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ON THE GLOBAL DYNAMICS OF ATTRACTORS

FOR SCALAR DELAY EQUATIONS

CHRISTOPHER McCORD AND KONSTANTIN MISCHAIKOW

1. Introduction

This paper serves two purposes:

1. to describe the global dynamics on the attractor of scalar delay differential
equations with negative feedback;

2. to suggest a potentially computable approach for describing in coarse terms
the global dynamics of families of dynamical systems.

By now it is well known that not only do non-linear systems typically exhibit ex-
tremely complicated dynamics, but what’s worse, that the structure of the dynam-
ics changes dramatically as a function of natural parameters. A generally accepted
means of describing these structures is to prove the existence of a conjugacy with
respect to a well understood or more easily computable system, e.g., the invariant
set of the Smale horseshoe and the shift dynamics on bi-infinite sequences of two
symbols. While from a qualitative and theoretical point of view such a description
is quite desirable, in practice there are at least two serious drawbacks to this ap-
proach. First, starting with a specific evolution equation, i.e., a system of ordinary
differential equations, partial differential equations, or functional differential equa-
tions, obtaining a rigorous proof of the desired conjugacy can be extremely difficult.
Second, even if a conjugacy for a fixed parameter value is given, determining the
range for which the conjugacy is valid or how the conjugacy changes as a function
of the parameter is a daunting task. To see this, one needs only note that there ex-
ist conjugacies between structurally stable and non-structurally-stable flows, e.g.,
ẋ = −x and ẋ = −x3. These drawbacks can be a serious handicap. For many
models arising from the sciences and engineering, not only are the parameters not
known to great precision, but often the class of potential non-linearities is large.
Therefore one is faced with the task of providing a rigorous description of the dy-
namics for classes of equations for which one expects (or for which the numerics
indicate) a wide range of behaviors.

The family of scalar delay differential equations with negative feedback, i.e.

ẋ(t) = −f(x(t), x(t− 1)),(1)

where ηf(0, η) > 0 for all η 6= 0, provides a concrete example of the problems
described above. These equations have been suggested as models in physiology and
non-linear optics, and have been the subject of considerable numerical investigation,
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e.g. Farmer [3] and Mackey and Glass [11]. These numerical works strongly suggest
that for certain non-linearities and parameter values complicated, possibly chaotic
dynamics can occur. On the other hand, to the authors’ knowledge there is no
exact rigorous characterization of these systems.

Faced with the problem of trying to describe such a potentially diverse set of
dynamical systems, we have given up on the idea of establishing a conjugacy with
a simpler system. Instead, we use the weaker notion of semi-conjugacy; the goal
being to establish a minimal dynamic structure which is present for all equations
in a given family. This approach is not without precedent. Consider the following
theorem due to C. Conley [2].

Theorem 1.1. Let S be a compact invariant set under a flow ϕ. Then, there exists
a semi-conjugacy to a gradient-like flow. More precisely, there exists a space X with
a gradient-like flow ψ : R × X → X and continuous surjective map f : X → X
such that

-R× S id× f
R×X

? ?

ϕ ψ

S -
f

X

commutes.

It is essential to remark that in this theorem the map f is obtained by collapsing
each distinct component of the chain recurrent set to a distinct point. The resulting
quotient space is X and the flow ψ is that induced by ϕ. The point of Theorem 1.1
is to show that the dynamics on S can, in a rigorous manner, be divided into the
recurrent motion and non-recurrent or gradient-like motion. While this theorem
provides an important framework for interpreting the global dynamics of invariant
sets, it is too general to be of use in analyzing any particular system. There are
two reasons for this:

1. a priori the space X and the flow ψ are not known;
2. all the dynamics within the chain recurrent set are ignored.

While our work is not strictly speaking an application of Conley’s theorem, it cer-
tainly resembles it in spirit. We will study a large class of flows (precisely described
below) which include delay equations with negative feedback. We will identify a
“minimal structure” that such flows must posess, by constructing a semi-conjugacy
from the flow onto a specific flow on a disk. As in Conley’s recurrent – gradient-like
decomposition, we will collapse out most (but not all) of the information about
the internal dynamics of the recurrent set. However, our result differs significantly
from Conley’s decomposition in that the space and the flow that we project onto
will be explicitly given.

