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ON THE MODULARITY OF ELLIPTIC CURVES OVER Q:
WILD 3-ADIC EXERCISES

CHRISTOPHE BREUIL, BRIAN CONRAD, FRED DIAMOND, AND RICHARD TAYLOR

Introduction

In this paper, building on work of Wiles [Wi] and of Taylor and Wiles [TW], we
will prove the following two theorems (see §2.2).

Theorem A. If E/Q is an elliptic curve, then E is modular.

Theorem B. If ρ : Gal(Q/Q) → GL2(F5) is an irreducible continuous represen-
tation with cyclotomic determinant, then ρ is modular.

We will first remind the reader of the content of these results and then briefly
outline the method of proof.

If N is a positive integer, then we let Γ1(N) denote the subgroup of SL2(Z)
consisting of matrices that modulo N are of the form(

1 ∗
0 1

)
.

The quotient of the upper half plane by Γ1(N), acting by fractional linear transfor-
mations, is the complex manifold associated to an affine algebraic curve Y1(N)/C.
This curve has a natural model Y1(N)/Q, which for N > 3 is a fine moduli scheme
for elliptic curves with a point of exact order N . We will let X1(N) denote the
smooth projective curve which contains Y1(N) as a dense Zariski open subset.

Recall that a cusp form of weight k ≥ 1 and level N ≥ 1 is a holomorphic
function f on the upper half complex plane H such that
• for all matrices (

a b
c d

)
∈ Γ1(N)

and all z ∈ H, we have f((az + b)/(cz + d)) = (cz + d)kf(z);
• and |f(z)|2(Im z)k is bounded on H.
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The space Sk(N) of cusp forms of weight k and level N is a finite-dimensional
complex vector space. If f ∈ Sk(N), then it has an expansion

f(z) =
∞∑
n=1

cn(f)e2πinz

and we define the L-series of f to be

L(f, s) =
∞∑
n=1

cn(f)/ns.

For each prime p 6 |N there is a linear operator Tp on Sk(N) defined by

(f |Tp)(z) = p−1

p−1∑
i=0

f((z + i)/p) + pk−1(cpz + d)−kf((apz + b)/(cpz + d))

for any (
a b
c d

)
∈ SL2(Z)

with c ≡ 0 mod N and d ≡ p mod N . The operators Tp for p 6 |N can be simulta-
neously diagonalised on the space Sk(N) and a simultaneous eigenvector is called
an eigenform. If f is an eigenform, then the corresponding eigenvalues, ap(f), are
algebraic integers and we have cp(f) = ap(f)c1(f).

Let λ be a place of the algebraic closure of Q in C above a rational prime ` and let
Qλ denote the algebraic closure of Q` thought of as a Q algebra via λ. If f ∈ Sk(N)
is an eigenform, then there is a unique continuous irreducible representation

ρf,λ : Gal(Q/Q) −→ GL2(Qλ)

such that for any prime p 6 |Nl, ρf,λ is unramified at p and tr ρf,λ(Frobp) = ap(f).
The existence of ρf,λ is due to Shimura if k = 2 [Sh2], to Deligne if k > 2 [De]
and to Deligne and Serre if k = 1 [DS]. Its irreducibility is due to Ribet if k > 1
[Ri] and to Deligne and Serre if k = 1 [DS]. Moreover ρ is odd in the sense that
det ρ of complex conjugation is −1. Also, ρf,λ is potentially semi-stable at ` in the
sense of Fontaine. We can choose a conjugate of ρf,λ which is valued in GL2(OQλ

),
and reducing modulo the maximal ideal and semi-simplifying yields a continuous
representation

ρf,λ : Gal(Q/Q) −→ GL2(F`),

which, up to isomorphism, does not depend on the choice of conjugate of ρf,λ.
Now suppose that ρ : GQ → GL2(Q`) is a continuous representation which

is unramified outside finitely many primes and for which the restriction of ρ to
a decomposition group at ` is potentially semi-stable in the sense of Fontaine. To
ρ|Gal(Q`/Q`)

we can associate both a pair of Hodge-Tate numbers and a Weil-Deligne
representation of the Weil group of Q`. We define the conductor N(ρ) of ρ to be
the product over p 6= ` of the conductor of ρ|Gal(Qp/Qp) and of the conductor of
the Weil-Deligne representation associated to ρ|Gal(Q`/Q`)

. We define the weight
k(ρ) of ρ to be 1 plus the absolute difference of the two Hodge-Tate numbers of
ρ|Gal(Q`/Q`)

. It is known by work of Carayol and others that the following two
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conditions are equivalent:

• ρ ∼ ρf,λ for some eigenform f and some place λ|`;
• ρ ∼ ρf,λ for some eigenform f of level N(ρ) and weight k(ρ) and some place
λ|`.

When these equivalent conditions are met we call ρ modular. It is conjectured
by Fontaine and Mazur that if ρ : GQ → GL2(Q`) is a continuous irreducible
representation which satisfies

• ρ is unramified outside finitely many primes,
• ρ|Gal(Q`/Q`)

is potentially semi-stable with its smaller Hodge-Tate number
0,
• and, in the case where both Hodge-Tate numbers are zero, ρ is odd,

then ρ is modular [FM].
Next consider a continuous irreducible representation ρ : Gal(Q/Q)→ GL2(F`).

Serre [Se2] defines the conductor N(ρ) and weight k(ρ) of ρ. We call ρ modular
if ρ ∼ ρf,λ for some eigenform f and some place λ|`. We call ρ strongly modular
if moreover we may take f to have weight k(ρ) and level N(ρ). It is known from
work of Mazur, Ribet, Carayol, Gross, Coleman, Voloch and others that for ` ≥ 3,
ρ is strongly modular if and only if it is modular (see [Di1]). Serre has conjectured
that all odd, irreducible ρ are strongly modular [Se2].

Now consider an elliptic curve E/Q. Let ρE,` (resp. ρE,`) denote the represen-
tation of Gal(Q/Q) on the `-adic Tate module (resp. the `-torsion) of E(Q). Let
N(E) denote the conductor of E. It is known that the following conditions are
equivalent:

(1) The L-function L(E, s) of E equals the L-function L(f, s) for some eigenform
f .

(2) The L-function L(E, s) of E equals the L-function L(f, s) for some eigenform
f of weight 2 and level N(E).

(3) For some prime `, the representation ρE,` is modular.
(4) For all primes `, the representation ρE,` is modular.
(5) There is a non-constant holomorphic map X1(N)(C) → E(C) for some

positive integer N .
(6) There is a non-constant morphism X1(N(E))→ E which is defined over Q.

The implications (2) ⇒ (1), (4) ⇒ (3) and (6) ⇒ (5) are tautological. The impli-
cation (1) ⇒ (4) follows from the characterisation of L(E, s) in terms of ρE,`. The
implication (3)⇒ (2) follows from a theorem of Carayol [Ca1]. The implication (2)
⇒ (6) follows from a construction of Shimura [Sh2] and a theorem of Faltings [Fa].
The implication (5)⇒ (3) seems to have been first noticed by Mazur [Maz]. When
these equivalent conditions are satisfied we call E modular.

It has become a standard conjecture that all elliptic curves over Q are modular,
although at the time this conjecture was first suggested the equivalence of the
conditions above may not have been clear. Taniyama made a suggestion along the
lines (1) as one of a series of problems collected at the Tokyo-Nikko conference in
September 1955. However his formulation did not make clear whether f should
be a modular form or some more general automorphic form. He also suggested
that constructions as in (5) and (6) might help attack this problem at least for
some elliptic curves. In private conversations with a number of mathematicians
(including Weil) in the early 1960’s, Shimura suggested that assertions along the
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lines of (5) and (6) might be true (see [Sh3] and the commentary on [1967a] in
[We2]). The first time such a suggestion appears in print is Weil’s comment in
[We1] that assertions along the lines of (5) and (6) follow from the main result of
that paper, a construction of Shimura and from certain “reasonable suppositions”
and “natural assumptions”. That assertion (1) is true for CM elliptic curves follows
at once from work of Hecke and Deuring. Shimura [Sh1] went on to check assertion
(5) for these curves.

Our approach to Theorem A is an extension of the methods of Wiles [Wi] and
of Taylor and Wiles [TW]. We divide the proof into three cases.

(1) If ρE,5|Gal(Q/Q(
√

5)) is irreducible, we show that ρE,5 is modular.
(2) If ρE,5|Gal(Q/Q(

√
5)) is reducible, but ρE,3|Gal(Q/Q(

√
−3)) is absolutely irre-

ducible, we show that ρE,3 is modular.
(3) If ρE,5|Gal(Q/Q(

√
5)) is reducible and ρE,3|Gal(Q/Q(

√
−3)) is absolutely re-

ducible, then we show that E is isogenous to an elliptic curve with j-invariant
0, (11/2)3, or −5(29)3/25 and so (from tables of modular elliptic curves of
low conductor) is modular.

In each of cases (1) and (2) there are two steps. First we prove that ρE,` is modular
and then that ρE,` is modular. In case (1) this first step is our Theorem B and in
case (2) it is a celebrated theorem of Langlands and Tunnell [L], [T]. In fact, in
both cases E obtains semi-stable reduction over a tame extension of Q` and the
deduction of the modularity of ρE,` from that of ρE,` was carried out in [CDT] by
an extension of the methods of [Wi] and [TW]. In the third case we have to analyse
the rational points on some modular curves of small level. This we did, with Elkies’
help, in [CDT].

It thus only remained to prove Theorem B. Let ρ be as in that theorem. Twisting
by a quadratic character, we may assume that ρ|Gal(Q3/Q3) falls into one of the
following cases (see §2.2):

(1) ρ is unramified at 3.
(2) ρ(I3) has order 5.
(3) ρ(I3) has order 4.
(4) ρ(I3) has order 12 and ρ|Gal(Q3/Q3) has conductor 27.
(5) ρ(I3) has order 3.
(6) ρ|Gal(Q3/Q3) is induced from a character χ : Gal(Q3/Q3(

√
−3))→ F×25 such

that χ(−1) = −1 and

χ(
√
−3) = χ(1 + 3

√
−3)− χ(1 − 3

√
−3),

where we use the Artin map (normalised to take uniformisers to arithmetic
Frobenius) to identify χ with a character of Q3(

√
−3)×.

We will refer to these as the f = 1, 3, 9, 27, 81 and 243 cases respectively.
Using the technique of Minkowski and Klein (i.e. the observation that the moduli

space of elliptic curves with full level 5 structure has genus 0; see for example [Kl]),
Hilbert irreducibility and some local computations of Manoharmayum [Man], we
find an elliptic curve E/Q with the following properties (see §2.2):

• ρE,5 ∼ ρ,
• ρE,3 is surjective onto GL2(F3),
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• and
(1) in the f = 1 case, either ρE,3|I3 ⊗ F9 ∼ ω2 ⊕ ω3

2 or

ρE,3|I3 ∼
(
ω ∗
0 1

)
and is peu ramifié;

(2) in the f = 3 case,

ρE,3|I3 ∼
(
ω ∗
0 1

)
;

(3) in the f = 9 case, ρE,3|I3 ⊗ F9 ∼ ω2 ⊕ ω3
2;

(4) in the f = 27 case,

ρE,3|I3 ∼
(
ω ∗
0 1

)
and is très ramifié;

(5) in the f = 81 case,

ρE,3|I3 ∼
(

1 ∗
0 ω

)
and is très ramifié;

(6) in the f = 243 case,

ρE,3|Gal(Q3/Q3) ∼
(
ω ∗
0 1

)
is non-split over Q

ker ρ

3 and is très ramifié.
(We are using the terms très ramifié and peu ramifié in the sense of Serre [Se2].
We are also letting ω denote the mod3 cyclotomic character and ω2 the second
fundamental character I3 → F×9 , i.e.

ω2(σ) ≡ σ( 8
√

3)/ 8
√

3 mod 8
√

3.

We will often use the equality ω = ω−1 without further remark.) We emphasise
that for a general elliptic curve over Q with ρE,5 ∼= ρ, the representation ρE,3 does
not have the above form, rather we are placing a significant restriction on E.

In each case our strategy is to prove that ρE,3 is modular and so deduce that
ρ ∼ ρE,5 is modular. Again we use the Langlands-Tunnell theorem to see that ρE,3
is modular and then an analogue of the arguments of [Wi] and [TW] to conclude
that ρE,3 is modular. This was carried out in [Di2] in the cases f = 1 and f = 3,
and in [CDT] in the case f = 9. (In these cases the particular form of ρE,3|I3 is not
important.) This leaves the cases f = 27, 81 and 243, which are complicated by
the fact that E now only obtains good reduction over a wild extension of Q3. In
these cases our argument relies essentially on the particular form we have obtained
for ρE,3|Gal(Q3/Q3) (depending on ρE,5|I3). We do not believe that our methods
for deducing the modularity of ρE,3 from that of ρE,3 would work without this key
simplification. It seems to be a piece of undeserved good fortune that for each
possibility for ρ|I3 we can find a choice for ρE,3|Gal(Q3/Q3) for which our methods
work.

Following Wiles, to deduce the modularity of ρE,3 from that of ρE,3, we consider
certain universal deformations of ρE,3 and identify them with certain modular de-
formations which we realise over certain Hecke algebras. The key problem is to
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find the right local condition to impose on these deformations at the prime 3. As
in [CDT] we require that the deformations lie in the closure of the characteristic
zero points which are potentially Barsotti-Tate (i.e. come from a 3-divisible group
over the ring of integers of a finite extension of Q3) and for which the associated
representation of the Weil group (see for example Appendix B of [CDT]) is of some
specified form. That one can find suitable conditions on the representation of the
Weil group at 3 for the arguments of [TW] to work seems to be a rare phenomenon
in the wild case. It is here we make essential use of the fact that we need only treat
our specific pairs (ρE,5, ρE,3).

Our arguments follow closely the arguments of [CDT]. There are two main new
features. Firstly, in the f = 243 case, we are forced to specify the restriction of our
representation of the Weil group completely, rather than simply its restriction to
the inertia group as we have done in the past. Secondly, in the key computation
of the local deformation rings, we now make use of a new description (due to
Breuil) of finite flat group schemes over the ring of integers of any p-adic field in
terms of certain (semi-)linear algebra data (see [Br2] and the summary [Br1]). This
description enables us to make these computations. As the persistent reader will
soon discover they are lengthy and delicate, particularly in the case f = 243. It
seems miraculous to us that these long computations with finite flat group schemes
in §7, §8 and §9 give answers completely in accord with predictions made from much
shorter computations with the local Langlands correspondence and the modular
representation theory of GL2(Q3) in §3. We see no direct connection, but cannot
help thinking that some such connection should exist.

Notation. In this paper ` denotes a rational prime. In §1.1, §4.1, §4.2 and §4.3 it
is arbitrary. In the rest of §1 and in §5 we only assume it is odd. In the rest of the
paper we only consider ` = 3.

If F is a field we let F denote a separable closure, F ab the maximal subextension
of F which is abelian over F and GF the Galois group Gal(F/F ). If F0 is a p-adic
field (i.e. a finite extension of Qp) and F ′/F0 a (possibly infinite) Galois extension,
then we let IF ′/F0 denote the inertia subgroup of Gal(F ′/F0). We also let IF0 denote
IF 0/F0

, FrobF0 ∈ GF0/IF0 denote the arithmetic Frobenius element and WF0 denote
the Weil group of F0, i.e. the dense subgroup of GF0 consisting of elements which
map to an integer power of FrobF0 . We will normalise the Artin map of local class
field theory so that uniformisers and arithmetic Frobenius elements correspond.
(We apologise for this convention, which now seems to us a bad choice. However
we feel it is important to stay consistent with [CDT].) We let OF0 denote the ring
of integers of F0, ℘F0 the maximal ideal of OF0 and kF0 the residue field OF0/℘F0 .
We write simply Gp for GQp , Ip for IQp and Frobp for FrobQp . We also let Qpn

denote the unique unramified degree n extension of Qp in Qp. If k is any perfect
field of characteristic p we also use Frobp to denote the pth-power automorphism of
k and its canonical lift to the Witt vectors W (k).

We write ε for the `-adic cyclotomic character and sometimes ω for the reduction
of ε modulo `. We write ω2 for the second fundamental character I` → F×`2 , i.e.

ω2(σ) ≡ σ(`1/(`
2−1))/`1/(`

2−1) mod `1/(`
2−1).

We also use ω and ω2 to denote the Teichmuller lifts of ω and ω2.
We let 1 denote the trivial character of a group. We will denote by V ∨ the dual

of a vector space V .
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If g : A → B is a homomorphism of rings and if X/ SpecA is an A-scheme, then
we sometimes write gX for the pullback of X by Spec g. We adopt this notation
so that g(hX) = ghX . Similarly if θ : X → Y is a morphism of schemes over A we
will sometimes write gθ for the pullback of θ by Spec g.

By finite flat group scheme we always mean commutative finite flat group scheme.
If F0 is a field of characteristic 0 with fixed algebraic closure F 0 we use without
comment the canonical identification of finite flat F0-group schemes with finite
discrete Gal(F 0/F0)-modules, and we will say that such objects correspond. If R is
a Dedekind domain with field of fractions F of characteristic 0, then by a model of
a finite flat F -group scheme G we mean a finite locally free R-group scheme G and
an isomorphism i : G ∼→ G × F ′. As in Proposition 2.2.2 of [Ra] the isomorphism
classes of models for G form a lattice ((G, i) ≥ (G′, i′) if there exists a map of finite
flat group schemes G→ G′ compatible with i and i′) and we can talk about the inf
and sup of two such models. If R is also local we call the model (G, i) local-local if
its special fibre is local-local. When the ring R is understood we sometimes simply
refer to (G, i), or even just G, as an integral model of G.

We use Serre’s terminology peu ramifié and très ramifié; see [Se2].
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1. Types

1.1. Types of local deformations. By an `-type we mean an equivalence class
of two-dimensional representations

τ : I` → GL(D)

over Q` which have open kernel and which can be extended to a representation
of WQ`

. By an extended `-type we shall simply mean an equivalence class of two-
dimensional representations

τ ′ : WQ`
→ GL(D′)

over Q` with open kernel.
Suppose that τ is an `-type and that K is a finite extension of Q` in Q`. Recall

from [CDT] that a continuous representation ρ of G` on a two-dimensionalK-vector
space M is said to be of type τ if

(1) ρ is Barsotti-Tate over F for any finite extension F of Q` such that τ |IF is
trivial;

(2) the restriction of WD(ρ) to I` is in τ ;
(3) the character ε−1 det ρ has finite order prime to `.
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(For the definition of “Barsotti-Tate” and of the representation WD(ρ) associated
to a potentially Barsotti-Tate representation, see §1.1 and Appendix B of [CDT].)
Similarly if τ ′ is an extended `-type, then we say that ρ is of extended type τ ′ if

(1) ρ is Barsotti-Tate over F for any finite extension F of Q` such that τ ′|IF is
trivial;

(2) WD(ρ) is equivalent to τ ′;
(3) the character ε−1 det ρ has finite order prime to `.

Note that no representation can have extended type τ ′ unless det τ ′ is of the form
χ1χ2 where χ1 has finite order prime to ` and where χ2 is unramified and takes an
arithmetic Frobenius element to `; see Appendix B of [CDT]. (Using Theorem 1.4
of [Br2], one can show that for ` odd one obtains equivalent definitions of “type τ”
and “extended type τ ′” if one weakens the first assumption to simply require that
ρ is potentially Barsotti-Tate.)

Now fix a finite extension K of Q` in Q` over which τ (resp. τ ′) is rational. Let
O denote the integers of K and let k denote the residue field of O. Let

ρ : G` −→ GL(V )

be a continuous representation of G` on a two-dimensional k-vector space V and
suppose that Endk[G`] V = k. One then has a universal deformation ring RV,O for
ρ (see, for instance, Appendix A of [CDT]).

We say that a prime ideal p of RV,O is of type τ (resp. of extended type τ ′)
if there exist a finite extension K ′ of K in Q` and an O-algebra homomorphism
RV,O → K ′ with kernel p such that the pushforward of the universal deformation
of ρ over RV,O to K ′ is of type τ (resp. of extended type τ ′).

Let τ be an `-type and τ ′ an irreducible extended `-type. If there do not exist
any prime ideals p of type τ (resp. of extended type τ ′), we define RDV,O = 0 (resp.
RD

′

V,O = 0). Otherwise, define RDV,O (resp. RD
′

V,O) to be the quotient of RV,O by
the intersection of all p of type τ (resp. of extended type τ ′). We will sometimes
write RτV,O (resp. Rτ

′

V,O) for RDV,O (resp. RD
′

V,O). We say that a deformation of ρ is
weakly of type τ (resp. weakly of extended type τ ′) if the associated local O-algebra
map RV,O → R factors through the quotient RDV,O (resp. RD

′

V,O). We say that τ
(resp. τ ′) is weakly acceptable for ρ if either RDV,O = 0 (resp. RD

′

V,O = 0) or there
is a surjective local O-algebra map O[[X ]] � RDV,O (resp. O[[X ]] � RD

′

V,O). We say
that τ (resp. τ ′) is acceptable for ρ if RDV,O 6= 0 (resp. RD

′

V,O 6= 0) and if there is a
surjective local O-algebra map O[[X ]]� RDV,O (resp. O[[X ]]� RD

′

V,O).
If K ′ is a finite extension of K in Q` with valuation ring O′ and residue field

k′, then O′⊗OR
D
V,O (resp. O′⊗OR

D′

V,O) is naturally isomorphic to RDV⊗kk′,O′ (resp.
RD

′

V⊗kk′,O′). Thus (weak) acceptability depends only on τ (resp. τ ′) and ρ, and not
on the choice of K. Moreover τ (resp. τ ′) is acceptable for ρ if and only if τ (resp.
τ ′) is acceptable for ρ⊗k k′.

Although it is of no importance for the sequel, we make the following conjecture,
part of which we already conjectured as Conjecture 1.2.1 of [CDT].

Conjecture 1.1.1. Suppose that τ is an `-type and τ ′ an absolutely irreducible
extended `-type. A deformation ρ : G` → GL(M) of ρ to the ring of integers O′ of
a finite extension K ′/K in Q` is weakly of type τ (resp. weakly of extended `-type
τ ′) if and only if M is of type τ (resp. of extended type τ ′).
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If τ is a tamely ramified `-type, then we expect that it is frequently the case that
τ is acceptable for residual representations ρ, as in Conjectures 1.2.2 and 1.2.3 of
[CDT]. On the other hand if τ (resp. τ ′) is a wildly ramified `-type (resp. wildly
ramified extended `-type), then we expect that it is rather rare that τ (resp. τ ′) is
acceptable for a residual representation ρ. In this paper we will be concerned with
a few wild cases for the prime ` = 3 which do turn out to be acceptable.

1.2. Types for admissible representations. From now on we assume that `
is odd. If F is a finite extension of Q` we will identify F× with W ab

F via the
Artin map. Let U0(`r) denote the subgroup of GL2(Z`) consisting of elements with
upper triangular mod `r reduction. Also let Ũ0(`) denote the normaliser of U0(`)
in GL2(Q`). Thus Ũ0(`) is generated by U0(`) and by

w` =
(

0 −1
` 0

)
.(1.2.1)

If τ is an `-type, set Uτ = GL2(Z`) if τ is reducible and Uτ = U0(`) if τ is
irreducible. If τ ′ is an extended `-type with τ ′|I` irreducible, set Uτ ′ = Ũ0(`). In
this subsection we will associate to an `-type τ an irreducible representation στ of
Uτ over Q` with open kernel, and to an extended `-type τ ′ with τ ′|I` irreducible an
irreducible representation στ ′ of Uτ ′ over Q` with open kernel. We need to consider
several cases, which we treat one at a time.

First suppose that τ = χ1|I` ⊕ χ2|I` where each χi is a character of WQ`
. Let a

denote the conductor of χ1/χ2. If a = 0, then set

στ = St⊗(χ1 ◦ det) = St⊗(χ2 ◦ det),

where St denotes the Steinberg representation of PGL2(F`). Now suppose that
a > 0. Let στ denote the induction from U0(`a) to GL2(Z`) of the character of
U0(`a) which sends(

α β
`aγ δ

)
7−→ (χ1/χ2)(α)χ2(αδ − `aβγ).

This is irreducible and does not depend on the ordering of χ1 and χ2.
For the next case, let F denote the unramified quadratic extension of Q` and s

the non-trivial automorphism of F over Q`. Suppose that τ is the restriction to
I` of the induction from WF to WQ`

of a character χ of WF with χ 6= χs. Let a
denote the conductor of χ/χs, so that a > 0. Choose a character χ′ of WQ`

such
that χ′|−1

WF
χ has conductor a. If a = 1 we set

στ = Θ(χ′|−1
WF

χ)⊗ (χ′ ◦ det),

where Θ(·) is the irreducible representation of GL2(F`) defined on page 532 of
[CDT].

To define στ for a > 1 we will identify GL2(Z`) with the automorphisms of the Z`-
module OF . If a is even, then we let στ denote the induction from O×F (1+ `a/2OF s)
to GL2(Z`) of the character ϕ of O×F (1 + `a/2OF s), where, for α ∈ O×F and β ∈
(1 + `a/2OF s),

ϕ(αβ) = (χ′|−1
WF

χ)(α)χ′(detαβ).

If a > 1 is odd, then we let στ denote the induction from O×F (1 + `(a−1)/2OF s)
to GL2(Z`) of η, where η is the `-dimensional irreducible representation of
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O×F (1 + `(a−1)/2OF s) such that η|O×F (1+`(a+1)/2OF s)
is the direct sum of the char-

acters

αβ 7−→ (χ′|−1
WF

χχ′′)(α)χ′(detαβ)

for α ∈ O×F and β ∈ (1 + `(a+1)/2OF s), where χ′′ runs over the ` non-trivial
characters of O×F /Z

×
` (1 + `OF ).

Now suppose τ ′ is an extended type such that τ ′|I` is irreducible. There is a
ramified quadratic extension F/Q` and a character χ of WF such that the induction
from WF to WQ`

of χ is τ ′ (see §2.6 of [G]). Let s denote the non-trivial field
automorphism of F over Q` and also let ℘F denote the maximal ideal of the ring
of integers OF of F . Let a denote the conductor of χ/χs, so a is even and a ≥ 2.
We may choose a character χ′ of WQ`

such that χ′|−1
WF

χ has conductor a. We will
identify GL2(Q`) with the automorphisms of the Q` vector space F . We will also
identify U0(`) with the stabiliser of the pair of lattices ℘−1

F ⊃ OF . We define στ ′ to
be the induction from F×(1 +℘

a/2
F s) to Ũ0(`) of the character ϕ of F×(1 +℘

a/2
F s),

where

ϕ(αβ) = (χ′|−1
WF

χχ′′)(α)χ′(detαβ),

with α ∈ F× and β ∈ (1 + ℘
a/2
F s), where χ′′ is a character of F×/(O×F )2 defined as

follows. Let ψ be a character of Q` with kernel Z`. Choose θ ∈ F× such that for
x ∈ ℘a−1

F we have

(χ′|−1
WF

χ)(1 + x) = ψ(trF/Q`
(θx)).

We impose the following conditions which determine χ′′:
• χ′′ is a character of F×/(O×F )2;
• χ′′|O×F is non-trivial;
• and

χ′′(−θ(NF/Q`
$)a/2) =

∑
x∈Z/`Z

ψ(x2/NF/Q`
$),

where $ is a uniformiser in OF .
Finally if τ is an irreducible `-type, choose an extended `-type τ ′ which restricts

to τ on I` and set στ = στ ′ |U0(`).
We remark that these definitions are independent of any choices (see [G]).
Recall that by the local Langlands conjecture we can associate to an irreducible

admissible representation π of GL2(Q`) a two-dimensional representation WD(π)
of WQ`

. (See §4.1 of [CDT] for the normalisation we use.)

Lemma 1.2.1. Suppose that τ is an `-type and that τ ′ is an extended `-type with
τ ′|I` irreducible. Suppose also that π is an infinite-dimensional irreducible admis-
sible representation of GL2(Q`) over Q`. Then:

(1) στ and στ ′ are irreducible.
(2) If WD(π)|I` ∼ τ (resp. WD(π) ∼ τ ′), then

HomUτ (στ , π) ∼= Q`

(resp.

HomUτ′ (στ ′ , π) ∼= Q`).
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(3) If WD(π)|I` 6∼= τ (resp. WD(π) 6∼= τ ′), then

HomUτ (στ , π) = (0)

(resp.

HomUτ′ (στ ′ , π) = (0)).

Proof. The case that τ extends to a reducible representation of WQ`
follows from

the standard theory of principal series representations for GL2(Q`). The case that
τ is reducible but does not extend to a reducible representation of WQ`

follows from
Theorem 3.7 of [G]. The case of τ ′ follows from Theorem 4.6 of [G].

Thus, suppose that τ is an irreducible `-type and that τ ′ is an extension of τ to
an extended `-type. If δ denotes the unramified quadratic character of WQ`

, then
τ ′ 6∼ τ ′ ⊗ δ and so we deduce that

στ ′ 6∼ στ ′⊗δ ∼ στ ′ ⊗ (δ ◦ det).

Thus στ ′ |Q×` U0(`) is irreducible. It follows that στ is irreducible. The second and
third part of the lemma for τ follow similarly.

1.3. Reduction of types for admissible representations. We begin by re-
viewing some irreducible representations of GL2(Z`), U0(`) and Ũ0(`). Let σ1,0

denote the standard representation of GL2(F`) over F`. If n = 0, 1, ..., ` − 1 and
if m ∈ Z/(` − 1)Z, then we let σn,m = Symmn(σ1,0) ⊗ detm. We may think of
σn,m as a continuous representation of GL2(Z`) over F`. These representations
are irreducible, mutually non-isomorphic and exhaust the irreducible continuous
representations of GL2(Z`) over F`.

If m1,m2 ∈ Z/(` − 1)Z we let σ′m1,m2
denote the character of U0(`) over F`

determined by (
a b
`c d

)
7−→ am1dm2 .

These representations are irreducible, mutually non-isomorphic, and exhaust the
irreducible continuous representations of U0(`) over F`.

If m1,m2 ∈ Z/(` − 1)Z, a ∈ F
×
` and m1 6= m2, then we let σ′{m1,m2},a denote

the representation of Ũ0(`) over F` obtained by inducing the character of Q×` U0(`)
which restricts to σ′m1,m2

on U0(`) and which sends −` to a. If m ∈ Z/(`−1)Z and

a ∈ F
×
` , then we let σ′{m},a denote the character of Ũ0(`) over F` which restricts to

σ′m,m on U0(`) and which sends w` to a. These representations are irreducible, mu-
tually non-isomorphic and exhaust the irreducible, finite-dimensional, continuous
representations of Ũ0(`) over F`.

We will say that a reducible `-type τ (resp. irreducible `-type, resp. extended
`-type τ with irreducible restriction to I`) admits an irreducible representation σ of
GL2(Z`) (resp. U0(`), resp. Ũ0(`)) over F`, if στ (resp. στ , resp. στ ′) contains an
invariant OQ`

-lattice Λ and if σ is a Jordan-Hölder constituent of Λ⊗ F`. We will
say that τ (resp. τ , resp. τ ′) simply admits σ if σ is a Jordan-Hölder constituent
of Λ⊗ F` of multiplicity one.

For each of the F`-representations of GL2(Z`), U0(`) and Ũ0(`) just defined,
we wish to define notions of “admittance” and “simple admittance” with respect
to a continuous representation ρ : G` → GL2(F`). Let ρ be a fixed continuous
representation G` → GL2(F`).
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• The representation σn,m admits ρ if either

ρ|I` ∼
(
ω

1−`n−m(`+1)
2 0

0 ω
`−n−m(`+1)
2

)
or

ρ|I` ∼
(
ω1−m ∗

0 ω−n−m

)
,

which in addition we require to be peu-ramifié in the case n = 0. (Note that
σn,0 admits ρ if and only if the Serre weight (see [Se2]) of ρ∨ ⊗ ω is n+ 2.)

• The representation σn,m simply admits ρ if σn,m admits ρ.
• The representation σ′m1,m2

admits ρ if either

ρ|I` ∼
(
ω

1−`mi−mj
2 0

0 ω
`−mi−`mj
2

)
,

where {mi,mj} = {m1,m2} and mi ≥ mj , or

ρ|I` ∼
(
ω1−m1 ∗

0 ω−m2

)
,

or

ρ|I` ∼
(
ω1−m2 ∗

0 ω−m1

)
.

(Note that σ′m1,m2
admits ρ if and only if some irreducible constituent of

IndGL2(Z`)
U0(`) σ′m1,m2

admits ρ.)
• The representation σ′m1,m2

with m1 6= m2 simply admits ρ if either

ρ|I` ∼
(
ω1−m1 ∗

0 ω−m2

)
or

ρ|I` ∼
(
ω1−m2 ∗

0 ω−m1

)
.

• The representation σ′m,m simply admits ρ if

ρ|I` ∼
(
ω1−m ∗

0 ω−m

)
is très ramifié.
• The representation σ′{m1,m2},a with m1 6= m2 admits ρ if either σ′m1,m2

or σ′m2,m1
admits ρ and if (ω−1 det ρ)|WQ`

equals the central character of
σ′{m1,m2},a. (Note that in this case σ′{m1,m2},a|U0(`) = σ′m1,m2

⊕ σ′m2,m1
.)

• The representation σ′{m1,m2},a withm1 6=m2 simply admits ρ if (ω−1det ρ)|WQ`

equals the central character of σ′{m1,m2},a and either

ρ|I` ∼
(
ω1−m1 ∗

0 ω−m2

)
or

ρ|I` ∼
(
ω1−m2 ∗

0 ω−m1

)
.
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• The representation σ′{m},a admits ρ if
– σ′m,m admits ρ,
– (ω−1 det ρ)|WQ`

equals the central character of σ′{m},a,
– and, if

ρ|I` ∼
(
ω1−m ∗

0 ω−m

)
is très ramifié, then

ρ ∼
(
∗ ∗
0 ω−mχ

)
,

where χ is unramified and sends Frobenius to −a.
(Note that σ′{m},a|U0(`) = σ′m,m.)
• The representation σ′{m},a simply admits ρ if σ′{m},a admits ρ.

We remark that the definition of “σ admits the Cartier dual of ρ” might look more
natural to the reader. We are forced to adopt this version of the definition by some
unfortunate choices of normalisations in [CDT].

We say that a reducible `-type τ (resp. irreducible `-type τ , resp. extended `-
type τ ′ with τ ′|I` irreducible) admits a continuous representation ρ : G` → GL2(F`)
if τ (resp. τ , resp. τ ′) admits an irreducible representation of GL2(Z`) (resp. U0(`),
resp. Ũ0(`)) over F` which in turn admits ρ. We say that τ (resp. τ , resp. τ ′)
simply admits ρ if

• τ (resp. τ , resp. τ ′) admits a unique irreducible representation σ of GL2(Z`)
(resp. U0(`), resp. Ũ0(`)) over F` which admits ρ,
• τ (resp. τ , resp. τ ′) simply admits σ,
• and σ simply admits ρ.

Note that the concept of “simply admits” is strictly stronger than the concept
“admits”.

The starting point for this work was the following conjecture, of which a few
examples will be verified in §2.1.

Conjecture 1.3.1. Let k be a finite subfield of F`, ρ : G` → GL2(k) a continuous
representation, τ an `-type and τ ′ an extended `-type with irreducible restriction
to I`. Suppose that det τ and det τ ′ are tamely ramified, that the centraliser of the
image of ρ is k and that the image of τ is not contained in the centre of GL2(Q`).

(1) τ (resp. τ ′) admits ρ if and only if RDV,O 6= (0) (resp. RD
′

V,O 6= (0)), i.e.
if and only if there is a finite extension K ′ of Q` in Q` and a continuous
representation ρ : G` → GL2(OK′) which reduces to ρ and has type τ (resp.
has extended type τ ′).

(2) τ (resp. τ ′) simply admits ρ if and only if τ (resp. τ ′) is acceptable for ρ.

