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VANISHING CYCLES

FOR NON-ARCHIMEDEAN ANALYTIC SPACES

VLADIMIR G. BERKOVICH

Introduction

In this work we develop a formalism of vanishing cycles for non-Archimedean
analytic spaces which is an analog of that for complex analytic spaces from [SGA7],
Exp. XIV. As an application we prove that in the equicharacteristic case the
stalks of the vanishing cycles sheaves of a scheme X at a closed point x ∈ Xs
depend only on the formal completion Spf(ÔX ,x) of X at x. In particular, any

continuous homomorphism ÔX ,x → ÔY,y induces a homorphism from the stalks
of the vanishing cycles sheaves of X at x to those of Y at y. Furthermore, we

prove that, given ÔX ,x and ÔY,y, there exists n ≥ 1 such that, for any pair of

continuous homomorphisms ÔX ,x → ÔY,y that coincide modulo the n-th power of

the maximal ideal of ÔY,y, the induced homomorphisms between the stalks of the
vanishing cycles sheaves coincide. These facts generalize a result of G. Laumon
from [Lau] (see Remark 7.6).

Throughout the paper we fix a non-Archimedean field k (whose valuation is not
assumed to be nontrivial). In §1 we study étale Galois sheaves on k-analytic spaces.
To define the vanishing cycles functor and to work with it, we use the language of
pro-analytic spaces, i.e., pro-objects of the category of analytic spaces ([SGA4],
Exp. I). Examples of such objects are the germs of analytic spaces as in [Ber2],
§3.4. Another example is considered in §3. In §4 we define the vanishing cycles
functor and establish its basic properties. In §5 we show that the vanishing cycles
sheaves are trivial for smooth morphisms. In §6 we prove a comparison theorem
for vanishing cycles. This theorem is more general than its analog over C from
[SGA7], Exp. XIV, and its proof does not use Hironaka’s theorem on resolution of
singularities. In §7 we apply the comparison theorem to prove the properties of the
vanishing cycles sheaves of schemes formulated above. It is worthwhile to note that
this application is obtained by considering non-Archimedean analytic geometry over
fields with trivial valuation.

Like [Ber3], this work arose from a suggestion of P. Deligne to apply the étale
cohomology theory from [Ber2] to the study of the vanishing cycles sheaves of
schemes. I am very grateful to him for useful discussions on the subject. I also
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gratefully appreciate the hospitality and support of the Institute for Advanced
Study, where a part of this work was done.

§1. Galois sheaves

For a k-analytic space X and an algebraic extension K over k we set XK = X⊗̂K̂
and denote by π = πX the canonical morphism XK → X .

1.1. Lemma. Any K-analytic space V étale over XK admits an étale covering
{U iK}i∈I for some U i étale over X.

Proof. We have to verify that each point v ∈ V has an étale neighborhood UK for
some U étale over X . Let x′ be the image of v in XK and set x = π(x′). Then the
field H(v) is a finite separable extension of H(x′). Since the compositum H(x)K is
everywhere dense in H(x′), it follows that H(v) = H(x′)L for some finite separable
extension L of H(x). By Theorem 3.4.1 from [Ber2], the field L gives rise to an
étale morphism of k-germs (U, u)→ (X,x) with H(u) = L. By construction, there
exists a point u′ ∈ UK with H(u′) = H(x′)L = H(v), and therefore, by the same

theorem, there is an isomorphism of K-germs (UK , u
′)
∼−→ (V, v) over (XK , x

′).
Thus, replacing X by U , we may assume that V is an open neighborhood of x′ in
XK . It suffices to know that there exist a finite separable extension k′ of k in K
and an open neighborhood U of the image of x′ in Xk′ such that the preimage of U
in XK is contained in V . But this is established in the proof of Lemma 5.3.4 from
[Ber2].

Suppose that K is a normal extension of k. Then the Galois group G(K/k)
acts on XK (considered as an analytic space over k). Let ν : G → G(K/k) be a
continuous homomorphism from a profinite group G to G(K/k). The group G acts
on XK via ν. An action of G on a sheaf of sets F on XK , compatible with the
action of G on XK , is a system of isomorphisms σ(g) : ν(g)∗F → F, g ∈ G, such
that σ(gh) = σ(g) ◦ ν(g)∗(σ(h)). If G acts on F , then for any U étale over X the
group G acts on the set F (UK).

1.2. Lemma. The following properties of an action of G on F are equivalent:

(a) for any f ∈ F (UK), where U is étale over X, there exists an open covering
{U i}i∈I of U such that for any i ∈ I the stabilizer of f

∣∣
UiK

is open in G;

(b) for any f ∈ F (UK), where U is étale over X, there exists an étale covering
{U i}i∈I of U such that for any i ∈ I the stabilizer of f

∣∣
UiK

is open in G.

Proof. Let f ∈ F (UK), where U is étale over X , and suppose that there is an étale

covering {Ui
ϕi→ U}i∈I such that for any i ∈ I the stabilizer of f

∣∣
UiK

is open in G.

Since étale morphisms are quasifinite (see [Ber2], §3), we can replace the covering
by a refinement so that all of the induced morphisms U i → U i = ϕi(U

i) are finite.
In this case the morphisms U iK → U iK are finite and étale, and therefore the maps
F (U iK) → F (U iK) are injective. We get an open covering {U i}i∈I of U such that
for any i ∈ I the stabilizer of f

∣∣
UiK

is open in G.

An action of G on F , which possesses the equivalent properties of Lemma 1.2,
is said to be continuous. Let TG(XK) (resp. SG(XK)) denote the category of
sheaves of sets (resp. abelian groups) endowed with a continuous action of G
(G-sheaves). The category SG(XK) has injectives. Its derived category will be
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denoted by DG(XK). If I is a subgroup of G which is contained in the kernel of
ν : G→ G(K/k), then ν induces a continuous homomorphism ν′ : G/I → G(K/k),
and one has a left exact functor SG(XK)→ SG/I(XK) : F → F I . The values of its
right derived functors are denoted by Hq(I, F ). For x′ ∈ XK one has Hq(I, F )x′ =
Hq(I, Fx′).

Suppose that k′ is another non-Archimedean field, K ′ is a normal extension
of k′, and ν′ : G′ → G(K ′/k′) is a continuous homomorphism of profinite groups.
Furthermore, suppose we are given a commutative diagram of isometric embeddings

K ↪→ K ′x x
k ↪→ k′

and a commutative diagram of continuous homomorphisms

G
ν−→ G(K/k)x xµ

G′
ν′−→ G(K ′/k′)

where µ is induced by the above embeddings. Finally, let X ′ be a k′-analytic space,
and let ϕ : X ′ → X be a morphism over the embedding k ↪→ k′. It induces a

morphism ϕ : X ′K′ → XK over the embedding K̂ ↪→ K̂ ′.

1.3. Lemma. The inverse image functor for the morphism ϕ induces a well defined
functor ϕ∗ : TG(XK)→ TG′(X

′
K′).

Proof. Let F ∈ TG(XK) and f ∈ (ϕ∗F )(VK′), where V is étale over X ′. Then there
is an étale covering {W i → VK′}i∈I and, for each i ∈ I, a commutative diagram

VK′ −→ XKx x
W i −→ U i

where U i is étale over XK , such that f
∣∣
W i is the image of some element gi ∈ F (U i).

By Lemma 1.1, we can replace the covering {W i}i∈I by a refinement and assume
that W i = V iK′ for some étale covering {V i}i∈I of V . Furthermore, by the same

lemma, we can find for each i ∈ I an étale covering {U ijK}j∈Ji of U i, where U ij are
étale over X . Since the action of G on G is continuous, we can replace the latter
covering by a refinement and assume that the stabilizer of gi

∣∣
UijK

is open in G. We

get an étale covering {V ij = V i ×X U ij}i,j of V such that f
∣∣
V ij
K′

is the image of

gi
∣∣
UijK

. It follows that the stabilizer of f
∣∣
V ij
K′

is open in G′.

From Lemma 1.3 it follows that the inverse image functor for the morphism
π : XK → X induces a well defined functor π∗ : T(X) → TG(XK). In the

case G
∼−→ G(K/k) one can easily show that there is an equivalence of categories

π∗ : T(X)
∼−→ TG(K/k)(XK).

§2. Pro-analytic spaces

Recall that the category of pro-objects of a category C, Pro(C), is defined as
follows (see [SGA4], Exp. I). Its objects are functors I → C : i 7→ Xi, where I is
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a small cofiltered category. Such an object is denoted by "lim
←−
I

"Xi. Morphisms are

defined by

Hom(" lim
←−
J

"Yj , " lim
←−
I

"Xi) = lim
←−
I

lim
−→
J◦

Hom(Yj , Xi).

The category Pro(C) admits cofiltered projective limits, and if C admits fiber prod-
ucts, then so is Pro(C). The canonical fully faithful functor L : C → Pro(C)
commutes with fiber products, but does not commute, in general, with cofiltered
projective limits. One has "lim

←−
I

"Xi = lim
←−
I

L(Xi).

A pro-k-analytic space is an object of the category Pro(k-An). The category
Pro(k-An) admits fiber products and cofiltered projective limits, and for a non-
Archimedean field K over k there is the ground field extension functor
Pro(k-An)→ Pro(K-An) : X = "lim

←−
I

"Xi 7→ X⊗̂K ="lim
←−
I

"(Xi⊗̂K). A pro-analytic

space over k is a pair (K,X), where K is a non-Archimedean field over k and
X ∈ Pro(K-An). A morphism (L,Y)→ (K,X) is a pair consisting of an isometric
embedding K ↪→ L and a morphism Y → X⊗̂KL.