To precisely state our results, we begin with a description of this “model flow”
on the disk. Let z = (z0, . . . , z2P−1) ∈ R2P . Then, in polar coordinates z = rζ,
where r ≥ 0 and ζ ∈ S2P−1, the unit sphere in R2P . Let A : R2P → R2P be a
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matrix of the form

A =


A1 0 . . . 0
0 A2

. . .

0 AP


where Ap =

[
p−1 2π
−2π p−1

]
, p = 1, 2, . . . , P . Let D2P = {z = (z0, . . . , z2P−1) |∑2P−1

p=0 z2
p ≤ 1} be the closed unit ball in R2P . Consider the flow

ψ : R×D2P → D2P(2)

generated by the equations

ζ̇ = Aζ − 〈Aζ, ζ〉ζ,(3)

ṙ = r(1− r) .(4)

If one observes that (3) is obtained by projecting the linear system ż = Az onto
the unit sphere, it is easy to see that the following proposition holds.

Proposition 1.2. ψ is a Morse-Smale flow for which:

(i) The origin 0 = Π(P ) is a fixed point with a 2P dimensional unstable manifold
Wu(0) and cl(Wu(0)) = D2P .

(ii) For each p = 0, . . . , P − 1, the set

Π(p) := {z = (z0, . . . , z2R−1) | z2
2p + z2

2p+1 = 1} ⊂ D2p

is a periodic orbit with period 1 and cl(Wu(Π(p))) is the (2p + 1)-sphere

{z |
∑2p+1
i=0 z2

i = 1}.
(iii) M(D2P ) := {Π(p) | p = 0, . . . , P} is a Morse decomposition of D2P with

ordering 0 < 1 < . . . < P .

We will show that delay equations with negative feedback must posess at least
this much structure, in the sense that there is a semiconjugacy onto this flow on
D2P . In fact, we will produce such a semi-conjugacy for any flow satisfying the
following five assumptions.

A1: A is a global compact attractor for a semi-flow Φ on a Banach space. Fur-
thermore, if ϕ denotes the restriction of Φ to A, then ϕ defines a flow on
A.

A2: Under the flow ϕ : R×A → A

M(A) = {Mp | p = 0, . . . , P}

with ordering 0 < 1 < . . . < P is a Morse decomposition of A.
A3: For each p = 0, . . . , P − 1, Mp has a Poincaré section Ξp defined on a neigh-

borhood of Mp.
A4: The cohomology Conley indices of the Morse sets are

CȞk(MP ,Z) ≈
{

Z if k = 2P,
0 otherwise,
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and for p = 0, . . . , P − 1

CȞk(Mp,Z) ≈

 Z if k = 2p, 2p+ 1,

0 otherwise.

A5: For each Mp, p < P , there is a continuation of the flow in a neighborhood
of Mp to an isolated invariant set which consists of the disjoint union of a
hyperbolic periodic orbit and a set with trivial Conley index. The continuation
preserves the Poincaré section.

For an explanation of the terms used in these assumptions, the reader is referred
to Section 3. It will be shown in Section 2 that these are natural assumptions for
delay equations with negative feedback.

The remainder of the paper is devoted to proving the following theorem.

Theorem 1.3. Let the flow ϕ on A satisfy assumptions A1–A5. Then there exist
a continuous surjective function

f : A → D2P

for which Mp = f−1(Π(p)) (p = 0, . . . , P ) and a continuous flow ϕ̃ : R×A→ A ob-
tained via an order preserving time reparameterization of ϕ such that the following
diagram commutes:

-R×A id× f
R×D2P

? ?

ϕ̃ ψ

A -
f

D2P

Before turning to a rough sketch of the proof, let us consider the implications of
this theorem. A good place to start is with the flow ψ. It is easy to check that it
satisfies A1, A2 and A4 (in particular the homology indices for p < P are those of
hyperbolic periodic orbits). Furthermore, any sufficiently small 2P −1 dimensional
disk perpendicular to Π(p) acts as a transverse section, therefore A3 and A5 also
hold. It is reasonable to ask whether, in this case, f is an isomorphism. The
answer is: probably not. As the reader will see from the proof, the construction of
f is dependent on the transverse section chosen. For example, under f , all orbits
connecting the origin Π(P ) to the stable periodic orbit Π(0), which do not intersect
the transverse sections Ξp, p = 1, . . . , P − 1, will be mapped to the same orbit.
The point to be made is that even for very simple flows our proof can lead to a
significant collapse of orbits.