We remark that to check if τ or τ ′ simply admits ρ is a relatively straightforward
computation. On the other hand to show that τ or τ ′ is acceptable for ρ is at present
a non-trivial undertaking. (The reader who doubts us might like to compare §3 with
§4, §5, §6, §7, §8 and §9. All the latter sections are devoted to verifying some very
special cases of this conjecture.)
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1.4. The main theorems. With these definitions, we can state our two main
theorems. The proofs very closely parallel the proof of Theorem 7.1.1 of [CDT].

Theorem 1.4.1. Let ` be an odd prime, K a finite extension of Q` in Q` and k
the residue field of K. Let

ρ : GQ −→ GL2(K)

be an odd continuous representation ramified at only finitely many primes. Assume
that its reduction

ρ : GQ −→ GL2(k)

is absolutely irreducible after restriction to Q(
√

(−1)(`−1)/2`) and is modular. Fur-
ther, suppose that
• ρ|G` has centraliser k,
• ρ|G` is potentially Barsotti-Tate with `-type τ ,
• τ admits ρ,
• and τ is weakly acceptable for ρ.

Then ρ is modular.

Proof. Note that the existence of ρ shows that τ is acceptable for ρ. Now the proof
is verbatim the proof of Theorem 7.1.1 of [CDT] (see §1.3, §1.4, §3, §4, §5 and §6
of that paper, and the corrigendum at the end of this paper), with the following
exceptions.
• On page 539 one should take US,` = Uτ , VS,` = kerστ and σS,l = στ .
• In the proof of Lemma 5.1.1 one must use Lemma 1.2.1 of this paper, in

addition to the results recalled in §4 of [CDT].
• On page 546 replace “Setting S = T (ρ) ∪ {r} ...” to the end of the first

paragraph by the following. (Again the key component of this argument is
very similar to the main idea of [Kh].)
“Set S = T (ρ) ∪ {r}; U ′S =

∏
p U
′
S,p where U ′S,p = U1(pcp) if p ∈ T (ρ) and

U ′S,p = US,p otherwise; V ′S =
∏
p V
′
S,p where V ′S,p = U1(pcp) if p ∈ T (ρ)

and V ′S,p = VS,p otherwise; and L′S = HomO[U ′S/V
′
S ](M`, H

1(XV ′S
,O))[I ′S ].

Then Γ = SL2(Z) ∩ (U ′SGL2(Z`)) satisfies the hypotheses of Theorem 6.1.1.
Furthermore

H1(YU ′SGL2(Z`),FM ) ∼= H1(Γ, Ln ⊗ k)

as a T̃
′
S-module, where M is the module for US,` = GL2(Z`) defined by

the action of GL2(F`) on Ln ⊗ k. Therefore mS is in the support of
H1(YU ′SGL2(Z`),FM ).

We now drop the special assumption on ρ|I` made in the last paragraph.
Twisting we see that if σ is an irreducible representation of GL2(Z`) over F`
admitting ρ|G` , then

H1(YU ′S GL2(Z`),Fσ∨)mS 6= (0).

Moreover if τ is irreducible and if σ′ is an irreducible representation of U0(`)
over F` which admits ρ|G` , then we see using the definition of admits and
Lemmas 3.1.1 and 6.1.2 of [CDT] that

H1(YU ′S ,Fσ∨)mS
∼= H1(YU ′S GL2(Z`),FInd

GL2(Z`)
U0(`) σ∨

)mS 6= (0).
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It follows from the definition of admits and Lemma 6.1.2 of [CDT] that mS

is in the support of H1(YU ′S ,FHomO(M`,O)), so L′S is non-zero. Using the fact
that Lemma 5.1.1 holds with U ′S replacing US and σ` replacing σS and the
discussion on page 541 we conclude that NS is non-empty.”

Theorem 1.4.2. Let ` be an odd prime, K a finite extension of Q` in Q` and k
the residue field of K. Let

ρ : GQ −→ GL2(K)

be an odd continuous representation ramified at only finitely many primes. Assume
that its reduction

ρ : GQ −→ GL2(k)

is absolutely irreducible after restriction to Q(
√

(−1)(`−1)/2`) and is modular. Fur-
ther, suppose that
• ρ|G` has centraliser k,
• ρ|G` is potentially Barsotti-Tate with extended `-type τ ′,
• τ ′ admits ρ,
• and τ ′ is weakly acceptable for ρ.

Then ρ is modular.

Proof. The existence of ρ shows that τ ′ is in fact acceptable for ρ. Again the proof
now follows very closely that of Theorem 7.1.1 of [CDT]. In this case we have to
make the following changes. All references are to [CDT] unless otherwise indicated.
• On page 539 one should take US,` = U0(`), VS,` = kerστ ′ |U0(`) and σS,` =
στ ′ |U0(`). One should also define ŨS to be the group generated by US and
w` ∈ GL2(Q`) and σ̃S to be the extension of σS to ŨS which restricts to στ ′
on Ũ0(`).
• In the statement of Lemma 5.1.1 one should replace HomUS (σS , π∞) by

HomŨS
(σ̃S , π∞).

• In the proof of Lemma 5.1.1 one must use Lemma 1.2.1 above in addition to
the results recalled in §4 of [CDT].
• Because τ ′ is acceptable for ρ, we know that det τ of a Frobenius lift is `ζ for

some root of unity ζ. Thus, στ ′(`s) = 1 for some s > 0. Hence, σ̃S factors
through the finite group G̃S = ŨS/VS`

sZ, where ` ∈ GL2(Q`).
• In §5.3 choose M` so that it is invariant for the action of Ũ0(`)/VS,``sZ. Also,

in the definition of LS replace GS by G̃S .
• In the proof of Lemma 5.3.1 replace US by ŨS and σS by σ̃S .
• Note that w` acts naturally on YS and FS . In Lemma 6.1.3 we should

replace the group H1
c (YS ,FS) by H1

c (YS ,FS)w`=1 and the group H1(YS ,FS)
by H1(YS ,FS)w`=1.
• Replace §6.2 with the proof of the required extension of Proposition 5.4.1

given below.
• On page 547 the isomorphism

H1
c (YS ,FS) −→ HomO(H1(YS ,FS),O)

on line 6 is T̃
′
S [wl]-linear. In the next line one should not only localise at m

but restrict to the kernel of w` − 1. Because w2
` = 1 on H1(YS ,FS)m we see
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that the natural map

H1(YS ,FS)w`=1
m −→ H1(YS ,FS)m/(w` − 1)

is an isomorphism, and so the map

LS −→ HomO(LS ,O)

is also an isomorphism.
• On page 547 the groups H1(YS ,FS)

m
(p)
S

and H1(YS′ ,FS′)m
(p)
S

should be re-
placed by their maximal subgroups on which w` = 1.
• On page 549 one should also define Ṽ0 (resp. Ṽ1) to be the group generated

by V0 (resp. V1) and w` ∈ GL2(Q`). Similarly define σ̃ to be σ̃∅ ⊗ ψ−2
r′ .

• In Lemma 6.4.1 replace V0 by Ṽ0, V1 by Ṽ1 and σ by σ̃. In the proof of Lemma
6.4.1 also replace U{r,r′} (resp. US∪{r,r′}) by Ũ{r,r′} (resp. ŨS∪{r,r′}) and
σ{r,r′} (resp. σS∪{r,r′}) by σ̃{r,r′} (resp. σ̃S∪{r,r′}).
• On line 20 of page 550 M should be chosen as a model of σ̃. This is possible

because ker σ̃ has finite index in Ṽ0, because in turn στ ′(`s) = 1 for some
s > 0. One should also set Li = H1(YVi ,FM∨)w`=1

m . On line 25, we must
replace Vi by Ṽi.
• In the proof of Lemma 6.4.2, one must replace V1 by Ṽ1 and σ by σ̃.
• In line 2 of the proof of Lemma 6.4.3, to see that L1 is a direct summand of
H1(YV1 ,FM∨) as an O[∆S ]-module, one needs to note thatH1(YV1 ,FM∨)w`=1

m

is a direct summand of H1(YV1 ,FM∨)m, because w2
` = 1 on H1(YV1 ,FM∨)m.

• On line 12 of page 551 replace R∅,DV,O by R∅,D
′

V,O .

Proof of extension of Proposition 5.4.1 of [CDT]. Let Θ =
⊗

p∈T (ρ)Mp.
First suppose that τ ′ admits σ′{m1,m2},a with m1 6= m2 and that σ′{m1,m2},a

admits ρ. As in the proof of Theorem 1.4.1 (especially §6.2 of [CDT] as modified
above), we have

H1(Y{r},FΘ∨ ⊗ F(σ′m1,m2
)∨)m′{r}

6= (0).

On the other hand

H1(Y{r},FΘ∨ ⊗ F(σ′m1,m2
)∨)m′{r}

∼= H1(Y{r},FΘ∨ ⊗ F(σ′m1,m2
)∨)w

2
`=a

m′{r}
∼= H1(Y{r},FΘ∨ ⊗ F(σ′{m1,m2},a

)∨)w`=1
m′{r}

.

Thus, using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that

H1(Y{r},F{r})
w`=1
m′{r}

6= (0),

so N∅ = N{r} 6= ∅.
Next suppose that τ ′ admits σ′{m},a which in turn admits ρ. Assume that ρ|G`

is irreducible or peu ramifié. By twisting we may reduce to the case m = 0. As in
the proof of Theorem 1.4.1 (especially §6.2 of [CDT] as modified above), we have

H1(YU{r}GL2(Z`),FΘ∨)m′{r}
6= (0).

Thus

H1(YU{r}GL2(Z`),FΘ∨)w
2
`=ã2

m′{r}
6= (0),

where ã is the Teichmüller lift of a. Using the embedding

ã+ w` : H1(YU{r}GL2(Z`),FΘ∨)⊗Q` ↪→ H1(Y{r},FΘ∨)⊗Q`,
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we deduce that

H1(Y{r},FΘ∨)w`=ã
m′{r}

6= (0),

and so

H1(Y{r},FΘ∨ ⊗ F(σ′{0},a)∨)w`=1
m′{r}

6= (0).

Thus, using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that

H1(Y{r},F{r})
w`=1
m′{r}

6= (0),

and so N∅ = N{r} 6= ∅.
Finally suppose that τ ′ admits σ{m},a which in turn admits ρ, and that ρ|G` is

reducible and très ramifié. By twisting we may reduce to the case m = 0. Note
that ρI`(Frob`) = −a. As in the proof of Theorem 1.4.1 (especially §6.2 of [CDT]
as modified above), we have

H1(Y{r},FΘ∨)m′{r}
6= (0).

Suppose that π is a cuspidal automorphic representation which contributes to
H1(Y{r},FΘ∨)m′{r}

, so π is a cuspidal automorphic representation of GL2(A) such
that π∞ is the lowest discrete series with trivial infinitesimal character, ρπ is a lift
of ρ of type ({r}, 1), and hence of type (∅, 1), and dimπ

U0(`)
` = 1. As ε−1 det ρπ has

order prime to `, we see that w2
` acts on πU0(`)

` by the Teichmüller lift of a2. As π`
has a U0(`)-fixed vector but no GL2(Z`)-fixed vector, we see that 1 + U`w

−1
` = 0

on πU0(`)
` . On the other hand, the eigenvalue of U` on πU0(`)

` reduces to −a. Thus,
w` acts on π

U0(`)
` by the Teichmüller lift of a, so w` acts on H1(Y{r},FΘ∨)m′{r}

by
the Teichmüller lift of a. We deduce that

H1(Y{r},FΘ∨ ⊗ F(σ′0,0)∨)w`=a
m′{r}

6= (0).

Using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that

H1(Y{r},F{r})
w`=1
m′{r}

6= (0),

so N∅ = N{r} 6= ∅.

2. Examples and applications

2.1. Examples. Now we will specialise to the case ` = 3. Fix an element ζ ∈
GL2(Z3) with ζ3 = 1 but ζ 6= 1. The following definitions, which concern isomor-
phism classes of 2-dimensional representations into GL2(Q3), do not depend on this
choice. We will consider the following `-types. (These are in fact, up to twist, a
complete list of the wildly ramified types which can arise from elliptic curves over
Q3, or, in the case of conductor 243, the extended types. We will not need this
fact. Rather the justification for studying these particular types can be found in
§2.2. More detailed information about the fixed fields of these types can be found
in §6.)

• τ1 corresponds to the order 3 homomorphism

Z×3 −→ Z3[ζ]×
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determined by

−1 7−→ 1
4 7−→ ζ.

• τ−1 corresponds to the order 3 homomorphism

Z3[
√
−1]× −→ Z3[ζ]×

determined by
4
√
−1 7−→ 1

4 7−→ 1
1 + 3

√
−1 7−→ ζ.

• τ3 is the unique 3-type such that τ3|IQ3(
√

3)
corresponds to the order 6 ho-

momorphism

Z3[
√

3]× −→ Z3[ζ]×

determined by

−1 7−→ −1
4 7−→ 1

1 +
√

3 7−→ ζ.

• τ−3 is the unique 3-type such that τ−3|IQ3(
√
−3)

corresponds to the order 6
homomorphism

Z3[
√
−3]× −→ Z3[ζ]×

determined by

−1 7−→ −1
4 7−→ 1

1 + 3
√
−3 7−→ 1

1 +
√
−3 7−→ ζ.

For i ∈ Z/3Z, we will also consider the unique extended 3-types τ ′i whose restrictions
to GQ3(

√
−3) correspond to the homomorphisms

Q3(
√
−3)× → Q3(ζ)×

determined by
√
−3 7−→ ζ − ζ−1

−1 7−→ −1
4 7−→ 1

1 + 3
√
−3 7−→ ζ

1 +
√
−3 7−→ ζi.

(2.1.1)

Subsequent sections of this paper will be devoted to checking the following special
cases of Conjecture 1.3.1.

Lemma 2.1.1. Suppose that ρ : G3 → GL2(F3) and

ρ|I3 ∼
(

1 ∗
0 ω

)
is très ramifié. Both τ1 and τ−1 simply admit ρ.
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Theorem 2.1.2. Suppose that ρ : G3 → GL2(F3) and

ρ|I3 ∼
(

1 ∗
0 ω

)
is très ramifié. Both τ1 and τ−1 are weakly acceptable for ρ.

Lemma 2.1.3. Suppose that ρ : G3 → GL2(F3) and

ρ|I3 ∼
(
ω ∗
0 1

)
is très ramifié. Both τ3 and τ−3 simply admit ρ.

Theorem 2.1.4. Suppose that ρ : G3 → GL2(F3) and

ρ|I3 ∼
(
ω ∗
0 1

)
is très ramifié. Both τ3 and τ−3 are weakly acceptable for ρ.

Lemma 2.1.5. Let i ∈ Z/3Z. Suppose that ρ : G3 → GL2(F3) and

ρ ∼
(
ω ∗
0 1

)
is très ramifié. The extended 3-type τ ′i simply admits ρ.

Theorem 2.1.6. Let i ∈ Z/3Z. Suppose that ρ : G3 → GL2(F3) and

ρ ∼
(
ω ∗
0 1

)
is très ramifié. Then τ ′i is weakly acceptable for ρ.

We remark that in Theorems 2.1.2, 2.1.4 and 2.1.6 we could replace “weakly
acceptable” by “acceptable”. This can be shown by using elliptic curves to construct
explicit liftings of the desired type. For Theorems 2.1.2 and 2.1.4 the results of [Man]
suffice for this. For Theorem 2.1.6 a slightly more refined analysis along the lines
of §2.3 is required.

We also remark that it was Lemmas 2.1.1, 2.1.3, 2.1.5 and Conjecture 1.3.1 which
originally suggested to us that we try to prove Theorems 2.1.2, 2.1.4 and 2.1.6.

2.2. Applications. Conditional on the results stated in §2.1, which we will prove
below, we prove the following results.

Theorem 2.2.1. Any continuous absolutely irreducible representation ρ : GQ →
GL2(F5) with cyclotomic determinant is modular.

Proof. Choose an element ζ ∈ GL2(F5) with ζ
3

= 1 but ζ 6= 1. (The following
classification will be independent of the choice of ζ.) Then up to equivalence and
twisting by a quadratic character, one of the following possibilities can be attained.

(1) ρ is tamely ramified at 3.
(2) ρ|G3 is given by the character

Q×3 −→ F5(ζ)×
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determined by

3 7−→ ζ
i
(ζ − ζ−1

)
−1 7−→ 1

4 7−→ ζ,

where i ∈ Z/3Z.
(3) ρ|GQ3(

√
−1)

is given by the character

Q3(
√
−1)× −→ F5(ζ)×

determined by

3 7−→ 2
4
√
−1 7−→ 1

4 7−→ 1
1 + 3

√
−1 7−→ ζ.

(4) ρ|GQ3(
√

3)
is given by the character

Q3(
√

3)× −→ F5(ζ)×

determined by
√

3 7−→ ζ − ζ−1

−1 7−→ −1
4 7−→ 1

1 +
√

3 7−→ ζ.

(5) ρ|GQ3(
√
−3)

is given by the character

Q3(
√
−3)× −→ F5(ζ)×

determined by
√
−3 7−→ ζ − ζ−1

−1 7−→ −1
4 7−→ 1

1 + 3
√
−3 7−→ 1

1 +
√
−3 7−→ ζ.

(6) ρ|GQ3(
√
−3)

is given by the character

Q3(
√
−3)× −→ F5(ζ)×

determined by
√
−3 7−→ ζ − ζ−1

−1 7−→ −1
4 7−→ 1

1 + 3
√
−3 7−→ ζ

1 +
√
−3 7−→ ζ

i
,

where i ∈ Z/3Z.
To see that one of these cases can be attained, use the following facts, all of which
are easy to verify.
• A subgroup of GL2(F5) with a non-trivial normal subgroup of 3-power order

is, up to conjugation, contained in the normaliser of F5(ζ)×.
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• The intersection of SL2(F5) with the normaliser of ζ in GL2(F5) is generated
by ζ and an element α such that α2 = −1 and αζα−1 = ζ

−1
.

• If β ∈ F5(ζ)×, detβ = 3, and αβα−1 = −β, then β = ±(ζ − ζ−1
).

In each case, we may choose an elliptic curve E1/Q3 such that the representation
ρE1,5 of G3 on E1[5](Q3) is isomorphic to ρ|G3 and such that the representation
ρE1,3 of G3 on E1[3](Q3) has the following form (where we use the same numbering
as above).

(1) We place no restriction on ρE1,3.
(2) The restriction of ρE1,3 to I3 has the form(

1 ∗
0 ω

)
and is très ramifié. (Use Theorem 5.3.2 of [Man].)

(3) The restriction of ρE1,3 to I3 has the form(
1 ∗
0 ω

)
and is très ramifié. (Use Theorem 5.3.2 of [Man].)

(4) The restriction of ρE1,3 to I3 has the form(
ω ∗
0 1

)
and is très ramifié. (Use §5.4 of [Man].)

(5) The restriction of ρE1,3 to I3 has the form(
ω ∗
0 1

)
and is très ramifié. (Use §5.4 of [Man].)

(6) ρE1,3 has the form (
ω ∗
0 1

)
,

is très ramifié and remains indecomposable when restricted to the splitting
field of ρ. (Use Corollary 2.3.2 below.)

In each case choose such an E1 and fix an isomorphism α : F2
5
∼→ E1[5](Q3), such

that the Weil pairing on E1[5] corresponds to the standard alternating pairing on
F2

5, following the conventions in §1 of [SBT]. The pair (E1, α) defines a Q3-rational
point on the smooth curve denoted Xρ in [SBT]. We can find a 3-adic open set
U ⊂ Xρ(Q3) containing (E1, α) such that if (E2, β) defines a point in U, then
E2[3] ∼= E1[3] as F3[G3]-modules.

Using Ekedahl’s version of the Hilbert Irreducibility Theorem (see Theorem 1.3
of [E]) and the argument of §1 of [SBT] we may find an elliptic curve E/Q and an
F5[GQ]-module isomorphism β of ρ with E[5](Q) such that (see also §2 of [Man])
• under β, the standard alternating pairing on F2

5 and the Weil pairing on
E[5] agree;
• the representation ρE,3 of GQ on E[3](Q) is surjective onto Aut(E[3](Q));
• and (E, β) defines a point of U.
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Corresponding to the six types of ρ considered above, Proposition B.4.2 of [CDT]
ensures that the representation ρE,3 of GQ on the 3-adic Tate module of E is

(1) either, up to quadratic twist, ordinary in the sense of Wiles [Wi] or poten-
tially Barsotti-Tate of some tamely ramified type;

(2) potentially Barsotti-Tate of type τ1;
(3) potentially Barsotti-Tate of type τ−1;
(4) potentially Barsotti-Tate of type τ3;
(5) potentially Barsotti-Tate of type τ−3;
(6) potentially Barsotti-Tate of extended type τ ′i .

In the first case, E is modular by Theorem 7.2.1 of [CDT]. In the other cases we will
simply write τ for the type/extended type. We see that ρE,3(G3) has centraliser F3

and the results of §2.1 show that τ admits ρE,3 and that τ is weakly acceptable for
ρE,3. Moreover ρE,3|Gal(Q/Q(

√
−3)) is absolutely irreducible and, by the Langlands-

Tunnell theorem (see [Wi]), modular. Thus by Theorems 1.4.1 and 1.4.2 we see
that ρE,3 is modular. We deduce that E is modular, so ρ ∼= ρE,5 is modular.

Combining this theorem with Theorem 7.2.4 of [CDT] we immediately obtain
the following corollary.

Theorem 2.2.2. Every elliptic curve defined over the rational numbers is modular.

2.3. An extension of a result of Manoharmayum. The following facts follow
at once from [Man], particularly the classification given just before Theorem 5.4.2 of
that paper. Consider elliptic curves E over Q3 with minimal Weierstrass equation
Y 2 = X3 +AX +B, where

A ≡ B + 3 ≡ 0 mod 9,

so ρE,3 has the form
(
ω ∗
0 1

)
and is très ramifié. This leaves three possibilities

for the equivalence class of ρE,3. Fix ζ in GL2(F5) with ζ
3

= 1 but ζ 6= 1. The
action of GQ3(

√
−3) on E[5](Q3) is via a representation of the form

√
−3 7−→ δ(ζ − ζ−1

)
−1 7−→ −1

4 7−→ 1
1 +
√
−3 7−→ ζ

i

1 + 3
√
−3 7−→ ζ,

for some δ = ±1 and some i ∈ Z/3Z. All nine possibilities for the pair (ρE,3, i)
satisfying these conditions can arise for some such choice of A and B.

Lemma 2.3.1. With the above notation and assumptions, we have δ = 1.

Proof. Let F = Q3(
√
−3, β, α), where β2 = −

√
−3 and

α3 +Aα+B = 9
√
−3.

F is a totally ramified abelian extension of Q3(
√
−3) of degree 6, with uniformiser

$ = α/β. The change of coordinates Y 7→ $15Y , X 7→ $10X + α shows that E
has good reduction over F , and the reduction is isomorphic to

Y 2 = X3 −X − 1.
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The arithmetic Frobenius of WF therefore has trace 3 on E[5]. Since

NF/Q3(
√
−3)($) ≡

√
−3(1 − 3

√
−3) mod 9

√
−3,

we conclude that

tr δ(ζ − ζ−1
)ζ
−1

= 3,

so δ = 1.

Twisting by quadratic characters we immediately deduce the following corollary.

Corollary 2.3.2. Let ρ3 : G3 → GL3(F3) have the form(
ω ∗
0 1

)
or

(
1 ∗
0 ω

)
and be très ramifié. Let ρ5 : G3 → GL2(F5) have cyclotomic determinant and
restriction to GQ3(

√
−3) given by a character

Q3(
√
−3)× −→ F5(ζ)×

determined by
√
−3 7−→ (ζ − ζ−1

)
−1 7−→ −1

4 7−→ 1
1 +
√
−3 7−→ ζ

i

1 + 3
√
−3 7−→ ζ,

for some i ∈ Z/3Z. There is an elliptic curve E/Q3 , with E[3](Q3) ∼ ρ3 and
E[5](Q3) ∼ ρ5. In particular, the action of I3 on T5E factors through a finite
group and so E has potentially good reduction.

3. Admittance

In this section we will check Lemmas 2.1.1, 2.1.3 and 2.1.5. We freely use the
terminology introduced in §1.2 and §1.3.

3.1. The case of τ1. In this case στ1 is the induction from U0(9) to GL2(Z3)
of a character of order 3. Its reduction modulo a prime above 3 has the same
Jordan-Hölder constituents as the reduction modulo 3 of IndGL2(Z3)

U0(9) 1. Using Brauer

characters, we see that the reduction modulo 3 of IndU0(3)
U0(9) 1 has Jordan-Hölder

constituents σ′0,0, σ′0,0 and σ′1,1. Thus, τ1 admits σ0,0, σ2,0, σ0,1 and σ2,1, the latter
two simply. Lemma 2.1.1 follows in this case.

3.2. The case of τ−1. Let U denote the subgroup of GL2(Z3) consisting of ma-
trices (

a b
c d

)
with a ≡ d mod 3 and b+ c ≡ 0 mod 3, so στ−1 is the induction from U to GL2(Z3)
of a character of order 3. Upon reduction modulo a prime above 3 this will have the
same Jordan-Hölder constituents as the reduction modulo 3 of IndGL2(Z3)

U 1. If ψ
denotes the non-trivial character of F×3 and φ a character of F×9 of order 4, then this
latter induction splits up as the sum of the representations of GL2(Z3)→→ GL2(F3)
denoted 1, spψ and Θ(φ) in §3.1 of [CDT]. By Lemma 3.1.1 of [CDT] we see that
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τ−1 admits σ0,0, σ2,1 and σ0,1, the latter two simply. Lemma 2.1.1 follows in this
case.

3.3. The case of τ±3. Let U denote the subgroup of GL2(Z3) consisting of ma-
trices (

a b
c d

)
with a ≡ d mod 3 and c ≡ 0 mod 3. Then στ±3 is the induction from U to U0(3) of
a character of order 3. Upon reduction modulo a prime above 3 this will have the
same Jordan-Hölder constituents as the reduction modulo 3 of IndU0(3)

U 1. Thus,
τ±3 simply admits σ′0,0 and σ′1,1. Lemma 2.1.3 follows.

3.4. The case of τ ′i . Let χ be the character of Q3(
√
−3)× as in (2.1.1). Let ψ be

a character of Q3 with kernel Z3 and which sends 1/3 to ζ. If x ∈ (3
√
−3)Z3[

√
−3]

we have

χ(1 + x) = ψ(trQ3(
√
−3)/Q3

(−x
√
−3/54)).

We deduce that if χ′′ is the character used to define στ ′i in §1.2, then χ′′(
√
−3) =

(ζ − ζ−1)−1.
Let U denote the subgroup of GL2(Z3) consisting of matrices(

a b
3c d

)
with a ≡ d mod 3 and b + c ≡ 0 mod 3. Let Ũ be the group generated by w3 (see
(1.2.1)) and U , so στ ′i is the representation of Ũ0(3) induced from a character of Ũ
which sends w3 to 1 and has order 3 when restricted to U . Thus, the Jordan-Hölder
constituents of the reduction of στ ′i modulo a prime above 3 are the same as the

Jordan-Hölder constituents of the reduction modulo 3 of IndŨ0(3)

Ũ
1.

Let V denote the subgroup of GL2(Z3) consisting of matrices(
a b
3c d

)
with a ≡ d mod 3. Let Ṽ be the group generated by w3 and V , and let ν denote
the character of Ṽ /V which sends w3 to −1. We have

IndṼ
Ũ

(1) ∼ 1⊕ IndṼ
VQ×3

η,

where η is a non-trivial character of V/U = (VQ×3 )/(UQ×3 ). The reduction modulo
a prime above 3 of this (3-dimensional) representation has the same Jordan-Hölder
constituents as the reduction modulo 3 of 1⊕ 1⊕ ν. Thus, τ ′i admits σ′{0},1, σ′{1},1,
σ′{0},−1 and σ′{1},−1, the latter two simply. Lemma 2.1.5 follows.

4. New deformation problems

In this section we begin the proof of Theorems 2.1.2, 2.1.4 and 2.1.6. One could
approach this directly by using the results of [Br2] to attempt to describe RDV,O
(resp. RD

′

V,O). At least one of the authors of this paper (Taylor) thinks that such an
approach holds out more promise of attacking the non-acceptable case, and another
author (Breuil) has indeed made several computations along these lines. However
in the present case it seems to be easier to proceed less directly.
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To this end we will use ad hoc arguments to define deformation problems, which
will be represented by O-algebras S such that
• dimk mS/(℘K ,m2

S) ≤ 1,
• and the map RV,O →→ RDV,O (resp. RD

′

V,O) factors through S.

An important advantage of this approach is that to calculate mS/(℘K ,m2
S) one

need only work in the category of finite flat group schemes killed by a prime. Breuil
modules (see §5) for finite flat group schemes killed by an odd prime are significantly
simpler than the general case (of prime power torsion). This is particularly true
when we also use descent data. On the other hand, to suitably define the new
deformation problems is rather delicate. That is what we will do in this section.

4.1. Some generalities on group schemes. In this section, and in §4.2, ` will
again be an arbitrary rational prime. Moreover R will denote a complete discrete
valuation ring with fraction field F ′ of characteristic zero and perfect residue field k
of characteristic `. We will let Γ denote a finite group of continuous automorphisms
of R and we will let F0 denote the subfield of F ′ consisting of elements fixed by
Γ. Thus F ′/F0 will be finite and Galois with group Γ. In our applications of these
results it suffices to consider the case where F0 is a finite extension of Q3 (although
we will occasionally pass to the completion of the maximal unramified extension of
F ).

Lemma 4.1.1. Let G be a finite flat R-group scheme. Scheme theoretic closure
gives a bijection between subgroup schemes of G×F ′ and finite flat closed subgroup
schemes of G.

(See for instance §1.1 of [Co].)

Lemma 4.1.2. Let G1 and G2 be finite flat group schemes over R which have local-
local closed fibre. Suppose that G1 and G2 are the only finite flat R-group schemes
with local-local closed fibre which have generic fibres G1×F ′ and G2×F ′ respectively.
Suppose also that we have an exact sequence of finite flat R-group schemes

(0) −→ G1 −→ G −→ G2 −→ (0).

Then G is the unique finite flat R-group scheme with local-local closed fibre and with
generic fibre G× F .

Proof. Let G+ and G− denote the maximal and minimal local-local models for G×F .
The proof that these exist follows the proof of Proposition 2.2.2 of [Ra] and uses
the fact that the Cartier dual of a local-local finite flat group scheme is local-local.
We must show that the canonical map G+ → G− is an isomorphism. The scheme-
theoretic closure of G1 × F in G± must be isomorphic to G1 (by uniqueness), so we
have closed immersions G1 ↪→ G± extending G1 × F ↪→ G± × F . Similarly G±/G1

must be isomorphic to G2. This gives a commutative diagram with exact rows:

0→ G1 → G+ → G2 → 0
↓ ↓ ↓

0→ G1 → G− → G2 → 0

The vertical maps G1 → G1 and G2 → G2 induce isomorphisms on the generic fibre
and hence are isomorphisms. This is because some power of them is the identity on
the generic fibre and hence is the identity. Working in the abelian category of fppf
abelian sheaves over SpecR, the middle map must also be an isomorphism.
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When G has `-power order, we will let D(G) denote the classical (contravariant)
Dieudonné module of G×k. It is aW (k)-module equipped with a Frobenius operator
F and a Verschiebung operator V. We have FV = VF = ` and for all x ∈ W (k),
Fx = (Frob` x)F and Vx = (Frob−1

` x)V.
If G is a finite flat R-group scheme, then by descent data for G over F0 we mean

a collection {[g]} of group scheme isomorphisms over R

[g] : G
∼−→ gG

for g ∈ Γ such that for all g, h ∈ Γ we have

[gh] = (g[h]) ◦ [g].

Note that this is not descent data in the sense of Grothendieck, since R/RΓ might
be ramified. However, SpecF ′/ SpecF0 is étale, so by étale descent we obtain a
finite flat group scheme (G, {[g]})F0 over F0 together with an isomorphism

(G, {[g]})F0 ×F0 F
′ ∼= G×R F ′

compatible with descent data. We also obtain a natural left action of Γ on the
Dieudonné module D(G), semi-linear with respect to the W (k)-module structure
and commuting with F and V. We refer to the pair (G, {[g]}) as an R-group scheme
with descent data relative to F0. One defines morphisms of such objects to be
morphisms of R-group schemes which commute with the descent data. By a closed
finite flat subgroup scheme with descent data we mean a closed finite flat subgroup
scheme such that the descent data on the ambient scheme takes the subscheme to
itself. Quotients by such subobjects are defined in the obvious way. Thus we obtain
an additive category with a notion of short exact sequence. Suppose that G is a
finite flat F0-group scheme. By a model with descent data (or simply model) for G
over R we shall mean a triple (G, {[g]}, i), where (G, {[g]}) is an R-group scheme
with descent data relative to F0 and where i : (G, {[g]})F0

∼→ G. Sometimes we will
suppress i from the notation. It is easy to check that isomorphism classes of models
admitting descent data for G over R form a sublattice of the lattice of models for
G/F ′ over R. The following lemma follows without difficulty from Lemma 4.1.1.

Lemma 4.1.3. Let F ′/F0 be a finite Galois extension as above, and let (G, {[g]})
be a finite flat R-group scheme with descent data relative to F0. Base change from
F0 to F ′, followed by scheme theoretic closure, gives a bijection between subgroup
schemes of (G, {[g]})F0 and closed finite flat subgroup schemes with descent data in
(G, {[g]}).

We let FFF ′ denote the category of finite flat group schemes over R and FDF ′/F0

the category of finite flat group schemes over R with descent data over F0. Let
W (k)[F,V][Γ] denote the (non-commutative) W (k)-algebra generated by elements
F, V and [g] for g ∈ Γ satisfying
• [gh] = [g][h] for all g, h ∈ Γ;
• [g]F = F[g] and [g]V = V[g] for all g ∈ Γ;
• FV = VF = `;
• [g]x = (gx)[g] for all x ∈W (k) and g ∈ Γ;
• Fx = (Frob` x)F and Vx = (Frob−1

` x)V for all x ∈ W (k).
If I is a two-sided ideal in W (k)[F,V][Γ], we will let FDF ′/F0,I denote the full
subcategory of FDF ′/F0 consisting of objects (G, {[g]}) such that I annihilates D(G).
If (G, {[g]}) is an object of FDF ′/F0,I and if (H, {[g]}) ⊂ (G, {[g]}) is a closed finite
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flat subgroup scheme with descent data, then (H, {[g]}) and (G, {[g]})/(H, {[g]})
are again objects of FDF ′/F0,I.

Lemma 4.1.4. For I a two-sided ideal of the ring W (k)[F,V][Γ], choose objects
(G1, {[g]}) and (G2, {[g]}) in FDF ′/F0,I so that (G1, {[g]})F0

∼= (G2, {[g]})F0 . Let G
denote the base change of this F0-group scheme to F ′, so G has canonical descent
data relative to F ′/F0. Then the sup and inf of G1 and G2 in the lattice of integral
models for G are stable under the descent data on G and with this descent data are
objects of FDF ′/F0,I.

Proof. By uniqueness of the inf and sup, they are stable under the descent data
on the generic fibre. It follows from Raynaud’s construction of the inf and sup
(Proposition 2.2.2 of [Ra]) in terms of subgroup schemes and quotients of G1 × G2

that the sup and inf are objects of FDF ′/F0,I.

Corollary 4.1.5. Let I be a two-sided ideal of the ring W (k)[F,V][Γ]. Let

(0) −→ G1 −→ G −→ G2 −→ (0)(4.1.1)

be an exact sequence of finite flat group schemes over F0. Let (G1, {[g]}) and
(G2, {[g]}) be objects of FDF ′/F0,I such that (G1, {[g]})F0

∼= G1 and (G2, {[g]})F0
∼=

G2. Suppose that for all objects (G, {[g]}) of FDF ′/F0,I with (G, {[g]})F0
∼= G, the

filtration on (G, {[g]}) induced by the filtration on G has subobject isomorphic to
(G1, {[g]}) and quotient isomorphic to (G2, {[g]}) (without any assumed compatibil-
ity with (4.1.1)). Then there is at most one model for G in FDF ′/F0,I.