Let X ="lim
←−
I

"Xi be a pro-k-analytic space. It gives rise to a pro-object of

the category of locally ringed spaces. Since the latter category admits cofiltered
projective limits, we get the underlying locally ringed space |X| of X. (We remark
that the space |X|may be empty even when X is nontrivial.) If x ∈ X (i.e., x ∈ |X|),
then OX,x = lim

−→
I◦
OXi,xi, where xi is the image of x in Xi. The residue field of the

local ring OX,x is denoted by κ(x). Furthermore, let H(x) denote the completion
of the field lim

−→
H(xi). If, for each i, the point xi has an affinoid neighborhood in

Xi, then the field κ(x) is quasicomplete and its completion coincides with H(x).
For a pro-k-analytic space X = "lim

←−
I

"Xi we define the category of “étale sheaves

of sets” T(X) as the inductive limit lim
−→
I◦

T(Xi) (see [SGA4], Exp. VI). Namely,

objects of T(X) are pairs (i, F ), where i ∈ I and F ∈ T(Xi). A representative
of a morphism (i, F ) → (j,G) is a triple (α, β, u), where α : l → i and β : l → j
are arrows in I and u : ν∗α(F ) → ν∗β(G) is a morphism of sheaves on Xl (να is

the morphism Xl → Xi that corresponds to α). Two representatives (α, β, u) and
(α′, β′, u′) of a morphism (i, F ) → (j,G) are said to be equivalent if there exist
arrows γ : q → l and γ′ : q → l′ such that α ◦ γ = α′ ◦ γ′, β ◦ γ = β′ ◦ γ′ and
γ∗(u) = γ′

∗
(u′). A morphism is an equivalence class of representatives. We remark

that if X = lim
←−
I

Xi is a cofiltered projective limit in the category Pro(k-An), then

there is an equivalence of categories lim
−→
I◦

T(Xi)
∼−→ T(X).

One also has the abelian categories of “abelian sheaves” S(X) and of “sheaves
of Λ-modules” S(X,Λ). There is a left exact functor S(X) → Ab : F 7→ F (X) =
lim
−→
I◦
F (Xi). Suppose that all of the morphisms να : Xi → Xj are étale. Then

the functors ν∗α : S(Xj) → S(Xi) take injectives into injectives, and therefore the
category S(X) has injectives. The values of the right derived functors of the functor
F 7→ F (X) are Hq(X, F ) = lim

−→
I◦
Hq(Xi, F ).
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Let ϕ : Y ="lim
←−
J

"Yj → X ="lim
←−
I

"Xi be a morphism of pro-analytic spaces over

k. Then one can define the inverse image functor ϕ∗ : T(X) → T(Y) and, in a
situation we really need, the direct image functor ϕ∗ : T(Y) → T(X) as follows.
If for each i ∈ I we fix σ(i) ∈ J and a morphism ϕi : Yσ(i) → Xi determined
by ϕ, then ϕ∗(i, F ) = (σ(i), ϕ∗i (F )). Furthermore, suppose that there are a full
cofinal subcategory I ′ ⊂ I, a cofinal functor σ : I ′ → J , and a system of morphisms
{ϕi : Yσ(i) → Xi}i∈I′ which defines ϕ and such that for any arrow α : l → i in I ′

the diagram

Yσ(i)
ϕi−→ Xixνα xνα

Yσ(l)
ϕl−→ Xl

is commutative and cartesian. Suppose also that all of the morphisms να : Xl →
Xi for arrows α in I are étale. Then for any F ∈ T(Yσ(i)) there is a canonical

isomorphism ν∗αϕi∗(F )
∼−→ ϕl∗ν

∗
α(F ), and therefore the correspondence (σ(i), F ) 7→

(i, ϕi∗(F )), i ∈ I ′, gives the required functor ϕ∗ which is right adjoint to ϕ∗. In this
situation the category S(Y) has injectives, and there are the right derived functors
Rqϕ∗ : S(Y)→ S(X).

For a k-analytic space X we denote by X-An the category of morphisms of k-
analytic spaces Y → X . Such an Y is said to be anX-analytic space. If X ="lim

←−
I

"Xi

is a pro-k-analytic space, then an X-analytic space is an object of the category
X-An := lim

−→
I◦
Xi-An. If P is a class of morphisms between k-analytic spaces which

is preserved under any base change, then one can extend in the evident way the class
P to morphisms between X-analytic spaces. Furthermore, if all of the morphisms
να : Xi → Xj are étale, then for any morphism of X-analytic spaces ϕ : Z→ Y the
direct image functor ϕ∗ : S(Z) → S(Y) as well as the right derived functors Rqϕ∗
are well defined.

Germs of analytic spaces (see [Ber2], §3.4) are examples of pro-analytic spaces,
namely, there is a fully faithful functor

k-Germs→ Pro(k-An) : (X,Σ) 7→ X(Σ) = " lim
←−
U⊃Σ

"U ,

where U runs through open neighborhoods of Σ. The functor commutes with exten-
sions of the ground field, but does not commute with fiber products. For example,
let ϕ : Y → X be a morphism of k-analytic spaces and x ∈ X . Then the fiber
product Y ×X (X,x) in the category k-Germs is the k-germ (Y, ϕ−1(x)), i.e., it
gives rise to Y (ϕ−1(x)) ="lim

←−
"V , where V runs through all open neighborhoods

of the fiber ϕ−1(x). The corresponding fiber product Y (x) := Y ×X X(x) in the
category Pro(k-An) is "lim

←−
"ϕ−1(U), where U runs through open neighborhoods of

the point x. We remark that the canonical morphism Y (ϕ−1(x)) → Y (x) induces
an isomorphism between the underlying locally ringed spaces, and there is a mor-
phism Yx → Y (ϕ−1(x)) which induces a homeomorphism between the underlying
topological spaces. The space Y (x) is an example of an X(x)-analytic space. And
in fact any X(x)-analytic space Y is isomorphic to Y (x) for some Y → X . The
fiber of Y over x is, by definition, the H(x)-analytic space Yx := Yx.
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For a k-germ (X,Σ) there is an exact functor T(X(Σ))→ T(X,Σ) : F 7→ F(X,Σ)

which associates with a sheaf F ∈ T(U), U ⊃ Σ, its pullback on (X,Σ). The
continuity theorem ([Ber2], 4.3.5) tells that if a k-germ (X,Σ) is paracompact, then

for all F ∈ S(X(Σ)) and q ≥ 0 there is a canonical isomorphism Hq(X(Σ), F )
∼−→

Hq((X,Σ), F(X,Σ)).

§3. GAGA over the local ring of a point

Let (S, s) be a k-germ such that S is good at s, i.e., the point s has an affinoid
neighborhood in S, and let A = OS,s and S = Spec(A). We recall that A = lim

−→
AW ,

where W runs through affinoid neighborhoods of the point s, and that the rings A
and AW are Noetherian. For an affinoid domain V =M(AV ) we denote by V the
affine scheme Spec(AV ). By [EGA4], 8.8.2, for any scheme X of finite type over S
there exist an affinoid neighborhood V of s and a scheme XV of finite type over V
such that X ∼−→ XV ⊗V S over S. Furthermore, a projective limit of the projective
system {XW = XV ⊗V W}V⊃W3s exists in the category of schemes over S, and

one has X ∼−→ lim
←−
XW . Finally, if Y is another scheme of finite type over S with

Y ∼−→ YV ⊗V S for some scheme YV of finite type over V , then there is a canonical
bijection lim

−→
HomW(YW ,XW )

∼−→ HomS(Y,X ).

By [Ber2], §2.6, one can associate with the scheme XV a k-analytic space X an
V =

(XV )an closed over V . The V -analytic space X an
V gives rise to an S(s)-analytic

space X an
V (s). From the above EGA-facts it follows that X an

V (s) does not depend
on the choice of V and XV up to a canonical isomorphism, and therefore we can set
X an = X an

V (s). (For example, San = S(s).) It follows also that the correspondence
X 7→ X an is a functor which commutes with fiber products. Moreover, if (S′, s′)→
(S, s) is a morphism of germs over k, then there is a canonical isomorphism

(X ×S S′)an ∼−→ X an ×S(s) S
′(s′). One has |X an| = f−1

V (s), where fV is the mor-
phism X an

V → V , and, for x ∈ X an, OX an,x = OX an
V ,x. From [Ber2], 2.6.2, it follows

that the canonical morphism of locally ringed spaces π : X an → X is flat and its
image coincides with the closed fiber of X , Xs = X ⊗A κ(s). For a point x ∈ X an

(i.e., x ∈ |X an|) we denote by x its image in X .
By the analytification of the closed fiber we mean the H(s)-analytic space X an

s =
(X an)s = (Xs⊗κ(s)H(s))an (and not the S(s)-analytic space (Xs)an). The canonical
morphism X an

s → X an induces a homeomorphism between the underlying topologi-
cal spaces. Similarly, by the analytification of the geometric closed fiber of f , Xs =

X⊗Aκ(s)a, we mean the Ĥ(s)a-analytic space X an
s = (X an)s = (Xs⊗κ(s)s Ĥ(s)a)an.

There are the evident functors T(Xs)→ T(X an
s ) and T(Xs)→ T(X an

s ) : F 7→ Fan.
We remark that since all of the schemes XW are quasicompact and quasisepa-
rated, then the isomorphism X ∼−→ lim

←−
XW induces an equivalence of categories

lim
−→

T(XW )
∼−→ T(X ). In this way one gets a functor T(X )→ T(X an) : F 7→ Fan.

