group scheme with descent data.

If 1 < M < N, then we have a short exact sequence in (;leDF,/Q3 5

(O) - MII\/I,(?",S) I M?\/’,(r,s) I MIN—M,(T,S) I (0)7

where the first map is induced by multiplication by 7V ~™. The case M = 1 shows
that

(9N,(r,s)7 {[g]})Qs/T(gN,(r,s)v {/g\})Q3

corresponds to p. Thus we get a surjection of Ay [G3]-modules A% —» SN,(T’S)(63)7
which must in fact be an isomorphism (count orders). Thus (Gn (), {[9]})Q,
defines a deformation py, () of p to A%, For N > 2 we have PN ,(r,s) Mmod T? =~
P2,(r,s)-
We also have an exact sequence
(0) — M1 @Fy AN — (My (1,65 19}) — M;, ©F; Ay — (0)

in g1 DD from which we obtain an exact sequence of Ax[Gs]-modules

F'/Qs’
(0) — Xy — pyv — X1 — (0).
Note that X; = FY and X, = F3(w)" as F3[G3]-modules. Moreover, this sequence
must split as a sequence of Ax-modules. (Use, for instance, the kernel of py (o) — 1
for any o € G3—GQ3(\/T3).) Thus X; &2 Ay and X, & Ay(w) as An[Gs]-modules,
so det py = w.
Finally, we must check that the exact sequence
0) —p—p2—0—(0)
is not split. We have maps of Breuil modules

fl : Ms,l - M27(r,s)

e —— e
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and
fo i My rs)y — Mpy
e 0
Te1 — 0
e, — 0
Te, — e

compatible with descent data. These give rise to maps
fiipr—1

and
f3 1w — pa,

such that the composites

¢

ﬁ‘—>ﬂzi>1
and

£ _
W =" p2 —> P

are non-zero.
To check that

0) —P—p2—p—(0)

is non-split, it suffices to check that

(9.5.1) (0) — w — ker f{/Im f5 — 1 — (0)
is non-split. ~However, ker fi/Im f; corresponds to an object (N',{g}) of
qleDF,/Q3 g satisfying

N = (Folu]/u™)(Ter) @ (Fo[u]/u®®)el,, Ny = (u’(Ter),u"e], +u'(Ter))
with
$1(u’(Ter)) = (Ter), di(u"el, +u'(Ter)) = e,
By Lemma B.2.2, the sequence of Breuil modules with descent data
(0) — M, — N — M, — (0)

is not split. This sequence recovers ([@5.1)) under generic fibre descent, so by Propo-
sition @.2.1]

(0) — w —ker f{/Im f; — 1 — (0)

is not split.
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9.6. Completion of the proof of Theorem Suppose first that (r,s) =
(2,6), (6,10) or (2,10). By Lemma [I:31]

60 : EXtéi,(r,s) (ﬁa ﬁ) - Hl(G?)a LU)
is the zero map. Lemma then tells us that if » # 6, then

01 :Ext,  (5,9) — H'(I3,F3)
is the zero map; while if s # 6, then

0. : Extg,  (7,p) — H'(I3,F3)
is the zero map. Thus Theorem and hence Theorem [4.6.2] follows in these
cases.

Now consider the case (r,s) = (6,6). Choose z € Hg, 6.0 (Gs,ad’p). Let G
denote the corresponding rank 81 finite flat O p-group scheme with descent data
{l9]} on G’ =G X, Opr. Set M = M, (G). Let H C G denote the closed subgroup
scheme (with descent data) corresponding to the kernel of the map (', {[¢9]})q, —
p — F3 and let N = M, (H). Then N has F3[u]/u3¢-basis e,, e}, e/, with respect
to which

N; = (uSe,,, ube] + (b+ Vut)e,, ube, + (c+ dut)e] + fe.),

where b, ¢c,c’ € F3, f € F3[u]/u3% and ¢; sends the indicated generators of Ny to
ey, €}, e/, respectively. Also, the descent data has the form