Proof. By Lemma 4.1.4, it suffices to prove that if (G+, {[g]}, i+) and (G−, {[g]}, i−)
are two such models with a morphism between them, then the morphism between
them must be an isomorphism. In such a case we have a commutative diagram
with exact rows:

0→ G1 → G+ → G2 → 0
↓ ↓ ↓

0→ G1 → G− → G2 → 0

The vertical maps G1 → G1 and G2 → G2 induce isomorphisms on the generic fibre
and hence are isomorphisms. This is because some power of them is the identity on
the generic fibre and hence is the identity. Working in the abelian category of fppf
abelian sheaves over SpecR, the middle map must also be an isomorphism.

4.2. Filtrations. We keep the notation and assumptions of the previous section.
Let Σ be a finite non-empty set of objects (Gi, {[g]}) of FDF ′/F0,(I,`). (Note the
` in the subscript (I, `), which denotes the two-sided ideal generated by I and `.)
Suppose that

Hom((Gi, {[g]}), (Gj, {[g]})) = Hom((Gi, {[g]})F0, (Gj , {[g]})F0)

=
{

0 if i 6= j,
finite field if i = j

(4.2.1)

(in particular, the objects in Σ are non-zero and pairwise non-isomorphic). By a Σ-
filtration on a finite flat F0-group scheme G we mean an increasing filtration Filj G
such that for all j the graded piece Filj G/Filj−1 G is isomorphic to (Gi(j), {[g]})F0

for a (unique) (Gi(j), {[g]}) ∈ Σ. The following lemma is proved by the standard
Jordan-Hölder argument.
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Lemma 4.2.1. If G is a finite flat F0-group scheme which admits a Σ-filtration and
if H is a quotient or subobject of G which admits a Σ-filtration, then any Σ-filtration
of H can be extended to a Σ-filtration of G. In addition, all Σ-filtrations of G have
the same length and the same set of successive quotients (with multiplicities).

We say that an object (G, {[g]}) of FDF ′/F0,I is weakly filtered by Σ if there is
some increasing filtration Filj(G, {[g]}) of (G, {[g]}) by closed subobjects such that
for all j, the graded piece

Filj(G, {[g]})/Filj−1(G, {[g]})
is isomorphic to an element of Σ. We say that an object (G, {[g]}) of FDF ′/F0,I is
strongly filtered by Σ if (G, {[g]}) is weakly filtered by Σ and if for every Σ-filtration
of (G, {[g]})F0 the corresponding filtration of (G, {[g]}) satisfies

Filj(G, {[g]})/Filj−1(G, {[g]})
is isomorphic to an element of Σ for all j. The following lemma follows at once
from the definitions and from Lemma 4.2.1.

Lemma 4.2.2. (1) If (G, {[g]}) and (G′, {[g]}) are objects of FDF ′/F0,I which
are weakly filtered by Σ, then (G, {[g]})× (G′, {[g]}) is also weakly filtered by
Σ.

(2) Let (G, {[g]}) and (G′, {[g]}) be objects of FDF ′/F0,I with (G′, {[g]}) a closed
subobject or quotient of (G, {[g]}). Suppose that (G, {[g]}) is strongly filtered
by Σ and that (G′, {[g]})F0 admits a Σ-filtration. Then (G′, {[g]}) is strongly
filtered by Σ.

If any object of FDF ′/F0,I which is weakly filtered by Σ is strongly filtered by
Σ, then we will let FDF ′/F0,I,Σ denote the full subcategory of FDF ′/F0,I consisting
of objects which are weakly (and therefore strongly) filtered by Σ.

Lemma 4.2.3. Suppose that any object of FDF ′/F0,I which is weakly filtered by Σ
is strongly filtered by Σ. Let G be a finite flat F0-group scheme. If (G1, {[g]}) and
(G2, {[g]}) are two objects of FDF ′/F0,I,Σ with isomorphisms

ij : G ∼−→ (Gj , {[g]})F0

for j = 1, 2, then there is a unique isomorphism

φ : (G1, {[g]}) ∼−→ (G2, {[g]})
such that on the generic fibre i2 = φ ◦ i1.

Proof. It follows from Raynaud’s construction of sup and inf that the sup and inf
of ((G1, {[g]}), i1) and ((G2, {[g]}), i2) are again objects of FDF ′/F0,I,Σ. Thus we
may suppose that there exists a map φ : (G1, {[g]})→ (G2, {[g]}) such that on the
generic fibre i2 = φ ◦ i1. We will argue by induction on the rank of G that φ is an
isomorphism.

If (G1, {[g]}) is isomorphic to an element of Σ, then the result follows by our
assumption on Σ.

If (G1, {[g]}) is not isomorphic to an element of Σ, then choose an exact sequence

(0) −→ (G11, {g}) −→ (G1, {g}) −→ (G12, {g}) −→ (0),

where (G11, {g}) and (G12, {g}) are weakly filtered by Σ. Let (G21, {[g]}) de-
note the closed subobject of (G2, {[g]}) corresponding to (G11, {[g]})F0 and define
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(G22, {[g]}) = (G2, {[g]})/(G21, {[g]}). Then we have a commutative diagram with
exact rows

0→ G11 → G1 → G12 → 0
↓ ↓ ↓

0→ G21 → G2 → G22 → 0

compatible with descent data, where the central vertical arrow is φ and where
by inductive hypothesis the outside vertical arrows are isomorphisms. Working
in the abelian category of fppf abelian sheaves over SpecR, we see that φ is an
isomorphism.

The following lemma and its corollary give criteria for the equivalence of the
notions of being weakly filtered by Σ and of being strongly filtered by Σ.

Lemma 4.2.4. Fix I and Σ as above. Suppose that for any pair of (possibly equal)
elements (G′, {[g]}) and (G′′, {[g]}) in Σ, the natural map

Ext1
FDF ′/F0,(I,`)

((G′′, {[g]}), (G′, {[g]})) −→ Ext1
F`[GF0 ]((G

′′, {[g]})F0 , (G
′, {[g]})F0)

is injective. Then any object (G, {[g]}) of FDF ′/F0,I which is weakly filtered by Σ is
also strongly filtered by Σ.

Proof. For brevity, we say “weakly/strongly filtered” rather than “weakly/strongly
filtered by Σ” since the data Σ is fixed for the entire proof. Also, we omit the
specification of descent data from the notation, but it should not be forgotten.

Suppose G is weakly filtered. In order to prove that G is strongly filtered, we argue
by induction on the length of a Σ-filtration of GF0 , this length being well-defined
by Lemma 4.2.1. The case of length ≤ 1 is clear. Otherwise, by the definition of
being weakly filtered, there is a short exact sequence of finite flat R-group schemes
(with descent data relative to F0)

(0) −→ G′ −→ G −→ G′′ −→ (0)

with G′ ∈ Σ and G′′ weakly filtered (and hence, by inductive hypothesis, strongly
filtered). Let H be any closed subgroup scheme of G (with compatible descent data
relative to F0) such that HF0 ' Gi0,F0 for some Gi0 ∈ Σ and such that (G/H)F0

admits a Σ-filtration. We need to prove (in the category of finite flat group schemes
with descent data relative to F ′/F0) that

• H ' Gi0 ,
• and G/H is weakly filtered.

If the composite map

H ↪→ G −→ G′′

is zero, then H = G′ as closed subgroup schemes of G (with descent data) and
likewise G/H = G′′, so we are done. The interesting case is when the composite
map is non-zero. The map Gi0,F0

∼= HF0 → G′′F0
is then non-zero and therefore

must be a closed immersion by the assumption (4.2.1) on Σ and a devissage with
respect to a Σ-filtration of G′′F0

. We conclude that the map of generic fibre étale
group schemes H × F ′ → G′′ × F ′ is a closed immersion.

Taking scheme-theoretic closures, we obtain a closed subgroup scheme H′′ ↪→ G′′

(with unique compatible descent data over F0) fitting into a commutative diagram
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of group schemes with descent data

H
α−→ H′′

↓ ↓
(0) −→ G′ −→ G −→ G′′ −→ (0)

in which the lower row is short exact, the vertical maps are closed immersions and
the top map H → H′′ induces an isomorphism on generic fibres. By Lemma 4.2.1
we may extend HF0 ↪→ G′′F0

to a Σ-filtration on G′′F0
and so, because G′′ is strongly

filtered by induction, we may extend H′′ ↪→ G′′ to a Σ-filtration. In particular H′′

is isomorphic to an object in Σ and G′′/H′′ is strongly filtered.
Pulling back the short exact sequence

0 −→ G′ −→ G −→ G′′ −→ 0

by H′′ → G′′, we get a diagram

H

↓
0 −→ G′ −→ G×G′′ H

′′ −→ H′′ −→ 0

in which the row is a short exact sequence of fppf abelian sheaves and all of the
terms are finite flat group schemes (for the middle, this follows from the flatness
of G → G′′). Thus, this bottom row is a short exact sequence of finite flat group
schemes (with descent data). As HF0

∼→ H′′F0
, the sequence

0 −→ G′F0
−→ (G×G′′ H

′′)F0 −→ H′′F0
−→ 0

is split. In particular (G ×G′′ H
′′)F0 and hence G ×G′′ H

′′ are killed by `. By the
hypothesis of the lemma

0 −→ G′ −→ G×G′′ H
′′ −→ H′′ −→ 0

is also split, i.e. we have an isomorphism

G×G′′ H
′′ ∼= G′ ×R H′′

such that G′ ↪→ G ×G′′ H
′′ corresponds to injection to the first factor of G′ ×R H′′

and G ×G′′ H′′ →→ H′′ corresponds to projection onto the second factor. By our
hypotheses on Σ we can find a morphism φ : H′′ → G′ extending

H′′F0

∼←− HF0 ↪→ G′F0
×H′′F0

pr→→ G′F0
.

Then our closed immersion H ↪→ G′ ×R H′′ factors as

H −→ H′′
φ×1−→ G′ ×R H′′.

As H→ G′ ×R H′′ is a closed immersion, α : H→ H′′ must be a closed immersion
and hence an isomorphism. Thus H is isomorphic to an object in Σ.

Now we turn to the proof that G/H is weakly filtered. Since α : H → H′′ is an
isomorphism, it is clear that the natural map

H ×R G′ −→ G×G′′ H
′′

is an isomorphism, and hence that

H ×R G′ −→ G

is a closed immersion. Thus, the finite flat group scheme G/(H × G′) makes sense
and the natural map

G/(H × G′) −→ G′′/H′′
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is an isomorphism (as one sees by using the universal properties of quotients to
construct an inverse map). We therefore arrive at a short exact sequence

0 −→ G′ −→ G/H −→ G′′/H′′ −→ 0

(compatible with descent data). Since G′′/H′′ is strongly filtered, as we noted
above, and G′ ∈ Σ, it follows that G/H is weakly filtered.

Corollary 4.2.5. Fix I and Σ as above. Suppose that Σ = {(G, {[g]})} is a single-
ton. Suppose also that we have a short exact sequence

(0) −→ (G1, {[g]}) −→ (G, {[g]}) −→ (G2, {[g]}) −→ (0)

in FDF ′/F0,I, where for any i, j (possibly equal)

Hom((Gi, {[g]}), (Gj, {[g]})) = Hom((Gi, {[g]})F0 , (Gj , {[g]})F0)

=
{

0 if i 6= j,
finite field if i = j,

and the natural map

Ext1
FDF ′/F0,(I,`)

((Gi, {[g]}), (Gj, {[g]})) −→ Ext1
F`[GF0 ]((Gi, {[g]})F0 , (Gj , {[g]})F0)

(4.2.2)

is injective. Then any object (H, {[g]}) of FDF ′/F0,I which is weakly filtered by Σ
is also strongly filtered by Σ.

Proof. As (H, {[g]}) is weakly filtered by Σ, it is weakly filtered by {(G1, {[g]}),
(G2, {[g]})}, and so by Lemma 4.2.4 is strongly filtered by {(G1, {[g]}), (G2, {[g]})}.
Any Σ-filtration of (H, {[g]})F0 extends to a {(G1, {[g]}), (G2, {[g]})}-filtration of
(H, {[g]})F0 , which in turn gives rise to a {(G1, {[g]}), (G2, {[g]})}-filtration of
(H, {[g]}). By the injectivity of (4.2.2) we see that this yields a Σ-filtration of
(H, {[g]}) that induces to our chosen Σ-filtration of (H, {[g]})F0 .

4.3. Generalities on deformation theory. Again in this section ` denotes an
arbitrary rational prime. We let K denote a finite extension of Q`, O the ring of
integers K, ℘K the maximal ideal of O and k its residue field. Note that k has
a different meaning from the previous two sections. Let V be a two-dimensional
k-vector space and ρ : G` → Autk(V ) a continuous representation. Suppose that
the centraliser of G` in Endk(V ) is k. Let ψ : G` → O× denote a continuous
character such that (ψ mod ℘K) ∼= det ρ. Let S(ρ) denote the full subcategory of
the category of finite length (discrete) O-modules with a continuous O-linear action
of G` consisting of objects which admit a finite filtration so that each successive
quotient is isomorphic to V . Because Endk[G`](V ) = k, it follows from the usual
Jordan-Hölder argument that S(ρ) is an abelian category.

Let S be a full subcategory of S(ρ) stable under isomorphisms and which is closed
under finite products, S(ρ)-subobjects and S(ρ)-quotients, and which contains V .
We will consider the following set-valued functors on the category of complete
noetherian local O-algebras R with finite residue field k.
• DV,O(R) is the set of conjugacy classes of continuous representations ρ :
G` → GL2(R) such that ρ mod mR is conjugate to ρ.

• D
ψ
V,O(R) is the set of conjugacy classes of continuous representations ρ :

G` → GL2(R) such that ρ mod mR is conjugate to ρ and det ρ = ψ.



THE MODULARITY OF ELLIPTIC CURVES OVER Q 875

• DS
V,O(R) is the set of conjugacy classes of continuous representations ρ :

G` → GL2(R) such that ρ mod mR is conjugate to ρ and such that for each
open ideal a ⊂ R the action ρ makes (R/a)2 into an object of S.
• D

ψ,S
V,O(R) is the set of conjugacy classes of continuous representations ρ :

G` → GL2(R) such that ρ mod mR is conjugate to ρ, such that det ρ = ψ,
and such that for each open ideal a ⊂ R the action ρ makes (R/a)2 into an
object of S.

Each of these deformation problems is representable by objects which we will denote
RV,O, RψV,O, RS

V,O and Rψ,SV,O, respectively.
Recall that the following sets are in natural (k-linear) bijection with each other.
• (mRV,O/(℘K ,m

2
RV,O

))∨.
• The set of deformations of ρ to k[ε]/(ε2).
• Ext1

k[G`]
(V, V ).

• H1(G`, ad ρ).
These bijections give rise to an isomorphism

(mRψV,O
/(℘K ,m2

RψV,O
))∨ ∼= H1(G`, ad0 ρ),

as well as bijections between
• (mRS

V,O
/(℘K ,m2

RS
V,O

))∨,

• the set of deformations of ρ to k[ε]/(ε2) which make (k[ε]/(ε2))2 into an
object of S,
• Ext1

k[G`],S
(V, V ), i.e. Ext1 in the category of discrete k[G`]-modules which

are also objects of S,
• the subgroupH1

S(G`, adρ) ⊂ H1(G`, adρ) corresponding to Ext1
k[G`],S(V, V ).

We will set H1
S(G`, ad0 ρ) = H1

S(G`, adρ) ∩ H1(G`, ad0 ρ), so that we get an iso-
morphism

(mRψ,SV,O
/(℘K ,m2

Rψ,SV,O

))∨ ∼= H1
S(G`, ad0 ρ).

4.4. Reduction steps for Theorem 2.1.2. We now begin the proof of Theorem
2.1.2. Making an unramified twist we may suppose that ρ has the form(

1 ∗
0 ω

)
.

We may also suppose that O = Z3.
Let F1 = F ′1 denote a totally ramified cubic Galois extension of Q3. Let F ′−1

denote the unique cubic extension of Q3(
√
−1) such that F ′−1/Q3 is Galois but not

abelian, and let F−1 denote a cubic subfield of F ′−1, so F ′−1/F−1 is unramified.
Let S±1 denote the full subcategory S(ρ) consisting of Z3[G3]-modules X for

which there exists a finite flat OF ′±1
-group scheme (G, {[g]}) with descent data for

F ′±1/Q3 such that X ∼= (G, {[g]})Q3(Q3) as a Z3[G3]-module. By Lemma 4.1.3 we
see that S±1 is closed under finite products, subobjects and quotients. Using Tate’s
theorem on the uniqueness of extensions of 3-divisible groups from F ′±1 to OF ′±1

(Theorem 4 of [T]), we see that the map RV,Z3 →→ R
τ±1
V,Z3

factors through R
ε,S±1
V,Z3

.
Thus, Theorem 2.1.2 follows from the following result which we will prove in §7.

Theorem 4.4.1. dimH1
S±1

(G3, ad0 ρ) ≤ 1.
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4.5. Reduction steps for Theorem 2.1.4. We now begin the proof of Theorem
2.1.4. Making an unramified twist, we may suppose that ρ has the form(

ω ∗
0 1

)
.

We may also suppose that O = Z3.
Let F ′±3 denote the degree 12 abelian extension of Q3(

√
±3) with norm subgroup

in Q3(
√
±3)× topologically generated by ±3, 4 and 1 + 3

√
±3. Note that F ′±3/Q3

is Galois. We have an isomorphism

Gal(F ′±3/Q3(
√
±3)) ∼= C2 × C2 × C3.

Let γ2
4 ∈ IF ′±3/Q3(

√
±3) be the unique element of order 2. (In later applications

this will be the square of an element of order 4 in Gal(F ′±3/Q3).) We also let F±3

denote the fixed field of a Frobenius lift of order 2, so F±3/Q3 is totally ramified.
We will let I±3 denote the two-sided ideal of W (F9)[F,V][Gal(F ′±3/Q3)] gener-

ated by
• F + V,
• and [γ2

4 ] + 1.
Let S±3 denote the full subcategory of S(ρ) consisting of objects X for which we

can find an object (G, {[g]}) of FDF ′±3/Q3,I±3 such that X ∼= (G, {[g]})Q3(Q3) as a
Z3[G3]-module. By Lemma 4.1.3, we see that S±3 is closed under finite products,
subobjects and quotients.

Now choose a finite extensionK/Q3 and continuous map of rings f : RV,Z3 → Q3

such that the corresponding representation ρ : G3 → GL2(OK) is of type τ±3. Let
G be the corresponding 3-divisible group over Q3. By Tate’s theorem (Theorem
4 of [T]), the base change of G to F ′±3 has a unique extension to a 3-divisible
group G over OF ′±3

. By the uniqueness of this extension, it is also equipped with
descent data {[g]} relative to F ′±3/Q3 and with an action of OK , compatible with
the canonical structure on the generic fibre.

Let γ̃2 ∈ Gal(Q3(
√
±3)ab/Q3(

√
±3)) correspond to

√
±3. We will use the no-

tation of Appendix B of [CDT] (in particular WD and D′(G)), except that we will
write F and F′ in place of φ and φ′. Then
• WD(ρ)(γ2

4) = −1,
• WD(ρ)(γ̃2

2), but not WD(ρ)(γ̃2), is a scalar,
• and det WD(ρ)(γ̃2) = 3.

Thus WD(ρ)(γ̃2
2) = −3. Hence on D′(G)⊗Q3 we have

• [γ2
4 ] = WD(ρ)(γ2

4 ) = −1,
• and (F′)2 = [γ̃2

2 ] WD(ρ)(γ̃−2
2 ) = −1/3.

We conclude that on D(G) we have
• [γ2

4 ] = −1,
• F2 = −3,
• and so F = −V.

In particular I±3 annihilates D(G) and for all m ≥ 1 the map (f mod 3m) : RV,Z3 →
OK/(3m) factors through R

ε,S±3
V,Z3

. Hence, the map RV,Z3 →→ R
τ±3
V,Z3

factors through

R
ε,S±3
V,Z3

and Theorem 2.1.4 follows from the following result which we will prove in
§8.
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Theorem 4.5.1. dimH1
S±3

(G3, ad0 ρ) ≤ 1.

4.6. Reduction steps for Theorem 2.1.6. We now begin the proof of Theorem
2.1.6. We may suppose that O = Z3.

Let F ′i denote the degree 12 abelian extension of Q3(
√
−3) with norms the

subgroup of Q3(
√
−3)× topologically generated by −3, 4, 1 + 9

√
−3 and 1 +

(1 − 3ı̃)
√
−3, where ı̃ is the unique lift of i to Z with 0 ≤ ı̃ < 3. Note that

F ′i/Q3 is Galois. We identify

Gal(F ′i /Q3(
√
−3)) ∼= 〈γ2〉 × 〈γ3〉 × 〈γ2

4〉,

where γ2 corresponds to
√
−3 and has order 2, γ3 corresponds to 1 − 3

√
−3 and

has order 3, and γ2
4 corresponds to −1 and has order 2. We also let Fi denote the

fixed field of {1, γ2}, so Fi/Q3 is totally ramified.
We will let Ii denote the two-sided ideal of W (F9)[F,V][Gal(F ′i/Q3)] generated

by
• F + V,
• [γ2

4 ] + 1,
• and ([γ3]− [γ−1

3 ])[γ2]− F.

We remark that the ideal Ii is unchanged if we change our choice of
√
−3.

In §9 we will prove the following result (and explain the unusual looking nota-
tion).

Theorem 4.6.1. There are objects (G, {[g]})(2,6), (G, {[g]})(6,10), (G, {[g]})(2,10)

and (G, {[g]})(6,6) in the category FDF ′i/Q3,Ii with the following properties.

(1) For (r, s)=(2, 6), (6, 10), (2, 10) and (6, 6) we have ρ ∼= ((G, {[g]})(r,s))Q3(Q3)
as G3-modules.

(2) For (r, s) = (2, 6), (6, 10), (2, 10) and (6, 6) there is a short exact sequence
in FDF ′i/Q3,Ii ,

(0) −→ (G1, {[g]})(r,s) −→ (G, {[g]})(r,s) −→ (G2, {[g]})(r,s) −→ (0),

such that (G1, {[g]})(r,s) and (G2, {[g]})(r,s) have order 3 and for all a, b ∈
{1, 2} (possibly equal) the natural map

Ext1
FDF ′/Q3,(Ii,3)

((Ga, {[g]})(r,s), (Gb, {[g]}))(r,s)

−→ Ext1
F3[GQ3 ]((Ga, {[g]})(r,s),Q3, (Gb, {[g]})(r,s),Q3)

is injective.
(3) If k/F3 is a finite field extension and if (G, {[g]}) is an object of FDF ′i/Q3,Ii

with an action of k such that (G, {[g]})Q3(Q3) is isomorphic to ρ ⊗ k, then
for some (r, s) = (2, 6), (6, 10), (2, 10) or (6, 6) the object (G, {[g]}) of
FDF ′i/Q3,Ii is weakly filtered by {(G1, {[g]})(r,s), (G2, {[g]})(r,s)}.

(4) For (r, s) = (2, 6), (6, 10) and (2, 10) we have F = 0 on D(G(r,s)), while
F 6= 0 on D(G(6,6)).

Note that for all a, b (possibly equal), we must have

Hom((Ga, {[g]})(r,s), (Gb, {[g]})(r,s)) = Hom((Ga, {[g]})(r,s),Q3, (Gb, {[g]})(r,s),Q3)

=
{

0 if a 6= b,
F3 if a = b.
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For (r, s) = (2, 6), (6, 10), (2, 10) and (6, 6), we let Si,(r,s) denote the full subcat-
egory of S(ρ) consisting of objects X which are isomorphic to (H, {[g]})Q3 for some
object (H, {[g]}) of FDF ′i/Q3,Ii,{(G,{[g]})(r,s)}. By Lemma 4.2.2, Corollary 4.2.5 and
Theorem 4.6.1 we see that Si,(r,s) is closed under finite products, S(ρ)-subobjects
and S(ρ)-quotients. In §9 we will also prove the following two results.

Theorem 4.6.2. For (r, s) = (2, 6), (6, 10), (2, 10) and (6, 6) we have

dimH1
Si,(r,s)

(G3, ad0 ρ) ≤ 1.

Theorem 4.6.3. For (r, s) = (2, 6), (6, 10) and (2, 10) and for any N ≥ 1 there
exists a continuous representation

ρN : GQ3 −→ GL2(F3[[T ]]/(TN))

such that
• det ρN = ε,
• for some object (GN , {[g]}) of FDF ′i/Q3,(Ii,F),{(G,{[g]})(r,s)} we have

ρN ∼= (GN , {[g]})Q3(Q3)

(where (Ii,F) denotes the two-sided ideal of W (F9)[F,V][Gal(F ′i/Q3)] gen-
erated by Ii and F),
• and ρ mod (T 2) 6∼= ρ⊗ k[[T ]]/(T 2).

(We are not asserting that ρN and GN are independent of the choice of (r, s),
though in fact we believe that ρN is independent of this choice.)

From these results we can easily draw the following consequence.

Corollary 4.6.4. For (r, s) = (2, 6), (6, 10) and (2, 10) we have

R
ε,Si,(r,s)
V,Z3

∼= F3[[T ]].

Proof. By Theorems 4.6.2 and 4.6.3 we see that Rε,Si,(r,s)V,Z3
/(3) ∼= F3[[T ]] and that if

R is an Artinian quotient of Rε,Si,(r,s)V,Z3
/(3) corresponding to a (necessarily unique;

see Lemma 4.2.3) object (G, {[g]}) of FDF ′i/Q3,(Ii,3),{(G,{[g]})(r,s)}, then F = 0 on
D(G).

Now suppose R is any Artinian quotient of Rε,Si,(r,s)V,Z3
which corresponds to an

object (G, {[g]}) of the category FDF ′i/Q3,Ii,{(G,{[g]})(r,s)}. Let G = (G, {[g]})Q3 and
consider the exact sequences

(0) −→ G[3] −→ G −→ 3G −→ (0)

and

(0) −→ 3G −→ G −→ G/3G −→ (0).

By Lemma 4.2.3, we have exact sequences

(G, {[g]}) −→ (K, {[g]}) −→ (0)

and

(0) −→ (K, {[g]}) −→ (G, {[g]}) −→ (H, {[g]}) −→ (0)

in FDF ′i/Q3,Ii,{(G,{[g]})(r,s)} such that the composite

(G, {[g]})→→ (K, {[g]}) ↪→ (G, {[g]})



THE MODULARITY OF ELLIPTIC CURVES OVER Q 879

is multiplication by 3. In particular we have exact sequences

(0) −→ D(K) −→ D(G)

and

(0) −→ D(H) −→ D(G) −→ D(K) −→ (0),

such that the composite

D(G)→→ D(K) ↪→ D(G)

is multiplication by 3. As F = −V = 0 on D(H) we see that F and V factor
through maps D(K) → D(G), i.e. we can write F = 3F′ and V = 3V′ for some
endomorphisms F′ and V′ of D(G). Thus 3 = 9F′V′ equals zero on D(G)/9D(G)
and so D(K) = 0. We conclude that K = (0), so that 3G = (0) and 3R = (0).

Thus

R
ε,Si,(r,s)
V,Z3

= R
ε,Si,(r,s)
V,Z3

/(3) = F3[[T ]].

We now modify the argument in §4.4. Choose a finite extension K/Q3 and
continuous map of rings f : RV,Z3 → Q3 such that the corresponding representation
ρ : G3 → GL2(OK) is of extended type τ ′i . Let G be the corresponding 3-divisible
group over Q3. By Tate’s theorem (Theorem 4 of [T]) G has a unique extension
to a 3-divisible group G over OF ′i . By the uniqueness of this extension, G comes
equipped with descent data {[g]} relative to F ′i/Q3 and with an action of OK ,
compatible with the canonical structure on the generic fibre.

Let γ̃2 ∈ Gal(Q3(
√
−3)ab/Q3(

√
−3)) correspond to

√
−3. We will use the no-

tation of Appendix B of [CDT] (in particular WD and D′(G)), except that we will
write F and F′ in place of φ and φ′. Then
• WD(ρ)(γ2

4) = −1,
• WD(ρ)(γ̃2

2) = −3,
• and WD(ρ)(γ̃2)(WD(ρ)(γ3)−WD(ρ)(γ3)−1) = 3.

Thus on D′(G)⊗Q3 we have
• [γ2

4 ] = WD(ρ)(γ2
4 ) = −1,

• (F′)2 = [γ̃2
2 ] WD(ρ)(γ̃−2

2 ) = −1/3,
• and [γ2]([γ3]− [γ−1

3 ]) = 3F′.
We conclude that on D(G) we have
• [γ2

4 ] = −1,
• F2 = −3,
• and [γ2]([γ−1

3 ]− [γ3]) = 3F−1.
Hence also
• F = −V,
• and [γ2]([γ3]− [γ−1

3 ]) = F.
In particular Ii annihilates D(G).

Thus (G[℘K ], {[g]}) is an object of FDF ′i/Q3,Ii such that (G[℘K ], {[g]})Q3 corre-
sponds to ρ⊗OK/℘K . By Theorem 4.6.1 we see that (G[℘K ], {[g]}) is weakly filtered
by {(G1, {[g]})(r,s), (G2, {[g]})(r,s)} for some (r, s) = (2, 6), (6, 10), (2, 10) or (6, 6).
We will prove (r, s) = (6, 6). By Theorem 4.6.1 and Lemma 4.2.4, (G[℘K ], {[g]})
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is strongly filtered by {(G1, {[g]})(r,s), (G2, {[g]})(r,s)}. As (G[℘K ], {[g]})Q3 is fil-
tered by ρ, using Theorem 4.6.1, we see that (G[℘K ], {[g]}) is weakly filtered by
(G, {[g]})(r,s). For all m ≥ 1 we have

(G[℘mK ]/G[℘m−1
K ], {[g]}) ∼−→ (G[℘K ], {[g]}),

so for all m ≥ 1 the object (G[℘mK ], {[g]}) is also weakly and hence strongly filtered
by (G, {[g]})(r,s) for the same (r, s). Thus, for all m ≥ 1, the map (f mod pm) :

RV,Z3 → OK′/(3m) factors through R
ε,Si,(r,s)
V,Z3

. By Corollary 4.6.4 we see that

(r, s) = (6, 6), so the map RV,Z3 →→ R
τ ′i
V,Z3

factors through R
ε,Si,(6,6)

V,Z3
and Theo-

rem 2.1.6 follows from Theorem 4.6.2.

4.7. Some Galois cohomology. In this section we will begin the proofs of The-
orems 4.4.1, 4.5.1 and 4.6.2. We will let S denote one of the categories S±1, S±3 or
Si,(r,s). We will let χ = ω in the cases S±1 and χ = 1 otherwise. In all cases

ρ ∼
(
χω ∗
0 χ

)
is très ramifié.

The maps ω⊗χ ↪→ ρ and ρ→→ χ induce a commutative diagram with exact rows
and columns:

(0)
↓

Ext1
F3[G3](ω ⊗ χ, ω ⊗ χ)

↓
Ext1

F3[G3](ρ, ρ) −→ Ext1
F3[G3](ω ⊗ χ, ρ)

↓ ↓
(0) −→ Ext1

F3[G3](χ, χ) −→ Ext1
F3[G3](ρ, χ) −→ Ext1

F3[G3](ω ⊗ χ, χ)

We will let θ0 denote the composite map

Ext1
F3[G3](ρ, ρ) −→ Ext1

F3[G3](ω ⊗ χ, χ),

and θ1 (resp. θω) the induced mapping

ker θ0 −→ Ext1
F3[G3](χ, χ)

(resp.

ker θ0 −→ Ext1
F3[G3](ω ⊗ χ, ω ⊗ χ)).

We will also let θ1 (resp. θω) denote the induced mapping

ker θ0 −→ Ext1
F3[G3](χ, χ) −→ Ext1

F3[I3](χ, χ)

(resp.

ker θ0 −→ Ext1
F3[G3](ω ⊗ χ, ω ⊗ χ) −→ Ext1

F3[I3](ω ⊗ χ, ω ⊗ χ)).
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If we reinterpret our Ext-groups as cohomology groups and use the isomorphism
ρ∨ ∼ ρ⊗ ω, our diagram becomes:

(0)
↓

H1(G3,F3)
↓

H1(G3, ad ρ) −→ H1(G3, ρ⊗ ω ⊗ χ)
↓ ↓

(0) −→ H1(G3,F3) −→ H1(G3, ρ⊗ ω ⊗ χ) −→ H1(G3, ω)

Fix a basis of F2
3 so that ρ takes the form(

ω ⊗ χ ∗
0 χ

)
.

Then any extension of ρ by ρ in characteristic 3 may be represented by a matrix(
ρ φρ
0 ρ

)
,

where the cocycle

φ =
(
φ11 φ12

φ21 φ22

)
∈ Z1(G3, ad ρ)

represents the class of this extension in Ext1
F3[G3](ρ, ρ) ∼= H1(G3, ad ρ). Moreover

• θ0([φ]) = [φ21] ∈ H1(G3, ω),
• if φ21 =0, then θ1([φ])=[φ22]∈H1(G3,F3) and θω([φ])=[φ11]∈H1(G3,F3),
• and [φ] ∈ H1(G3, ad0 ρ) if and only if 0 = [φ11 + φ22] ∈ H1(G3,F3).

In particular we have θ1 = −θω on H1(G3, ad0 ρ) ∩ ker θ0.
We have an exact sequence

(0) −→ ρ⊗ χ −→ ad0 ρ −→ ω −→ (0),

where the first map sends (
x
y

)
7−→

(
−y/2 x

0 y/2

)
and the second map sends (

a b
c −a

)
7−→ c.

Thus we get an exact sequence

(0) −→ H1(G3, ρ⊗ χ) −→ H1(G3, ad0 ρ) θ0−→ H1(G3, ω)

and so we may identify H1(G3, ad0 ρ)∩ker θ0 with H1(G3, ρ⊗χ). We also have an
exact sequence

(0) −→ ω −→ ρ⊗ χ −→ 1 −→ (0),(4.7.1)

which gives rise to an exact sequence

(0) −→ F3 −→ H1(G3, ω) −→ H1(G3, ρ⊗ χ) −→ H1(G3,F3) −→ H2(G3, ω).

If we identify H1(G3, ρ ⊗ χ) with H1(G3, ad0 ρ) ∩ ker θ0, then the latter map
H1(G3, ρ⊗ χ)→ H1(G3,F3) is identified with θω = −θ1.
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Lemma 4.7.1. The sequence

(0) −→ F3 −→ H1(G3, ω) −→ H1(G3, ρ⊗ χ) −→ H1(I3,F3)

is exact.

Proof. The key point is that ρ is très ramifié (compare with Proposition 6.1 of
[Di1]). It suffices to show that the composite

H1(GF3 ,F3) −→ H1(G3,F3) −→ H2(G3, ω)

is injective. Suppose that x ∈ H1(G3,F3) maps to zero in H2(G3, ω); then by Tate
duality x is annihilated by the image of the map H0(G3,F3)→ H1(G3, ω) coming
from the short exact sequence

(0) −→ ω −→ (ρ⊗ χ)∨ ⊗ ω −→ 1 −→ (0)

Cartier dual to (4.7.1). As (ρ⊗ χ)∨ ⊗ ω is très ramifié we see that the image of

H0(G3,F3) −→ H1(G3, ω) ∼= Q×3 /(Q
×
3 )3

is not contained in Z×3 /(Z
×
3 )3. Thus

x ∈ Hom(Q×3 /Z
×
3 ,F3) ∼= H1(GF3 ,F3) ⊂ H1(G3,F3) ∼= Hom(Q×3 ,F3)

must be zero (see Proposition 3 of §1 of Chapter XIV of [Se1]).