3.1. Proposition. Let ϕ : Y → X be a morphism of schemes of finite type over
S. Then

(i) ϕ is separated (proper, finite, quasifinite, a closed immersion) if and only if
ϕan possesses the same property;

(ii) ϕ is flat quasifinite (unramified, étale, smooth) if and only if ϕan possesses
the same property.



VANISHING CYCLES FOR NON-ARCHIMEDEAN ANALYTIC SPACES 1193

Proof. (i) follows from [EGA4], 8.10.5, and [Ber2], 2.6.9, 3.1.7.
(ii) is proved in the same way as the corresponding statements [Ber2], 3.2.10,

3.3.11 and 3.5.8, using the following fact which is an easy consequence of [Ber2],
2.6.10.

3.2. Lemma. Suppose that ϕ is finite. Let y ∈ Y and x ∈ X an be points with

ϕ(y) = x, and let ϕan−1

(x) = {y1, . . . , yn} and ϕan−1

(x) ∩ π−1(y) = {y1, . . . , ym},
m ≤ n. Then there is an isomorphism of rings

OX an,x ⊗OX,x OY,y
∼−→

m∏
i=1

OYan,yi ×
n∏

i=m+1

(OYan,yi)my ,

where (OYan,yi)my is the localization with respect to the complement of the maximal
ideal my of OY,y.

The following is a direct consequence of the comparison theorem for cohomology
with compact support [Ber2], ( §7.1).

3.3. Proposition. Let ϕ : Y → X be a proper morphism between schemes of finite
type over S, and let F be an abelian torsion sheaf on Y. Then for any q ≥ 0 there
is a canonical isomorphism

(Rqϕ∗F)an ∼−→ Rqϕan
∗ (Fan).

The following fact is an essential ingredient in the proof of the comparison the-
orem for vanishing cycles 6.1.

3.4. Theorem. Let x be a point of X an and x its image in X . Then the field κ(x)
is separable over k(x).

Recall that an extension of fields L/K is called separable if the tensor product

L⊗KKp−1

is a field, where p = char(K). In this case the tensor product L⊗KKp−∞

is also a field, and Ls is separable over Ks. Therefore the tensor product Ls⊗KsKa

is a field and, in particular, if K ′ is a finite extension of Ks, then [LsK ′ : Ls] =
[K ′ : Ks].

First of all we want to show that the theorem follows from the following fact.

3.5. Proposition. Suppose that OS,s is a field, i.e., OS,s = κ(s). If X is reduced
at x, then X an is reduced at x.

Indeed, to prove the theorem, it suffices to assume that OS,s = κ(s), X is
reduced and irreducible, and x is the generic point of X . Let K be a finite purely
inseparable extension of the field k(x). Then we can shrink X and find a finite
radicial morphism ϕ : Y → X such that Y is reduced and, for the generic point
y of Y, one has k(y) = K. By Proposition 3.5, the S(s)-analytic space Yan is
also reduced. Since the morphism ϕ is radicial, there is a unique point y ∈ Yan

whose images in Y and X an are y and x, respectively. By Lemma 3.2, we get
k(y) ⊗k(x) κ(x)

∼−→ OYan,y. Since the local ring OYan,y is reduced and finite over
the field κ(x), it follows that that it is a field (i.e., it coincides with κ(y)), and the
theorem follows.

To prove Proposition 3.5, we need the following two lemmas (one does not assume
in them that OS,s is a field). Let X0 denote the set of closed points of the closed
fiber of X . Furthermore, for an S(s)-analytic space X let X0 denote the set of
points x ∈ X with [κ(x) : κ(s)] <∞. We set X an

0 = (X an)0.
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3.6. Lemma. The map X an → X induces a bijection X an
0

∼−→ X0. Furthermore,

if x ∈ X an
0 , then there is an isomorphism of completions ÔX ,x ∼−→ ÔX an,x.

Proof. Let x ∈ X0. For n ≥ 1 we set Y = Spec(OX ,x/mn
x). The scheme Y consists

of one point y and is finite over S. Therefore Yan consists of one point y and, by
Lemma 3.2, one hasOY,y = OX ,x/mn

x
∼−→ OYan,y. Furthermore, there is a canonical

closed immersion Y → X that takes y to x. From Lemma 3.2 it follows that Yan →
X an is also a closed immersion, and the point x is the only preimage of x in X an. (In

particular, X an
0

∼−→ X0.) Moreover, one has OYan,y = OX an,x/m
n
xOX an,x. It follows

that OX ,x/mn
x
∼−→ OYan,y. If n = 1 we get mx = mxOX an,x and k(x)

∼−→ κ(x).

Hence ÔX ,x ∼−→ ÔX an,x.

3.7. Lemma. Suppose that the valuation on κ(s) is nontrivial. Then for any S(s)-
analytic space X closed over S(s) the set X0 is everywhere dense in X.

Proof. For a closed morphism f : X → S, we set

X(s)0 = {x ∈ f−1(s)
∣∣[κ(x) : κ(s)] <∞}

and
(Xs)0 = {x ∈ Xs

∣∣[H(x) : H(s)] <∞}.
(Note that there is a homeomorphism Xs

∼−→ f−1(s).) First, we claim that if f is
the projection X = S × Ed → S, where Ed is the closed unit polydisc in Ad with
center at zero, then X(s)0 is everywhere dense in f−1(s). Indeed, one has

X(s)0 = {α ∈ κ(s)a
∣∣|α| ≤ 1}d/G

and
(Xs)0 = {α ∈ H(s)a

∣∣|α| ≤ 1}d/G,
where G = G(κ(s)s/κ(s)) = G(H(s)s/H(s)). Since the field κ(s)s is everywhere
dense in H(s)a and the set X(s)0 is everywhere dense in f−1(s), the claim follows.

Now let f : X → S be a closed morphism and x ∈ f−1(s). We have to show that,
for any affinoid neighborhood V = M(B) of x, there exists a point x′ ∈ V over s
with [κ(x′) : κ(s)] < ∞. Shrinking V , we may assume that dimx(Vs) = dim(Vs).
We may also assume that S =M(A) is k-affinoid. Since x ∈ Int(V/S), there is an
admissible epimorphism A{r−1

1 T1, . . . , r
−1
n Tn} → B with |fi(X)| < ri, 1 ≤ i ≤ n,

where fi is the image of Ti in B. Replacing V by the Weierstrass domain V (r′i
−1
fi)

for some |fi(x)| < r′i < ri with r′i ∈
√
|H(s)∗|, we may assume that the H(s)-

affinoid algebra B⊗̂AH(s) is strictly H(s)-affinoid. By the Noether normalization
lemma, we can find elements g1, . . . , gd ∈ B⊗̂AH(s) such that there is an admissible,
injective and finite homomorphism H(s){T1, . . . , Td} → B : Ti 7→ gi. It defines a
finite surjective morphism Vs → EdH(s). (One has d = dim(Vs).) Since the image of

B ⊗A κ(s) in B⊗̂AH(s) is everywhere dense, we may assume that g1, . . . , gd come
from B⊗Aκ(s). Shrinking S, we may assume that they come from B. Furthermore,
consider the morphism g : V → S ×Ad defined by the functions g1, . . . , gd. Since
x ∈ Int(V/S), it follows that g is finite at x ([Ber2], 3.1.4). Let W be the preimage
of S × Ed in V . The induced morphism h : W → S × Ed is also finite at x. This
means that there are open neighborhoods W of x in W and U of h(x) in S × Ed
such that h induces a finite morphism W → U . Since dimx(Ws) = dim(Ws) = d,
from [Ber1], 3.2.4, it follows that we can shrink U and assume that the morphism
Ws → Us is surjective. We can find a point y′ ∈ U over s with [κ(y′) : κ(s)] < ∞.
If x′ is a point of W over y′, then [κ(x′) : κ(s)] <∞.
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Proof of Proposition 3.5. We can shrink X and assume that it is reduced. Let V
be an affinoid neighborhood of s such that X comes from a scheme XV of finite
type over V , and let Y be the set of points y ∈ X an

V such that X an
V is not reduced

at y. By [Ber2], 2.2.1, the set Y is Zariski closed in X an
V , and therefore it can be

considered as a k-analytic space closed over V . It gives rise to an S(s)-analytic
space Y closed over S(s). Assume that Y is nonempty. We claim that then the
set Y0 is nonempty. Indeed, if the valuation on κ(s) is nontrivial, this follows from
Lemma 3.7. Suppose that the valuation on κ(s) is trivial. The closed fiber Xs is
an H(s)-analytic space, and Ys is a Zariski closed subset of X an

s . By [Ber1], §3.5,
one has Ys = Zan, where Z is a Zariski closed subset of Xs. It follows that there
exists a point y ∈ Z with [k(y) : κ(s)] < ∞, and therefore Y0 is nonempty. Now

let y ∈ Y0. By Lemma 3.6, one has ÔX ,y ∼−→ ÔX an,y. Since OS,s = κ(s), it follows
that OX ,y is a localization of a ring which is finitely generated over the field κ(s).
Such a ring is reduced if and only if its completion is reduced (see [EGA4], 7.8.3).
It follows that OX an,y is reduced, which is impossible because y ∈ Y.