Yalew) = V—ley, Fu(e]) = —V—le|, Fu(e,) = v-le +hy,(u)e,

for some h.,, € Fo[u]/u35, and

'ygd(ew) =e,, 'ygd(e'l) =€} + (+b -V (+u'? +u*"))e,,

'ygd(efu) =e/ + (+c—d(xu'? +u0))e] + hiren,

where haq € Folu]/u3C. Also, as p is tres ramifié, we see that ¢ # 0 by Proposition
021 and Lemma

The requirement that u'? N C N; forces N to contain
u?el, = ub(ulel, + (c + cu)e) + fe,) — (c + cu*)(ube| + (b+b'u)e,)
+((b+0u)(c+ ut) — ful)e.,
so N1 must contain (b + b'ut)(c + cut)e,. As c# 0 we get (b+ bu)e, € N1, and
since e, u*e, € N1, we must have b = b’ = 0. We conclude that the natural map
0o : EXtéi,(G,G) (5,p) — HY(G3,w)

is the zero map.

Let us further analyse N. Replacing €/, by €/, + t3e,, for t € F3[u]/u®® causes
f to be replaced by f — u5t® + uSt and otherwise leaves our standardized form

unchanged (except that h., and hiq may change). Using a suitable choice of such
t, we may assume f has degree at most 6. On the other hand,

Fa(ulel, + (c + Cut)el + fe) = —v/=A(ulel, + (¢ + Cut)el + fe.)
+ (V=1(f(u) + f(=V=1u)) = u®hy, (v))eu,
so 74(N}) € N} if and only if
f(u) + f(=v—=1u) = 0 mod u®,
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which forces
f= asu® + agu®

for some as, ag € F3. From the wild descent data formulae derived in the proof of
Lemma [03.4] we also see that hy; = 0 mod u5.
Now M has an ordered basis e, e, €/, e/, with respect to which

(9.6.1) M; = (uleq,ule, + (c + cu')er,ule| + hey,
ubel, + (c + dut)e) + (agu® + agub)e, + gey),

where g, h € F3[u]/u3® and ¢1 sends the indicated generators of M to e1, e, €], e’,.
If we try to expand out u'?e/, as a linear combination of the indicated generators
of My, we find that
u'?el, = ((c + du*)h + cazu?®)e; mod M; .
It follows that u'?e/, € M; if and only if
(c 4 u*)h + cazu® = 0 mod u®.

Since p is trés ramifié, the last part of Proposition [9.2.1] tells us that ¢ # 0. Thus,
u'?e/, € My if and only if h = —aou® mod ub. We can now use Lemma [0.3.4 to see
that the wild descent data action is determined by

75 (e1) =1, 5 (ew) = e + (Fe— ¢ (Ful? +u™))er, 15 (€]) =€) + fries

(with f+; = 0 mod u%), and

'y?)ﬂ(efu) =e/, + (£c— (Fu'? +u0))e| + hiie, + griel,

where g+1 € Fo[u]/u3% and h4; = 0 mod ub.
We must have

(9.6.2) %ﬁ(uﬁe:} + (c+ dut)e) + (azu® + agu®)e, + g(u)e;) € M,
and this expression is easily computed to equal
uGHSSﬂ (e, 4 (£c - (£u'? +u))e] + here, + grier)
+ (c+ CIU4H%1)(911 + fri€1)
+ (aquH?/gil + aguGHsgil)(ew + (e — (Fu'? + u®))er) + g(uHﬁl)el.
Remembering that (ueq,u!2M') C M}, (L62) becomes
uS(e/, 4 ce})+(c+ c'u4H%1)e'1+(a2u2H%1 + agu®)e,, + azcue; +g(u)e; € M.
Using the explicit generators of M; given in (0.6.1]) and recalling that h = —asu? mod
uS, this simplifies to
+ascu’e; € M'l .