Corollary 4.7.2. The maps

θ1 : H1(G3, ad0 ρ) ∩ ker θ0 −→ H1(I3,F3)

and

θω : H1(G3, ad0 ρ) ∩ ker θ0 −→ H1(I3,F3)

have the same kernel and this has dimension 1 over F3.

Theorems 4.4.1, 4.5.1 and 4.6.2 now follow from the following results, which
we will prove later. One advantage of these new formulations is that, with one
exception, they refer only to Ext1

S(ρ, ρ) and make no mention of the determinant
or ad0 ρ, concepts which we found tricky to translate into the language of integral
models.

Theorem 4.7.3. (1) θ0 : Ext1
S±1

(ρ, ρ)→ H1(G3, ω) is the zero map.
(2) θω : Ext1

S−1
(ρ, ρ)→ H1(I3,F3) is the zero map.

(3) θω : H1
S1

(G3, ad0 ρ)→ H1(I3,F3) is the zero map.

Theorem 4.7.4. (1) θ0 : Ext1
S±3

(ρ, ρ)→ H1(G3, ω) is the zero map.
(2) θω : Ext1

S±3
(ρ, ρ)→ H1(I3,F3) is the zero map.

Theorem 4.7.5. Suppose that i ∈ Z/3Z and (r, s) = (2, 6), (6, 10), (2, 10) or
(6, 6).

(1) θ0 : Ext1
Si,(r,s)

(ρ, ρ)→ H1(G3, ω) is the zero map.
(2) Either θω : Ext1

Si,(r,s)
(ρ, ρ)→ H1(I3,F3) or θ1 : Ext1

Si,(r,s)
(ρ, ρ)→ H1(I3,F3)

is the zero map.

The deduction of Theorems 4.4.1, 4.5.1 and 4.6.2 from these results is immediate.
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5. Breuil modules

In this section we recall some results from [Br2] (see also the summary [Br1]) and
give some slight extensions of them. Three of the authors apologise to the fourth
for the title of this section, but they find that the term “Breuil module” is much
more convenient than “filtered φ1-module”.

Throughout this section, ` will be an odd rational prime and R will be a com-
plete discrete valuation ring with fraction field F ′ of characteristic zero and perfect
residue field k of characteristic `.

5.1. Basic properties of Breuil modules. We will fix a choice of uniformiser π
of R and let

Eπ(u) = ue − `Gπ(u)

be the Eisenstein polynomial which is the minimal polynomial of π over the fraction
field of W (k), so Gπ(u) ∈W (k)[u] is a polynomial with unit constant term Gπ(0) ∈
W (k)× (and degree at most e− 1). The `th power map on k[u]/ue` is denoted φ,
and we define

cπ = −φ(Gπ(u)) ∈ (k[u]/ue`)×.(5.1.1)

It is very important to keep in mind that these definitions, as well as many of the
definitions below, depend on the choice of the uniformiser π.

The category of `-torsion Breuil modules (or “`-torsion Breuil modules over R”,
or simply “Breuil modules” or “Breuil modules over R”) is defined to be the cate-
gory of triples (M,M1, φ1), where
• M is a finite free k[u]/ue`-module,
• M1 is a k[u]/ue`-submodule of M containing ueM,
• φ1 : M1 → M is φ-semi-linear and has image whose k[u]/ue`-span is all of

M.
(A morphism (M,M1, φ1) → (N,N1, ψ1) is a morphism f : M → N of k[u]/ue`-
modules such that f M1 ⊂ N1 and ψ1 ◦ f = f ◦ φ1 on M1.) We define the rank of
(M,M1, φ1) to be the rank of M over k[u]/ue`. Breuil modules form an additive
category (not abelian in general) in the obvious manner and this category does not
depend on the choice of π. It is denoted φ1−mod

R
or φ1−mod

F ′
. The induced

φ-semi-linear map of k-vector spaces

φ1 : M1 /uM1 −→M /uM

is bijective (because it is onto and # M1 /uM1 = # M1[u] ≤ # M[u] = # M /uM).
In particular, a map of Breuil modules

(M,M1, φ1) −→ (M′,M′1, φ
′
1)

is an isomorphism if and only if the map M→M′ on underlying k[u]/ue`-modules
is an isomorphism.

Lemma 5.1.1. Suppose that

0 −→M′ −→M −→M′′ −→ 0

is a complex of Breuil modules. The following are equivalent.
(1) The underlying sequence of k[u]/ue`-modules is exact.
(2) The underlying sequence of k[u]/ue`-modules is exact as is the sequence

0 −→M′1 −→M1 −→M′′1 −→ 0.
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(3) The complex of vector spaces

0 −→M′ /u −→M /u −→M′′ /u −→ 0

is exact.

Proof. The second statement clearly implies the first. The first implies the third as
Breuil modules are free over k[u]/ue`. It remains to show that the third condition
implies the second. Using Nakayama’s lemma and the freeness of Breuil modules
we see that

0 −→M′ −→M −→M′′ −→ 0

is an exact sequence of k[u]/ue`-modules. Using the bijectivity of φ1, we see that
the natural map

f1 : M1 −→M′′1

is surjective modulo u and therefore is surjective. It remains to check that the
inclusion of k[u]/ue`-modules M′1 ⊆ ker(f1) is an equality. Since f1 is compatible
with f : M→M′′ via the inclusions M1 ⊆M, M′′1 ⊆M′′ and also via the maps φ1

and φ′′1 , it is obvious that ker(f1) ⊆ ker(f) = M′ and that φ1(ker(f1)) ⊆M′. Since
ker(f1) contains M′1, which in turn contains ueM′, we see that (M′, ker(f1), φ1) is
a Breuil module! Then (M′,M′1, φ

′
1) → (M′, ker(f1), φ1) defined via the identity

map on M′ is a map of Breuil modules which is an isomorphism on underlying
k[u]/ue`-modules, so it must be an isomorphism of Breuil modules. This forces
ker(f1) = M′1.

When the equivalent conditions of this lemma are met we call the sequence of
Breuil modules

0 −→M′ −→M −→M′′ −→ 0

exact.
For any Breuil module (M,M1, φ1), we define the Frobenius endomorphism φ :

M→M by

φ(m) =
1
cπ
φ1(uem),(5.1.2)

where cπ is defined as in (5.1.1). Note that this depends on our choice of uniformiser.
We let N : W (k)[[u]] → W (k)[[u]] denote the unique continuous W (k)-linear

derivation satisfying Nu = u, i.e. N = u d
du . This operator “extends” to any Breuil

module. More precisely, we have the following lemma.

Lemma 5.1.2. Let M be an object of φ1−mod
R

. There is a unique additive opera-
tor N : M→M (the monodromy operator) satisfying the following three conditions:

(1) N(sx) = N(s)x+ sN(x), s ∈ k[u]/ue`, x ∈M,
(2) N ◦ φ1 = φ ◦N on M1,
(3) N(M) ⊂ uM.

Moreover, any morphism of Breuil modules M→M′ automatically commutes with
N .

Proof. Let’s start with unicity. Recall we have an isomorphism k[u]/ue` ⊗k[u`]/ue`

φ1(M1) ∼→M ([Br2], 2.1.2.1). Suppose there are two operators N and N ′ satisfying
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(1), (2) and (3) above, so ∆ = N − N ′ is k[u]/ue`-linear and satisfies ∆φ1 = φ∆
and ∆(M) ⊂ uM. Thus,

∆φ1(M1) = φ∆(M1) ⊂ φ(uM) ⊂ u`M,

so ∆(M) = ∆(k[u]/ue` ⊗k[u`]/ue` φ1(M1)) ⊂ u`M. Iterating ∆φ1(M1) ⊂ φ∆(M) ⊂
u`

2
M so ∆(M) ⊂ u`

2
M, and so on. As ue` = 0, we get ∆ = 0. For the existence,

let N0 = N ⊗ 1 on

k[u]/ue` ⊗k[u`]/ue` φ1(M1) 'M,

and note N0 satisfies N0(sx) = N(s)x + sN0(x). Call a derivation of M any
additive operator satisfying this relation and define successive derivations of M by
the formula

Nj+1(s⊗ φ1(x)) = N(s)⊗ φ1(x) + sφ(Nj(x)),

for j ≥ 0. Note that Nj+1 is well defined by the following observations.

• N(u`s) = u`N(s) andNj(ux) = ux+uNj(x) imply that Nj+1(u`s⊗φ1(x)) =
Nj+1(s⊗ φ1(ux)).
• If φ1(x) = 0, then x ∈ ueM (see (1) of Lemma 2.1.2.1 of [Br1]) and so
Nj(x) ∈ ueM and φ(Nj(x)) = 0.

As N0(M) ⊂ uM, we have (Nj+1 − Nj)(M) ⊂ u`
j+1

M, so Nj = Nj+1 for j � 0.
This Nj satisfies (1), (2) and (3).

The reason for introducing Breuil modules (and putting the factor c−1
π in the

definition of φ) is the following theorem.

Theorem 5.1.3. (1) Given the choice of uniformiser π for R there is a con-
travariant functor Mπ from finite flat R-group schemes which are killed by `
to φ1−mod

R
and a quasi-inverse functor Gπ.

(2) If G is a finite flat R-group scheme killed by `, then G has rank `r if and only
if Mπ(G) has rank r.

(3) If G is a finite flat R-group scheme killed by `, then there is a canonical
k-linear isomorphism

D(G) ⊗k,Frob` k
∼= Mπ(G)/uMπ(G).

Under this identification, F⊗ Frob` corresponds to φ and V ⊗ Frob−1
` cor-

responds to the composite

VM : M /uM
φ
−1
1−→M1 /uM1 −→M /uM .

(4) If

0 −→ G′ −→ G −→ G′′ −→ 0

is a diagram of finite flat group schemes over R which are killed by ` and if

0 −→Mπ(G′′) −→Mπ(G) −→Mπ(G′) −→ 0

is the corresponding diagram of Breuil modules, then the diagram of finite
flat group schemes is a short exact sequence if and only if the diagram of
Breuil modules is a short exact sequence.
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Proof. See §2.1.1, Proposition 2.1.2.2, Theorem 3.3.7, Theorem 4.2.1.6 and the
proof of Theorem 3.3.5 of [Br2]. In 3.3.5 of [Br2] it is shown that Mπ(G)/uMπ(G)
can be k-linearly identified with the crystalline Dieudonné module of G×k. In 4.2.14
of [BBM] the crystalline Dieudonné module of G×k is identified with D(G)⊗k,Frob`k.
The equivalence of the two notions of exactness can be deduced from the compat-
ibility of Mπ with Dieudonné theory, from Lemma 5.1.1, and from the fact that a
complex of finite flat group schemes over R is exact if and only if its special fibre
is exact (see for example Proposition 1.1 of [deJ]).

5.2. Examples. For 0 ≤ r ≤ e an integer and for a ∈ k×, define a Breuil module
M(r, a) by

• M(r, a) = (k[u]/ue`)e,
• M(r, a)1 = (k[u]/ue`)ure,
• φ1(ure) = ae.

It is easy to check that φ1 is well defined (and uniquely determined by the given
conditions). We will refer to e as the standard generator of M(r, a) and write G(r, a)
for Gπ(M(r, a)). The following lemma is easy to check.

Lemma 5.2.1. (1) Any Breuil module of rank 1 over k[u]/ue` is isomorphic to
some M(r, a).

(2) There is a non-zero morphism M(r, a) → M(r′, a′) if and only if r′ ≥ r,
r′ ≡ r mod ` − 1 and a/a′ ∈ (k×)`−1. All such morphisms are then of the
form e 7→ bu`(r

′−r)/(`−1)e′, where b`−1 = a/a′.
(3) The modules M(r, a) and M(r′, a′) are isomorphic if and only if r = r′ and

a/a′ ∈ (k×)`−1, or equivalently if and only if there are non-zero morphisms
M(r, a)→M(r′, a′) and M(r′, a′)→M(r, a).

(4) If we order the M(r, a) by setting M(r, a) ≥ M(r′, a′) if there is a non-
zero morphism M(r′, a′) → M(r, a), then the set of isomorphism classes of
Mπ(G)’s as G runs over models of a fixed finite flat F ′-group scheme G of
order ` is well ordered.

(5) On M(r, a) we have Ne = 0, so N ◦ φ1 = 0.
(6) G(r, a) is étale (resp. multiplicative) if and only if r = e (resp. r = 0).
(7) G(0, 1) ∼= µ` and G(e,−Gπ(0)) ∼= Z/`Z.
(8) The Cartier dual of G(r,−Gπ(0)) is G(e− r, 1).

Proof. The first three parts are easy computations. For the fourth part note that
two finite flat group schemes G and G′ of order ` over R have isomorphic generic
fibres if and only if there is a non-zero morphism G→ G′ or G′ → G. The fifth part is
another easy computation and the sixth part follows on computing the Dieudonné
module using Theorem 5.1.3.

By 3.1.2 of [Br2] we see that the affine R-algebra of the group scheme attached
to M(r, a) is

R[X ]/(X` +
πe−r ã

Gπ(π)
X),

where ã is a lift of a to W (k). This has constant generic fibre if and only if
−πe−rã/Gπ(π) ∈ F ′ is an (`−1)th power. This occurs if and only if r ≡ e mod `−1
and −a/Gπ(0) ∈ k is an (` − 1)th power. Thus M(e,−Gπ(0)) corresponds to the
étale group scheme Z/`Z over R.
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Next, we show that the group scheme G corresponding to the Breuil module
M(0, 1) is isomorphic to µ`. By using the relation between Breuil modules and
Dieudonné modules (see Theorem 5.1.3) we see that the Dieudonné module of the
closed fibre of G is isomorphic to the Dieudonné module of the closed fibre of µ`.
This forces G

∼→ µ`, since we may consider Cartier duals and observe that a finite
flat R-group scheme G is étale if and only if its special fibre is étale, and then
§18.5.15 of book IV4 of [EGA] may be used.

This establishes the seventh part. The final part follows from parts four and
seven.

Now suppose that 0 ≤ r, s ≤ e are integers and choose a, b ∈ k× and f ∈
umax(0,r+s−e)k[u]/ue`. We can define an extension class

(0) −→M(s, b) −→M(s, b; r, a; f) −→M(r, a) −→ (0)

in φ1−mod
R

by

• M(s, b; r, a; f) = (k[u]/ue`)e⊕ (k[u]/ue`)e′,
• M(s, b; r, a; f)1 = 〈use, ure′ + fe〉,
• φ1(use) = be and φ1(ure′ + fe) = ae′,
• the standard generator of M(s, b) maps to e,
• e maps to 0 and e′ maps to the standard generator in M(r, a).

The following lemma is also easy to check.

Lemma 5.2.2. (1) Any extension of M(r, a) by M(s, b) in φ1−mod
R

is isomor-
phic to M(s, b; r, a; f) for some f ∈ umax(0,r+s−e)k[u]/ue`.

(2) Two such extensions M(s, b; r, a; f) and M(s, b; r, a; f ′) are isomorphic as
extension classes if and only if

f ′ − f = ush− (b/a)urh`

for some h ∈ k[u]/ue`, in which case one such isomorphism fixes e and sends
e′ to e′ − (b/a)h`e.

We remark that f ∈ umax(0,r+s−e)k[u]/ue` is required so that M(s, b; r, a; f)1 ⊃
ueM(s, b; r, a; f). We will write G(s, b; r, a; f) for Gπ(M(s, b; r, a; f)).

We will also need some slight extensions of these results to allow for coefficients.
To this end let k′/F` be a finite extension linearly disjoint from k and write k′k
for the field k′ ⊗F` k. For 0 ≤ r ≤ e an integer and for a ∈ (k′k)×, define a Breuil
module, M(k′; r, a), with an action of k′ by
• M(k′; r, a) = ((k′k)[u]/ue`)e,
• M(k′; r, a)1 = ((k′k)[u]/ue`)ure,
• φ1(ure) = ae.

We will let φ denote the automorphism of k′k[u], which is the identity on k′ and
which raises elements of k[u] to the `th power. The following lemma is easy to
check.

Lemma 5.2.3. (1) Any Breuil module with an action of k′ which is free of rank
[k′ : k] over k[u]/ue` is isomorphic to some M(k′; r, a).

(2) There is a non-zero morphism M(k′; r, a)→M(k′; r′, a′) if and only if r′ ≥ r,
r′ ≡ r mod `−1 and a/a′ ∈ φ(b)/b for some b ∈ (k′k)×. All such morphisms
are then of the form e 7→ b′u`(r

′−r)/(`−1)e′, where b ∈ (k′k)× and φ(b′)/b′ =
a/a′.
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(3) The modules M(k′; r, a) and M(k′; r′, a′) are isomorphic if and only if r = r′

and a/a′ ∈ ((k′k)×)φ−1.
(4) On M(k′; r, a) we have Ne = 0 and so N ◦ φ1 = 0.
(5) Gπ(M(k′; r, a)) is étale (resp. multiplicative) if and only if r = e (resp.

r = 0).

Now choose 0 ≤ r, s ≤ e integers, a, b ∈ (k′k)× and f ∈ umax(0,r+s−e)(k′k)[u]/ue`.
We define an extension class

(0) −→M(k′; s, b) −→M(k′; s, b; r, a; f) −→M(k′; r, a) −→ (0)

in φ1−mod
R

with an action of k′ by

• M(k′; s, b; r, a; f) = ((k′k)[u]/ue`)e⊕ ((k′k)[u]/ue`)e′,
• M(k′; s, b; r, a; f)1 = 〈use, ure′ + fe〉,
• φ1(use) = be and φ1(ure′ + fe) = ae′,
• the standard generator of M(k′; s, b) maps to e,
• e maps to 0 and e′ to the standard generators in M(k′; r, a).

Then the following lemma is easy to check.

Lemma 5.2.4. (1) Any extension of M(k′; r, a) by M(k′; s, b) in φ1−mod
R

with
a compatible action of k′ is isomorphic to M(k′; s, b; r, a; f) for some f ∈
umax(0,r+s−e)(k′k)[u]/ue`.

(2) Two such extensions M(k′; s, b; r, a; f) and M(k′; s, b; r, a; f ′) are isomorphic
(as extensions) if and only if

f ′ − f = ush− (b/a)urφ(h)

for some h ∈ (k′k)[u]/ue`, in which case one such isomorphism fixes e and
sends e′ to e′ − (b/a)φ(h)e.

We will write G(k′; r, a; s, b; f) and G(k′; r, a) for Gπ(M(k′; r, a; s, b; f)) and
Gπ(M(k′; r, a)) respectively.

5.3. Relationship to syntomic sheaves. Let us first recall some of the notations
of [Br1] and [Br2]. Let Spf(R)syn be the small `-adic formal syntomic site over R,
S the `-adic completion of W (k)[u, u

ie

i! ]i∈N, Sn = S/`nS, En = Spec(Sn) and for
any X ∈ Spf(R)syn:

Ocrisn,π (X) = H0((Xn/En)cris,OXn/En),

where Xn = X ×R R/`n is viewed over En via the thickening (Spec(R/`n) ↪→
En, u 7→ π). It turns out Ocrisn,π is the sheaf of Sn-modules on Spf(R)syn associated
to the presheaf (cf. the proof of Lemma 2.3.2 in [Br2]):

X 7→
(
Wn(k)[u]⊗φn,Wn(k) Wn(Γ(X1,OX1))

)DP
=
(

(Wn(k)[u]/ue`
n

)⊗φn,Wn(k) Wn(Γ(X1,OX1))
)DP

.

(5.3.1)

Here, the subscript “φn” means we twist by the nth power of the Frobenius when
sending Wn(k) to Wn(k)[u] and the exponent “DP” means we take the divided
power envelope with respect to the kernel of the canonical map:

Wn(k)[u]⊗φn,Wn(k) Wn(Γ(X1,OX1)) −→ Γ(Xn,OXn)
s(u)⊗ (w0, ..., wn−1) 7−→ s(π)(ŵ`

n

0 + `ŵ`
n−1

1 + ...+ `n−1ŵ`n−1),
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where ŵi is a local lifting of wi, these divided powers being required to be compatible
with the usual divided powers γi(`x) = `i

i! x
i (i.e. we take the divided power envelope

relative to the usual divided power structure on the maximal ideal of Wn(k)). Note
that the latter map induces a canonical surjection of sheaves of Sn-modules on
Spf(R)syn:

Ocrisn,π → On,

where On(X) = Γ(Xn,OXn). We denote by Jcrisn,π the kernel of this surjection. For
any n, let φ : Sn → Sn be the unique lifting of Frobenius such that φ(u) = u`

and φ(u
ie

i! ) = uie`

i! . The sheaf Ocrisn,π is equipped with the crystalline Frobenius φ,
which is also induced by the map s(u)⊗ (w0, ..., wn−1) 7→ φ(s(u)) ⊗ (w`0, ..., w`n−1)
on the above presheaf (5.3.1). (Here φ on Wn(k)[u] is Frobenius on Wn(k) and
takes u to u`.) Since ` divides φ(x) − x`, we get φ(Jcrisn,π ) ⊂ `Ocrisn,π for all n, so we
can define an S1-linear φ1 = φ

` |Jcrisn,π
by the usual “flatness” trick (see §2.3 of [Br2]).

Let N : Sn → Sn be the unique Wn(k)-linear derivation such that N(u) = u and
N(γi(ue)) = eueγi−1(ue) = ieγi(ue). Finally define:

N : Ocrisn,π → Ocrisn,π

to be the unique Wn(k)-linear morphism of sheaves which on the presheaf (5.3.1) is
given by N(γi(

∑
s⊗w)) = (

∑
N(s)⊗w)γi−1(

∑
s⊗w). Note that N ◦φ = `φ◦N ,

so N ◦ φ1 = φ ◦N on Jcrisn,π .
Let G be a finite flat group scheme over R, which is killed by `. Viewing G as a

formal scheme over R, it is an object in Spf(R)syn. Viewing it as a sheaf of groups
on Spf(R)syn, its associated Breuil module is defined as:

(1) Mπ(G) = Homsheaves of groups(G,Ocris1,π )⊗S1 k[u]/ue`,
(2) Mπ(G)1 = image of Homsheaves of groups(G, Jcris1,π )⊗S1 k[u]/ue` in Mπ(G),
(3) φ1 is induced by φ1 ⊗ φ,

where the S1-module structures are induced by the compatible S1 actions on Ocris1,π

and Jcris1,π (see §3.2 and §2.1.2.2 of [Br2]). Here S1 → k[u]/ue` is the surjection that
sends u to u, γi(ue) to γi(ue) for i < l and γi(ue) to 0 for i ≥ l.

We record for future reference the following straightforward observation.

Lemma 5.3.1. If we denote by ∆ (resp. pri, i ∈ {1, 2}) the coproduct (resp. the
two projections)

G×Spec(R) G→ G,

then for any sheaf of commutative groups F on Spf(R)syn we have:

Homsheaves of groups(G,F) = {x ∈ F(G) | (∆∗ − pr∗1 − pr∗2)(x) = 0}.

The operator N on Ocris1,π induces an operator N on Homsheaves of groups(G,Ocris1,π ),
hence on Mπ(G).

Lemma 5.3.2. The above operator N on Mπ(G) coincides with the operator N
defined in Lemma 5.1.2.

Proof. By unicity in Lemma 5.1.2, we only have to prove that N satisfies N(Mπ(G))
⊂ uMπ(G), since the other conditions are automatically satisfied. It’s enough to
prove that N(φ1(x)) = (φ◦N)(x) ∈ uMπ(G) for any x ∈Mπ(G)1. But ue`−`φ◦N =
0 on Ocris1,π because it is so on (k[u]⊗Γ(X1,OX1))DP . Thus one also has ue`−`φ◦N =
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0 on Homgroups(G,Ocris1,π ), hence on Mπ(G). This implies φ◦N(Mπ(G)) ⊂ u`Mπ(G) ⊂
uMπ(G) since Mπ(G) is free over k[u]/ue`.

5.4. Base change. In this section we will examine the relationship of the functor
Mπ with two instances of base change. First we consider unramified base change.

Let k′ be a perfect field of characteristic ` which is an extension of k and R′ =
R ⊗W (k) W (k′). Choose π′ = π ⊗ 1 as uniformiser in R′. If X ∈ Spf(R)syn, let
X′ = Spf(R′)×Spf(R) X and define:

Ocris
′

n,π (X) = Ocrisn,π′(X
′) and Jcris

′

n,π (X) = Jcrisn,π′(X
′).

As in the proof of 2.3.2 of [Br2], we have that Ocris
′

n,π is the sheaf on Spf(R)syn

associated to the presheaf:

X 7→
(
Wn(k′)[u]⊗φn,Wn(k′) Wn(Γ(X′1,OX′1

))
)DP

=
(
Wn(k′)[u]⊗φn,Wn(k′) Wn(k′ ⊗k Γ(X1,OX1))

)DP
.

Define S′n as Sn but with k′ instead of k. There is a canonical isomorphism of
sheaves:

Ocrisn,π ⊗Sn S′n = Ocrisn,π ⊗Wn(k) Wn(k′) ∼→ Ocris
′

n,π

coming from the obvious isomorphism:

(Wn(k′)[u]/ue`
n

)⊗φn,Wn(k) Wn(Γ(X1,OX1))
∼→ (Wn(k′)[u]/ue`

n

)⊗φn,Wn(k′) Wn(k′ ⊗k Γ(X1,OX1))

and one easily sees it induces an isomorphism Jcrisn,π ⊗Wn(k) Wn(k′) ∼→ Jcris
′

n,π . More-
over, we have the following obvious lemma.

Lemma 5.4.1. The diagram of sheaves on Spf(R)syn:

Jcrisn,π ⊗Wn(k) Wn(k′) ∼→ Jcris
′

n,π

↓ φ1⊗φ φ1 ↓
Ocrisn,π ⊗Wn(k) Wn(k′) ∼→ Ocris

′

n,π

is commutative.

Using the identification from §5.3, Lemma 5.3.1 and Lemma 5.4.1 (for n = 1),
together with obvious functorialities, we obtain after tensoring by k[u]/ue` the
following corollary.

Corollary 5.4.2. Let G be a finite flat group scheme over R, which is killed by `.
Let k′/k be an extension of fields with k′ perfect and let π′ = π ⊗ 1, a uniformiser
for R′ = R ⊗W (k) W (k′). Then there is a canonical isomorphism in the category
φ1−mod

R(
Mπ(G) ⊗k k′,Mπ(G)1 ⊗k k′, φ1 ⊗ φ

)
∼→
(
Mπ′(G′),Mπ′(G′)1, φ1

)
compatible with composites of such residue field extensions.

We will now turn to the case of base change by a continuous automorphism
g : R ∼→ R. For any s =

∑
wiu

i ∈ W (k)[[u]], let (g)s =
∑
g(wi)ui and (φ)s =∑

φ(wi)ui, where g and φ act on W (k) through their action on k. Choose Hg(u) ∈
W (k)[[u]] such that g(π) = πHg(π). Notice that Hg(u) ∈ W (k)[[u]]×. Define
ĝ : W (k)[[u]] ∼→W (k)[[u]] by ĝ(

∑
wiu

i) =
∑
g(wi)uiHg(u)i.
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Lemma 5.4.3. There is a unique element gt(u) ∈ W (k)[[u]] such that, if gφ is
defined by gφ(

∑
wiu

i) =
∑
φ(wi)(u`(1 + `gt(u)))i, one has ĝ ◦ gφ = φ ◦ ĝ.

Proof. One has to solve in W (k)[[u]]:

1 + `(g)g t(uHg(u)) =
(
Hg(u)−1

)`
(φ)Hg(u`)

(where the two sides clearly belong to 1 + `W (k)[[u]]). As Hg(u) ∈ W (k)[[u]]×,
there is a unique Kg ∈ uW (k)[[u]]× such that Kg(u)Hg(Kg(u)) = u, so we have

1 + `(g)g t(u) =
(
Hg(Kg(u))−1

)`
(φ)Hg(Kg(u)`).

For any object M of φ1−mod
R

, define gφ1 : M1 →M by the following formula:

gφ1(x) = φ1(x) + gt(u)N(φ1(x))(5.4.1)

where N is as in Lemma 5.1.2.
For any X ∈ Spf(R)syn, let gX = Spf(R)×g∗,Spf(R) X and define:

Ocris,(g)n,π (X) = Ocrisn,π (gX) and Jcris,(g)n,π (X) = Jcrisn,π (gX).

Then O
cris,(g)
n,π is the sheaf on Spf(R)syn associated to the presheaf:

X 7→
(
Wn(k)[u]⊗φn,Wn(k) Wn(Γ(gX1,OgX1))

)DP
=

(
Wn(k)[u]⊗φn,Wn(k) Wn(R ⊗g,R Γ(X1,OX1))

)DP
.

Let ĝ : Sn → Sn be the unique ring isomorphism such that

ĝ

(
wi
uei+j

i!

)
= g(wi)

uei+j

i!
Hg(u)ei+j

for 0 ≤ j < e, i ≥ 0. There is a canonical isomorphism of sheaves:

Ocrisn,π ⊗Sn,ĝ Sn
∼−→ Ocris,(g)n,π

coming from the obvious ĝ-semi-linear isomorphism:

(Wn(k)[u]/ue`
n

)⊗φn,Wn(k) Wn(Γ(X1,OX1))
∼−→ (Wn(k)[u]/ue`

n

)⊗φn,Wn(k) Wn(R⊗g,R Γ(X1,OX1))

s⊗ (w0, ..., wn−1) 7−→ ĝ(s)⊗ (1⊗ w0, ..., 1⊗ wn−1)

and one easily sees it induces an isomorphism Jcrisn,π ⊗Sn,ĝ Sn
∼→ J

cris,(g)
n,π .

Define gφ : Sn → Sn as in Lemma 5.4.3 and define:

gφ : Ocrisn,π −→ Ocrisn,π

to be the unique morphism of sheaves which is induced by gφ(γi(
∑
s ⊗ w)) =

γi(
∑

gφ(s) ⊗ φ(w)) on the presheaf (5.3.1) (see §5.3 and note that this is well
defined). Since gφ(Jcrisn,π ) ⊂ `Ocrisn,π , we can define gφ1 = gφ

` |Jcrisn,π
.
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Lemma 5.4.4. The diagram of sheaves on Spf(R)syn :

Jcrisn,π ⊗Sn,ĝ Sn
∼→ J

cris,(g)
n,π

↓ gφ1⊗φ φ1 ↓
Ocrisn,π ⊗Sn,ĝ Sn

∼→ O
cris,(g)
n,π

is commutative. Moreover we have on Jcrisn,π :

gφ1 =
∞∑
i=0

( log(1 + `gt(u))
`

)iN i

i!
◦ φ1,

where N is defined as in §5.3.

Proof. By working modulo `n+1, i.e. with Jcrisn+1,π and gφ, and looking on the above
presheaves, the proof is completely straightforward.

Let G be a finite flat group scheme over R which is killed by `. Note that
thanks to Lemma 5.3.2 and the formula for gφ1 in Lemma 5.4.4, the operator
Mπ(G)1 →Mπ(G) induced by the map gφ1 : Jcrisn,π → Ocrisn,π is precisely the operator
denoted gφ1 earlier in this section (see (5.4.1)). Using this, together with Lemma
5.3.1, Lemma 5.4.4 (for n = 1) and obvious functorialities, we obtain, after tensoring
by k[u]/ue`, the following corollary.

Corollary 5.4.5. Let g : R→ R be a continuous automorphism.
(1) Let G be a finite flat group scheme over R, which is killed by `. Then there

is a canonical isomorphism in the category φ1−mod
R

:(
Mπ(G)⊗k[u]/ue`,ĝ k[u]/ue`,Mπ(G)1 ⊗k[u]/ue`,ĝ k[u]/ue`, gφ1 ⊗ φ

)
∼−→
(
Mπ(gG),Mπ(gG)1, φ1

)
.

(2) If f : G → G′ is a morphism of finite flat R-group schemes killed by `
and Mπ(f) is the corresponding morphism in φ1−mod

R
, then Mπ(f) also

commutes with the gφ1 and there is a commutative diagram in φ1−mod
R

:

Mπ(G′)⊗k[u]/ue`,ĝ (k[u]/ue`)
Mπ(f)⊗1−→ Mπ(G)⊗k[u]/ue`,ĝ (k[u]/ue`)

o ↓ ↓ o
Mπ(gG′)

Mπ(gf)−→ Mπ(gG)

(3) If g1, g2 are two continuous automorphisms of R and if we choose the unique
Hg2g1 ∈W (k)[[u]] such that ĝ2g1 = ĝ2 ◦ ĝ1 on W (k)[[u]], then on

(Mπ(G)⊗k[u]/ue`,ĝ1 k[u]/ue`)⊗k[u]/ue`,ĝ2 k[u]/ue` 'Mπ(G)⊗k[u]/ue`,ĝ2g1 k[u]/ue`,

one has g2(g1φ1 ⊗ φ)⊗ φ = g2g1φ1 ⊗ φ.

Corollary 5.4.6. Let G be a finite flat group scheme over R, which is killed by `.
To give a morphism of schemes [g] : G→ G such that the diagram of schemes

G
[g]−→ G

↓ ↓
Spec(R)

Spec(g)−→ Spec(R)
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is commutative and the induced morphism G→ Spec(R)×g,Spec(R) G is a morphism
of group schemes over R, is equivalent to giving an additive map ĝ : Mπ(G) →
Mπ(G) such that both of the following hold:

(1) For all s ∈ k[u]/ue` and x ∈Mπ(G), ĝ(sx) = ĝ(s)ĝ(x).
(2) ĝ(Mπ(G)1) ⊂Mπ(G)1 and φ1 ◦ ĝ = ĝ ◦ φ1 + ĝ(gt(u))ĝ ◦N ◦ φ1 with gt as in

Lemma 5.4.3 and N as in Lemma 5.1.2.

Proof. Note that the last condition is equivalent to φ1 ◦ ĝ = ĝ ◦ gφ1. The first two
conditions are equivalent to giving a morphism ĝ : Mπ(gG)→Mπ(G) in φ1−mod

R
,

which is equivalent to the last two by Corollary 5.4.5.

Finally we make some computations that concern the dependence of the above
compatibilities on the choice of Hg(u). Let f(u) be an element of (k[u]/ue`)1 =
ue(k[u]/ue`) and define, for any M in φ1−mod

R
, the additive map 1f : φ1(M1)→M

via

1f = 1 +
( `−1∑
i=1

(−1)i−1

i
f(u)i

)
N,

where N is as in Lemma 5.1.2. Using k[u]/ue` ⊗k[u`]/ue` φ1(M1) ' M, we extend
1f to all of M by the formula:

1f (uix) = ui(1 + f(u))i1f (x)

for x ∈ φ1(M1). If x ∈M1, one checks that:

1f(φ1(uix)) = ui`1f(φ1(x)) = 1f (ui`φ1(x))

so 1f is well defined. Moreover, it is clear that 1f (M1) ⊂M1. Let

1f : Ocris1,π
∼−→ Ocris1,π

be the unique isomorphism of sheaves coming from the semi-linear isomorphism of
presheaves:

(k[u]/ue`)⊗φ,k Γ(X1,OX1) ∼−→ (k[u]/ue`)⊗φ,k (Γ(X1,OX1))
s(u)⊗ (w0, ..., wn−1) 7−→ s(u(1 + f(u)))⊗ (w0, ..., wn−1)

(see 5.3.1).
Let G be a finite flat group scheme over R killed by ` and recall that

Mπ(G) = Homsheaves of groups(G,Ocris1,π )⊗ k[u]/ue`.

Lemma 5.4.7. The operator 1f on Mπ(G) is induced by the operator 1f on Ocris1,π .

Proof. One can check that the operator 1f on Ocris1,π satisfies 1f ◦ φ1 = φ1 +
log(1 + f)N ◦ φ1, where N is defined as in §5.3 and log(1 + f) is the usual ex-
pansion of log in S1, which makes sense because of the assumption that ue|f and
because of the divided powers γi(ue) = uei

i! . After tensoring with k[u]/ue`, we get

1f = 1 + (
∑`−1

i=1
(−1)i−1

i f(u)i)N on φ1(Mπ(G)1) which clearly implies the two 1f ’s
are the same.