3.8. Remark. One can construct the functor X 7→ X an in another way so that the
construction works also over C and R. Namely, one has A = lim

−→
Ai, where Ai runs

through subrings of A which are finitely generated over k. For any scheme X of
finite type over S there exist i and a scheme Xi of finite type over Si = Spec(Ai)

such that X ∼−→ Xi⊗Si S over S. By GAGA over the field k, one can associate with
Si and Xi k-analytic spaces Si = San

i and Xi = X an
i . The canonical homomorphism

Ai → A = OS,s defines a point si ∈ Si and a morphism of k germs (S, s)→ (Si, si).
The latter is induced by a morphism U → Si from an open neighborhood U of the
point s. One has X an = (Xi×Si U)(s). The essential difference of the Archimedean
situation from the non-Archimedean one is that in this situation the map |X an| →
Xs is injective and its image coincides with the set of closed points of the closed
fiber Xs. (In particular, for a point x ∈ X an, one has κ(x) = k(x).)

§4. The vanishing cycles functor

Beginning with this section, we assume that, for the k-germ (S, s) from §3,
A = OS,s is a discrete valuation ring. In this case the scheme S = Spec(A) consists
of the closed point s = Spec(κ(s)) and the generic point η = Spec(K), where K
is the fraction field of A. We denote by S the pro-k-analytic space San = S(s).
The scheme η is of finite type over S, and therefore one can associate with it a
pro-k-analytic space ηan. One has ηan ="lim

←−
"(U\T ), where U runs through open

neighborhoods of s and T ⊂ S is a Zariski closed subset that goes through the point
s. For an S-analytic space X we set Xη = X×S η

an. (For example, Sη = ηan.)
Since K is the fraction field of the Henselian discrete valuation ring A, its valu-

ation extends uniquely to a valuation on the separable closure Ks, and the integral

closure A of A in Ks is a local ring. The residue field K̃s is an algebraic closure
κ(s)a of κ(s). Let S = Spec(A), η = Spec(Ks) and s = Spec(κ(s)a), and let ν be
the canonical homomorphism Gη = G(Ks/K) → Gs = G(κ(s)s/κ(s)). Recall the
definition of the vanishing cycles functor Ψη : T(Xη) → TGη (Xs) for a scheme X
over S.

One sets X = X ×S S, Xη = X ×S η and Xs = X ×S s. Furthermore, for a finite
extension L of K in Ks, one denotes by AL the integral closure of A in L and set

SL = Spec(AL). The scheme SL consists of the closed point sL = Spec(L̃) and
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the generic point ηL = Spec(L). One sets XL = X ×S SL, XηL = X ×S ηL and
XsL = X ×S sL. There is a commutative diagram

XηL
jL XL XsL

iL

Xη
j

X Xs

iL

i

For F ∈ T(Xη), let FL and F denote the pullbacks of F on XηL and Xη. Then

Ψη(F) = lim
−→

i
∗
LjL∗(FL)

∼−→ i
∗
j∗(F) ,

where L runs through finite extensions of K in Ks.
We now return to analytic geometry. For a finite extension L of K in Ks, we

set SL = San
L (this space consists of one point sL) and S ="lim

←−
"SL. We also set

SηL = (ηL)an and Sη ="lim
←−

"SηL . Furthermore, for an S-analytic space X, we set

XL = X ×S SL, XηL = X ×S SηL , X = X ×S S, and Xη = X ×S Sη. There is a
commutative diagram of morphisms of pro-analytic spaces

XηL
jL

XL XsL
iL

Xη
j

X Xs

iL

i

For F ∈ T(Xη), we denote by FL the pullback of F on XηL and define the vanishing
cycles functor Ψη : T(Xη)→ TGη (Xs) by

Ψη(F ) = lim
−→

i
∗
LjL∗(FL) ,

where L runs through finite extensions of K in Ks. It follows from the definition
that, for a scheme X of finite type over S and a sheaf of sets (resp. abelian groups)
F on Xη, there is a canonical morphism of sheaves X an

s , (Ψη(F))an → Ψη(Fan)
(resp. (RqΨη(F))an → RqΨη(Fan), q ≥ 0).

For a morphism of S-analytic spaces ϕ : Y → X we denote by ϕs, ϕs, ϕη
and ϕη the induced morphisms Ys → Xs, Ys → Xs, Yη → Xη and Yη → Xη,
respectively. The following statements follow straightforwardly from the weak base
change theorem 5.3.6 and the smooth base change theorem 7.8.1 from [Ber2].

4.1. Proposition. Let ϕ : Y→ X be a morphism of S-analytic spaces.

(i) If ϕ is compact, then for any F · ∈ D+(Yη) there is a canonical isomorphism

RΨη(Rϕη∗F
·)
∼−→ Rϕs∗(RΨηF

·). In particular, if X is an S-analytic space
compact over S, then for any abelian sheaf F on Xη there is a spectral sequence

Ep,q2 = Hp(Xs, R
qΨη(F )) =⇒ Hp+q(Xη, F ).

(ii) If ϕ is smooth, then for any abelian torsion sheaf on Xη with torsion orders

prime to char(k̃) and any q ≥ 0 there is a canonical isomorphism

ϕ∗s(R
qΨη(F ))

∼−→ RqΨη(ϕ∗ηF ).
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Let L be a Galois extension of K in Ks that containsKnr, the maximal unramified

extension of K. The residue field L̃ is an algebraic extension of κ(s) that contains

κ(s)s, and therefore its completion coincides with Ĥ(s)a. One has, for an S-analytic
space X, a left exact functor Ψη,L : T(Xη)→ TG(L/K)(Xs) defined by Ψη,L(F ) =

lim
−→

i
∗
N jN∗(FN ), where N runs through finite extensions of K in L. For example,

if L = Knr, then RqΨη,Knr(F ) = i
∗
(Rqj∗(F )), where i = iK : Xs → X and

j = jK : Xη → X. One has the following simple fact.

4.2. Proposition. In the above situation, for any F ∈ S(Xη) there is a spectral
sequence

Ep,q2 = Hp (G(Ks/L), RqΨη(F )) =⇒ Rp+qΨη,L(F ).

Let S′ → S be a morphism of good k-analytic spaces, and let s ∈ S and s′ ∈ S′
be points such that OS,s and OS′,s′ are discrete valuation rings, the image of s′ in S
is s, and the induced homomorphismOS,s → OS′,s′ is injective. One has morphisms
of affine schemes S′ = Spec(OS′,s′)→ S = Spec(OS,s) and of pro-k-analytic spaces
S′ = S′(s′) → S = S(s). Furthermore, let X → S′ be a morphism of k-analytic
spaces. It gives rise to an S′-analytic space X′ (with X′s′ = Xs′). The induced
morphism X → S gives rise to an S-analytic space X (with Xs = Xs). Thus, there
is a commutative diagram of morphisms of pro-k-analytic spaces

X′ −→ S′

↓ ↓
X −→ S

The morphism X′ → X induces the evident inverse image functor T(Xη) →
T(X′η′) : F 7→ F ′. Let K and K′ be the fraction fields of OS,s and OS′,s′ , re-

spectively. We fix an embedding of fields Ks ↪→ K′s over the canonical embedding
K ↪→ K′. It induces a homomorphism of Galois groups Gη′ → Gη. It induces also
an embedding κ(s)a ↪→ κ(s′)a and, therefore, a morphism λ : X′

s′
→ Xs of analytic

spaces over k.

4.3. Proposition. In the above situation, assume that the morphism S′ → S is
smooth, and let L = K′nrKs. Then for any F ∈ S(Xη) and any q ≥ 0 there is a

canonical isomorphism λ∗(RqΨη(F ))
∼−→ RqΨη′,L(F ′) compatible with the action of

Galois groups.

Proof. Let N be a finite Galois extension of K in Ks and N ′ = K′N . We can shrink
S and assume that Sη comes from S\T , where T is a Zariski closed subset of S, the
morphism SN → S comes from a flat finite morphism SN → S, and the sheaf F
comes from X\Y , where Y is the preimage of T in X . Furthermore, we can shrink
S′ and assume that the morphism S′N ′ → S′ comes from a flat finite morphism
S′N ′ → S′. We may assume also that S and SN are regular. By hypothesis, the
morphism S′×S SN → SN is smooth, and therefore S′×S SN is regular. It follows
that the ring OS′,s′ ⊗OS,s OSN ,sN is the integral closure of OS′,s′ in K′ ⊗KN . The
latter is a direct product of finite separable extensions of K′. One of these factors is
N ′. We get a point t ∈ S′×S SN over s′ with the local ring OS′N′ ,s′N′ , and therefore

we can shrink S′ and find a morphism S′N ′ → S′ ×S SN over S′ such that it takes
the point s′N ′ to t and is a local isomorphism at s′N ′ . We get a morphism

λN : X ′N ′ = X ×S′ S′N ′ → X ×S′ (S′ ×S SN ) = XN
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that induces an open immersion of the preimage of an open neighborhood of the
point s′N ′ in X ′N ′ to XN . This implies that there is an isomorphism of sheaves

λ∗sN (i∗N jN ∗(F ))
∼−→ i′N ′

∗
j′N ′∗(F

′),

where XN\YN
jN
↪→ XN

iN←− XsN , X ′N ′\Y ′N ′
j′N′
↪→ X ′N ′

i′N′←− X ′s′N′
, YN and Y ′N ′ are

the preimages of T in XN and X ′N ′ , and λsN is the morphism X ′s′N′
→ XsN . The

proposition follows.