Thus agcu? is divisible by u%, so az = 0.
The image of the class z in Extj, 4[Gs] (W, w) under 6, corresponds to a finite flat

O p-group scheme with Breuil module M,, free of rank two over F3[u]/u®® with basis
ey, el,, and with

(My)1 = (uley, ule, + agu’e,),
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where ¢; sends the indicated generators of (M) to e, and €/, respectively. Ac-
cording to the proof of Lemma this implies that the image of the class z in
Ext%;g[gg] (w,w) is split over an unramified extension of Qz. Thus,

0. : BExtg, , , (7.9) — H'(I3,F3)

is the zero map. This completes the proof of Theorem E7H, and hence of Theorem
NI

10. CORRIGENDA FOR [CDT]

We would like to take this opportunity to record a few corrections to [CDT].

e Page 523, line —10: Insert “K-rational” after “For each”.

e Page 532, line —6: “The semisimplicity of o, follows from that of o1” is false
and should be deleted. This assertion was not used anywhere in the rest of
the paper.

e Page 536, line 7: Replace GLy(C) by GL2(R).

e Page 538, line —10: Replace “of type (S,7)” by “such that p|g, is of type T
and p is of type (S, 7).

e Page 539, lines 18-20: Replace each w; by 71 and each ws by 7.

e Page 541, line 14: Replace each of the three occurrences of A by A®°.

o Page 544, line —6: “the discrete topology on V,” should read “the /f-adic
topology on M,”.

e Page 545, part 4 of Lemma 6.1.2: V' should be assumed to be a normal
subgroup of V.

e Page 546, line 1: We should have noted that the key component of this
argument is very similar to the main idea of [KHhl.

e §6.2: There are two significant errors in this section. The assertion “I" =
SL2(Z)NUg satisfies the hypotheses of Theorem 6.1.17 is false and Hom(L,, k)
should be L,, ® k. The argument of this section can be repaired by making
the following changes.

— Page 546, lines 5 and 6: Replace “Setting S = T'(p) U {r}, we find
that the group I' = SLy(Z) N Us satisfies the hypotheses of Theo-
rem 6.1.1.”7 by “Set S = T'(p) U {r}; Ug = [[,Us, where Ug, =
Ui(p) if p € T(p) and Ug,, = Us, otherwise; V§ = [[, Vs, where
Vi, = Ui(p®) if p € T(p) and Vg, = Vs, otherwise; and Ly =
Homo[U/S/VS/](Mg, Hl(XVS/, O))[I{g] Then I' = SLQ(Z) N Ué satisfies the
hypotheses of Theorem 6.1.1.”

— Page 546, lines 7-13: Replace Ys by Yy, Hom(Ly, k) by L, ® k, Mg
by Mz, \rfs by EFHomo(Ml,O) and LS by Lfs.

— Page 546, line 13: Replace “and Ng is non-empty.” by “. Using the fact
that Lemma 5.1.1 holds with Ug replacing Ug and o replacing og and
the discussion on page 541 we conclude that Ng is non-empty.”

e Page 549, line —15: Replace Uy, 1y, by Uyry p-

e Page 549, line —11: Replace Ug/Uj ¢ by Vo/Vi.

e Page 552, line 4: The assertion is false in the case £ > 5. It can be corrected
by adding “and j(E) # 1728 mod ¢ (which is true if, for instance, F has
potentially supersingular reduction and ¢ = 1 mod 4)” after “if £ > 5”.

e Page 554, line 11: Replace “jg €” by “FE is isogenous to an elliptic curve
with j-invariant in the set”.

i
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e Page 554, line 11: Replace 5(29)3/25 by —5(29)3/25.

e Page 554, line 17: Replace the parenthetical comment “(and j = 5(29)3/25)”
by “(and isogenous to one with j-invariant —5(29)3/2°)”.

e Page 554, line —5: Replace p by g and ¢ by p.
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