Let g = 1 and choose Hg(u) = 1 + f(u) for some f ∈ Eπ(u)W (k)[[u]] (see the
start of §5.1 for the definition of Eπ(u)). Recall from Corollary 5.4.5 that we have
a canonical isomorphism Mπ(G)⊗k[u]/ue`,ĝ (k[u]/ue`) ∼→Mπ(gG).
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Lemma 5.4.8. The map 1f is the composite Mπ(G) ∼→ Mπ(gG) ∼→ Mπ(G), where
the first map is the one in Corollary 5.4.5 and the second comes from the obvious
isomorphism G

∼→ gG. In other words, once Hg(u) = 1 + f(u) has been chosen,
1f : Mπ(G) → Mπ(G) is the map corresponding to the identity 1G : G → G under
the equivalence of Corollary 5.4.6.

The proof is straightforward by looking at the usual presheaves and using Lemma
5.4.7. We remark that 1f is not necessarily the identity even though 1G is. However,
with f = 0, 1f is the identity.

5.5. Reformulation. In this section, we will reformulate Corollary 5.4.6.

Lemma 5.5.1. There is a unique element tg(u) ∈ W (k)[[u]] such that if φg is
defined by φg(

∑
wiu

i) =
∑
φ(wi)(u`(1 + `tg(u)))i, one has ĝ ◦ φ = φg ◦ ĝ.

Proof. One has to solve in W (k)[[u]]:

u`Hg(u)` = u`(1 + `tg(u))(φ)Hg(u`(1 + `tg(u))).

AsHg(u) ∈W (k)[[u]]×, there is a unique Lg ∈ uW (k)[[u]]× such that Lg(uHg(u)) =
u. Applying Lg to u = Kg(u)Hg(Kg(u)) (cf. the proof of Lemma 5.4.3), we get
Lg(u) = Kg(u). We must solve:

1 + `tg(u) =
(φ)Kg(u`Hg(u)`)

u`
.

Lemma 5.5.2. There is a unique λg(u) ∈ 1 + uW (k)[[u]] such that if Ng = λgN ,
then Ng ◦ ĝ = ĝ ◦ N . Similarly, there is a unique gλ(u) ∈ 1 + uW (k)[[u]] such
that if gN = gλN , then ĝ ◦ gN = N ◦ ĝ. Moreover, Ng ◦ φg = `φg ◦ Ng and
gN ◦ gφ = `gφ ◦ gN .

Proof. Since N is a derivation, so is λN for any λ ∈ W (k)[[u]]. One has to solve
λg(u)N(uHg(u)) = uHg(u) and (g)

g λ(uHg(u)) = 1 + N(Hg(u))
Hg(u) , which amounts to:

λg(u) =
(

1 +
N(Hg(u))
Hg(u)

)−1

,

(g)
g λ(u) = 1 +

N(Hg)(Kg(u))
Hg(Kg(u))

,

where Kg is as in the proof of Lemma 5.4.3. The commutation relations with the
Frobenius follow from N ◦φ = `φ ◦N , φg ◦ ĝ = ĝ ◦φ, Ng ◦ ĝ = ĝ ◦N , ĝ ◦ gφ = φ ◦ ĝ,
ĝ ◦ gN = N ◦ ĝ and the fact ĝ is bijective on W (k)[[u]].

We also denote by gN = gλN and Ng = λgN the corresponding derivations on
k[u]/ue`. For any object M of φ1−mod

R
, define φ1,g : M1 →M by the formula

φ1,g(x) = φ1(x) + tg(u)N(φ1(x)),

where N is as in Lemma 5.1.2, and we recall that we defined gφ1 in (5.4.1). One
checks that φ1,g(ue) = gφ1(ue) = φ1(ue) = cπ (see (5.1.1)). Note that we also have
φ1,g ◦ ĝ = ĝ ◦ gφ1, Ng ◦ ĝ = ĝ ◦N , ĝ ◦ gφ1 = φ1 ◦ ĝ, ĝ ◦ gN = N ◦ ĝ in k[u]/ue`.

Lemma 5.5.3. Let M be an object of φ1−mod
R

; then there is a unique operator
Ng : M→M satisfying the following three conditions:

(1) Ng(sx) = Ng(s)x + sNg(x), s ∈ k[u]/ue`, x ∈M,
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(2) Ngφ1,g(x) = φgNg(x), x ∈M1, where φg(y) = 1
cπ
φ1,g(uey) if y ∈M,

(3) Ng(M) ⊂ uM.
The same statement holds for gN , gφ and gφ1.

Proof. The proof is the same as for Lemma 5.1.2, using the fact we still have
isomorphisms

k[u]/ue` ⊗k[u`]/ue` φ1,g(M1) ∼→M

(resp. with gφ1 replacing φ1,g).

Lemma 5.5.4. For M an object of φ1−mod
R

, Ng = λgN and gN = gλN , where
Ng, gN are as in Lemma 5.5.3, λg, gλ as in Lemma 5.5.2 and N as in Lemma
5.1.2.

Proof. By unicity of Ng, one has to check λgN satisfies the three conditions of
Lemma 5.5.3. The first and last are obvious. Note that Nφ1(uex) = φN(uex) = 0
so φ1,g(uex) = φ1(uex), which implies φ = φg on M (φg is as in Lemma 5.5.3). One
computes:

(λg(u)N) ◦ φ1,g = λg(u)(1 +N(tg(u)))φ ◦N,
φg ◦ (λg(u)N) = (φ)λg(u`)φ ◦N.

But the equality Ng ◦ φg(u) = `φg ◦Ng(u) in W (k)[[u]] (from Lemma 5.5.2) yields

λg(u)(1 +N(tg(u)))− (φ)λg(u`) ∈ `W (k)[[u]].

We thus get (λgN) ◦ φ1,g = φg ◦ (λgN), hence condition (2). For gN , the proof is
completely similar.

Lemma 5.5.5. Let M be an object of φ1−mod
R

and ĝ : M→M an additive map
such that for all s ∈ k[u]/ue` and x ∈ M, ĝ(sx) = ĝ(s)ĝ(x) and ĝ(M1) ⊂ M1.
If ĝ ◦ φ1 = φ1,g ◦ ĝ, then ĝ ◦ N = Ng ◦ ĝ. Similarly, if φ1 ◦ ĝ = ĝ ◦ gφ1, then
N ◦ ĝ = ĝ ◦ gN .

Proof. We prove the first case, the other one being the same. As in the proof of
Lemma 5.1.2, we define Ng,0, Ng,1,..., with Ng = Ng,i for i large enough, using
k[u]/ue` ⊗k[u`]/ue` φ1,g(M1) ∼→ M. It is enough to show ĝ ◦Ni = Ng,i ◦ ĝ for all i.
Suppose ĝ ◦Ni−1 = Ng,i−1 ◦ ĝ and let s ∈ k[u]/ue` and x ∈M1. Then

Ng,iĝ(sφ1(x)) = Ng,i(ĝ(s)φ1,g(ĝ(x)))
= Ng(ĝ(s))φ1,g(ĝ(x)) + ĝ(s)φ1,gNg,i−1(ĝ(x))
= ĝ(N(s)φ1(x)) + ĝ(s)φ1,g ĝ(Ni−1(x))
= ĝ(N(s)φ1(x)) + ĝ(sφ1(Ni−1(x)))
= ĝNi(sφ1(x)),

so ĝ ◦ Ni = Ng,i ◦ ĝ by linearity. One easily checks by a similar computation that
Ng,0 ◦ ĝ = ĝ ◦N0, hence the result follows by induction.

Lemma 5.5.6. Let M be an object of φ1−mod
R

and ĝ : M→M an additive map
such that for all s ∈ k[u]/ue` and x ∈M, ĝ(sx) = ĝ(s)ĝ(x) and ĝ(M1) ⊂M1. Then
the following two conditions are equivalent:

(1) φ1 ◦ ĝ = ĝ ◦ φ1 + ĝ(gt(u))ĝ ◦N ◦ φ1,
(2) and ĝ ◦ φ1 = φ1 ◦ ĝ + tg(u)N ◦ φ1 ◦ ĝ.
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Proof. One has to show φ1 ◦ ĝ = ĝ ◦ gφ1 is equivalent to ĝ ◦φ1 = φ1,g ◦ ĝ. We prove
(1) ⇒ (2), the other case being the same. On M, we have ĝ ◦ φ = φ ◦ ĝ, because
φ = φg = gφ, as in the proof of Lemma 5.5.4. By Lemmas 5.5.4 and 5.5.5, we have
ĝ ◦N = ĝ(gλ−1)N ◦ ĝ. Thus we get from (1), using Nφ1 = φN ,

ĝ ◦ φ1 = φ1 ◦ ĝ − ĝ(gt(u))ĝ(gλ(u)−1)`N ◦ φ1 ◦ ĝ.
Playing the same game over W2(k)[[u]] with the relation φ ◦ ĝ = ĝ ◦ φ+ ĝ(gt(u))ĝ ◦
N ◦ φ, which is easily checked to hold in W2(k)[[u]], we again end up with ĝ ◦ φ =
φ ◦ ĝ − ĝ(gt(u))ĝ(gλ(u)−1)`N ◦ φ ◦ ĝ in W2(k)[[u]]. But we also have in W2(k)[[u]]
the equality:

ĝ ◦ φ = φ ◦ ĝ + tg(u)N ◦ φ ◦ ĝ.
Thus −ĝ(gt(u))ĝ(gλ(u)−1)` = tg(u) in k[u]/ue`, so relation (2) holds.

We can now derive the variant of Corollary 5.4.6 which we will use.

Corollary 5.5.7. Let G be a finite flat R-group scheme killed by `. Let g : R ∼→ R
be a continuous automorphism, choose Hg(u) ∈W (k)[[u]] such that g(π) = πHg(π)
and define ĝ : k[u]/ue` → k[u]/ue` by ĝ(

∑
wiu

i) =
∑
g(wi)uiHg(u)i. To give a

morphism of schemes [g] : G→ G such that the diagram of schemes

G
[g]−→ G

↓ ↓
Spec(R)

Spec(g)−→ Spec(R)

is commutative and the induced morphism G→ Spec(R)×g,Spec(R)G is an morphism
of group schemes over R, is equivalent to giving an additive map ĝ : Mπ(G) →
Mπ(G) such that both of the following hold:

(1) For all s ∈ k[u]/ue` and x ∈Mπ(G), ĝ(sx) = ĝ(s)ĝ(x).
(2) ĝ(Mπ(G)1) ⊂Mπ(G)1 and ĝ◦φ1 = (1+ tg(u)N)◦φ1 ◦ ĝ, with tg as in Lemma

5.5.1 and N as in Lemma 5.1.2.
Moreover, [g] is an isomorphism if and only if ĝ is. Assume these are isomorphisms.
Choose Hg−1 such that ĝ−1(u) = ĝ−1(u) on W (k)[[u]], i.e. Hg−1(u) = ĝ−1(u)/u.
Then the map ĝ−1 that corresponds to [g]−1 is equal to ĝ−1. Also, if g1, g2 are two
automorphisms of R and if we choose Hg1 , Hg2 as above, then [g1]◦ [g2] corresponds
to ĝ2 ◦ ĝ1 provided we choose Hg2g1 such that ĝ2(ĝ1(u)) = uHg2g1(u).

Proof. The equivalence is clear thanks to Corollary 5.4.6 and Lemma 5.5.6. The
fact that [g1] ◦ [g2] corresponds to ĝ2 ◦ ĝ1 is automatic using Corollary 5.4.5 and
the functor G 7→ Mπ(G). Applying this to g1 = g and g2 = g−1, we see that
1G = [g] ◦ [g]−1 corresponds to ĝ−1 ◦ ĝ. But by Lemma 5.4.8, 1G corresponds to 1f
with f defined by (ĝ−1 ◦ ĝ)(u) = u(1 + f) in W (k)[[u]]. We see that f = 0 and that
1f is the identity on Mπ(G). Thus ĝ−1 = ĝ−1 on Mπ(G).

5.6. Descent data. Assume now that R is endowed with a continuous left faithful
action of a finite group Γ. Then Γ becomes the Galois group of the fraction field
F ′ of R over some subfield. For each g ∈ Γ, choose Hg(u) ∈ W (k)[u] so that
g(π) = πHg(π), with the one condition that H1(u) = 1. Recall from Lemma 5.5.1
that this uniquely determines elements tg(u) ∈W (k)[[u]] such that

u`Hg(u)` = u`(1 + `tg(u))(φ)Hg(u`(1 + `tg(u))).
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Moreover, for any pair g1, g2 ∈ Γ, there is obviously a unique fg1,g2(u) ∈
Eπ(u)W (k)[[u]] such that

ĝ1 ◦ ĝ2(u) = ĝ1 ◦ g2(u(1 + fg1,g2(u))).

If M is an object of φ1−mod
R

, then we will denote by 1g1,g2 the unique k-linear
map M→M such that for x ∈M1 we have

• 1g1,g2(φ1(x)) =
(

1 + (
∑`−1

i=1
(−1)i−1

i fg1,g2(u)i)N
)

(φ1(x)), where N is as in
Lemma 5.1.2,
• and 1g1,g2(uiφ1(x)) = ui(1 + fg1,g2(u))i1g1,g2(φ1(x)).

(See §5.4 where we denoted 1g1,g2 by 1fg1,g2 .)
Suppose that G is a finite flat R-group scheme. Recall that by descent data on

G for Γ we mean isomorphisms of finite flat group schemes

[g] : G
∼→ gG

for g ∈ Γ, such that

[gh] = (g[h]) ◦ [g]

for all g, h ∈ Γ. Equivalently we may think of [g] as a map of schemes G→ G over
g∗ : SpecR→ SpecR which induces an isomorphism of group schemes G→ gG. In
this picture the compatibility condition simply becomes

[gh] = [h][g].

Theorem 5.6.1. Suppose that G is a finite flat R-group scheme killed by `. Fix
Hg(u) as above for all g ∈ Γ.

(1) To give descent data on G relative to Γ is equivalent to giving additive bijec-
tions ĝ : Mπ(G)→Mπ(G) for all g ∈ Γ so that ĝ takes Mπ(G)1 into Mπ(G)1

and:
• ĝ(wuim) = g(w)(uHg(u))iĝ(m) for m ∈Mπ(G), w ∈ k,
• ĝ ◦ φ1 = (1 + tg(u)N) ◦ φ1 ◦ ĝ on Mπ(G)1,
• 1̂Γ = 1 and ĝ1 ◦ ĝ2 = ĝ1g2 ◦ 1g1,g2 .

(2) The above equivalence is functorial in G and is compatible with classical
Dieudonné theory in the following sense: if the action {ĝ}g∈Γ on Mπ(G)
corresponds to descent data {[g]} on G, then the g-semi-linear map D([g])
induced on the contravariant Dieudonné module D(G) and the g-semi-linear
map ĝ mod u induced on Mπ(G)/uMπ(G) are compatible via the isomorphism
of Theorem 5.1.3.

Proof. Part (1) is a consequence of Corollary 5.5.7, Lemma 5.4.8 and the choice
H1 = 1. The functoriality in (2) follows from Corollary 5.4.5, and the last statement
there comes from g(G× k) ∼= gG×k, the functoriality of the isomorphism in Theorem
5.1.3 and the reduction modulo u of Corollary 5.4.5.

Suppose that π ∈ RΓ. Then we may take Hg(u) = 1 for all g ∈ Γ. With this
choice we see that tg1 = 0, fg1,g2 = 0 and 1g1,g2 = 1 for all g1, g2 ∈ Γ. In this
case to give bijections ĝ : Mπ(G)→Mπ(G) as in the lemma is equivalent to giving
an R-semi-linear Γ-action on Mπ(G) which commutes with u and φ1 and preserves
Mπ(G)1. Thus (Mπ(G)Γ,Mπ(G)Γ

1 , φ1) is a Breuil module over RΓ from which we can
recover Mπ(G) by tensoring with W (k) over W (kΓ). In other words, étale descent
for group schemes translates in the obvious manner for Breuil modules if we choose
π to be Γ-invariant.
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To build an action of Γ on G using Theorem 5.6.1, the conditions ĝ1 ◦ ĝ2 = ĝ1g2 ◦
1g1,g2 are not very convenient to check in practice since there are too many of them.
It is useful to have the following variant. Choose d ∈ Z>0 and a group surjection
θ : Γd → Γ, where Γd is the free group on d generators γ1, ..., γd. The group Γd
still acts on R (via its quotient Γ) and for each i ∈ {1, ..., d}, choose elements
Hγi(u) ∈ W (k)[[u]] such that πHγi(π) = γi(π). This determines isomorphisms γ̂i
on W (k)[[u]] and k[u]/ue` and, by composition, isomorphisms γ̂ for all γ ∈ Γd.
Note that if γ ∈ ker(θ), then Hγ(u) = u(1 + fγ(u)) for some fγ ∈ Eπ(u)W (k)[[u]].
For such γ, denote by 1γ the unique k-vector space endomorphism of any object
M of φ1−mod

R
such that for x ∈M1 we have

• 1γ = 1 +
(∑`−1

i=1
(−1)i−1

i fγ(u)i
)
N on the image of φ1,

• and 1γ(uiφ1(x)) = ui(1 + fγ(u))i1γ(φ1(x)),
where N is as in Lemma 5.1.2. (See §5.4, where we denoted 1γ by 1fγ .) Let R be a
subset of ker(θ) such that ker(θ) is the smallest normal subgroup of Γd containing
R.

Corollary 5.6.2. With the above notation, to give descent data on G for Γ is
equivalent to giving additive bijections γ̂j : Mπ(G) → Mπ(G) for j ∈ {1, ..., d} so
that γ̂j takes Mπ(G)1 into Mπ(G)1 and:
• γ̂j(wuim) = γj(w)(uHγj (u))iγ̂j(m) for m ∈Mπ(G), w ∈ k,
• γ̂j ◦ φ1 = (1 + tγj (u)N) ◦ φ1 ◦ γ̂j on Mπ(G)1,
• if γ = γn1

i1
· · · · · γnmim ∈ R, where ij ∈ {1, . . . , d}, nj ∈ Z, and ij 6= ij+1 for

1 ≤ j < m, and if we define γ̂ = γ̂n1
i1
◦ · · · ◦ γ̂nmim , then γ̂ = 1γ.

Proof. Straightforward from Corollary 5.5.7 and Lemma 5.4.8.

We define a category φ1DDF ′/(F ′)Γ of Breuil modules with descent data for Γ in
the obvious way. This category is additive but not necessarily abelian. We call a
complex in φ1DDF ′/(F ′)Γ exact if the underlying complex in φ1−mod

R
is exact. In

the natural way, we extend Mπ to a functor from FDF ′/(F ′)Γ to φ1DDF ′/(F ′)Γ .

5.7. More examples. In this section we will determine the possible descent data
on a rank one Breuil module. Let Γ be as in §5.6.

Lemma 5.7.1. Suppose that G is a finite flat R-group scheme of order ` and that
its generic fibre admits descent data over (F ′)Γ. Then there is unique descent data
on G over (F ′)Γ extending any choice of descent data on G × F ′ over (F ′)Γ. If
Mπ(G) ∼= M(r, a) and if γ ∈ Γ satisfies γ(π)/π ≡ 1 mod (π), then

γ̂(e) = Hγ(u)−r`/(`−1)e,

where Hγ(u)−r`/(`−1) denotes the unique (`−1)th root of Hγ(u)−r` in k[u]/ue` with
constant term 1.

We remark that since Aut(M(r, a)) = (Z/`Z)× by consideration of the geometric
generic fibre, the choice of isomorphism Mπ(G) ∼= M(r, a) does not matter.

Proof. We first claim two such finite flat group schemes G and G′ have isomorphic
generic fibres if and only if there is a non-zero morphism G → G′ or G′ → G. By
Lemma 5.2.1 we see that if G is a finite flat F ′-group scheme, then the lattice of
models for G over R is well ordered. Suppose all the integral models are G1 < · · · <
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Gn. For γ ∈ Γ, any isomorphism [γ] : G ∼→ γG must then induce isomorphisms
[γ] : Gi

∼→ γGi for all i = 1, ..., n. The first part of the lemma follows.
Let M = M(r, a), so M is a free k[u]/ue`-module of rank 1 with the usual basis

element e. The submodule M1 is spanned by ure and φ1(ure) = ae. From Theorem
5.2.1, we have N ◦ φ1 = 0, which implies that

γ̂ ◦ φ1 = φ1 ◦ γ̂.
For γ ∈ Γ1, Hγ(0) ≡ 1 mod `. Clearly

γ̂ : cuie 7−→ cuiHγ(u)iγ̂(e)

is a bijection if and only if γ̂(e) = ξγe for some unit ξγ ∈ (k[u]/ue`)×. Evaluating
γ̂ ◦ φ′1 = φ′1 ◦ γ̂ on the element ure ∈M1, we get

ξγ = Hγ(u)r`ξ`γ

in k[u]/ue`. Thus,

ξγ = εγH
−r`/(`−1)
γ

for some unit εγ ∈ F×` .
Since Breuil module descent data always induces a k-linear action of the inertia

group on the k-vector space M /uM and in this case dimk M /uM = 1, the action
of the element γ of `-power order on M /uM must be trivial. Thus εγ = 1.

6. Some local fields

In order to apply the methods of §5, we need some more explicit information
about the fields F ′ introduced in §4. In this section we will collect this essentially
elementary information. In each case we will give an explicit description of the
Galois group Gal(F ′/Q3). This is needed to carry out the delicate Breuil module
calculations in subsequent sections. We will also specify a uniformiser π of F ′ and
partially calculate the following polynomials and power series (depending on our
choice of π).
• G(u) ∈ W (kF ′)[u], a polynomial of degree at most e(F ′/Q3) − 1 such that
π has minimal polynomial ue(F

′/Q3) − 3G(u) over Q3.
• cπ ≡ −G(u)3 mod (3, u3e(F ′/Q3)).
• For γ ∈ Gal(F ′/Q3), the unique polynomial Hγ(u) ∈ W (kF ′)[u] of degree

at most e(F ′/Q3)− 1 such that γ(π)/π = Hγ(π).
• In some cases power series tγ and fγ,γ′ as in §5.6.

6.1. The case of F ′1. Recall that τ1 corresponds to the order 3 homomorphism

Z×3 −→ GL2(Q3)

is determined by

−1 7−→ 1
4 7−→ ζ,

where det ζ = 1 and ζ3 = 1 but ζ 6= 1. Recall also that F ′1 = F1 is any totally
ramified cubic Galois extension of Q3. We may take F ′1 = F1 = Q3[π], where π is
a root of X3 − 3X2 + 3. One may check that the other roots of X3 − 3X2 + 3 are
π2−2π and 3 +π−π2, so Gal(F ′1/Q3) is generated by one element γ3, which sends
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π to π2 − 2π and satisfies γ3
3 = 1. Also, π is a uniformiser for F ′1, so

• G(u) = u2 − 1,
• cπ ≡ 1− u6 mod (3, u9),
• Hγ3(u) = u− 2.

6.2. The case of F ′−1. Recall that τ−1 corresponds to the order 3 homomorphism

Z3[
√
−1]× −→ GL2(Q3)

determined by
4
√
−1 7−→ 1

4 7−→ 1
1 + 3

√
−1 7−→ ζ,

where det ζ = 1 and ζ3 = 1 but ζ 6= 1. Recall also that F ′−1/Q3(
√
−1) is the unique

cubic extension such that F ′−1/Q3 is Galois but not abelian and that F−1 is any
cubic subfield. We may take F−1 = Q3(π) and F ′−1 = F−1(

√
−1), where π is a root

of X3−3X2 +6. The other roots of X3−3X2 +6 are (
√
−1π2−π+3(1−

√
−1))/2

and (−
√
−1π2 − π + 3(1 +

√
−1))/2. Thus, Gal(F ′−1/Q3) is generated by two

elements γ2 and γ3 defined by
• γ2(π) = π,
• γ2(

√
−1) = −

√
−1,

• γ3(π) = (
√
−1π2 − π + 3(1−

√
−1))/2,

• and γ3(
√
−1) =

√
−1.

We have γ2
2 = γ3

3 = 1 and γ2γ3 = γ2
3γ2, and π is a uniformiser for F ′−1. Thus

• G(u) = u2 − 2,
• cπ ≡ −1− u6 mod (3, u9),
• Hγ2(u) = 1,
• Hγ3(u) = ((

√
−1− 1)u2 + (3 −

√
−1)u− 2)/4.

6.3. The case of F ′3. Recall that τ3 is the unique 3-type such that τ3|IQ3(
√

3)

corresponds to the order 6 homomorphism

Z3[
√

3]× −→ GL2(Q3)

determined by

−1 7−→ −1
4 7−→ 1

1 +
√

3 7−→ ζ,

where det ζ = 1 and ζ3 = 1 but ζ 6= 1. Recall also that F ′3 is the degree 12 abelian
extension of Q3(

√
3) with norm subgroup in Q3(

√
3)× topologically generated by

3, 4 and 1 + 3
√

3. We also let γ2
4 denote the unique element of IF ′3/Q3(

√
3) of order

3 and we let F3 denote the fixed field of some Frobenius lift of order 2.
We claim that F ′3 = Q3(

√
3)(
√
−1, α, β), where α is a root of X3 − 3X + 3

and β a root of X2 −
√

3. To verify this, set F ′′ = Q3(
√

3)(
√
−1, α, β). We

must check that F ′′/Q3(
√

3) is abelian and that NF ′′/Q3(
√

3)(F
′′)× contains 3, 4,

and 1 + 3
√

3. To see that F ′′/Q3(
√

3) is abelian, note that if α is one root of
X3 − 3X + 3, then the other roots are (2

√
3α2 − (−3

√
3 +
√
−5)α − 4

√
3)/2
√
−5

and (−2
√

3α2 − (3
√

3 +
√
−5)α + 4

√
3)/2
√
−5 (where for definiteness we choose√

−5 ∈ 1 + 3Z3). Note that NF ′′/Q3(
√

3)(α/β) = 3 and NF ′′/Q3(
√

3)(1 + α) = 54.
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Note that Gal(F ′3/Q3(
√

3)) is generated by three commuting elements γ2, γ2
4

and γ3 of respective orders 2, 2 and 3. They may be defined by
• γ2

√
−1 = −

√
−1, γ2β = β and γ2α = α;

• γ2
4

√
−1 =

√
−1, γ2

4β = −β and γ2
4α = α;

• γ3

√
−1 =

√
−1, γ3β = β and γ3α = (−2

√
3α2−(3

√
3+
√
−5)α+4

√
3)/2
√
−5.

Choose an element γ ∈ IF ′3/Q3 − IF ′3/Q3(
√

3). Then γ2 ∈ 〈γ2
4 , γ3〉. As γγ3γ

−1 = γ2
3

we may alter our choice of γ so that γ2 ∈ 〈γ2
4〉. As γ

√
3 = −

√
3 we see that

γβ = ±
√
−1β, so γ2 = γ2

4 . We will rename γ as γ4 and suppose it chosen so that
γ4β =

√
−1β. Thus, Gal(F ′3/Q3) is generated by elements γ2, γ3 and γ4 satisfying

• γ2
2 = γ3

3 = γ4
4 = 1,

• γ2γ3 = γ3γ2,
• γ4γ2 = γ2γ

−1
4 ,

• and γ4γ3 = γ2
3γ4.

The element γ2
4 is the unique element of IF ′3/Q3(

√
3) of order 2 and hence coincides

with our previous definition. The element γ2 is a Frobenius lift of order 2 and so we
may take F3 to be its fixed field, i.e. F3 = Q3(π), where π = α/β is a uniformiser
for F ′3. (We are not asserting that γ2 equals the element denoted γ̃2 in §4.) One
can check that

γ3(π)/π ≡ 1 + π2 mod π4.

Note also that 〈γ2, γ4〉 projects isomorphically to the quotient of Gal(F ′3/Q3) by
the wild inertia subgroup.

We conclude
• G(0) = 1,
• cπ ≡ −1 mod (3, u),
• Hγ2(u) = 1,
• Hγ4(u) = −

√
−1,

• Hγ3(u) ≡ 1 + u2 mod (3, u4),
• tg = fg,g′ = 0 for g, g′ ∈ 〈γ2, γ4〉.

6.4. The case of F ′−3. Recall that τ−3 is the unique 3-type such that τ−3|IQ3(
√
−3)

corresponds to the order 6 homomorphism

Z3[
√
−3]× −→ GL2(Q3)

determined by

−1 7−→ −1
4 7−→ 1

1 + 3
√
−3 7−→ 1

1 +
√
−3 7−→ ζ,

where det ζ = 1 and ζ3 = 1 but ζ 6= 1. Recall also that F ′−3 is the degree 12 abelian
extension of Q3(

√
−3) with norm subgroup in Q3(

√
−3)× topologically generated

by −3, 4 and 1 + 3
√
−3. We also let γ2

4 denote the unique element of IF ′−3/Q3(
√
−3)

of order 3 and we let F−3 denote the fixed field of some Frobenius lift of order 2.
We claim that F ′−3 = Q3(

√
−3)(

√
−1, α, β) where α is a root of X3 − 4 and

β a root of X2 +
√
−3. To verify this, set F ′′ = Q3(

√
−3)(

√
−1, α, β). Then

F ′′/Q3(
√
−3) is abelian and so we must check that NF ′′/Q3(

√
−3)(F

′′)× contains−3,
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4 and 1+3
√
−3. But note that we have the identities NF ′′/Q3(

√
−3)((α−1)/β) = −3,

NF ′′/Q3(
√
−3)(α) = 44 and NF ′′/Q3(

√
−3)(1− β) = (1 +

√
−3)6.

Note that Gal(F ′3/Q3(
√
−3)) is generated by three commuting elements γ2, γ2

4

and γ3 of respective orders 2, 2 and 3. They may be defined by
• γ2

√
−1 = −

√
−1, γ2β = β and γ2α = α;

• γ2
4

√
−1 =

√
−1, γ2

4β = −β and γ2
4α = α;

• γ3

√
−1 =

√
−1, γ3β = β and γ3α = (−1−

√
−3)α/2.

Choose an element γ ∈ IF ′−3/Q3 − IF ′−3/Q3(
√
−3), so γ2 ∈ 〈γ2

4 , γ3〉. As γγ3γ
−1 = γ2

3 ,
we may alter our choice of γ so that γ2 ∈ 〈γ2

4〉. As γ
√
−3 = −

√
−3 we see that

γβ = ±
√
−1β, so γ2 = γ2

4 . We will rename γ as γ4 and suppose it chosen so that
γ4β =

√
−1β. Thus, Gal(F ′3/Q3) is generated by elements γ2, γ3 and γ4 satisfying

• γ2
2 = γ3

3 = γ4
4 = 1,

• γ2γ3 = γ3γ2,
• γ4γ2 = γ2γ

−1
4 ,

• and γ4γ3 = γ2
3γ4.

The element γ2
4 is the unique element of IF ′−3/Q3(

√
−3) of order 2 and hence coincides

with our previous definition. The element γ2 is a Frobenius lift of order 2 and so
we may take F−3 to be its fixed field, i.e. F−3 = Q3(π), where π = α/β is a
uniformiser for F ′−3. (We are not asserting that γ2 equals the element denoted γ̃2

in §4.) One can check that

γ3(π)/π ≡ 1 + π2 mod π4.

Note also that 〈γ2, γ4〉 lifts tame inertia.
We conclude
• G(0) = −1,
• cπ ≡ 1 mod (3, u),
• Hγ2(u) = 1,
• Hγ4(u) = −

√
−1,

• Hγ3(u) ≡ 1 + u2 mod (3, u4),
• tg = fg,g′ = 0 for g, g′ ∈ 〈γ2, γ4〉.

6.5. The case of F ′i . Here i ∈ Z/3Z and we will let ı̃ denote the unique lifting of i
to Z with 0 ≤ ı̃ < 3. Recall that τ ′i is the unique extended 3-type whose restrictions
to GQ3(

√
−3) correspond to the homomorphism

Q3(
√
−3)× −→ GL2(Q3)

determined by
√
−3 7−→ ζ − ζ−1

−1 7−→ −1
4 7−→ 1

1 + 3
√
−3 7−→ ζ

1 +
√
−3 7−→ ζi,

where det ζ = 1 and ζ3 = 1 but ζ 6= 1. Recall also that F ′i is the degree 12
abelian extension of Q3(

√
−3) with norms the subgroup of Q3(

√
−3)× topologically

generated by −3, 4, 1 + 9
√
−3 and 1 + (1 − 3ı̃)

√
−3. We let γ2, γ3 and γ2

4 denote
the elements of Gal(F ′i/Q3) which correspond respectively to

√
−3, 1− 3

√
−3 and

−1.
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We claim that F ′i = Q3(
√
−3)(

√
−1, α, β), where α is a root of X3 − 3(1 + 3ı̃)

and β a root of X2 +
√
−3. To verify this, set F ′′ = Q3(

√
−3)(

√
−1, α, β), so

F ′′/Q3(
√
−3) is abelian and we must check that NF ′′/Q3(

√
−3)(F

′′)× contains −3,
4, 1+9

√
−3, and 1+(1−3ı̃)

√
−3. But note that NF ′′/Q3(

√
−3)(α/β) = −3(1+3ı̃)4,

NF ′′/Q3(
√
−3)(1 + α) = (4 + 9ı̃)4 and

NF ′′/Q3(
√
−3)(β(

√
−3− α)/α) = (1 +

√
−3 + 3ı̃)/(1 + 3ı̃)4

≡ 1 + (1− 3ı̃)
√
−3 mod 9.

Note that γ2
4 is an element of IF ′i/Q3(

√
−3) of order 2, γ2 6= γ2

4 but also has order
2, and γ3 is an element of IF ′i/Q3(

√
−3) of order 3. Thus,

• γ2
4

√
−1 =

√
−1, γ2

4β = −β and γ2
4α = α;

• γ2

√
−1 = −

√
−1 and γ2α = α;

• γ3

√
−1 =

√
−1 and γ3β = β.

Moreover
√
−3 is a norm from Q3(

√
−3)(α, β), because α/β has norm

√
−3(1+3ı̃)2,

so
• γ2(β) = β.

The determination of γ3(α) is more delicate. Let δ be a root of X3 −
(1 + 3

√
−3), so δ = 1 +

√
−3µ, where µ is a root of Y 3 −

√
−3Y 2 − Y + 1. Thus

Q3(
√
−3)(δ)/Q3(

√
−3) is unramified and

Frob3(δ)/δ ≡ (1 +
√
−3µ3)/(1 +

√
−3µ) ≡ (−1 +

√
−3)/2 mod 3.

The norms from Q3(
√
−3)(δ)× to Q3(

√
−3)× are generated by Z3[

√
−3]× and

3
√
−3. The norms from Q3(

√
−3)(α)× to Q3(

√
−3)× are generated by 1+9Z3[

√
−3],

1 + (1− 3ı̃)
√
−3, 4, −1 and

√
−3. The norms from Q3(

√
−3)(α, δ)× to Q3(

√
−3)×

are generated by 1 + 9Z3[
√
−3], 1 + (1− 3ı̃)

√
−3, 4, −1 and 3

√
−3. Thus

(γ3,Frob3) ∈ Gal(Q3(
√
−3)(α)/Q3(

√
−3))×Gal(Q3(

√
−3)(δ)/Q3(

√
−3))

∼= Gal(Q3(
√
−3)(α, δ)/Q3(

√
−3))

corresponds to
√
−3(1 − 3

√
−3) ∈ Q3(

√
−3)×. As δα has norm to Q3(

√
−3) the

product of (
√
−3(1− 3

√
−3))2 and −(1 + 3ı̃)(1 + 3

√
−3)/(1− 3

√
−3)2, we conclude

that (γ3,Frob3) fixes δα. Thus γ3(α)/α = δ/Frob3(δ) = (−1 −
√
−3)/2. In other

words
• γ3(α) = (−1−

√
−3)α/2.