4.4. Corollary. The Galois group P = G(K′s/K′nrKs) is a pro-p-group, where
p = char(k), and if F is torsion with torsion orders prime to p, then there is a

canonical isomorphism λ∗(RqΨη(F ))
∼−→ RqΨη′(F

′)P .

Proof. To prove the first statement, it suffices to verify that the field K′nrKs con-
tains K′mr

, the maximal moderately ramified extension of K′. For this it suffices
to show that K′mr = K′nrKmr, or, equivalently, that the homomorphism of Ga-
lois groups G(K′mr

/K′nr
) → G(Kmr/Knr) is injective. By [Ber2], 2.4.4, the first

(resp. second) group is canonically isomorphic to Hom(
√
|K∗|/|K∗|, K̃s∗) (resp.

Hom(
√
|K′∗|/|K′∗|, K̃′

s∗

)). Since |K∗| is a subgroup of finite index in the cyclic

group |K′∗|, then
√
|K∗| =

√
|K′∗|, and the required fact follows. The second

statement is an easy consequence of the first one and Propositions 4.2 and 4.3.

§5. Smooth analytic spaces

Let (S, s) be a k-germ such that s is contained in the interior Int(S) of S (in
particular, S is good at s) and OS,s is a discrete valuation ring.

5.1. Theorem. Suppose that the field k is perfect, and let n be an integer prime to
char(k). Then for X = S one has Ψη(Z/nZ)η = (Z/nZ)s and RqΨη(Z/nZ)η = 0
for q ≥ 1.

To prove the theorem, we show that the assumptions guarantee the smoothness
of the k-analytic spaces SL and TL at the point sL, and, after that, we apply the
cohomological purity theorems from [Ber2] and [Ber4].

5.2. Theorem. Let X be a k-analytic space and K a perfect non-Archimedean
field over k. Then, for a point x ∈ X, the following are equivalent:

(a) X is smooth at x;
(b) x ∈ Int(X) and there exists an open neighborhood U of x such that the K-

analytic space U⊗̂K is regular;
(c) x ∈ Int(X) and the K-analytic space X⊗̂K is regular at some point over x.

Proof. The implications (a) =⇒ (b) =⇒ (c) are trivial. To prove the implication
(c) =⇒ (a), we need the following fact.

5.3. Lemma. The following properties of a k-analytic space X at a point x ∈ X
with d = dimx(X) are equivalent:

(a) X is smooth at x;
(b) x ∈ Int(X) and ΩX,x is a free OX,x-module of rank d;
(c) x ∈ Int(X) and ΩX,x is generated over OX,x by at most d elements.
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Proof. The implication (a) =⇒ (b) follows from [Ber2], 3.5.4. The implication
(b) =⇒ (c) is trivial. Suppose that (c) is true. Shrinking X , we may assume that
X is closed and there are functions f1, . . . , fd ∈ O(X) such that the sheaf ΩX is
generated by df1, . . . , dfd. We claim that the morphism f : X → Y = Ad, defined
by f1, . . . , fd, is étale. Indeed, the exact sequence f∗(ΩY ) −→ ΩX −→ ΩX/Y −→ 0
(see [Ber2], 3.3.2(i)) implies that ΩX/Y = 0. It follows that f has discrete fibers.
Since f is closed, f is quasifinite, by [Ber2], 3.1.4, and therefore f is unramified.
We have to verify that f is flat. Let y = f(y). Since OX,x is a finite unramified
OY,y-algebra, and the ring OY,y is normal, by [SGA1], Exp. I, 9.5(ii), it suffices to
show that the canonical homomorphism OY,y → OX,x is injective. But this is clear
because dimy(Y ) = d = dimx(X).

5.4. Corollary. Let x be an inner point of a k-analytic space X such that the
local ring OX,x is regular and H(x) = k′ or k′⊗̂Kr, where k′ is a finite separable

extension of k and r 6∈
√
|k∗|. Then X is smooth at x.

Proof. Suppose first that H(x) = k′. Then the set {x} is Zariski closed in X . By
[Ber2], 3.3.2(ii), there is an exact sequence mx/m

2
x −→ ΩX ⊗OX k′ −→ Ωk′/k −→

0. It follows that ΩX,x is generated over OX,x by at most dimk′(mx/m
2
x) =

dim(OX,x) = dimx(X) elements. Suppose now that H(x) = k′⊗̂Kr. We can
replace k by k′ and assume that H(x) = Kr. We may assume also that X is k-
affinoid. Consider the canonical morphism X ′ = X⊗̂Kr → X . From [Ber2], 2.2.1
and 2.2.5, it follows that there exists a point x′ ∈ π−1(x) which is contained in
the Zariski open set V of regular points of X ′. Furthermore, the fiber π−1(x) is
isomorphic to the annulus A(r, r)Kr ⊂ A1

Kr
. It follows that there exists a point

x′′ ∈ V ∩ π−1(x) for which H(x′′) is a finite separable extension of Kr. By the
first case, ΩX′,x′′ is generated over OX′,x′′ by at most dimx′′(X

′) elements. Since
ΩX′,x′′ = ΩX,x ⊗OX,x OX′,x′′ , it follows that ΩX,x is generated over OX,x by at
most dimx′′(X

′) ≤ dimx(X) elements.

Suppose that x ∈ Int(X) and some point x′ ∈ X⊗̂K over x is regular. By Lemma
5.3, it suffices to verify that ΩX,x is generated over OX,x by at most dimx(X)
elements. Since ΩX′,x′ = ΩX,x ⊗OX,x OX′,x′ , it suffices to verify that ΩX′,x′ is
generated over OX′,x′ by at most dimx′(X

′) ≤ dimx(X) elements. The situation is
reduced to the following. Suppose that the field k is perfect. Then, for any point
x ∈ Int(X) such that the local ring OX,x is regular, ΩX,x is generated over OX,x
by at most d = dimx(X) elements. For this we need the following fact.

5.5. Lemma. Suppose that k is perfect, and let X be a closed k-analytic space.
Then the set of points x ∈ X with H(x) = k′ or k′⊗̂Kr (as in Corollary 5.4) is
everywhere dense in X.

Proof. If the valuation on k is nontrivial, then the the space X is strictly k-analytic
(see [Ber1], 3.1.2), and therefore the set X0 = {x ∈ X

∣∣[H(x) : k] < ∞} is every-
where dense in X . Suppose that the valuation on k is trivial. It suffices to show that
any affinoid neighborhood U of a point x ∈ X contains a point y with H(y) = k′

or k′⊗̂Kr, where k′ is a finite extension of k and 0 < r < 1. For this we take a
closed immersion U → E(0; r1, . . . , rn) ⊂ An with |Ti(x)| < ri. Furthermore, we
take a number 0 < r < 1 with |Ti(x)| < rli < ri for some integers li, and set
V = U ∩ E(0; rl1 , . . . , rln). Then V ′ = V ⊗̂Kr is a strictly Kr-affinoid space, and
therefore the set V ′0 is everywhere dense in V ′. Let y be the image in V of some
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point y′ ∈ V ′0 . We claim that the field H(y) is of the required form. Suppose that
H(y) is infinite over k. One has k ⊂ H(y) ⊂ H(y′) and [H(y′) : Kr] < ∞. Since

K̃r = k, k is perfect, and the ring H(y)
◦

is Henselian, there exists a finite extension

k′ of k in H(y) with k′
∼−→ H̃(y). Furthermore, the group |H(y)

∗| is generated
by a number 0 < r′ < 1. Let t be an element of H(y) with |t| = r′. Then the
series

∑∞
i=−∞ ait

i, ai ∈ k′, are convergent in H(y), and any element of H(y) can be

represented in a unique way as such a series. It follows that H(y) = k′⊗̂Kr′ .

Shrinking X , we may assume that X is closed, regular, and of pure dimension d.
Let Y be the set of points x ∈ X such that ΩX,x is generated over OX,x by at least
d+ 1 elements, and assume that Y is nonempty. Then Y is a Zariski closed subset
of X , and therefore it can be considered as a closed k-analytic space. By Lemma
5.5, there exists a point y ∈ Y with H(y) = k′ or k′⊗̂Kr. By Corollary 5.4, ΩX,y is
generated over OX,y by at most d elements. The latter is impossible, and therefore
Theorem 5.2 is proved.

5.6. Corollary. The set of smooth points in a closed k-analytic space X is Zariski
open. Furthermore, if the field k is perfect, this set coincides with Reg(X), the set
of regular points of X.

Proof of Theorem 5.1. We can shrink S and assume that Sη comes from S\T , where
T is a Zariski closed subset of S, and that S and T are smooth. Furthermore, for
a fixed finite separable extension L of K, we can shrink S and assume that the
morphism SL → S comes from a flat finite morphism SL → S. Since SL is regular at
the point sL, from Theorem 5.2 it follows that we can shrink S and assume that SL
and TL, the preimage of T in SL, are smooth. By the cohomological purity theorem
([Ber2], 7.4.5, and [Ber4], 2.1), applied to the smooth pair of codimension one

SL\TL
jL
↪→ SL

iL←− TL, one has jL∗(Z/nZ)SL\TL = (Z/nZ)SL , R1jL∗(µn,SL\TL)
∼−→

iL∗(Z/nZ)TL and RqjL∗(Z/nZ)SL\TL = 0 for q ≥ 2. Theorem 5.1 easily follows
from this.

5.7. Corollary. Suppose that the field k is perfect, and let X be an S-analytic
space smooth over S. Then, for any finite locally constant abelian sheaf F on X
with torsion orders prime to char(k), one has Ψη(Fη) = Fs and RqΨη(Fη) = 0 for
q ≥ 1.

§6. The comparison theorem for vanishing cycles

In this section we assume that the field k is perfect and (S, s) is a k-germ such
that s ∈ Int(S) and A = OS,s is a discrete valuation ring.

6.1. Theorem. Let X be a scheme of finite type over S = Spec(A), and let F be
an abelian constructible sheaf on Xη with torsion orders prime to char(k). Then
for any q ≥ 0 there is a canonical isomorphism

(RqΨη(F))an ∼−→ RqΨη(Fan) .

6.2. Remark. Recall that, by Deligne’s theorem 3.2 from [SGA4 1
2 ], Th. Finitude,

the sheaves RqΨη(F) are constructible. The proof of Theorem 6.1 uses the in-
duction reasoning from the proof of Deligne’s theorem and does not work in the
classical situation over C. But in the case covered by the corresponding theorem
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from [SGA7], Exp. XIV, the statement is easily deduced as follows from the com-
parison theorem for étale cohomology ([Ber2], 7.5.1, [Ber4], 3.1). (Moreover, in
this case one does not need the assumption that the field k is perfect.) Namely,
this is the case when X = Y ×R S, where R is an algebraic curve over k, Y is
a scheme of finite type over R, and S → R is a morphism which induces an iso-
morphism of k-germs (S, s)

∼−→ (Ran, s), and F comes from a constructible sheaf
G on Yη, where Yη is the preimage of R\{s} in Y. We may assume that R is
regular and connected. Let K be the field of rational functions on R, and fix an
embedding Ks ↪→ Ks. Since K is everywhere dense in K and K is quasicomplete,
one has Ks = KsK. For a finite extension L of K, let RL denote the normaliza-
tion of R in L, and let YL = Y ×R RL. The embedding L ↪→ Ks defines a point

sL ∈ RL. There are morphisms YηL = YL\(YL)sL
jL
↪→ YL

iL←− Ys, and one has

RqΨη(F) = lim
−→

i
∗
L(RqjL∗G), where L runs through finite extensions of K in Ks.

On the other hand, since Ks = KsK, one has

RqΨη(Fan) = lim
−→

i
an
L

∗
(Rqjan

L ∗Gan).

The comparison theorem for étale cohomology implies that

(RqΨη(F))an ∼−→ RqΨη(Fan).

Proof of Theorem 6.1. First of all we remark that it suffices to assume that Xη is
everywhere dense in X . We prove the theorem by induction on d = dim(Xη).

Step 1. The theorem is true for d = 0.
We may assume that X is reduced. Using Proposition 4.1(i), we can replace X

by its normalization, and therefore we may assume that X is the normalization of
S in a finite extension N of K. Since F has a resolution 0→ F → F0 → F1 → . . .
with F i of the form ϕη∗(Z/nZ)X ′η , where ϕ : X ′ → X is the normalization of

X in a finite extension of N , we again can apply Proposition 4.1(i) and reduce
the situation to the case F = ΛXη , where Λ = Z/nZ. Furthermore, since the

scheme Xs is zero-dimensional, it suffices to verify that H0(Xs, RqΨη(ΛXη ))
∼−→

H0(X an
s , RqΨη(ΛX an

η
)) or, equivalently, that Hq(Xη,Λ)

∼−→ Hq(X an
η ,Λ). For the

latter, we may assume that N is separable over K, but then it suffices to consider
the case N = K, i.e., X = S. In this case Ψη(Λη) = Λs and RqΨη(Λη) = 0 for
q > 0 and, by Theorem 5.1, the similar facts are true for S.

Suppose now that d ≥ 1 and the theorem is true for the schemes whose generic
fiber has dimension at most d− 1.

Step 2. The homomorphism (RqΨη(F))an → RqΨη(Fan) is an isomorphism at
any point of X an

s whose image in the scheme Xs is not a closed point.
Let y ∈ X an

s be such a point, and let x and x be its images in X an
s and Xs,

respectively. Since our statement is local, we may assume that X is affine and,
moreover, that X is a closed subscheme of the affine space AmS . By hypothesis,
there exists a projection ϕ : X → A1

S such that s′ = ϕ(x) is the generic point of the
closed fiber of A1

S . Then we may shrink X and assume that the generic fiber of ϕ
has dimension d − 1. Let s′ be the image of x in the closed fiber of A1

S = (A1
S)an,

i.e., s′ = ϕan(x), and let (S′, s′) be the k-germ (A1
S , s
′). To prove the statement, it

suffices to show that the inverse images of the sheaves RqΨη(F)an and RqΨη(Fan)
on X an

s′
are isomorphic.

We set S′ = Spec(OS′,s′) and denote by S′′ the spectrum of the Henselization
of the local ring OA1

S ,s
′ . Since the ring OS′,s′ is Henselian, there is a canonical
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morphism of schemes

S′ = {s′, η′} → S′′ = {s′′, η′′}.

Consider the following commutative diagram with Cartesian squares:

X −→ A1
S −→ Sx x

X ′′ −→ S′′x x
X ′ −→ S′

Let F ′ (resp. F ′′) be the inverse image of F on X ′η′ (resp. X ′′η′′), and let K′ (resp.
K′′) be the fraction field of OS′,s′ (resp. OS′′,s′′). (We note that the field K′′ is
quasicomplete because its ring of integers is Henselian.) Let us fix embeddings of
fields Ks ↪→ K′′s ↪→ K′s over the canonical embeddings K ↪→ K′′ ↪→ K′. We get a
homomorphism of Galois groups Gη′ → Gη′′ → Gη and morphisms

X ′
s′

β−→ X ′′
s′′

α−→ Xsx x
X ′an
s′

λ−→ X an
s

By Lemma 3.4 from [SGA4 1
2 ], Th. Finitude, there is an isomorphism of sheaves

on X ′′
s′′

, α∗ (RqΨη(F))
∼−→ RqΨη′′(F ′′)P , where P = G(K′′s/K′′nrKs) (it is a pro-

p-group for p = char(k)). Furthermore, since the formation of vanishing cycles
is compatible with any base change (loc. cit., Proposition 3.7), there is an iso-

morphism of sheaves on X ′
s′

, β∗ (RqΨη′′(F ′′)) ∼−→ RqΨη′(F ′), compatible with the

action of Galois groups. Therefore, there is an isomorphism of sheaves on X ′
s′

,

(αβ)∗ (RqΨη(F))
∼−→ RqΨη′(F ′)P . Applying the induction hypothesis to the mor-

phism X ′ → S′, we get an isomorphism of sheaves on X ′an
s′

λ∗ (RqΨη(F)an)
∼−→ RqΨη′(F ′an

)P .

On the other hand, Corollary 4.4 gives an isomorphism

λ∗ (RqΨη(Fan))
∼−→ RqΨη′(F ′an

)Q ,

whereQ = G(K′s/K′nrKs). It is clear that the image of Q under the homomorphism
Gη′ → Gη′′ is contained in P . Thus, Step 2 follows from the following fact.

6.2. Lemma. The homomorphism Q→ P is surjective.

Proof. Consider the diagram of embeddings of fields

K′ −→ K′nr −→ K′nrKs −→ K′nrK′′s −→ K′sx x x x
K′′ −→ K′′nr −→ K′′nrKs −→ K′′sx x x
K −→ Knr −→ Ks
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It induces a commutative diagram of homomorphisms of Galois groups

0 −→ Q −→ G(K′s/K′nr) −→ G(K′nrKs/K′nr) −→ 0y y y
0 −→ P −→ G(K′′s/K′′nr) −→ G(K′′nrKs/K′′nr) −→ 0

Since the third vertical homomorphism is injective (both groups are subgroups of
Gη), it suffices to show that the second one is surjective.

Let L be a finite extension of K′′nr
in K′′s, and let L′ = K′nrL. It suffices to

verify that

[L : K′′nr
] = [L′ : K′nr

] .

First of all, we remark that since K′nr
and K′′nr

are quasicomplete discrete valuation

fields, then the number on the left hand side is equal to [|L∗| : |K′′nr∗|][L̃ : K̃′′nr],

and that on the right hand side is equal to [|L′∗| : |K′nr∗|][L̃′ : K̃′nr]. One has
|K′nr∗| = |K′′nr∗| = |K∗|. Since |L∗| ⊂ |L′∗|, it suffices to verify that

[L̃ : K̃′′nr] ≤ [L̃′ : K̃′nr] .

One has K̃′nr = κ(s′)s and K̃′′nr = k(s′)s. By Theorem 3.4, the field κ(s′) is

separable over k(s′). It follows that [κ(s′)sL̃ : κ(s′)s] = [L̃ : k(s′)s]. Since κ(s′)sL̃ ⊂
L̃′, the inequality follows.

Step 3. The homomorphism considered is an isomorphism over all points of X an
s .

Since our statement is local, we may assume that X is affine. After that we may
assume that X is projective over S. Let ϕ denote the canonical morphism X → S.
Define a complex ∆· by the exact triangle in D+

Gη
(X an

s ),

−→ RΨη(F)an −→ RΨη(Fan) −→ ∆· −→ .

We have to show that the cohomology sheavesHq(∆·) of the complex ∆· are trivial.
By Step 2, we know, at least, that they are concentrated at the points of X an

s whose

images in Xs are closed points. In particular, these are Ĥ(s)a-points of the Ĥ(s)a-
analytic space X an

s . To show that Hq(∆·) = 0, we need the following fact which is
a purely non-Archimedean phenomenon.