Choose an element γ ∈ IF ′i/Q3 − IF ′i/Q3(
√
−3). Then γ2 ∈ 〈γ2

4 , γ3〉. As γγ3γ
−1 =

γ2
3 we may alter our choice of γ so that γ2 ∈ 〈γ2

4〉. As γ
√
−3 = −

√
−3 we see

that γβ = ±
√
−1β and so γ2 = γ2

4 . We will rename γ as γ4 and suppose it chosen
so that γ4β =

√
−1β. Thus, Gal(F ′i /Q3) is generated by elements γ2, γ3 and γ4

satisfying
• γ2

2 = γ3
3 = γ4

4 = 1,
• γ2γ3 = γ3γ2,
• γ4γ2 = γ2γ

−1
4 ,

• and γ4γ3 = γ2
3γ4.

The element γ2 is a Frobenius lift and it has fixed field Fi = Q3(π), where π = α/β
is a uniformiser for F ′i . One can check that

γ±1
3 (π)/π = −(1∓ (1 + 3ı̃)−2π6)/2.
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We conclude
• G(u) = −(1 + 3ı̃)4,
• cπ ≡ 1 mod (3, u36),
• Hγ2(u) = 1,
• Hγ4(u) = −

√
−1,

• Hγ±1
3

(u) ≡ 1∓ u6 mod 3,
• tγ±1

3
(u) ≡ −1∓ u6 mod (3, u12),

• tg = fg,g′ = 0 for g, g′ ∈ 〈γ2, γ4〉,
• fγ±1

3 ,γ±1
3

(u), fγ±1
3 ,γ∓1

3
(u) ≡ 0 mod (3, u12).

7. Proof of Theorem 4.4.1

In this section we will keep the notation of §4.4 and either §6.1 or §6.2 (depending
on whether we are working with S1 or S−1). We will set δ = ±1 in the case of S±1.
We will write F for F±1 and F ′ for F ′±1. If G (resp. M) is a finite flat OF -group
scheme (resp. Breuil module over OF ) we will write G′ (resp. M′) for the unramified
base change to OF ′ .

7.1. Rank one calculations. We recall from Lemma 5.2.1 that the only OF -
models for (Z/3Z)/F are G(3, δ) ∼= (Z/3Z)/OF and G(1, δ), and the only OF -models
for (µ3)/F are G(0, 1) ∼= (µ3)/OF and G(2, 1). In each case, by Lemma 5.7.1, the base
change to OF ′ admits unique descent data over Q3 compatible with the canonical
descent data on the generic fibre of Z/3Z (resp. µ3) over Q3. We will refer to this
descent data as the standard descent data on these finite flat group schemes.

7.2. Rank two calculations.

Lemma 7.2.1. The group of extensions of M(2, 1) by M(1, δ) over OF is param-
etrised by c ∈ F3. The Breuil module M(1, δ; 2, 1; c) corresponding to c is free of
rank two over F3[u]/u9 with a basis {e1, eω} such that
• M1 = 〈ue1, u

2eω + ce1〉,
• φ1(ue1) = δe1, φ1(u2eω + ce1) = eω,
• N(e1) = 0, N(eω) = cu6e1.

The standard descent data on M(2, 1)′ and M(1, δ)′ extends uniquely to descent
data on M(1, δ; 2, 1; c)′. The corresponding representations G3 → GL2(F3) are of
the form (

ω ∗
0 1

)
and are peu ramifié. Any such peu-ramifié extension arises for a suitable choice of
c.

Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2.
Next, we compute N on M = M(1, δ; 2, 1; c). (We will not in fact need the result of
this computation of N , but the calculation is given here as a representative sample
of calculations needed later in more complicated settings.) By the last part of
Lemma 5.2.1, N(e1) = 0 and N(eω) = ge1 for some g ∈ F3[u]/ue` divisible by u.
In F3[u]/u9 we compute

cπ = −φ(Gπ(u)) = −(u2 − δ)3 = −u6 + δ,
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so
δu6

cπ
= u6.

Using the defining properties of N , we compute in F3[u]/u9

N(eω) = N ◦ φ1(u2eω + ce1)
= φ ◦N(u2eω + ce1)
= φ(−u2eω + u2N(eω))

=
φ1

cπ
(−u5eω + u5N(eω))

=
φ1

cπ
(−u3(u2eω + ce1) + cu3e1 + u5N(eω))

=
φ1

cπ
(cu3e1)

since u5N(eω) ∈ u6 M = u3 · u3M ⊆ u3M1 and the Frobenius-semi-linear φ1 must
kill u3 M1. Thus,

N(eω) =
φ1

cπ
(cu2 · ue1) =

cu6

cπ
φ1(ue1) =

cδu6

cπ
e1 = cu6e1.

To see existence and uniqueness of the descent data on M(1, δ; 2, 1; c)′ compatible
with the standard descent data on M(1, δ)′ and M(2, 1)′ we will work on the side of
finite flat group schemes. Because G(1, δ; 2, 1; c)′ is the unique extension of G(1, δ)′

by G(2, 1)′ with generic fibre G(1, δ; 2, 1; c)′ × F ′ (by Lemma 4.1.2), uniqueness
reduces to the corresponding questions on the generic fibre, which follows from the
injectivity of

H1(G3, ω) −→ H1(GF ′ , ω).

For existence it suffices to exhibit a continuous representation G3 → GL2(F3) of
the form (

ω ∗
0 1

)
which is peu ramifié but not split, with restriction to GF corresponding to a local-
local finite flat OF -group scheme G. By Theorem 5.3.2 of [Man] we can find an
elliptic curve E/Q3 such that E[3] furnishes the desired example. This also proves
the final two assertions of the lemma.

Lemma 7.2.2. Suppose that F̃1 is a totally ramified abelian cubic extension of Q3

and suppose that G is a local-local finite flat OF̃1
-group scheme killed by 3 such that

G× F̃1 is an extension of Z/3Z by µ3. Then G×O
F̃1
F̃1
∼= G×Q3 F̃1 for some finite

flat Q3-group scheme G.

Proof. As in the proof of the last lemma we see that Mπ(G) ∼= M(1, 1; 2, 1; c) for
some c ∈ F3. As the only action of Gal(F̃1/Q3) on a one-dimensional F3-vector
space is trivial, we see that each such c gives a class in H1(GF̃1

, ω) which is invariant
by Gal(F̃1/Q3). But

H1(G3, ω) ∼−→ H1(GF̃1
, ω)Gal(F̃1/Q3),

and so the lemma follows.
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Lemma 7.2.3. The group of extensions of M(1, δ) by M(2, 1) over OF is iso-
morphic to the group of linear polynomials c + c′u in F3[u]. The Breuil module
M(2, 1; 1, δ; c+ c′u) corresponding to c+ c′u is free of rank two over F3[u]/u9 with
a basis {eω, e1} such that
• M(2, 1; 1, δ; c+ c′u)1 = 〈u2eω, ue1 + (c+ c′u)eω〉,
• φ1(u2eω) = eω, φ1(ue1 + (c+ c′u)eω) = δe1.

Each M(2, 1; 1, δ; c+ c′u)′ admits unique descent data compatible with the standard
descent data on M(1, δ)′ and M(2, 1)′. As c, c′ vary over F3 the corresponding de-
scent to Q3 of the generic fibre of Gπ(M(2, 1; 1, δ; c+c′u)′) runs over all 9 extensions
of µ3 by Z/3Z. The corresponding representation of G3 is peu ramifié if and only
if c = 0.

Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2.
The uniqueness of the descent data on M(2, 1; 1, δ; c + c′u)′ follows from Lemma
4.1.2 and the injectivity of H1(G3, ω

−1)→ H1(GF ′ , ω−1) as in the proof of Lemma
7.2.1. Note that Frobenius vanishes on the Dieudonné module of G(2, 1; 1, δ; c+c′u)
if and only if c = 0. Thus the lemma will follow if for each 3-torsion extension G of
µ3 by Z/3Z over Q3 which is très ramifié, we can find a finite flat OF -group scheme
G such that
• the generic fibre of G is isomorphic to G× F ,
• the closed fibre of G is local-local,
• and Frobenius is not identically zero on D(G).

The splitting field of G contains a cube root of 3v for some v ≡ 1 mod 3, where
the three choices of v mod 9 correspond to the three choices of très ramifié ρ. The
calculations in §5.3 of [Man] give explicit additive reduction elliptic curves E and
E′ over Q3 with E[3] ' E′[3] ' G, where E acquires good supersingular reduction
over the non-Galois cubic ramified extension

Q3[X ]/(X3 − 3X + 2b),

with b2 = 1 + 3v, and E′ acquires good supersingular reduction over the abelian
cubic ramified extension of Q3 with norm group generated by 3v mod (Q×3 )3. The
appropriate G are provided by the 3-torsion on the Néron models of E or E′ over
OF .

Corollary 7.2.4. Suppose that G is a finite flat OF -group scheme and that {[g]}
is descent data on G′ = G×OF ′ such that (G′, {[g]})Q3(Q3) corresponds to ρ. Then

Mπ(G) ∼= M(2, 1; 1, δ; c+ c′u)

for some c, c′ ∈ F3 with c 6= 0.

Proof. From the connected-étale exact sequence and its dual we see that G × F3

must be local-local. The corollary now follows from Lemma 7.2.3 and the discussion
of §7.1.

Lemma 7.2.5. The group of extensions of M(1, δ) by M(1, δ) over OF is iso-
morphic to the group of linear polynomials b + b′u in F3[u]. The Breuil module
M(1, δ; 1, δ; b+ b′u) corresponding to b+ b′u is free of rank two over F3[u]/u9 with
a basis {e, e′} such that
• M(1, δ; 1, δ; b+ b′u)1 = 〈ue, ue′ + (b+ b′u)e〉,
• φ1(ue) = δe, φ1(ue′ + (b+ b′u)e) = δe′.
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This extension splits over an unramified extension if and only if b = 0. If F ′/Q3 is
non-abelian, then any descent data on M(1,−1; 1,−1; b+ b′u)′ compatible with the
standard descent data on M(1,−1)′ satisfies

γ̂2e = e, γ̂2e′ = e′, γ̂±1
3 (e) = Hγ±1

3
(u)3e, γ̂±1

3 (e′) = Hγ±1
3

(u)3e′ + hγ±1
3

(u)e,

where

hγ±1
3

(0) = −bH ′
γ±1

3
(0).

Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2.
The computation of which of these split over an unramified extension follows from
Lemma 5.2.2 and Corollary 5.4.2.

Now suppose that F ′/Q3 is non-abelian. By Lemma 5.7.1, the only issue is to
compute hγ3(0). Since Hγ3(0) ≡ 1 mod 3, by evaluating the congruence

γ̂3 ◦ φ′1 ≡ φ′1 ◦ γ̂3 mod uM(1,−1; 1,−1; b+ b′u)′

on ue′ + (b + b′u)e and comparing constant terms of the coefficients of e on both
sides we get

hγ3(0) = hγ3(0)3 + b

(
1−Hγ3(u)

u

)3

|u=0

= hγ3(0)3 − bH ′γ3
(0)3 = hγ3(0)3 + bH ′γ3

(0)

in F9, where we have used the equality H ′γ3
(0)2 ≡ −1 mod 3 (see §6.2).

In other words hγ3(0) is a root of T 3−T + bH ′γ3
(0) = 0. Since H ′γ3

(0)2 = −1, we
must have hγ3(0) = −bH ′γ3

(0)+a for some a ∈ F3. Since γ2(Hγ3(u)) = Hγ−1
3

(u) and
γ2(hγ3(u)) = hγ−1

3
(u) are forced by the identity γ2(π) = π, we see that hγ−1

3
(0) =

−bH ′
γ−1

3
(0) + a for the same a ∈ F3. The identity

γ̂3 ◦ γ̂−1
3 ◦ φ′1 ≡ φ′1 mod uM(1,−1; 1,−1; b+ b′u)′

then implies hγ3(0) + hγ−1
3

(0) = 0, so a = 0.

Lemma 7.2.6. The group of extensions of M(2, 1) by M(2, 1) over OF is isomor-
phic to the group of quadratic polynomials vanishing at 0, (b+ b′u)u, in F3[u]. The
Breuil module M(2, 1; 2, 1; (b+ b′u)u) corresponding to (b+ b′u)u is free of rank two
over F3[u]/u9 with a basis {e, e′} such that
• M(2, 1; 2, 1; (b+ b′u)u)1 = 〈u2e, u2e′ + (b + b′u)ue〉,
• φ1(u2e) = e, φ1(u2e′ + (b+ b′u)ue) = e′.

This extension splits over an unramified extension if and only if b = 0. If F ′/Q3 is
non-abelian, then any descent data on M(2, 1; 2, 1; (b+ b′u)u)′ compatible with the
standard descent data on M(2, 1)′ satisfies

γ̂3(e) = Hγ3(u)6e, γ̂3(e′) = Hγ3(u)6e′ + hγ3(u)e,

where

hγ3(0) = −bH ′γ3
(0).

The sign in hγ3(0) = −bH ′γ3
(0) will be very important in §7.4. The proof of this

lemma is essentially the same as that of Lemma 7.2.5, but we repeat it anyway.
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Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2.
The computation of which of these split over an unramified extension follows from
Lemma 5.2.2 and Corollary 5.4.2.

Now suppose that F ′/Q3 is non-abelian. By Lemma 5.7.1, the only issue is to
compute hγ3(0). Since Hγ3(0) ≡ 1 mod 3, by evaluating the congruence

γ̂3 ◦ φ′1 ≡ φ′1 ◦ γ̂3 mod uM(2, 1; 2, 1; (b+ b′u)u)′

on ue′ + (b + b′u)e and comparing constant terms of the coefficients of e on both
sides we get

hγ3(0) = hγ3(0)3 + b

(
1−Hγ3(u)

u

)3

|u=0

= hγ3(0)3 − bH ′γ3
(0)3 = hγ3(0)3 + bH ′γ3

(0)

in F9, where we have used the equality H ′γ3
(0)2 = −1 (see §6.2).

In other words hγ(0) is a root of T 3−T + bH ′γ3
(0) = 0. Since H ′γ3

(0)2 = −1, we
must have hγ3(0) = −bH ′γ3

(0)+a for some a ∈ F3. Since γ2(Hγ3(u)) = Hγ−1
3

(u) and
γ2(hγ3(u)) = hγ−1

3
(u) are forced by the identity γ2(π) = π, we see that hγ−1

3
(0) =

−bH ′
γ−1

3
(0) + a for the same a ∈ F3. The identity

γ̂3 ◦ γ̂−1
3 ◦ φ′1 ≡ φ′1 mod uM(2, 1; 2, 1; b+ b′u)′

then implies hγ3(0) + hγ−1
3

(0) = 0, so a = 0.

7.3. Rank three calculations.

Lemma 7.3.1. Suppose that G is a finite flat group scheme over OF which is killed
by 3. Suppose that there is a filtration by closed finite flat subgroup schemes G1 ⊂
G2 ⊂ G such that G1

∼= G(1, δ), G2/G1
∼= G(2, 1) and G/G2

∼= G(1, δ). Suppose finally
that G2 ×OF F

′ descends to Q3 in such a way that it is a très ramifié extension of
µ3 by Z/3Z. Then

G/G1
∼= G(2, 1)⊕ G(1, δ)

compatibly with the extension class structure.

Proof. Let M = Mπ(G) and N = Mπ(G/G1). Using Lemmas 7.2.1 and 7.2.3 we see
that we can write

• M = (F3[u]/u9)e1 ⊕ (F3[u]/u9)eω ⊕ (F3[u]/u9)e′1,
• M1 = 〈ue1, u

2eω + be1, ue′1 + (c+ c′u)eω + fe1〉
for b, c, c′ ∈ F3 with c 6= 0 and with f ∈ F3[u]/u9. It suffices to show b = 0. Since
we must have u3 M ⊆M1, we see that

(c+ c′u)(u2eω + be1)− u2(ue′1 + (c+ c′u)eω + fe1) + u3e′1
= (bc+ bc′u− u2f)e1 ∈M1 .

The Breuil module N is spanned as a F3[u]/u9-module by e1 and eω, so by Lemma
7.2.1 u must divide bc+ bc′u− u2f . As c 6= 0 we must have b = 0, as desired.

Combining this with Lemma 7.2.1 and the injectivity ofH1(G3, ω)→ H1(GF ′ , ω)
we get the following corollary, which is also the first part of Theorem 4.7.3.
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Corollary 7.3.2. The natural map

θ0 : Ext1
S±1

(ρ, ρ) −→ H1(G3, ω)

is zero.

7.4. Conclusion of the proof of Theorem 4.4.1. Consider first the case of F1.
We still have to explain why

θω : H1
S1

(G3, ad0 ρ) −→ H1(I3,F3)

is zero. Suppose x ∈ H1
S1

(G3, ad0 ρ) does not map to zero in H1(I3,F3).
By our hypothesis on x we may choose a totally ramified abelian cubic exten-

sion F̃1/Q3 such that x restricts to zero under the natural map H1(G3, ad0 ρ) →
H1(GF̃1

,F3). Then the image of x under the natural map H1(G3, ad0 ρ) →
H1(GF̃1

, ρ ⊗ ω) is the image of some x̃ ∈ H1(GF̃1
, ω) under the natural map

H1(GF̃1
, ω) → H1(GF̃1

, ρ ⊗ ω). The element x̃ parametrises a finite flat F̃1-group
scheme H which is an extension of µ3 by Z/3Z and which is a subquotient of the
restriction to GF̃1

of the extension of ρ by itself parametrised by x. It follows that
H has a finite flat model H/O

F̃1
(see Lemma 4.1.1) and the special fibre of H must

be local-local (if x̃ = 0, then the extension of ρ by itself parametrised by x splits
over F̃1 and this is clear, while if x̃ 6= 0 we would otherwise get a contradiction
from the connected-étale sequence). By Lemma 7.2.2, we may therefore lift x̃ to
H1(G3, ω). Using the commutative diagram

H1(G3, ω) −→ H1(G3, ρ⊗ ω)
res ↓ ↓ res

H1(GF̃1
, ω) −→ H1(GF̃1

, ρ⊗ ω)

and noting that the right-hand vertical map is injective we conclude that

x ∈ H1
S1

(G3, ad0 ρ) ⊂ H1(G3, ρ⊗ ω)

is in the image of H1(G3, ω)→ H1(G3, ρ⊗ω), a contradiction with the hypothesis
that even the image of x in H1(I3,F3) is non-zero.

Now consider the case F ′ = F ′−1 which is non-abelian over Q3. We must show
that

θω : Ext1
S−1

(ρ, ρ) −→ H1(I3,F3)

is zero.
An element x ∈ Ext1

S−1
(ρ, ρ) gives rise to a finite flat OF−1 -group scheme G killed

by 3 and descent data {[g]} for F ′−1/Q3 on G′ = G×OF ′−1
F ′−1, such that (G′, {[g]})Q3

corresponds to the extension of ρ by itself classified by x. Let N denote the Breuil
module for G and let N′ = N ⊗ F9. According to Lemmas 7.2.1, 7.2.3, 7.2.5, 7.2.6
and 7.3.1 we see that we can write

N = (F3[u]/u9)eω ⊕ (F3[u]/u9)e1 ⊕ (F3[u]/u9)e′ω ⊕ (F3[u]/u9)e′1
with

(7.4.1) N1 = 〈u2eω, ue1 + (c+ c′u)eω, u2e′ω + (au+ a′u2)eω ,

ue′1 + (c+ c′u)e′ω + (b+ b′u)e1 + heω〉,
where h ∈ F3[u]/u9 is some polynomial and where a, a′, b, b′, c, c′ ∈ F3 with c 6= 0
(as ρ is très ramifié). By Lemma 7.2.6 what we must show is that a = 0.
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Note that H ′γ3
(0) 6= 0 in F9 by §6.2. By Lemmas 5.7.1 and 7.2.1, the action γ̂3

is determined by

γ̂3(eω) = Hγ3(u)6eω, γ̂3(e1) = Hγ3(u)3e1 + gγ3(u)e′ω,

γ̂3(e′ω) = Hγ3(u)6e′ω + hγ3,ω(u)eω,

γ̂3(e′ω) = Hγ3(u)3e′1 + gγ3(u)e′ω + hγ3,1e1 +Gγ3(u)eω,

where gγ3(u), Gγ3(u) ∈ F9[u]/u9 and hγ3,ω and hγ3,1 are as in Lemmas 7.2.6 and
7.2.5 respectively.

Due to the requirement γ̂3(N′1) ⊆ N′1, we must have

γ̂3(ue′1 + (c+ c′u)e′ω + (b + b′u)e1 + h(u)eω) ∈ N′1,

and this element is obviously equal to

(uHγ3)(H3
γ3

e′1 + gγ3e
′
ω + hγ3,1e1 +Gγ3eω) + (c+ c′uHγ3)(H6

γ3
e′ω + hγ3,ωeω)

+(b+ b′uHγ3)(H3
γ3

e1 + gγ3eω) + h(uHγ3)H6
γ3

eω.

We now try to express this as a linear combination of the generators of N′1 listed
in (7.4.1), while working modulo 〈u3 N′, u2eω〉 ⊆ N′1. Using that Hγ3(0) = 1 in F9

and h(uHγ3) ≡ h(u) mod u2, we arrive at the expression

Hγ3(ue′1 + (c+ c′u)e′ω + (b + b′u)e1 + heω)

+
(
c((1−Hγ3)/u) + gγ3

u

)
(u2e′ω + (au+ a′u2)eω)

+
(
Hγ3hγ3,1 + b

(
1−Hγ3

u

))
(ue1 + (c+ c′u)eω) + Fγ3(u)eω,

where

Fγ3(u) = uHγ3Gγ3 + (c+ c′uHγ3)hγ3,ω + (b+ b′uHγ3)gγ3 + h(u)(1−Hγ3)

− (a+ a′u)(c(1−Hγ3)/u+ gγ3)− (c+ c′u)(Hγ3hγ3,1 + b((1−Hγ3)/u))

in F9[u]/u9. In particular, c(1−Hγ3(u))/u+gγ3 ≡ 0 mod u and Fγ3(u) ≡ 0 mod u2.
The condition c((1−Hγ3)/u) + gγ3 ≡ 0 mod u can be reformulated as

gγ3(0) = cH ′γ3
(0).

Since Fγ3(u) ≡ 0 mod u2, we have to have Fγ3(0) = 0. But a direct calculation
using gγ3(0) = cH ′γ3

(0) and the definition of Fγ3 gives

Fγ3(0) = 0 + chγ3,ω(0) + bgγ3(0) + 0− 0− c(hγ3,1(0)− bH ′γ3
(0))

= c(hγ3,ω(0)− hγ3,1(0)− bH ′γ3
(0)),

so the non-vanishing of c forces

hγ3,ω(0)− hγ3,1(0) = bH ′γ3
(0).

Lemmas 7.2.6 and 7.2.5 give us the values

hγ3,ω(0) = −aH ′γ3
(0), hγ3,1(0) = −bH ′γ3

(0).

Thus (−a+b)H ′γ3
(0) = bH ′γ3

(0), and so a = 0. This completes the proof of Theorem
4.7.3 and hence of Theorem 4.4.1.
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8. Proof of Theorem 4.5.1

In this section we will keep the notation of §4.5 and either §6.3 or §6.4 (depending
on whether we are working with S3 or S−3). We will set δ = ±1 in the case of S∓3

(so that cπ ≡ δ mod (3, u)). Note the signs. We will write F for F±3, F ′ for F ′±3

and I for I±3. If G (resp. M) is a finite flat OF -group scheme (resp. Breuil module
over OF ) we will write G′ (resp. M′) for the base change to OF ′ .

8.1. Rank one calculations. We remark that with our choice of polynomials
Hg(u) in §6.3 and §6.4, any object M in φ1DDF ′/Q3

has an action of 〈γ2, γ4〉 (via
γ̂2 and γ̂4, the action of γ2 being Frob3-semi-linear). Also, since γ3 and γ2 commute,

Hγ2 = 1 and Hγ±1
3

(u) ∈ Z3[u], we see that γ̂2 must commute with γ̂±1
3 by Corollary

5.6.2.
We recall from Lemma 5.2.1 that the only models for (Z/3Z)/F over OF are

G(r, δ) for r = 0, 2, 4, 6, 8, 10, 12 with G(12, δ) ∼= (Z/3Z)/OF , and the only models
for (µ3)/F over OF are G(r, 1) for r = 0, 2, 4, 6, 8, 10, 12 with G(0, 1) ∼= (µ3)/OF . In
each case, the base change to OF ′ admits unique descent data over Q3 such that
descent of the generic fibre to Q3 is Z/3Z (resp. µ3). (See Lemma 5.7.1.) We
will write G′r,1 (resp. G′r,ω) for the corresponding pair (G(r, δ) × OF ′ , {[g]}) (resp.
(G(r, 1)×OF ′ , {[g]})). We will also let M′r,1 (resp. M′r,ω) denote the corresponding
object of φ1DDF ′/Q3

. In particular, for χ = 1 or ω, the underlying F9[u]/u36-

module has the form (F9[u]/u36)eχ with eχ the standard generator, though we
write e rather than eχ if χ is understood.

We have the following useful lemma.

Lemma 8.1.1. Let 0 ≤ r ≤ e = 12 be an even integer. The descent data on M′r,1
is determined by

γ̂2(e) = e, γ̂4(e) = −(−
√
−1)r/2e, γ̂±1

3 (e) = Hγ±1
3

(u)−3r/2e,

and the descent data on M′r,ω is determined by

γ̂2(e) = e, γ̂4(e) = (−
√
−1)r/2e, γ̂±1

3 (e) = Hγ±1
3

(u)−3r/2e.

In particular, γ2
4 = −1 on D(G′r,1) if and only if γ2

4 = −1 on D(G′r,ω) if and only
if r = 2, 6 or 10.

Proof. Certainly γ̂2(e) = e. We have already seen in Lemma 5.7.1 that descent
data must exist in each case, so our task is to compute the unique units ξγ4 , ξγ3±1 ∈
(F9[u]/u36)× so that

γ̂4(e) = ξγ4e, γ̂3
±1(e) = ξγ3±1e

corresponds to generic fibre descent data for the mod 3 cyclotomic or trivial char-
acter on G3. The case of γ3

±1 follows from Lemma 5.7.1.
From the condition

γ̂4 ◦ φ′1(ure) = φ′1 ◦ γ̂4(ure)

we get ξ2
γ4

(u) = (−
√
−1)r, so

ξγ4(u) = ±(−
√
−1)r/2.

The non-zero morphisms Mr,1 → M12,1 are given by e 7→ ±u3(12−r)/2e and the
non-zero morphisms M0,ω → Mr,ω are given by e 7→ ±u3r/2e. Thus, it suffices to



912 C. BREUIL, B. CONRAD, F. DIAMOND, AND R. TAYLOR

check that γ̂4e = e on M′12,1 and γ̂4e = e on M′0,ω. In both cases we have shown
that γ̂4e = ±e and so we only need to check that γ4 = 1 on D(G′12,1) and D(G′0,ω).
That is, we have to show that the OF ′-group scheme maps Z/3Z→ γ4(Z/3Z) and
µ3 → γ4µ3 arising from the canonical generic fibre descent data induce the identity
on the special fibres. This is easy.

Lemma 8.1.2. Let M be an object of φ1−mod
F

corresponding to a finite flat group
scheme G and let {[g]} be descent data on G′ = G×OF ′ relative to Q3. Assume that
(G′, {ĝ})Q3 can be filtered so that each graded piece is isomorphic to Z/3Z or µ3

and so that the corresponding filtration of (M′, {ĝ}) in φ1DDF ′/Q3
has successive

quotients of the form M′rj ,χj with rj ∈ {2, 6, 10} and χj ∈ {1, ω}. Then γ2
4 = −1

on M′ /uM′ and there exists a basis {ej} of M over F3[u]/u36 so that for all j
• ej ∈ φ1(M1),
• ej is an eigenvector of the F9-linear map γ̂4 on M′,
• ej lies in the part of the filtration of M′ which surjects onto M′rj,χj and this

surjection sends ej onto the standard basis vector e of M′rj ,χj over F9[u]/u36.

Proof. Since γ2
4 acts linearly on M′ /uM′ and (γ2

4)2 = 1, the action of γ2
4 must be

semi-simple. The eigenvalues of γ2
4 are all equal to −1, so necessarily γ2

4 = −1 on
M′ /uM′.

We now argue by induction on the number of Jordan-Hölder factors in the generic
fibre, the case of length 1 being clear. Thus, we can assume we have a short exact
sequence in φ1DDF ′/Q3

,

0 −→ N′ −→M′ −→M′r,χ −→ 0,

so the lemma is known for N′. We just have to find e0 ∈ φ1(M1) mapping onto
the standard basis vector e in M′r,χ such that e0 is an eigenvector of γ̂4. Since
φ′1(M′1)→ φ′1((M′r,χ)1) is a surjective map of F9-vector spaces which is compatible
with the semi-simple F9-linear endomorphism γ̂4 on each side, we can find e′0 ∈
φ′1(M′1) mapping onto e with e′0 an eigenvector of γ̂4, say γ̂4(e′0) = (

√
−1)±1e′0.

Since

γ̂4 ◦ γ̂2(e′0) = γ̂2 ◦ γ̂3
4(e′0) = γ̂2(

√
−1
∓1

e′0) =
√
−1
±1
γ̂2(e′0),

the element e0 = (1/2)(e′0 + γ̂2(e′0)) maps to e and is an an eigenvector for γ̂4.
Also, e0 ∈ φ′1(M′1) is γ̂2-invariant and γ̂2 commutes with φ′1, so e0 ∈ φ1(M1).

8.2. Models for ρ.

Proposition 8.2.1. There exists a unique object (G′, {[g]}) of FDF ′/Q3,I such
that (G′, {[g]})Q3 corresponds to ρ. If we set (M(ρ)′, {ĝ}) = Mπ(G′, {[g]}), then
(M(ρ)′, {ĝ}) is an extension of M′2,ω by M′10,1 in φ1DDF ′/Q3

. Moreover Frobenius
is not identically zero on D(G′).

Proof. Let (G′, {[g]}) be an object of FDF ′/Q3,I such that (G′, {[g]})Q3 corresponds
to ρ, and set (M′, {ĝ}) = Mπ(G′, {[g]}). As in the discussion following Theorem
5.6.1, we have canonically M′ ' F9⊗F3 M for a Breuil module M over OF , with γ̂2

acting as γ2⊗1. By Lemma 8.1.1, there is a short exact sequence of Breuil modules
over OF ,

0 −→M(s, δ) −→M −→M(r, 1) −→ 0,
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with r, s ∈ {2, 6, 10} and this is compatible with descent data after base change to
OF ′ in the sense that we obtain an exact sequence

0 −→M′s,1 −→M′ −→M′r,ω −→ 0,

compatible with descent data. Because ρ is très ramifié, it follows that ρ|GF ′ is
non-split, so the sequence

0 −→M(s, δ) −→M −→M(r, 1) −→ 0

is non-split.
We first show that we must have (r, s) = (2, 10). Since ρ is self-dual, in order

to prove (r, s) = (2, 10) we may use Cartier duality (and Lemma 5.2.1) in order to
reduce to the case where r+ s ≤ e = 12. We will first rule out cases with r ≥ s and
then the case (r, s) = (2, 6).

By Lemmas 8.1.1 and 8.1.2, we can write

M = (F3[u]/u36)e1 ⊕ (F3[u]/u36)e′ω, M1 = 〈use1, u
re′ω + he1〉

for some h ∈ F3[u]/u36 so that

φ1(use1) = δe1, φ1(ure′ω + he1) = e′ω
and

γ̂4(e1) = −(−
√
−1)s/2e1, γ̂4(e′ω) = (−

√
−1)r/2e′ω.

Recall from Lemma 5.2.2 that the “parameter” h gives an isomorphism of abstract
groups

(F3[u]/u36)/{ust− δurt3|t ∈ F3[u]/u36} ' Ext1
φ1−mod

F
(M(r, 1),M(s, δ)).

It is easy to see that

γ̂4(M′1) ⊆M′1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′1

if and only if γ̂4(ure′ω+he1) ∈M′1 and γ̂4(e′ω) = φ′1◦ γ̂4(ure′ω+he1), or equivalently

(
√
−1)r/2h(u) ≡ −(−

√
−1)s/2h(−

√
−1u) mod u12+s.

This says exactly that

j ≡ 2− (r + s)/2 mod 4(8.2.1)

for any j < 12 + s with a non-zero uj term appearing in h.
If (r, s) = (6, 2) this would force h ≡ 0 mod u2, yet {u2t− δu6t3|t ∈ F3[u]/u36}

contains all multiples of u2, so

0 −→M(2, δ) −→M −→M(6, 1) −→ 0

is split, a contradiction.
When (r, s) = (10, 2) or (r, s) = (2, 2) we see that h ≡ h(0) mod u4, yet

u4(F3[u]/u36) ⊆ {ust− δurt3|t ∈ F3[u]/u36},
so the choice of e′ω may be changed in order to arrange that

h ∈ F3

(though making this change of basis of M may destroy the “diagonal” form of γ̂4).
Since

0 −→M(s, δ) −→M −→M(r, 1) −→ 0
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is non-split, necessarily h 6= 0, so by rescaling e′ω it can be assumed that h = 1.
Then VM(e′ω) ≡ e1 mod uM (by Theorem 5.1.3) and

φ(e′ω) ≡ −(δ/cπ)u3(12−r−s)e1 ≡ −u3(12−r−s)e1 mod uM .

This forces r + s = 12. In particular, (r, s) = (2, 2) is ruled out.
For (r, s) = (10, 2), a splitting of the generic fibre ρ|F is induced by the Breuil

module map

M(0, 1) −→M

defined by

e 7−→ u15e′ω + u3fe1 = u5(u10e′ω + e1) + (uf − u3)u2e1,

where f ∈ F3[u]/u36 satisfies f3 − δf = u6 (i.e. f = −δu6 − u18, and a constant
c ∈ F3 can even be added to this if δ = 1). But ρ|GF ′ must be non-split, so this
rules out (r, s) = (10, 2).

The remaining case with r ≥ s is (r, s) = (6, 6). In this case {ust − δurt3|t ∈
F3[u]/u36} contains all multiples of u8. But we have j ≡ 0 mod 4 for all j < 12+s =
18 such that a non-zero uj term appears in h, so again (at the expense of possibly
making the γ̂4-action non-diagonal) we may assume

h = c+ c′u4

for some c, c′ ∈ F3. Writing γ̂4(e′ω) = (
√
−1)e′ω+hγ4(u)e1, the commutativity of γ̂4

and φ′1 amounts to hγ4 = −δh3
γ4

, so hγ4(u) = b
√
−δ for some b ∈ F3. The condition

γ̂4
4(e′ω) = e′ω forces b = 0, so γ̂4 still has diagonal action. This analysis shows that

the map of F3-vector spaces

Ext1
φ1DDF ′/Q3

(M′6,ω,M
′
6,1) −→ Ext1

φ1−mod
F

(M(6, 1),M(6, δ))

has at most a 2-dimensional image. If c′ + δc = 0, then the Breuil module map

F9 ⊗M(0, 1) −→M′

defined by

e 7−→ cδu7e1 + u3(u6e′ω + (c+ c′u4)e1)

gives a splitting of the corresponding representation of GF ′ . Thus the image of

Ext1
φ1DDF ′/Q3

(M′6,ω,M
′
6,1) −→ Ext1

F3[GF ′ ]
(1, ω)(8.2.2)

is at most one dimensional and, because ρ|GF ′ is non-split, the pair (c, c′) corre-
sponding to a model of ρ satisfies c′ + δc 6= 0.