6.3. Proposition. Suppose that k is algebraically closed. Let X be a Hausdorff
k-analytic space, and let F be an abelian sheaf on X such that either (1) for any
point x ∈ X with Fx 6= 0, one has x ∈ X(k) (as in our situation), or (2) F is

torsion with torsion orders prime to char(k̃) and, for any point x ∈ X with Fx 6= 0,

one has H̃(x) = k̃ and |H(x)
∗| = |k∗| (i.e., d(x) = 0 in the notation of [Ber1], §9).

Then Hq
c (X,F ) = 0 for all q ≥ 1. Furthermore, if H0

c (X,F ) = 0, then F = 0.

Proof. Consider the morphism of sites π : Xét → |X |. By [Ber2], 4.2.4, one has
(Rqπ∗F )x = Hq(GH(x), Fx), q ≥ 0. If x ∈ X(k), then the group GH(x) is trivial. If

H̃(x) = k̃ and |H(x)∗| = |k∗|, then GH(x) is a p-group, where p = char(k̃), by [Ber2],
2.4.4. In both cases one has Rqπ∗F = 0 for all q ≥ 1. Therefore the Leray spectral
sequence of the morphism π gives an isomorphism Hq

c (|X |, π∗F )
∼−→ Hq

c (X,F ),
q ≥ 0. Thus, to prove the statement, it suffices to show that the restriction of F to
the usual topology of X satisfies the following condition: for any compact subset
Σ ⊂ X , the canonical homomorphism F (X) → F (Σ) is surjective (see [God], Ch.
II, §3.5).
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Let f ∈ F (Σ). Since the set Σ has a basis of paracompact neighborhoods, then,
by loc. cit., 3.3.1, f extends to an open neighborhood U of Σ. Furthermore, since
Σ is compact, we can find a finite family of affinoid domains V1, . . . , Vn such that
V = ∪ni=1Vi ⊂ U and Σ ⊂ V = ∪ni=1Int(Vi/X). We remark that it suffices to show
that

Supp(f
∣∣
V) = Supp(f

∣∣
U) ∩ V.

Indeed, from the equality it follows that the set Supp(f
∣∣
V) is compact, and therefore

there exists an element g ∈ F (X) which is zero outside Supp(f
∣∣
V) and coincides

with f on V . The equality follows from the following lemma (the field k in it is not
assumed to be algebraically closed).

6.4. Lemma. Any point x of a k-analytic space X, for which the extension H̃(x)/k̃
is algebraic and the group |H(x)∗|/|k∗| is torsion, is contained in the interior of X.

Proof. We may assume that X = M(A) is k-affinoid. By [Ber1], 2.5.2, we have
to verify that, for any bounded homomorphism k{r−1T} → A : T 7→ f , there
exists a polynomial P = Tn + a1T

n−1 + · · · + an ∈ k[T ] such that |ai| ≤ ri,
1 ≤ i ≤ n, and |P (f)(x)| < rn. This is evident if |f(x)| < r, and therefore
we assume that |f(x)| = r. One has rm = |a| for some integer m ≥ 1 and an

element a ∈ k∗. In particular, | f
m

a (x)| = 1. Furthermore, we can find a polynomial

Q = T l + a1T
l−1 + · · · + al ∈ k◦[T ] with |Q

(
fm

a

)
(x)| < 1. It follows that the

polynomial P (T ) = alQ
(
Tm

a

)
is the required one.

By Proposition 6.3, to show that Hq(∆·) = 0, it suffices to show that the co-
homology of the complex Rϕan

s ∗(∆
·) is trivial or, equivalently, that the canoni-

cal morphism Rϕan
s ∗ (RΨη(F)an) −→ Rϕan

s ∗ (RΨη(Fan)) is an isomorphism. By

Proposition 4.1(i), the complex on the left hand side is RΨη

(
Rϕan

η ∗(F
an)
)

and, by

the similar fact from algebraic geometry and the comparison theorem for cohomol-
ogy with compact support, the complex on the right hand side is (RΨη(Rϕη∗F))an.

Since (Rϕη∗F)an ∼−→ Rϕan
η ∗(F

an) (Proposition 3.3), the required statement follows

from the fact that the theorem is true for S (Step 1). The theorem is proved.

The following statement is deduced from the comparison theorem [Ber2], 7.5.1,
and theorem 6.1 in the same way as the theorem [SGA41

2 ], 1.1, is deduced from the

corresponding Theorems [SGA4 1
2 ], 1.9 and 3.2.

6.5. Corollary. Let ϕ : Y → X be a morphism of finite type between schemes
of locally finite type over S or over Spec(A), where M(A) is a one-dimensional
regular k-affinoid space. Then, for any constructible sheaf F on Y with torsion

orders prime to char(k̃) and any q ≥ 0, there is a canonical isomorphism

(Rqϕ∗F)an ∼−→ Rqϕan
∗ (Fan) .

§7. An application

Let A be a Henselian discrete valuation ring with fraction field K and alge-
braically closed residue field k, and let S = Spec(A) = {s, η}. A finite discrete
Gη = GK-module Λ defines on every scheme Z over K a finite locally constant
sheaf ΛZ . We note that any morphism ϕ : Y → X between schemes of finite type
over S and any closed point y ∈ Ys give rise to homomorphisms of finite abelian
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groups θq(ϕ,Λ) : (Rqj∗ΛXη)x → (Rqj∗ΛYη )y and RqΨη(ΛXη)x → RqΨη(ΛYη )y ,
where x = ϕ(y) and q ≥ 0. Furthermore, for a scheme X of finite type over S
and a closed point x ∈ Xs, let X̂/x denote the formal completion of X at x, i.e.,

X̂/x = Spf(ÔX ,x). It is a formal scheme over Ŝ = Spf(Â). Formal schemes consid-
ered here are only of this type. The purpose of this section is to prove the following
two theorems.

Suppose that A is equicharacteristic, i.e., char(K) = char(k).

7.1. Theorem. One can associate homomorphisms

θq(α,Λ) : (Rqj∗ΛXη)x → (Rqj∗ΛYη )y and RqΨη(ΛXη)x → RqΨη(ΛYη )y

with any morphism of formal schemes over Ŝ, α : Ŷ/y → X̂/x, and any finite
discrete Gη-module Λ of order prime to char(k), so that they possess the following
properties:

(a) if α is induced by a morphism ϕ : Y → X over S with ϕ(y) = x, then
θq(α,Λ) = θq(ϕ,Λ);

(b) if β : Ẑ/z → Ŷ/y is a similar morphism, then θq(αβ,Λ) = θq(β,Λ) ◦ θq(α,Λ);
(c) θq(α,Λ) is functorial on Λ.

The second theorem is proved for the schemes X of finite type over S satisfying
one of the following assumptions:

(1) the generic fiber Xη of X is smooth;
(2) X = Z ×R S, where R is an algebraic curve over k, Z → R is a morphism of

finite type, and S → R is a morphism induced by a homomorphismOR,s → A

for which ÔR,s ∼−→ Â.

The assumptions (1) and (2) are necessary to apply a result from [Ber3] on the
finiteness of the cohomology groups of certain compact k-analytic spaces. (Of
course, the latter fact should be true for arbitrary compact k-analytic spaces, and
therefore the assumptions are superfluous.)

7.2. Theorem. Given X̂/x and Ŷ/y, where each of X and Y satisfies (1) or (2),
and a finite discrete Gη-module Λ of order prime to char(k), there exists n ≥ 1 such

that, for any pair of morphisms α, β : Ŷ/y → X̂/x over Ŝ that coincide modulo the

n-th power of the maximal ideal of ÔY,y, one has θq(α,Λ) = θq(β,Λ) for all q ≥ 0.

Proof. By a result of Deligne ([SGA4 1
2 ], Th. Finitude, 3.7), the formation of

vanishing cycles is compatible with any base change. Furthermore, since A is

Henselian, then the Galois groups of K and K̂ coincide (see [Ber2], §2.4), and there-
fore the canonical morphism from the spectral sequence Hp(I,RqΨη(ΛXη)) =⇒
i
∗
(Rp+qj∗ΛXη) overA to the similar spectral sequence over Â shows that the sheaves

Rqj∗(ΛXη) do not change if we replace A by its completion. Thus, we may assume
that A is complete.

Since A is equicharacteristic, it is isomorphic to k[[T ]]. We endow the field k with
the trivial valuation. The ring k[[T ]] is topologically isomorphic to the k-affinoid
algebra k{r−1T} for any 0 < r < 1. In particular, A = O(S) = OS,s, where S is the
open unit disc D(0; 1) in A1 with center s at zero. The scheme X over A gives rise,
for each 0 < r < 1, to a k-analytic space closed over E(0; r) =M(k{r−1T}). These
k-analytic spaces are glued together to a k-analytic space closed over S = D(0; 1)
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which will be denoted by X an. Shrinking X , we can find regular functions f1, . . . , fd
on X such that T, f1, . . . , fd generate the maximal ideal mx of OX ,x. We set

X an
(x) = {y ∈ X an

∣∣|fi(y)| < 1, 1 ≤ i ≤ d} .
It is an open subset of X an, and it is clear that it does not change if we shrink X
or replace f1, . . . , fd by a similar system of elements.

7.3. Lemma. (i) O(X an
(x)) = OX an,x = ÔX ,x ;

(ii) if Y is a scheme of finite type over A and y is a closed point of Ys, then there
is a canonical bijection

HomS

(
Yan

(y),X an
(x)

)
∼−→ HomA

(
ÔX ,x, ÔY,y

)
.

Proof. If X is the d-dimensional affine space over A, then X an
(x) is the (d + 1)-

dimensional open unit disc in Ad+1 with center at zero, and one has

O(X an
(x)) = OX an,x = ÔX ,x = k[[T, T1, . . . , Td]].

In the general case we can shrink X and assume that there is a closed immersion
i : X → Z = Ad

Spec(A). Then X an
(x) = Zan

(z) ∩ X an, where z = i(x). Since Zan
(z) is

a Stein space, then the canonical homomorphism O(Zan
(z))→ O(X an

(x)) is surjective,

and (i) follows. To prove (ii), it suffices to verify that it is true when X is the
d-dimensional affine space over A. In this case, the left hand side is O(Yan

(y))
d and

the right hand side is (ÔY,y)d, and therefore the required fact follows from (i).

Theorem 7.1 follows directly from Lemma 7.3, Theorem 6.1 and Corollary 6.5.
Furthermore, since the groups (Rqj∗ΛXη)x and RqΨη(ΛXη)x are finite and the

latter is an inductive limit of i
∗
L(RqjL∗ΛXη), where L runs through finite extensions

of K in Ks, it suffices to prove Theorem 7.2 only for the groups (Rqj∗ΛXη)x. Since
only finite number among these groups are non-zero, it suffices to prove Theorem
7.2 for each q separately. We set

X an
(x)η

= {y ∈ X an
(x)

∣∣T (y) 6= 0} .

7.4. Lemma. If X satisfies (1) or (2), then there is a canonical isomorphism

Hq(X an
(x)η

,Λ)
∼−→ (Rqj∗ΛXη)x .

Proof. For 0 < r < 1, we set

E(x; r) = {y ∈ X an
(x)

∣∣|T (y)| ≤ r, |fi(y)| ≤ r, 1 ≤ i ≤ d}.

It is an affinoid neighborhood of the point x in X an
(x). We also set Eη(x; r) = {y ∈

E(x; r)
∣∣T (y) 6= 0}. By Theorem 6.1, there is a canonical isomorphism

lim
−→
r→0

Hq(Eη(x; r),Λ)
∼−→ (Rqj∗ΛXη)x.

We will prove that for any 0 < r < 1 there exists 0 < r′ ≤ r (resp. r ≤ r′′ < 1)
such that the image of Hq(Eη(x; r),Λ) in Hq(Eη(x; r′),Λ) (resp. Hq(Eη(x; r′′),Λ)
in Hq(Eη(x; r),Λ)) maps isomorphically onto (Rqj∗ΛXη)x. This will imply the
required fact because, by [Ber2], 6.3.12, this will give an isomorphism

Hq(X an
(x)η

,Λ)
∼−→ lim

←−
r→1

Hq(Eη(x; r),Λ)
∼−→ (Rqj∗ΛXη)x.
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If X satisfies (1), then X an
(x)η

is a smooth k-analytic space. If X satisfies (2), then

X an
(x) is an open analytic domain in the analytification of the scheme Z over k. In

both cases, Corollary 5.6 from [Ber3] implies that for any compact analytic domain
V ⊂ X an

(x)η
the group Hq(V,Λ) is finite. For 0 < r′ ≤ r, we set A(x; r′, r) = {y ∈

E(x; r)
∣∣|T (y)| ≥ r′} (it is an affinoid domain in X an

(x)η
). Since Eη(x; r) is a union of

A(x; r′, r) over all 0 < r′ ≤ r, then, by [Ber2], 6.3.12, the group Hq(Eη(x; r),Λ) is
a projective limit of the finite groups Hq(A(x; r′, r),Λ), and, in particular, it can
be endowed with the structure of a profinite group.

Let r0 be such that the homomorphism Hq(Eη(x; r0),Λ) → (Rqj∗ΛXη)x is sur-
jective and denote by P its kernel. For 0 < t ≤ r0, let Pt denote the kernel of
the continuous homomorphism Hq(Eη(x; r0),Λ)→ Hq(Eη(x; t),Λ). We claim that
there exists 0 < t ≤ r0 such that the subgroup Pt has finite index. Indeed, assume
that this is not true. The closure P of P is an open subgroup of Hq(Eη(x; r0),Λ),

and the subgroups Pt are nowhere dense in P . Let g1, . . . , gm be representatives of
the cosets of P in P , and let t1, t2, . . . be an arbitrary sequence of positive numbers
with tj ≤ r0 and tj → 0 as j → ∞. Then the compact space P is a union of
the countable family of the nowhere dense subsets gi + Ptj . By the classical Baire
Theorem (see [Kel], Ch. 6, Theorem 34), this is impossible.

Thus, we can find a number 0 < r′0 ≤ r0 such that the image of Hq(Eη(x; r0),Λ)
in Hq(Eη(x; r′0),Λ) is finite. We can even decrease r′0 and assume that this image

maps isomorphically onto (Rqj∗ΛXη)x. Let t0 be the number with r′0 = rt00 . We
claim that any 0 < r < 1 possesses the above property with r′ = rt0 . (This will

give the required fact for r′′ = rt
−1
0 .)

Let t be a positive number. Then for any k-affinoid algebra A the Banach k-
algebra At, which coincides with A and is endowed with the t-th power of the norm
onA, is also k-affinoid. This gives rise to a functor Φt : X =M(A) 7→ Xt =M(At)
from the category of k-affinoid spaces to itself, and one has Φt ◦ Φt′ = Φtt′ . The
functors Φt : X 7→ Xt extend in the evident way to the whole category of k-analytic
spaces, and one has Φt ◦ Φt′

∼−→ Φtt′ . If Y → X is an étale morphism, then the
induced morphism Y t → Xt is also étale. In this way we get an isomorphism of sites
Xét

∼−→ Xt
ét that induces an isomorphism F 7→ F t between the corresponding topoi.

In particular, for any étale abelian sheaf F on X there is a canonical isomorphism
Hq(X,F )

∼−→ Hq(Xt, F t).

For example, in our situation one has Eη(x; r)t
∼−→ Eη(x; rt), and therefore if the

image of Hq(Eη(x; r0),Λ) in Hq(Eη(x; rt00 ),Λ) maps isomorphically onto (Rqj∗Λ)x,
then the same is true for rt0 instead of r0. Since {rt0

∣∣t > 0} = {0 < r < 1}, we get
our claim and the lemma.

Fix a number 0 < r < 1. Given X̂/x and Ŷ/y as in Theorem 7.2, we can find, by
Lemma 7.4 and its proof, a number 0 < r′ ≤ r such that the canonical homomor-
phisms Hq(X an

(x)η
,Λ) → Hq(A(x; r′, r),Λ) and Hq(Yan

(y)η
,Λ) → Hq(A(y; r′, r),Λ)

are injective. We now apply Theorem 7.1 from [Ber3] to the k-affinoid space
A(x; r′, r). Since the functions f1, . . . , fd,

1
T form a k-affinoid generating system for

the k-affinoid algebra O(A(x; r′, r)), it follows that there exist t1, . . . , td > 0 such
that for any pair of morphisms of Hausdorff k-analytic spaces ϕ,ψ : Y → A(x; r′, r)
over S with ρ(ϕ∗fi − ψ∗fi) ≤ ti, 1 ≤ i ≤ d, the homomorphisms from the image
of Hq(X an

(x)η
,Λ) in Hq(A(x; r′, r),Λ) to Hq(Y,Λ) induced by ϕ and ψ coincide. Let
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n ≥ 1 be an integer with rn ≤ ti, 1 ≤ i ≤ d. Then, for any pair of morphisms

α, β : Ŷ/y → X̂/x over Ŝ that coincide modulo the n-th power of the maximal

ideal of ÔY,y, one has ρ(α∗fi − β∗fi) ≤ ti on A(y; r′, r). It follows that the homo-
morphisms from Hq(X an

(x)η
,Λ) → Hq(Yan

(y)η
,Λ) induced by α and β coincide, and

therefore θq(α,Λ) = θq(β,Λ). Theorem 7.2 is proved.

Given X̂/x, let G(X̂/x) denote the group of automorphisms of the formal scheme

X̂/x over Ŝ. By Theorem 7.1, the group G(X̂/x) acts on the finite groups (Rqj∗ΛXη)x

and RqΨη(ΛXη )x. Furthermore, for n ≤ 1, let Gn(X̂/x) denote the subgroup of

G(X̂/x) consisting of the automorphisms that are trivial modulo the n-th power of

the maximal ideal of ÔX̂ ,x. By Lemma 8.7 from [Ber3] the groups Gn(X/x), n ≥ 2,

are uniquely l-divisible for any prime l 6= char(k). The following statement easily
follows from this fact and Theorem 7.1.

7.5. Corollary. Given X̂/x, where X satisfies (1) or (2), and a finitely generated
Zl-module Λ, l 6= char(k), endowed with a continuous action of Gη, there exists

n ≥ 1 such that Gn(X̂/x) acts trivially on all of the groups (Rqj∗(Λ/l
mΛ)Xη)x and

(RqΨη(Λ/lmΛ)Xη)x, q ≥ 0, m ≥ 0.

7.6. Remark. Laumon proved a statement similar to that of Corollary 7.5 for the
action of the automorphism group of the Henselization of X at x on RqΨη(ΛXη)x
under the assumption that the morphism X → S is smooth outside x (see [Lau],
p. 34, 6.3.1). In the case when A is of mixed characteristic, Brylinski proved a
similar statement under the assumptions that the morphism X → S is of relative
dimension one and Xη is smooth (see [Bry]).
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