At this point, we treat the cases δ = ±1 separately. Consider first the case δ = 1.
We must have

γ̂3(e1) = Hγ3(u)−9e1, γ̂3(e′ω) = Hγ3(u)−9e′ω + hγ3(u)e1,

where hγ3(u) ∈ F9[u]/u36 lies in F3[u]/u36 because γ̂3 commutes with γ̂2. Evaluat-
ing γ̂3◦φ′1 ≡ φ′1 ◦ γ̂3 mod uM′ on u6e′ω+(c+c′u4)e1 ∈M′1 and using our knowledge
of Hγ3(u) mod 3, we arrive at

hγ3(0) = δ(hγ3(0)3 + (c+ c′)),

which is impossible for hγ3(0) ∈ F3 with δ = 1 because c+ c′ = c+ δc′ ∈ F×3 .
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Now let us turn to the case δ = −1, still in the case (r, s) = (6, 6). In this case
Ext1

F3[G3](1, ω) → Ext1
F3[GF ′ ]

(1, ω) is injective and so by (8.2.2) we see that the
image of

Ext1
φ1DDF ′/Q3

(M′6,ω,M
′
6,1) −→ Ext1

F3[G3](1, ω)

is at most one dimensional. Thus to exclude the case (r, s) = (6, 6) and δ = −1, it
suffices to show that this image contains the peu ramifié line (as ρ is très ramifié). By
Proposition 5.2.1 of [Man], there is an elliptic curve E′/Q3

which has supersingular
reduction over Q3(

√
−1, β), with ρE′,3 a non-split, peu ramifié extension of 1 by ω.

The representation ρE′,3|F ′ is non-split (again because H1(G3, ω)→ H1(GF ′ , ω) is
injective in the δ = −1 case). Let N′ be the Breuil module corresponding to the
3-torsion on the Néron model of E′ ×Q3 F

′, so N′ admits descent data {ĝ′} via
the universal property of Néron models. The filtration of ρ induces a short exact
sequence in φ1DDF ′/Q3

0 −→M′a,1 −→ (N′, {ĝ′}) −→M′b,ω −→ 0

for some even a, b with 2 ≤ a, b ≤ 10. The Néron model of E′ ×Q3 Q3(
√
−1, β)

has local-local 3-torsion, and the induced local-local integral models Gω and G1 of
the diagonal characters ω|Q3(

√
−1,β) and 1|Q3(

√
−1,β) must be the unique local-local

models (uniqueness follows from Corollary 1.5.1 of [Ra]). Moreover, Corollary 1.5.1
of [Ra] makes it clear that base change to OF ′ takes the order 3 group schemes
Gω and G1 to the integral models that lie in the middle of the well-ordered sets of
integral models of ω|F ′ and 1|F ′ . It follows that a = b = 6, so the map

Ext1
φ1DDF ′/Q3

(M′6,ω,M
′
6,1) −→ Ext1

F3[G3](1, ω)

indeed hits the peu ramifié line.
We next exclude the case (r, s) = (2, 6). As a first step, we check that there is

at most one possibility for the underlying Breuil module M (ignoring the extension
class structure) if (r, s) = (2, 6). We can write

M = (F3[u]/u36)e1 ⊕ (F3[u]/u36)e′ω, M1 = 〈u6e1, u
2e′ω + he1〉

for some necessarily non-zero h ∈ F3[u]/u36 with

φ1(u6e1) = δe1, φ1(u2e′ω + he1) = e′ω

and

γ̂4(e1) = −
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω.

The combined conditions γ̂4(M′1) ⊆M′1 and φ′1 ◦ γ̂4 = γ̂4 ◦ φ′1 on M′1 are equivalent
to

h(u) ≡ −h(−
√
−1u) mod u18.

Since {u6t − δu2t3|t ∈ F3[u]/u36} contains u6 − δu2 and all multiples of u9, we
may change e′ω (at the expense of possibly losing the diagonal form for γ̂4) so that
h = cu2 for some c ∈ F3. Since h is necessarily non-zero, we may rescale to get
h = u2, so there is indeed at most one possibility for the underlying Breuil module
M when (r, s) = (2, 6).

Again we treat the cases δ = ±1 separately. Consider first the case δ = −1. We
have seen above that there is an extension E6,6 = (N′, {ĝ′}) of M′6,ω by M′6,1 in
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φ1DDF ′/Q3
corresponding to a non-split, peu ramifié extension of 1 by ω. Pulling

back E6,6 by a non-zero map

M′2,ω −→M′6,ω

in φ1DDF ′/Q3
given by e 7→ ±u6e, we get an extension E2,6 of M′2,ω by M′6,1 in

φ1DDF ′/Q3
corresponding to a non-split, peu ramifié extension of 1 by ω. The

underlying Breuil module of E2,6 must be isomorphic to F9⊗F3 M for our uniquely
determined M (with h = u2). By the injectivity of H1(G3, ω)→ H1(GF ′ , ω) in the
δ = −1 case, we conclude that F9 ⊗F3 M cannot admit descent data giving rise to
a très ramifié element in Ext1

F3[G3](1, ω). This rules out the case (r, s) = (2, 6) and
δ = −1.

Now turn to the case (r, s) = (2, 6) and δ = 1. We will show that with the Breuil
module M constructed above (with h = u2), the Breuil module M′ = F9 ⊗F3 M

does not admit descent data relative to F ′/Q3 (with γ̂2 = γ2 ⊗ 1, without loss of
generality). One checks that N(e1) = N(e′ω) = 0, so

N ◦ φ1 = 0.

We must have

γ̂3(e1) = Hγ3(u)−9e1, γ̂3(e′ω) = Hγ3(u)−3e′ω + hγ3(u)e1

for some hγ3 ∈ F9[u]/u36. As usual, since γ̂3 and γ̂2 must commute, we have
hγ3 ∈ F3[u]/u36. The condition γ̂3(M′1) ⊆M′1 is equivalent to

γ̂3(u2e′ω + u2e1) ∈M′1,

which amounts to

hγ3(u) ≡ H−3
γ3
−H−9

γ3
≡ 0 mod u4,

so

γ̂3(u2e′ω + u2e1) = Hγ3(u)−1(u2e′ω + u2e1) +

(
hγ3 −H−3

γ3
+H−9

γ3

u4

)
H2
γ3
u6e1.

As N ◦ φ1 = 0, we have

γ̂3 ◦ φ′1 = φ′1 ◦ γ̂3

on M′1. Evaluating this identity on u2e′ω + u2e1 ∈M1 gives

hγ3 = H6
γ3
·
(
hγ3 −H−3

γ3
+H−9

γ3

u4

)3

,

so hγ3 is a cube. Thus, hγ3 = u6gγ3 for some gγ3 ∈ F3[u]/u36.
Since H3

γ3
≡ 1 + u6 mod u12, we compute

H−9
γ3
−H−3

γ3
≡ u6 mod u12,

so

hγ3 ≡ H6
γ3
·
((

hγ3

u4

)3

+ u6

)
mod u7

and

gγ3(0) = gγ3(0)3 + 1
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in F3. This is absurd. This rules out all possibilities for (r, s) aside from (r, s) =
(2, 10). Uniqueness now follows from Corollary 4.1.5.

From Theorem 5.4.2 of [Man] and Proposition B.4.2 of [CDT] we see that there
is an elliptic curve E/Q3 such that E[3](Q3) ∼= ρ and ρE,3 has type τ±3. Let E

denote the Néron model of E×Q3 F
′ over OF ′ . By the Néron property of E/OF ′ we

see that E[3∞] has descent data over Q3. As in §4.5 we see that I annihilates the
Dieudonné module of E[3∞] × F9. Thus M(ρ)′ ∼= Mπ(E[3]) in φ1DDF ′/Q3

and it
follows that Frobenius is non-zero on D(G′).

8.3. Completion of the proof of Theorem 4.5.1.

Lemma 8.3.1. Let (G′, {[g]}) be the unique object of FDF ′/Q3,I such that
(G′, {[g]})Q3 corresponds to ρ. Set (M(ρ)′, {ĝ}) = Mπ(G′, {[g]}). The natural map
of groups

Ext1
φ1DDF ′/Q3

((M(ρ)′, {ĝ}), (M(ρ)′, {ĝ})) −→ Ext1
φ1DDF ′/Q3

(M′10,1,M
′
2,ω),

using pushout by (M(ρ)′, {ĝ}) → M′2,ω and pullback by M′10,1 → (M(ρ)′, {ĝ}), is
zero.

Proof. Let (M̃
′
, {ĝ}) represent a class in Ext1

φ1DDF ′/Q3
((M(ρ)′, {ĝ}), (M(ρ)′, {ĝ}))

and let (M′, {ĝ}) be its image in Ext1
φ1DDF ′/Q3

(M′10,1,M
′
2,ω). By Lemma 5.2.2,

M′ = F9 ⊗M with γ̂2 = γ2 ⊗ 1 and

M = (F3[u]/u36)eω ⊕ (F3[u]/u36)e′1, M1 = 〈u2eω, u10e′1 + (c+ c′u)eω〉,
with c, c′ ∈ F3. Also,

φ1(u2eω) = eω, φ1(u10e′1 + (c+ c′u)eω) = δe′1,

and

γ̂4(eω) = −
√
−1eω, γ̂4(e′1) =

√
−1e′1 + hγ4(u)eω

for some hγ4 ∈ F9[u]/u36.
The properties γ̂4(M′1) ⊆M′1 and γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′1 amount to

c′ = 0, hγ4 = −δh3
γ4
u24,

so hγ4 = 0. If c = 0, then N ◦ φ1 = 0, so γ̂3 ◦ φ′1 = φ′1 ◦ γ̂3 on M′1. From this we
readily see that (M′, {ĝ}) is split in φ1DDF ′/Q3

, as desired.
Now assume c 6= 0; we will deduce a contradiction. Consider the rank three

Breuil module with descent data

(N, {ĝ}) = (M̃
′
, {ĝ})/(M′10,1, {ĝ}),

where M′10,1 ↪→ M(ρ)′ ↪→ M̃
′
. Then N has an ordered basis {eω, e′1, e′ω} with

respect to which

N1 = 〈u2eω, u10e′1 + eω, u2e′ω + he′1 + (b + b′u)eω〉
for some b, b′ ∈ F9 and h = a+ a′u4 + a′′u8 ∈ F9[u]/(u36) defined modulo {u10t−
δu2t3} (see 8.2.1). Since our base field F ′ has absolute ramification degree 12, N1

contains

u12e′ω = u10(u2e′ω + he′1 + (b + b′u)eω)− h(u10e′1 + eω) + (h− u10(b + b′u))eω.
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From the list of generators of N1, it is not difficult to check that in the above
expression for u12e′ω ∈ N1, u2 must divide the coefficient of eω. Thus a = 0.

We must have N /〈eω〉 ∼= M(ρ)′. Since a = 0, M(ρ) has basis {e′1, e′ω} and

M(ρ)1 = 〈u10e′1, u
2e′ω + (a′u4 + a′′u8)e′1〉.

Since φ1 for M(ρ) satisfies

φ1(u10e′1) = δe′1, φ1(u2e′ω + (a′u4 + a′′u8)e′1) = e′ω,

it follows immediately that φ ≡ 0 mod uM(ρ), which (using Theorem 5.1.3) con-
tradicts Proposition 8.2.1.

Corollary 8.3.2. The natural map

θ0 : Ext1
S±3

(ρ, ρ) −→ H1(G3, ω)

is zero.

Theorem 4.7.4, and hence Theorem 4.4.1, now follow from the first case of the
following lemma. We include the second case to simplify the proof.

Lemma 8.3.3. The maps of groups

Ext1
φ1DDF ′/Q3

(M′10,1,M
′
10,1) −→ Ext1

F3[G3](1, 1),

Ext1
φ1DDF ′/Q3

(M′2,ω,M
′
2,ω) −→ Ext1

F3[G3](ω, ω)

have images inside the line of extension classes that split over an unramified exten-
sion of Q3.

Proof. Since

H1(G3,Z/3) −→ H1(GF ′ ,Z/3)

is injective and induces an isomorphism between the subgroups of unramified classes,
it suffices to check that

Ext1
φ1DDF ′/Q3

(M′10,1,M
′
10,1) −→ Ext1

φ1−mod
F

(1, 1),

Ext1
φ1DDF ′/Q3

(M′2,ω,M
′
2,ω) −→ Ext1

φ1−mod
F

(ω, ω)

have images consisting of elements split over an unramified extension of F . By
Cartier duality it suffices to consider only the second map.

Consider a representative (M′, {ĝ}) of an element in Ext1
φ1DDF ′/Q3

(M′2,ω,M
′
2,ω).

Lemma 5.2.2 ensures that we can write

M = (F3[u]/u36)eω ⊕ (F3[u]/u36)e′ω, M1 = 〈u2eω, u2e′ω + heω〉
for some h = c+ c′u+ c′′u2 with c, c′, c′′ ∈ F3 and

φ1(u2eω) = eω, φ1(u2e′ω + heω) = e′ω.

We have

γ̂4(eω) = −
√
−1eω, γ̂4(e′ω) = −

√
−1e′ω + hγ4(u)eω

for some hγ4 ∈ F9[u]/u36, and the condition γ̂4(M′1) ⊆M′1 is equivalent to

h(u) ≡ −h(−
√
−1u) mod u2,
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so c = c′ = 0. The Breuil module extension class M over OF (ignoring descent
data) therefore only depends on the parameter c′′ ∈ F3. We then have a splitting
F3 ⊗F3 M(2, 1)→ F3 ⊗F3 M determined by

e 7−→ aeω + e′ω,

where a ∈ F3 satisfies a3 = a+ c′′.

9. Proof of Theorems 4.6.1, 4.6.2 and 4.6.3

In this section we will keep the notation of §4.6 and §6.5. We will write F for
Fi, F ′ for F ′i and I for Ii. If G (resp. M) is a finite flat OF -group scheme (resp.
Breuil module over OF ) we will write G′ (resp. M′) for the base change to OF ′ .

9.1. Rank one calculations. We remark that with our choice of polynomials
Hg(u) in §6.5, any object M in φ1DDF ′/Q3

has an action of 〈γ2, γ4〉 via γ̂2 and γ̂4.
(The action of γ2 is Frob3-semi-linear.) Since γ3 and γ2 commute and Hγ±1

3
(u) ∈

Z3[u] we see that γ̂2 must commute with γ̂±1
3 (see Corollary 5.6.2).

By Lemma 5.2.1, the only models for (Z/3Z)/F over OF are G(r, 1) for r =
0, 2, 4, 6, 8, 10, 12 with G(12, 1) ∼= (Z/3Z)/OF , and the only models for (µ3)/F over
OF are G(r, 1) for r = 0, 2, 4, 6, 8, 10, 12 with G(0, 1) ∼= (µ3)/OF . Lemma 5.7.1
ensures that the base changes to OF ′ admit unique descent data over Q3 such that
descent of the generic fibre to Q3 is Z/3Z (resp. µ3). We will write G′r,1 (resp. G′r,ω)
for the corresponding pair (G(r, 1)×OF OF ′ , {[g]}) (resp. (G(r, 1) ×OF OF ′ , {[g]})).
We will also let M′r,1 (resp. M′r,ω) denote the corresponding object of φ1DDF ′/Q3

.
We have the following useful lemmas, for which the proofs are identical to the

proofs of Lemmas 8.1.1 and 8.1.2.

Lemma 9.1.1. Let 0 ≤ r ≤ e = 12 be an even integer. The descent data on Mr,1

is determined by

γ̂2(e) = e, γ̂4(e) = −(−
√
−1)r/2e, γ̂±1

3 (e) = Hγ±1
3

(u)−3r/2e,

and the descent data on Mr,ω is determined by

γ̂2(e) = e, γ̂4(e) = (−
√
−1)r/2e, γ̂±1

3 (e) = Hγ±1
3

(u)−3r/2e.

In particular, γ2
4 = −1 on D(Gr,1) if and only if γ2

4 = −1 on D(Gr,ω) if and only
if r = 2, 6 or 10.

Lemma 9.1.2. Let M be an object of φ1−mod
F

corresponding to a finite flat group
scheme G and let {[g]} be descent data on G′ = G ×OF OF ′ over Q3. Assume that
(G′, {ĝ})Q3 can be filtered so that each graded piece is isomorphic to Z/3Z or µ3

and so that the corresponding filtration of (M′, {ĝ}) in φ1DDF ′/Q3
has successive

quotients of the form M′rj ,χj with rj ∈ {2, 6, 10} and χj ∈ {1, ω}. Then γ2
4 = −1

on M′ /uM′ and there exists a basis {ej} of M over F3[u]/u36 so that for all j
• ej ∈ φ1(M1),
• ej is an eigenvector of the F9-linear map γ̂4 on M′,
• ej lies in the part of the filtration of M′ which surjects onto M′rj,χj and this

surjection sends ej onto the standard basis vector e of M′rj ,χj over F9[u]/u36.
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9.2. Models for ρ. Recall that we are assuming that ρ has the très ramifié form(
ω ∗
0 1

)
,

and is not split over F ′. We will let φ1DDF ′/Q3,I
denote the full subcategory

of φ1DDF ′/Q3
consisting of objects M′ for which the ideal I acts trivially on

(M′/uM′)⊗F9,Frob3 F9.

Proposition 9.2.1. Suppose that (M′, {ĝ}) is an object of φ1DDF ′/Q3,I
such that

(M′, {ĝ})Q3 is an extension of Z/3Z by µ3. Then we have an exact sequence

(0) −→M′s,1 −→M′ −→M′r,ω −→ (0)

with (r, s) = (2, 6), (6, 10), (2, 10) or (6, 6). Moreover we can write M′ = M⊗F3 F9

with γ̂2 = 1⊗Frob3, where M has an F3[u]/(u36)-basis {e1, e′ω} with e1 the standard
basis element of M(s, 1) and e′ω mapping to the standard basis element of M(r, 1).
More precisely we have the following exhaustive list of extension class possibilities,
all of which are well defined. (N denotes the monodromy operator described in
Lemma 5.1.2.)

(1) (r, s) = (2, 6): The natural map

Ext1
φ1DDF ′/Q3,I

(M′2,ω,M
′
6,1) −→ Ext1

F3[G3](1, ω)

is an isomorphism, with elements parametrised by pairs (c, c1) ∈ F2
3 corre-

sponding to

M1 = 〈u6e1, u
2e′ω + cu2e1〉, φ1(u6e1) = e1, φ1(u2e′ω + cu2e1) = e′ω

(so N ◦ φ1 = 0) with

γ̂4(e1) = −
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω,

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′ω) = (1 ± u18)(e′ω ± c1u6e1).

The pairs with c = 0 are the ones which generically split over F ′. In all
cases φ ≡ 0 mod uM.

(2) (r, s) = (6, 10): The natural map

Ext1
φ1DDF ′/Q3,I

(M′6,ω,M
′
10,1) −→ Ext1

F3[G3](1, ω)

is an isomorphism, with elements parametrised by pairs (c, c1) ∈ F2
3 corre-

sponding to

M1 = 〈u10e1, u
6e′ω + cu6e1〉, φ1(u10e1) = e1, φ1(u6e′ω + cu6e1) = e′ω

(so N ◦ φ1 = 0) with

γ̂4(e1) =
√
−1e1, γ̂4(e′ω) =

√
−1e′ω,

γ̂±1
3 (e1) = (1∓ u18)e1, γ̂

±1
3 (e′ω) = e′ω ± c1u6e1.

The pairs with c = 0 are the ones which generically split over F ′. In all
cases φ ≡ 0 mod uM. These cases are Cartier dual to the (2, 6) cases above.
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(3) (r, s) = (2, 10): The natural map

Ext1
φ1DDF ′/Q3,I

(M′2,ω,M
′
10,1) −→ Ext1

F3[G3](1, ω)

is an isomorphism, with elements parametrised by pairs (c, c1) ∈ F2
3 corre-

sponding to

M1 = 〈u10e1, u
2e′ω + cu8e1〉, φ1(u10e1) = e1, φ1(u2e′ω + cu8e1) = e′ω

(so N ◦ φ1 = 0) with

γ̂4(e1) =
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω,

γ̂±1
3 (e1) = (1∓ u18)e1, γ̂

±1
3 (e′ω) = (1± u18)(e′ω ± c1u12e1).

The pairs with c = 0 are the ones which generically split over F ′. In all
cases φ ≡ 0 mod uM.

(4) (r, s) = (6, 6): The natural map

Ext1
φ1DDF ′/Q3,I

(M′6,ω,M
′
6,1) −→ Ext1

F3[G3](1, ω)

is an isomorphism, with elements parametrised by pairs (c, c′) ∈ F2
3 corre-

sponding to

M1 = 〈u6e1, u
6e′ω + (c+ c′u4)e1〉, φ1(u6e1) = e1, φ1(u6e′ω + (c+ c′u4)e1) = e′ω

(it is easily checked that N(e1) = 0 and N(e′ω) = c′u30e1) and

γ̂4(e1) = −
√
−1e1, γ̂4(e′ω) =

√
−1e′ω,

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′ω) = e′ω + (±c∓ c′u12 − c′u30)e1.

In particular, φ ≡ 0 mod uM if and only if c = 0.
In the first three cases, the peu ramifié condition on a class in Ext1

F3[G3](1, ω) is
equivalent to the vanishing of c1. In the fourth case it is equivalent to the vanishing
of c.

Proof. By Lemma 9.1.1 we have an exact sequence

(0) −→M′s,1 −→M′ −→M′r,ω −→ (0)

with r, s ∈ {2, 6, 10}. As usual

M1 = 〈use1, u
re′ω + he1〉.

In the cases (r, s) = (2, 2) and (6, 2) as in the proof of Proposition 8.2.1 we may
take h = 0. We will show that in the case (r, s) = (10, 2) we also have h = 0.
Following the proof of Proposition 8.2.1 we may suppose that h ∈ F3. Without loss
of generality we can take h = 1 and look for a contradiction. Again following the
proof of Proposition 8.2.1 and using

M1 = 〈u2e1, u
10e′ω + e1〉

we find that φe′ω ≡ −e1 mod uM. Also

γ̂±1
3 e1 = (1± u18)e1,

γ̂±1
3 e′ω = (1∓ u18)e′ω + h±1(u)e1
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for some h±1(u) ∈ F9[u]/(u36), which must actually lie in F3[u]/(u36) (using, as
usual, the fact that γ̂2 and γ̂3 commute). Thus

−e1 ≡ φe′ω
≡ (γ̂3γ̂2 − γ̂−1

3 γ̂2)(e′ω)

≡ (γ̂3 − γ̂−1
3 )(e′ω)

≡ (h1(0)− h−1(0))e1 mod uM′.

The inverse linear maps γ̂±1
3 on M′/uM′ have matrices(

1 h±1(0)
0 1

)
with respect to the basis {e1, e′ω}, so that h−1(0) = −h1(0). Thus h1(0) = 1. On
the other hand evaluating γ̂3φ

′
1 ≡ φ′1γ̂3 mod uM′ on u10e′ω + e1 and comparing

coefficients of e1 gives h1(0) = 0, a contradiction.
Thus if any case (r, 2) arises, the underlying Breuil module must be a split

extension
M = (F3[u]/(u36))e1 ⊕ (F3[u]/(u36))e′ω , M1 = 〈u2e1, u

re′ω〉,
φ1(u2e1) = e1, φ1(ure′ω) = e′ω

(so N ◦ φ1 = 0), with

γ̂2e1 = e1, γ̂2e′ω = e′ω,

γ̂4e1 =
√
−1e1, γ̂4e′ω = (−

√
−1)r/2e′ω.

We also have

γ̂±1
3 e1 = Hγ±1

3
(u)−3e1 γ̂±1

3 e′ω = Hγ±1
3

(u)−3r/2e′ω + h±1(u)e1

for some h±1 ∈ F3[u]/(u36). Since N ◦ φ1 = 0, we have γ̂±1
3 φ′1 = φ′1γ̂

±1
3 on

M′1. Evaluating this on ure′ω and comparing coefficients of e1 gives h±1(u) =
u3(r−2)h±1(u)3Hγ±1

3
(u)3r. This forces h±1(u) = 0 if r 6= 2. If r = 2 it forces

h±1(u) = c±1(1 ± u18) for some c±1 ∈ F3. We will show c−1 = c1 = 0. Indeed,
evaluating the congruence

φ ≡ (γ̂3γ̂2 − γ̂−1
3 γ̂2) mod uM′

on e′ω gives

0 = φ(e′ω) ≡ (c1 − c−1)e1 mod uM′

so that c−1 = c1. On the other hand the congruence

γ̂3γ̂4 ≡ γ̂4γ̂
−1
3 mod uM′

gives (
1 c1
0 1

)( √
−1 0
0 −

√
−1

)
=
( √

−1 0
0 −

√
−1

)(
1 c−1

0 1

)
in M2(F3), so c−1 = −c1. Thus c−1 = c1 = 0 and h±1 = 0 for r = 2 as well. Thus
for r = 2, 6 and 10 the Breuil module with descent data M′ is split, so ρ is split, a
contradiction.

This rules out the possibilities (2, 2), (6, 2) and (10, 2). Using Cartier duality we
can also rule out (10, 10) and (10, 6). We are left with the four possible pairs (r, s)
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as asserted in the proposition and must determine which possibilities arise in each
case.

Next consider the case (r, s) = (2, 6). Using the same analysis as in the (r, s) =
(2, 6) case in Proposition 8.2.1, we find that the possibilities for the Breuil module
M are the ones in the statement of the proposition (and N ◦ φ1 = 0 is easy to
check), though we only know that

γ̂4(e1) = −
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω + hγ4(u)e1

for some hγ4(u) ∈ F9[u]/u36. The conditions

γ̂4(M′1) ⊆M′1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′1

are equivalent to

hγ4 ≡ 0 mod u4, hγ4 = −
(
hγ4

u4

)3

.

The solutions to this are hγ4 = a
√
−1u6 for a ∈ F3. Replacing e′ω by e′ω + au6e1

preserves our standardized form but makes hγ4 = 0:

γ̂4(e1) = −
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω.

The wild descent data must have the form

γ̂±1
3 (e1) = e1, γ̂±1

3 (e′ω) = (1± u18)e′ω + h±1(u)e1

for some h±1 ∈ F9[u]/u36. The conditions

γ̂±1
3 (M′1) ⊆M′1, γ̂±1

3 ◦ φ′1 = φ′1 ◦ γ̂±1
3 on M′1

(recall N ◦ φ1 = 0) are equivalent to

h±1 ≡ 0 mod u4, h±1 = (1 ± u18)
(
h±1

u4

)3

,

whose solutions are

h±1 = c±1u
6(1± u18)

for some c±1 ∈ F3. Since N ◦ φ1 = 0, we have

γ̂±1
3 ◦ γ̂∓1

3 ◦ φ′1 = φ′1,

so

c−1 = −c1.
Using Lemma 5.2.2 and Corollary 5.6.2, we see that all of these possibilities are

well defined. We also see that I annihilates M/uM ⊗ F9. It is straightforward to
check that generic splitting over F ′ (which is equivalent to generic splitting over
F ) is equivalent to c = 0, and that such splitting is compatible with descent data
(i.e. descends to Q3) if and only if c = c1 = 0. For dimension reasons, the map on
Ext1’s is therefore an isomorphism.

Now consider the case (r, s) = (2, 10). Here we have

M1 = 〈u10e1, u
2e′ω + he1〉

for some h ∈ F3[u]/u36, with

φ1(u10e1) = e1, φ1(u2e′ω + he1) = e′ω
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and

γ̂4(e1) =
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω.

In order that

γ̂4(M′1) ⊆M′1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′1,

it is necessary and sufficient that

h ≡ h(−
√
−1u) mod u22.

But {u10t−u2t3|t ∈ F3[u]/u36} is spanned by u13−u11, u12−u8, u11−u5, u10−u2,
and all multiples of u15, so we may suppose

h = c′′ + c′u4 + cu8,(9.2.1)

for some c′′, c′, c ∈ F3, at the expense of possibly losing the diagonal form of γ̂4.
The monodromy operator satisfies

N(e1) = 0, N(e′ω) = (c′′u6 − c′u18 + c′′u30)e1.

Since the wild descent data must take the form

γ̂±1
3 (e1) = (1∓ u18)e1, γ̂±1

3 (e′ω) = (1± u18)e′ω + h±1e1

for some h±1 ∈ F9[u]/u36, we compute

γ̂±1
3 (u2e′ω + he1) = H2

γ±1
3

(u)(1± u18)(u2e′ω + he1) + f±1(u)e1,

where

f±1(u) = −hH2
γ±1

3
(u)(1 ± u18) + u2H2

γ±1
3
h±1 + (1 ∓ u18)h(uHγ±1

3
).(9.2.2)

Thus, in order that γ̂±1
3 (M′1) ⊆M′1, it is necessary and sufficient that f±1 satisfies

f±1 ≡ 0 mod u10.

Using (9.2.1) and Hγ±1
3
≡ 1∓ u6 mod 3, this amounts to

h±1 ≡ ±c′′u4 mod u8.(9.2.3)

However, N ◦ φ1(M1) ⊆ u6 M, so

γ̂±1
3 ◦ φ′1 ≡ φ′1 ◦ γ̂±1

3 mod u6 M′

when evaluated on M′1. This gives

h±1 ≡
(
f±1

u10

)3

mod u6.

Since h±1 is a cube modulo u6, by (9.2.3) we must have c′′ = 0, and so N ◦ φ1 ≡
0 mod u18 M. Thus, γ̂±1

3 and φ′1 commute modulo u18 M′ when evaluated on M′1,
so we get

h±1 ≡
(
f±1

u10

)3

mod u18,(9.2.4)

and h±1 is a cube modulo u18.
On the other hand, with c′′ = 0, we see from (9.2.3) that

h±1 ≡ 0 mod u8.
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Because h±1 is a cube modulo u18, we get the slight improvement

h±1 ≡ 0 mod u9.

Combining this with the vanishing of c′′, we deduce from (9.2.2) that f±1 ≡
±c′u10 mod u11, so by (9.2.4)

h±1 ≡ ±c′ mod u.

This forces c′ = 0, so N ◦ φ1 = 0. Thus, γ̂±1
3 and φ′1 commute on M′1, so

h±1 =
(
f±1

u10

)3

in F9[u]/u36. Using h = cu8 this becomes (via (9.2.2))

h±1 = (1± u18)
(
h±1

u8

)3

,

so

h±1 = c±1u
12(1± u18)

for some c±1 ∈ F3. As before, we get c−1 = −c1.
Now we “diagonalise” γ̂4. Since we have

γ̂4(e1) =
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω + hγ4(u)e1

for some hγ4 ∈ F9[u]/u36, the conditions

γ̂4(M′1) ⊆M′1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′1

are equivalent to

hγ4 ≡ 0 mod u8, hγ4 = −
(
hγ4

u8

)3

,

which is to say

hγ4 = a
√
−1u12

for some a ∈ F3. Replacing e′ω by e′ω +au12e1 then puts us in a setting with a = 0.
Thus all extensions have the form asserted in the proposition. It is easy to check
that in each case I annihilates (M/uM)⊗ F9.

Pushout by the non-zero map M′6,1 →M′10,1 in φ1DDF ′/Q3
induced by e 7→ u6e

takes our (2,6) examples to our (2,10) examples (compatibly with the labelling of
parameters c, c1 as in the statement of the proposition). Thus all 9 possibilities for
(c, c1) do occur and we get an isomorphism of Ext1’s as asserted. Moreover, generic
splitting over F ′ (which is equivalent to generic splitting over F ) is equivalent to
c = 0, and such splitting is compatible with descent data (i.e. descends to Q3) if
and only if c = c1 = 0.

Using Cartier duality and the case (r, s) = (2, 6), we see that in the case (r, s) =
(6, 10) the map of Ext1’s is an isomorphism. It is easy to check that the objects
in our asserted list of 9 possibilities for (r, s) = (6, 10) are well defined and that
pullback by the non-zero map M′2,ω →M′6,ω induced by e 7→ u6e takes these to our
(2, 10) examples (compatibly with the labelling of parameters c, c1).

Finally, we turn to the case (r, s) = (6, 6). Choosing a basis with respect to
which γ̂4 has a diagonal action, the conditions

γ̂4(M′1) ⊆M′1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′1(9.2.5)
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are equivalent to

h(u) ≡ h(−
√
−1u) mod u18.

Since {u6t− u6t3|t ∈ F3[u]/u36} consists of multiples of u7, we may change e′ω to
get

h = c+ c′u4

for some c, c′ ∈ F3, with

γ̂4(e1) = −
√
−1e1, γ̂4(e′ω) =

√
−1e′ω + hγ4(u)e1

for some hγ4 ∈ F9[u]/u36. Feeding this into (9.2.5) we get hγ4 = −h3
γ4

, so hγ4 =√
−1a for some a ∈ F3. Replacing e′ω by e′ω − ae1 returns us to the setting with

“diagonal” γ̂4-action and preserves the standardizations we have made so far.
It is easy to compute N(e′ω) = c′u30e1 (and we know N(e1) = 0). The “wild”

descent data is

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′ω) = e′ω + h±1e1

for some h±1 ∈ F9[u]/u36. Using the congruence for tγ±1
3

in §6.5, the identity

γ̂±1
3 ◦ φ′1 = (1 + tγ±1

3
·N) ◦ φ′1 ◦ γ̂±1

3

on M′1 amounts to the condition

h±1 = h3
±1 ∓ c′u12 − c′u30,

whose solutions are

h±1 = c±1 ∓ c′u12 − c′u30

for some c±1 ∈ F3. The identity

γ̂±1
3 ◦ γ̂∓1

3 ≡ 1 mod uM′

implies c−1 = −c1. Thus

−VM′(e′ω) ≡ φ(e′ω) ≡ −ce1 mod uM′, (γ̂3 ◦ γ̂2 − γ̂−1
3 γ̂2)(e′ω) ≡ −c1e1 mod uM′ .

Thus I annihilates (M/uM)⊗F3 F9 if and only if c1 = c.
By Lemma 5.2.2 and Corollary 5.6.2, it is easy to see that all of these objects

are well defined. The kernel of

Ext1
φ1DDF ′/Q3,I

(M′6,ω,M
′
6,1) −→ Ext1

F3[GF ](1, ω)(9.2.6)

consists of pairs (c,−c), where generic splittings are induced by any of the (non-
zero) Breuil module maps

M(0, 1) −→M

defined by

e 7−→ u9e′ω + (c̃u9 + cu3)e1 = u(c+ u2c̃)u6e1 + u3(u6e′ω + (c− cu4)e1)

with c̃ ∈ F3. Thus, the pairs (c, c′) corresponding to the ρ which are split over F
(or equivalently, split over F ′) are exactly those for which c+ c′ = 0. The map

Ext1
φ1DDF ′/Q3,I

(M′6,ω,M
′
6,1) −→ Ext1

F3[G3](1, ω)

is therefore injective, because the splitting given above respects descent data if and
only if c̃ = c1 = 0.
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It remains to establish which of the given extensions of Breuil modules corre-
spond to peu ramifié extensions of Z/3Z by µ3 over Q3. We noted above that
the maps among the Ext1

φ1DDF ′/Q3
’s in the (2,6), (6,10), (2,10) cases induced by

pushout/pullback along e 7→ u6e are compatible with the parametrisation by pairs
(c, c1). With a little more care, one checks that the maps

Ext1
φ1DDF ′/Q3,I

(M′2,ω,M
′
6,1)←− Ext1

φ1DDF ′/Q3,I
(M′6,ω,M

′
6,1)

−→ Ext1
φ1DDF ′/Q3,I

(M′6,ω,M
′
10,1)

induced by e 7→ u6e send the pair (c, c′) in the middle to the pair (c+c′, c) on either
end (to construct the necessary commutative diagrams of short exact sequences in
the two cases, use the maps

(e′ω, e1) 7−→ (u6e′ω − c′e1, e1), (e′ω, e1) 7−→ (e′ω + c′e1, u
6e1)

respectively). This reduces us to checking the (6, 6) case.
By Corollary 2.3.2, the two très ramifié extensions, ρ1 and ρ2, of 1 by ω which

are non-split over F arise from elliptic curves, E1 and E2, over Q3 for which ρEj,3
is potentially Barsotti-Tate with extended type τ ′i (see §6.5). Let Gj denote the
3-torsion in the Néron model of Ej over OF . From the universal property of Néron
models we see that G′j = Gj ×OF OF ′ inherits descent data {[g]} over Q3. By
the same argument used at the end of §4.6 we see that (G′j , {[g]}) is an object of
φ1DDF ′/Q3,I

. Moreover we see that F 6= 0 on D(Gj). Since all non-(6, 6) cases
above have φ ≡ 0 mod uM, by the parts of Proposition 9.2.1 which we have already
proved we see that Mπ(G′j , {[g]}) is an extension of M′6,ω by M′6,1 and correspond to
a pair (c, c′) with c 6= 0 (since F 6= 0) and c+c′ 6= 0 (by our analysis of (9.2.6), since
ρi is non-split over F ). Hence Mπ(G′1, {[g]}) and Mπ(G′2, {[g]}) must correspond in
some order to the lines c′ = 0 and c = c′ in F2

3.
As a non-split peu ramifié extension of 1 by ω remains non-split over F ′, we see

that the peu ramifié line in

Ext1
φ1DDF ′/Q3,I

(M′6,ω,M
′
6,1) ∼= Ext1

F3[G3](1, ω)

cannot correspond to c + c′ = 0. By the above analysis it cannot correspond to
c′ = 0 or c− c′ = 0. Thus it must correspond to the remaining line c = 0.

The properties of φ in the cases listed in Proposition 9.2.1 make it clear that the
(6, 6) case there is “different”. We will see further manifestations of this difference
later.

9.3. Further rank two calculations.

Lemma 9.3.1. For (r, s) = (2, 6), (6, 10) and (2, 10) we have

Ext1
φ1DDF ′/Q3,I

(M′s,1,M
′
r,ω) = (0).

Proof. The (6,10) case follows from the (2,6) case by Cartier duality. Thus, we
assume r = 2, s ∈ {6, 10}. Let (M′, {ĝ}) be such an extension. By Lemma 8.1.2,
(M′, {ĝ}) arises from a Breuil module over OF of the form

M = (F3[u]/u36)eω ⊕ (F3[u]/u36)e′1, M1 = 〈u2eω, use′1 + heω〉
with

φ1(u2eω) = eω, φ1(use′1 + heω) = e′1
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and

γ̂4(eω) = −
√
−1eω, γ̂4(e′1) = −(−

√
−1)s/2e′1,

where h ∈ F3[u]/u36.
The combined conditions

γ̂4(M′1) ⊆M′1, γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′1

are equivalent to

(
√
−1)s/2h(u) ≡ (

√
−1)h(−

√
−1u) mod u14.

Treating the cases s = 6 and s = 10 separately, we conclude from Lemma 5.2.2
that we may change e′1 so that h = 0 when s = 6 and h ∈ F3 when s = 10. As a
result of this change, we only have

γ̂4(eω) = −
√
−1eω, γ̂4(e′1) = −(−

√
−1)s/2e′1 + hγ4(u)eω.

However, with h ∈ F3 when s = 10 and h = 0 when s = 6, the condition

γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′1

forces hγ4 = −u3(s−2)h3
γ4

, so that in fact hγ4 = 0 after all.
When h = 0, so M is split in φ1−mod

F
(compatibly with γ̂4 on M′), and it

is easy to check (using N = 0) that the “wild” descent data γ̂±1
3 must also be

diagonal, so we have the desired splitting in φ1DDF ′/Q3
.

It remains to consider the case (r, s) = (2, 10) with h = c ∈ F3. It is easy to
compute

N(eω) = 0, N(e′1) = −cu30eω.

The wild descent data must have the form

γ̂±1
3 (eω) = (1± u18)eω, γ̂±1

3 (e′1) = (1∓ u18)e′1 + h±1eω

with h±1 ∈ F9[u]/u36.

It is straightforward to check that γ̂±1
3 (M′1) ⊆M′1, and then the condition

γ̂±1
3 ◦ φ′1 = (1 + tγ±1

3
·N) ◦ φ′1 ◦ γ̂±1

3

on M′1 gives

h±1 = ±cu12 + h3
±1u

24(1 ∓ u18) + cu30.

The unique solution to this is

h±1 = c(±u12 + u30).

Thus γ̂3γ̂2− γ̂−1
3 γ̂2 ≡ 0 mod u, while φ(e′1) ≡ −ceω mod u. This forces c = 0. With

c = 0 we obviously have only the split extension class.

Lemma 9.3.2. The natural map

Ext1
φ1DDF ′/Q3,I

(M′6,1,M
′
6,ω) −→ Ext1

F3[G3](ω, 1)

is an isomorphism, with elements parametrised by pairs (c, c′) ∈ F2
3 corresponding

to

M = (F3[u]/u36)eω ⊕ (F3[u]/u36)e′1, M1 = 〈u6eω, u6e′1 + (c+ c′u4)eω〉,
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where

φ1(u6eω) = eω, φ1(u6e′1 + (c+ c′u4)eω) = e′1, N(eω) = 0, N(e′1) = c′u30eω

and the descent data is

γ̂4(eω) =
√
−1eω, γ̂4(e′1) = −

√
−1e′1,

γ̂±1
3 (eω) = eω, γ̂±1

3 (e′1) = e′1 + (±c∓ c′u12 − c′u30)eω.

Proof. The proof is identical to the proof of the case (r, s) = (6, 6) in Proposition
9.2.1, except

√
−1 is everywhere replaced by −

√
−1 and when we study splitting

we give M(0, 1) the descent data for the trivial mod 3 character (which amounts to
using γ̂4(e) = −e rather than γ̂4(e) = e).

Lemma 9.3.3. For r ∈ {2, 10}, the maps

Ext1
φ1DDF ′/Q3

(M′r,ω,M
′
r,ω) −→ Ext1

F3[G3](ω, ω)

and

Ext1
φ1DDF ′/Q3

(M′r,1,M
′
r,1) −→ Ext1

F3[G3](1, 1)

are injective and have image consisting of the 1-dimensional space of classes which
split over an unramified extension of Q3.

Proof. The cases r = 10 follow from the cases r = 2 using Cartier duality. Thus
we suppose r = 2. We treat only the case of M′2,ω, the case M′2,1 being exactly the
same except that −

√
−1 replaces

√
−1 everywhere.

Let (M′, {ĝ}) represent an element in Ext1
φ1DDF ′/Q3

(M′2,ω,M
′
2,ω). Lemma 8.1.2

ensures the existence of an ordered F3[u]/u36-basis eω, e′ω of M such that

M1 = 〈u2eω, u2e′ω + heω〉, φ1(u2eω) = eω, φ1(u2e′ω + heω) = e′ω

with

γ̂4(eω) = −
√
−1eω, γ̂4(e′ω) = −

√
−1e′ω.

Carrying out the usual calculation,

γ̂4(M′1) ⊆M′1, φ
′
1 ◦ γ̂4 = γ̂4 ◦ φ′1 on M′1(9.3.1)

if and only if

h ≡ −h(−
√
−1u) mod u14.

Combining this with Lemma 5.2.2, we may change e′ω so that h = cu2, with c ∈ F3,
at the expense of possibly losing the diagonal form of γ̂4. But with h = cu2 and
γ̂4(e′ω) = −

√
−1e′ω + hγ4(u)eω, the conditions (9.3.1) imply hγ4 = −h3

γ4
, and so

hγ4(u) = (
√
−1)a for some a ∈ F3. Then γ̂4

4 = 1 forces a = 0, so γ̂4 still has
diagonal form.

It is easy to check that N(e′ω) = 0, so N ◦ φ1 = 0. Thus, we must have

γ̂±1
3 ◦ φ′1 = φ′1 ◦ γ̂±1

3(9.3.2)

on M′1. Since the wild descent data has to be of the form

γ̂±1
3 (eω) = (1 ± u18)eω, γ̂±1

3 (e′ω) = (1± u18)e′ω + h±1eω
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for some h±1 ∈ F3[u]/u36, evaluation of (9.3.2) on u2e′ω + cu2eω ∈M1 gives h±1 =

(1 ± u18)h3
±1, so h±1 = c±1(1 ± u18) for some c±1 ∈ F3. The relation γ̂±1

3 ◦ γ̂4 ◦
γ̂±1

3 ◦ γ̂3
4(e′ω) = e′ω forces c±1 = 0.

We now have described all possibilities in terms of the single parameter c ∈ F3,
and it is straightforward to use Corollary 5.6.2 to check that all of these examples are
in fact well defined. Generic splittings over unramified extensions of Q3 correspond
to the maps

F3 ⊗F3 M(0, 1) −→ F3 ⊗F3 M

given by

e 7−→ au3eω + u(u2e′ω + cu2eω),

where a ∈ F3 satisfies a3 = a + c. Such generic splittings can be defined over Q3

(i.e. without extending the residue field) if and only if c = 0.

Lemma 9.3.4. (1) The map of groups

Ext1
φ1DDF ′/Q3

(M′6,1,M
′
6,1) −→ Ext1

F3[G3](1, 1)

is an isomorphism.
Explicitly, the group Ext1

φ1DDF ′/Q3
(M′6,1,M

′
6,1) is parametrised by pairs

(c, c′) ∈ F2
3 corresponding to

M = (F3[u]/u36)e1 ⊕ (F3[u]/u36)e′1, M1 = 〈u6e1, u
6e′1 + (cu2 + c′u6)e1〉,

with

φ1(u6e1) = e1, φ1(u6e′1 + (cu2 + c′u6)e1) = e′1,

N(e1) = 0, N(e′1) = −cu24e1

and descent data

γ̂4(e1) = −
√
−1e1, γ̂4(e′1) = −

√
−1e′1,

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′1) = e′1 + c(±u6 ± u18 − u24 ± u30)e1.

The classes in Ext1
F3[G3](1, 1) which split over an unramified extension of Q3

correspond to the pairs with c = 0.
(2) The map of groups

Ext1
φ1DDF ′/Q3

(M′6,ω,M
′
6,ω) −→ Ext1

F3[G3](ω, ω)

is an isomorphism.
Explicitly, the group Ext1

φ1DDF ′/Q3
(M′6,ω,M

′
6,ω) is parametrised by pairs

(c, c′) ∈ F2
3 corresponding to

M = (F3[u]/u36)eω ⊕ (F3[u]/u36)e′ω, M1 = 〈u6eω, u6e′ω + (cu2 + c′u6)eω〉,
with

φ1(u6eω) = eω, φ1(u6e′ω + (cu2 + c′u6)eω) = e′ω,

N(eω) = 0, N(e′ω) = −cu24eω
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and descent data

γ̂4(eω) =
√
−1eω, γ̂4(e′ω) =

√
−1e′ω,

γ̂±1
3 (eω) = eω, γ̂±1

3 (e′ω) = e′ω + c(±u6 ± u18 − u24 ± u30)eω.

The classes in Ext1
F3[G3](ω, ω) which split over an unramified extension of

Q3 correspond to the pairs with c = 0.

Proof. We treat the first part of the lemma; replacing
√
−1 with −

√
−1 throughout

gives the proof of the second part.
As usual, we can find an ordered F3[u]/u36-basis e1, e′1 of M so that

M1 = 〈u6e1, u
6e′1 + he1〉, φ1(u6e1) = e1, φ1(u6e′1 + he1) = e′1,

and γ̂4(e1) = −
√
−1e1, γ̂4(e′1) = −

√
−1e′1. The conditions γ̂4(M′1) ⊆ M′1 and

γ̂4 ◦ φ′1 = φ′1 ◦ γ̂4 on M′1 amount to

h(u) ≡ −h(−
√
−1u) mod u18.

Since {u6t − u6t3|t ∈ F3[u]/u36} consists of multiples of u7, we can change the
choice of e′1 so that

h = cu2 + c′u6

for some c, c′ ∈ F3, where we may a priori lose the diagonal form of γ̂4. But the
same kind of calculation as in Lemma 9.3.3 shows γ̂4(e′1) = −

√
−1e′1 + a

√
−1e1 for

some a ∈ F3, so the condition γ̂4
4 = 1 forces a = 0 (i.e. γ̂4 still has diagonal action).

It is straightforward to compute the asserted formula for N , and then the wild
descent data can be computed exactly as in our previous computations of wild
descent data; this yields the formulas

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′1) = e′1 + (c±1 + c(±u6 ± u18 − u24 ± u30))e1,

where c±1 ∈ F3. Modulo u, the linear action of γ±1
3 γ4γ

±1
3 γ3

4 sends e′1 to e′1−c±1e1,
but γ±1

3 γ4γ
±1
3 γ3

4 = 1, so cε = 0 for ε = ±1. Thus, we obtain the asserted list of
possibilities. The well-definedness of these examples follows from Lemma 5.2.2 and
Corollary 5.6.2.

It is easy to see that there is a non-zero map F3⊗F3 M(0, 1)→ F3⊗F3 M if and
only if c = 0, in which case such non-zero maps are precisely those induced by

e 7−→ au9e1 + u3(u6e′1 + c′u6e1),

where a ∈ F3 satisfies a3 = a + c′. The verification that c = c′ = 0 corresponds
to being in the kernel of our map of Ext1’s is now clear, since X3 = X + c′ has a
solution in F3 if and only if c′ = 0.

9.4. Completion of the proof of Theorem 4.6.1. Everything in Theorem 4.6.1
is now clear except for the third assertion, which we now prove. Let (G′, {[g]}) be
as in the third part of that theorem. We may suppose that G′ = G ×OF OF ′ for
some G/OF . The filtration on ρ⊗F3 k gives a filtration

(0) −→ Gω −→ G −→ G1 −→ (0),

which is compatible with the descent data over Q3. According to Lemma 5.2.3 we
have Mπ(Gω) ∼= M(k; rω, fω) and Mπ(G1) ∼= M(k; r1, f1) for some 0 ≤ r1, rω ≤ 12
and some f1, fω ∈ k[u]/u36. We will let χ denote either 1 or ω. In particular
Mπ(Gχ)1 = urχMπ(Gχ) for χ = 1, ω. From this one can conclude that if H is
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a subquotient of Gχ, then Mπ(H)1 = urχMπ(H). Quite generally, for any Breuil
module M over OF with M1 = ur M and any short exact sequence of Breuil modules

0 −→M′ −→M −→M′′ −→ 0,

we must also have

M′1 = ur M′, M′′1 = ur M′′ .

Indeed, M → M′′ is a surjection taking M1 onto M′′1 , so the assertion for M′′ is
clear. Since M′ is an F3[u]/u36-module direct summand of M and

M′1 = M′ ∩M1 = M′ ∩ur M,

the assertion for M′ is likewise clear. We conclude that (Mπ(Gχ)′, {ĝ}) admits a
filtration with successive quotients M′rχ,χ. Thus rχ ∈ {2, 6, 10}.

Consider a fixed surjection of F3[G3]-modules

ρ⊗ k −→−→ ρ.

This gives rise to a finite flat OF -group scheme H with descent data on H′ = H×OF ′

over Q3 corresponding to ρ and an epimorphism

G −→−→ H

compatible with descent data. Consider the commutative diagram

0→ Mπ(H1) → Mπ(H) → Mπ(Hω) → 0
↓ ↓ ↓

0→ Mπ(G1) → Mπ(G) → Mπ(Gω) → 0

where the top row corresponds to the non-split filtration of ρ. The middle vertical
map is an isomorphism of the source onto an F3[u]/u36-module direct summand
of the target, so the left vertical map is as well, because an injection of F3[u]/u36

into a free F3[u]/u36-module must be an identification with such a direct summand
(consider torsion). This forces Mπ(H1)′ = M′r1,1 and so, by Proposition 9.2.1,
we see that r1 6= 2. Repeating the analogous argument applied to a submodule
ρ ⊆ ρ⊗ k one sees that rω 6= 10.

Thus (G′, {[g]}) is weakly filtered by {Gs,1,Gr,ω} for (r, s) = (2, 6), (6, 10), (2, 10)
or (6, 6), as desired.

9.5. Completion of the proof of Theorem 4.6.3. Write AN for F3[[T ]]/(TN).
For (r, s) = (2, 6), (6, 10) and (2, 10), we will define a Breuil module MN,(r,s) over
OF and descent data {ĝ} for Gal(F ′/Q3) on M′N,(r,s) = MN,(r,s) ⊗F3 F9 such that
MN,(r,s) and (M′N,(r,s), {ĝ}) have compatible actions of AN (and γ̂2 = 1 ⊗ Frob3).
More specifically set t = 2, 6 or 8 according as (r, s) = (2, 6), (6, 10) or (2, 10).
Viewing ρ as an extension class, it corresponds to a particular pair (c, c1) ∈ F2

3

in Proposition 9.2.1. Fix these values. Motivated by the idea of deforming the
formulae in Proposition 9.2.1, we are led to define

MN,(r,s) = (AN [u]/u36)e1 ⊕ (AN [u]/u36)e′ω,

(MN,(r,s))1 = 〈use1, u
re′ω + (c+ T )ute1〉

with

φ1(use1) = e1, φ1(ure′ω + (c+ T )ute1) = e′ω.
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It is straightforward to check that N ◦φ1 = 0 on MN,(r,s). We may define AN -linear
descent data on M′N,(r,s) by setting γ̂2 = 1⊗Frob3 and using the following formulae.

(1) When (r, s) = (2, 6), set

γ̂4(e1) = −
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω,

γ̂±1
3 (e1) = e1, γ̂

±1
3 (e′ω) = (1 ± u18)(e′ω ± c1u6e1).

(2) When (r, s) = (6, 10), set

γ̂4(e1) =
√
−1e1, γ̂4(e′ω) =

√
−1e′ω,

γ̂±1
3 (e1) = (1∓ u18)e1, γ̂

±1
3 (e′ω) = (e′ω ± c1u6e1).

(3) When (r, s) = (2, 10), set

γ̂4(e1) =
√
−1e1, γ̂4(e′ω) = −

√
−1e′ω,

γ̂±1
3 (e1) = (1∓ u18)e1, γ̂

±1
3 (e′ω) = (1± u18)(e′ω ± c1u12e1).

It is readily checked that this defines an object of φ1DDF ′/Q3,I
with an action

of AN . Let GN,(r,s) and (G′N,(r,s), {[g]}) be the corresponding finite flat OF -group
scheme and finite flat OF ′-group scheme with descent data.

If 1 ≤M < N , then we have a short exact sequence in φ1DDF ′/Q3,I

(0) −→M′M,(r,s) −→M′N,(r,s) −→M′N−M,(r,s) −→ (0),

where the first map is induced by multiplication by TN−M . The case M = 1 shows
that

(GN,(r,s), {[g]})Q3/T (GN,(r,s), {ĝ})Q3

corresponds to ρ. Thus we get a surjection of AN [G3]-modules A2
N →→ GN,(r,s)(Q3),

which must in fact be an isomorphism (count orders). Thus (GN,(r,s), {[g]})Q3

defines a deformation ρN,(r,s) of ρ to A2
N . For N ≥ 2 we have ρN,(r,s) mod T 2 ∼=

ρ2,(r,s).
We also have an exact sequence

(0) −→M′s,1 ⊗F3 AN −→ (M′N,(r,s), {ĝ}) −→M′r,ω ⊗F3 AN −→ (0)

in φ1DDF ′/Q3
, from which we obtain an exact sequence of AN [G3]-modules

(0) −→ Xω −→ ρN −→ X1 −→ (0).

Note that X1
∼= FN3 and Xω

∼= F3(ω)N as F3[G3]-modules. Moreover, this sequence
must split as a sequence of AN -modules. (Use, for instance, the kernel of ρN (σ)−1
for any σ ∈ G3−GQ3(

√
−3).) Thus X1

∼= AN and Xω
∼= AN (ω) as AN [G3]-modules,

so det ρN = ω.
Finally, we must check that the exact sequence

(0) −→ ρ −→ ρ2 −→ ρ −→ (0)

is not split. We have maps of Breuil modules

f1 : Ms,1 −→ M2,(r,s)

e 7−→ e1
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and

f2 : M2,(r,s) −→ Mr,ω

e1 7−→ 0
Te1 7−→ 0
e′ω 7−→ 0

Te′ω 7−→ e

compatible with descent data. These give rise to maps

f∗1 : ρ2 −→ 1

and

f∗2 : ω −→ ρ2,

such that the composites

ρ ↪→ ρ2
f∗1−→ 1

and

ω
f∗2−→ ρ2 −→−→ ρ

are non-zero.
To check that

(0) −→ ρ −→ ρ2 −→ ρ −→ (0)

is non-split, it suffices to check that

(0) −→ ω −→ ker f∗1 / Im f∗2 −→ 1 −→ (0)(9.5.1)

is non-split. However, ker f∗1 / Im f∗2 corresponds to an object (N′, {ĝ}) of
φ1DDF ′/Q3,I

satisfying

N′ = (F9[u]/u36)(Te1)⊕ (F9[u]/u36)e′ω, N′1 = 〈us(Te1), ure′ω + ut(Te1)〉

with

φ1(us(Te1)) = (Te1), φ1(ure′ω + ut(Te1)) = e′ω.

By Lemma 5.2.2, the sequence of Breuil modules with descent data

(0) −→M′s,1 −→ N′ −→M′r,ω −→ (0)

is not split. This sequence recovers (9.5.1) under generic fibre descent, so by Propo-
sition 9.2.1

(0) −→ ω −→ ker f∗1 / Im f∗2 −→ 1 −→ (0)

is not split.



THE MODULARITY OF ELLIPTIC CURVES OVER Q 935

9.6. Completion of the proof of Theorem 4.6.2. Suppose first that (r, s) =
(2, 6), (6, 10) or (2, 10). By Lemma 9.3.1

θ0 : Ext1
Si,(r,s)

(ρ, ρ) −→ H1(G3, ω)

is the zero map. Lemma 9.3.3 then tells us that if r 6= 6, then

θ1 : Ext1
Si,(r,s)

(ρ, ρ) −→ H1(I3,F3)

is the zero map; while if s 6= 6, then

θω : Ext1
Si,(r,s)

(ρ, ρ) −→ H1(I3,F3)

is the zero map. Thus Theorem 4.7.5, and hence Theorem 4.6.2, follows in these
cases.

Now consider the case (r, s) = (6, 6). Choose x ∈ H1
Si,(6,6)

(G3, ad0 ρ). Let G

denote the corresponding rank 81 finite flat OF -group scheme with descent data
{[g]} on G′ = G×OF OF ′ . Set M = Mπ(G). Let H ⊂ G denote the closed subgroup
scheme (with descent data) corresponding to the kernel of the map (G′, {[g]})Q3 →→
ρ →→ F3 and let N = Mπ(H). Then N has F3[u]/u36-basis eω, e′1, e

′
ω with respect

to which

N1 = 〈u6eω, u6e′1 + (b+ b′u4)eω, u6e′ω + (c+ c′u4)e′1 + feω〉,
where b, b′, c, c′ ∈ F3, f ∈ F3[u]/u36 and φ1 sends the indicated generators of N1 to
eω, e′1, e

′
ω respectively. Also, the descent data has the form

γ̂4(eω) =
√
−1eω, γ̂4(e′1) = −

√
−1e′1, γ̂4(e′ω) =

√
−1e′ω + hγ4(u)eω

for some hγ4 ∈ F9[u]/u36, and

γ̂±1
3 (eω) = eω, γ̂±1

3 (e′1) = e′1 + (±b− b′(±u12 + u30))eω,

γ̂±1
3 (e′ω) = e′ω + (±c− c′(±u12 + u30))e′1 + h±1eω,

where h±1 ∈ F9[u]/u36. Also, as ρ is très ramifié, we see that c 6= 0 by Proposition
9.2.1 and Lemma 9.3.4.

The requirement that u12 N ⊆ N1 forces N1 to contain

u12e′ω = u6(u6e′ω + (c+ c′u4)e′1 + feω)− (c+ c′u4)(u6e′1 + (b+ b′u4)eω)

+ ((b + b′u4)(c+ c′u4)− fu6)eω,

so N1 must contain (b+ b′u4)(c+ c′u4)eω. As c 6= 0 we get (b+ b′u4)eω ∈ N1, and
since eω, u4eω 6∈ N1, we must have b = b′ = 0. We conclude that the natural map

θ0 : Ext1
Si,(6,6)

(ρ, ρ) −→ H1(G3, ω)

is the zero map.
Let us further analyse N. Replacing e′ω by e′ω + t3eω for t ∈ F3[u]/u36 causes

f to be replaced by f − u6t3 + u6t and otherwise leaves our standardized form
unchanged (except that hγ4 and h±1 may change). Using a suitable choice of such
t, we may assume f has degree at most 6. On the other hand,

γ̂4(u6e′ω + (c+ c′u4)e′1 + feω) = −
√
−1(u6e′ω + (c+ c′u4)e′1 + feω)

+ (
√
−1(f(u) + f(−

√
−1u))− u6hγ4(u))eω,

so γ̂4(N′1) ⊆ N′1 if and only if

f(u) + f(−
√
−1u) ≡ 0 mod u6,
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which forces

f = a2u
2 + a6u

6

for some a2, a6 ∈ F3. From the wild descent data formulae derived in the proof of
Lemma 9.3.4 we also see that h±1 ≡ 0 mod u6.

Now M has an ordered basis e1, eω, e′1, e
′
ω with respect to which

(9.6.1) M1 = 〈u6e1, u
6eω + (c+ c′u4)e1, u

6e′1 + he1,

u6e′ω + (c+ c′u4)e′1 + (a2u
2 + a6u

6)eω + ge1〉,

where g, h ∈ F3[u]/u36 and φ1 sends the indicated generators of M1 to e1, eω, e′1, e
′
ω.

If we try to expand out u12e′ω as a linear combination of the indicated generators
of M1, we find that

u12e′ω ≡ ((c+ c′u4)h+ ca2u
2)e1 mod M1 .

It follows that u12e′ω ∈M1 if and only if

(c+ c′u4)h+ ca2u
2 ≡ 0 mod u6.

Since ρ is très ramifié, the last part of Proposition 9.2.1 tells us that c 6= 0. Thus,
u12e′ω ∈M1 if and only if h ≡ −a2u

2 mod u6. We can now use Lemma 9.3.4 to see
that the wild descent data action is determined by

γ̂±1
3 (e1) = e1, γ̂

±1
3 (eω) = eω + (±c− c′(±u12 + u30))e1, γ̂

±1
3 (e′1) = e′1 + f±1e1

(with f±1 ≡ 0 mod u6), and

γ̂±1
3 (e′ω) = e′ω + (±c− c′(±u12 + u30))e′1 + h±1eω + g±1e1,

where g±1 ∈ F9[u]/u36 and h±1 ≡ 0 mod u6.
We must have

γ̂±1
3 (u6e′ω + (c+ c′u4)e′1 + (a2u

2 + a6u
6)eω + g(u)e1) ∈M′1,(9.6.2)

and this expression is easily computed to equal

u6H6
γ±1

3
· (e′ω + (±c− c′(±u12 + u30))e′1 + h±1eω + g±1e1)

+ (c+ c′u4H4
γ±1

3
)(e′1 + f±1e1)

+ (a2u
2H2

γ±1
3

+ a6u
6H6

γ±1
3

)(eω + (±c− c′(±u12 + u30))e1) + g(uHγ±1
3

)e1.

Remembering that 〈u6e1, u
12 M′〉 ⊆M′1, (9.6.2) becomes

u6(e′ω ± ce′1)+(c+ c′u4H4
γ±1

3
)e′1+(a2u

2H2
γ±1

3
+ a6u

6)eω ± a2cu
2e1+g(u)e1 ∈M′1.

Using the explicit generators of M1 given in (9.6.1) and recalling that h≡−a2u
2 mod

u6, this simplifies to

±a2cu
2e1 ∈M′1 .

Thus a2cu
2 is divisible by u6, so a2 = 0.

The image of the class x in Ext1
F3[G3](ω, ω) under θω corresponds to a finite flat

OF -group scheme with Breuil module Mx free of rank two over F3[u]/u36 with basis
eω, e′ω, and with

(Mx)1 = 〈u6eω, u6e′ω + a6u
6eω〉,
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where φ1 sends the indicated generators of (Mx)1 to eω and e′ω respectively. Ac-
cording to the proof of Lemma 9.3.4 this implies that the image of the class x in
Ext1

F3[G3](ω, ω) is split over an unramified extension of Q3. Thus,

θω : Ext1
Si,(6,6)

(ρ, ρ) −→ H1(I3,F3)

is the zero map. This completes the proof of Theorem 4.7.5, and hence of Theorem
4.6.2.

10. Corrigenda for [CDT]

We would like to take this opportunity to record a few corrections to [CDT].
• Page 523, line −10: Insert “K-rational” after “For each”.
• Page 532, line −6: “The semisimplicity of σn follows from that of σ1” is false

and should be deleted. This assertion was not used anywhere in the rest of
the paper.
• Page 536, line 7: Replace GL2(C) by GL2(R).
• Page 538, line −10: Replace “of type (S, τ)” by “such that ρ|G` is of type τ

and ρ is of type (S, τ)”.
• Page 539, lines 18–20: Replace each ω1 by η1 and each ω2 by η2.
• Page 541, line 14: Replace each of the three occurrences of A by A∞.
• Page 544, line −6: “the discrete topology on Vp” should read “the `-adic

topology on Mp”.
• Page 545, part 4 of Lemma 6.1.2: V ′ should be assumed to be a normal

subgroup of V .
• Page 546, line 1: We should have noted that the key component of this

argument is very similar to the main idea of [Kh].
• §6.2: There are two significant errors in this section. The assertion “Γ =

SL2(Z)∩US satisfies the hypotheses of Theorem 6.1.1” is false and Hom(Ln, k)
should be Ln ⊗ k. The argument of this section can be repaired by making
the following changes.

– Page 546, lines 5 and 6: Replace “Setting S = T (ρ) ∪ {r}, we find
that the group Γ = SL2(Z) ∩ US satisfies the hypotheses of Theo-
rem 6.1.1.” by “Set S = T (ρ) ∪ {r}; U ′S =

∏
p U
′
S,p where U ′S,p =

U1(pcp) if p ∈ T (ρ) and U ′S,p = US,p otherwise; V ′S =
∏
p V
′
S,p where

V ′S,p = U1(pcp) if p ∈ T (ρ) and V ′S,p = VS,p otherwise; and L′S =
HomO[U ′S/V

′
S ](M`, H

1(XV ′S
,O))[I ′S ]. Then Γ = SL2(Z) ∩ U ′S satisfies the

hypotheses of Theorem 6.1.1.”
– Page 546, lines 7–13: Replace YS by YU ′S , Hom(Ln, k) by Ln ⊗ k, MS

by M`, FS by FHomO(M`,O) and LS by L′S.
– Page 546, line 13: Replace “and NS is non-empty.” by “. Using the fact

that Lemma 5.1.1 holds with U ′S replacing US and σ` replacing σS and
the discussion on page 541 we conclude that NS is non-empty.”

• Page 549, line −15: Replace U{r,r′},p by U{r},p.
• Page 549, line −11: Replace U ′S/U

′
0,S by V0/V1.

• Page 552, line 4: The assertion is false in the case ` ≥ 5. It can be corrected
by adding “and j(E) 6≡ 1728 mod ` (which is true if, for instance, E has
potentially supersingular reduction and ` ≡ 1 mod 4)” after “if ` ≥ 5”.
• Page 554, line 11: Replace “jE ∈” by “E is isogenous to an elliptic curve

with j-invariant in the set”.
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• Page 554, line 11: Replace 5(29)3/25 by −5(29)3/25.
• Page 554, line 17: Replace the parenthetical comment “(and j = 5(29)3/25)”

by “(and isogenous to one with j-invariant −5(29)3/25)”.
• Page 554, line −5: Replace p by q and q by p.
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Formes Automorphes, I (Paris, 1976–77) Univ. Paris VII, 1978, pp. 37–77. MR 84f:22023

[Kh] C. Khare, A local analysis of congruences in the (p, p) case: Part II, Invent. Math. 143
(2001), no. 1, 129–155. CMP 2001:06

[Kl] F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften
Grade, Teubner, 1884.

[L] R.P. Langlands, Base Change for GL(2), Annals of Math. Studies 96, Princeton Univ.
Press, Princeton, 1980. MR 82a:10032

[Man] J. Manoharmayum, Pairs of mod 3 and mod 5 representations arising from elliptic curves,
Math. Res. Lett. 6 (1999), 735–754. MR 2000m:11045

[Maz] B. Mazur, Number theory as gadfly, Amer. Math. Monthly 98 (1991), 593–610. MR

92f:11077
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France

E-mail address: Christophe.BREUIL@math.u-psud.fr

Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

E-mail address: bconrad@math.harvard.edu

Current address: Department of Mathematics, University of Michigan, Ann Arbor, Michigan
48109

E-mail address: bdconrad@math.lsa.umich.edu

Department of Mathematics, Brandeis University, Waltham, Massachusetts 02454

E-mail address: fdiamond@euclid.math.brandeis.edu

Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

E-mail address: rtaylor@math.harvard.edu

http://www.ams.org/mathscinet-getitem?mr=96h:11049
http://www.ams.org/mathscinet-getitem?mr=84f:22023
http://www.ams.org/mathscinet-getitem?mr=82a:10032
http://www.ams.org/mathscinet-getitem?mr=2000m:11045
http://www.ams.org/mathscinet-getitem?mr=92f:11077
http://www.ams.org/mathscinet-getitem?mr=54:7488
http://www.ams.org/mathscinet-getitem?mr=56:11907
http://www.ams.org/mathscinet-getitem?mr=97h:11060
http://www.ams.org/mathscinet-getitem?mr=82e:12016
http://www.ams.org/mathscinet-getitem?mr=88g:11022
http://www.ams.org/mathscinet-getitem?mr=45:5111
http://www.ams.org/mathscinet-getitem?mr=47:3318
http://www.ams.org/mathscinet-getitem?mr=38:155
http://www.ams.org/mathscinet-getitem?mr=96d:11072
http://www.ams.org/mathscinet-getitem?mr=82j:12015
http://www.ams.org/mathscinet-getitem?mr=34:7473
http://www.ams.org/mathscinet-getitem?mr=80k:01067c
http://www.ams.org/mathscinet-getitem?mr=96d:11071

	Introduction
	Notation

	1. Types
	1.1. Types of local deformations
	1.2. Types for admissible representations
	1.3. Reduction of types for admissible representations
	1.4. The main theorems

	2. Examples and applications
	2.1. Examples
	2.2. Applications
	2.3. An extension of a result of Manoharmayum

	3. Admittance
	3.1. The case of 1
	3.2. The case of -1
	3.3. The case of 3
	3.4. The case of i'

	4. New deformation problems
	4.1. Some generalities on group schemes
	4.2. Filtrations
	4.3. Generalities on deformation theory
	4.4. Reduction steps for Theorem 2.1.2
	4.5. Reduction steps for Theorem 2.1.4
	4.6. Reduction steps for Theorem 2.1.6
	4.7. Some Galois cohomology

	5. Breuil modules
	5.1. Basic properties of Breuil modules
	5.2. Examples
	5.3. Relationship to syntomic sheaves
	5.4. Base change
	5.5. Reformulation
	5.6. Descent data
	5.7. More examples

	6. Some local fields
	6.1. The case of F1'
	6.2. The case of F-1'
	6.3. The case of F3'
	6.4. The case of F-3'
	6.5. The case of Fi'

	7. Proof of Theorem 4.4.1
	7.1. Rank one calculations
	7.2. Rank two calculations
	7.3. Rank three calculations
	7.4. Conclusion of the proof of Theorem 4.4.1

	8. Proof of Theorem 4.5.1
	8.1. Rank one calculations
	8.2. Models for 
	8.3. Completion of the proof of Theorem 4.5.1

	9. Proof of Theorems 4.6.1, 4.6.2 and 4.6.3
	9.1. Rank one calculations
	9.2. Models for 
	9.3. Further rank two calculations
	9.4. Completion of the proof of Theorem 4.6.1
	9.5. Completion of the proof of Theorem 4.6.3
	9.6. Completion of the proof of Theorem 4.6.2

	10. Corrigenda for cdt
	Acknowledgements
	References