On the other hand, one should not be under the impression that assumptions
A1 – A5 force ϕ to be as simple as ψ. To begin with, it should be clear that
A1 does not imply that A is homeomorphic to a unit ball in R2P for some P . It
should, also, be remarked that global compact attractors exist for a wide variety of
different evolutionary equations and systems (see Hale, Magalhães, and Oliva [10],
Hale [9], Temam [21], and references therein).

Since all compact invariant sets have Morse decompositions (a corollary of The-
orem 1.1), the content of A4 lies in having a useful characterization of the Morse
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sets, i.e. knowing how many, their ordering, and their Conley indices. This infor-
mation is in general difficult to obtain. On the other hand, it should be emphasized
that knowing the Conley index of an isolated invariant set provides very little infor-
mation concerning the structure of the invariant set itself. In particular, a Morse
set Mp with index given by A4 could be made up of fixed points, periodic orbits,
or even contain chaotic dynamics. This latter case is exactly what is suggested by
the numerical work cited earlier.

A3 is a fairly restrictive assumption. It precludes the existence of fixed point for
any Morse set other than MP and allows one to define an “angle” coordinate for
every other Morse set. Because of this assumption, it is natural to try to map each
Morse set onto a periodic orbit. Theorem 1.3 says that this can be done, obviously
at the expense of any complicated dynamics which might occur.

A5 is the least understood of these assumptions and will be discussed further in
Section 3.

In summary, Theorem 1.3 provides a description of what might be considered
the minimal dynamics which must occur on the invariant set A under the flow ϕ.
Furthermore, this simple picture is obtained by collapsing any non-trivial recurrent
dynamics in a Morse set onto a simple periodic orbit.

The proof of Theorem 1.3 occupies Sections 4 – 7. Section 3 provides a terse
description of the Conley index and related ideas needed for the proof. Section 4,
while technical in nature, can be viewed as motivation for the more complicated
construction presented in Sections 5 – 7. The flow ϕ̃ : R×A→ A is constructed in
Section 5 by reparameterizing ϕ with respect to time (observe that this is equivalent
to defining a homeomorphism G : A → A and letting ϕ̃ represent the flow induced
by ϕ under G). Section 6 describes the construction of the map f and in Section 7
it is proven that f is onto.

The results of this last section are of interest in and of themselves. A. Floer [4]
has shown that a lower bound on the homology or cohomology of an invariant set
can be determined by homotoping from a normally hyperbolic invariant set while
maintaining control of the topology of the isolating neighborhoods. More precisely,
if an invariant set is hyperbolic, it has an isolating neighborhood such that the
inclusion-induced map is an isomorphism on cohomology. Under small perturba-
tions, the neighborhood continues to be an isolating neighborhood. In contrast,
the topology of the isolated invariant set can change drastically. In particular, the
inclusion-induced cohomology map need not be an isomorphism. However, Floer
showed that it will continue to be an injection — the isolated invariant set of the
perturbed flow will have “at least as much” cohomology as the original isolated
invariant set. The point is, a weaker algebraic condition than normal hyperbolicity
is sufficient to obtain a “lower bound” on the cohomological complexity of the in-
variant set. However, no indication as to how this condition can be satisfied, aside
from checking a normal bundle condition, is presented in [4].

The results of Section 7 are similar in spirit. We use assumption A5 to guarantee
the existence of a homotopy to a setting in which we can use normal hyperbolicity
to compute the necessary topological invariants.1 These are, however, topological
invariants for the individual Morse sets. In the setting of a Morse decomposition
of an isolated invariant set, this should be viewed as local information. What we

1As in Floer’s case all that is actually required is an algebraic condition. This will be explicitly
stated in Section 3 as assumption A5′.
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show is that using the connecting homomorphism of attractor repeller pairs we are
able to obtain lower bounds on the homology or cohomology of the total isolated
invariant set. Thus we obtain information concerning the global structure from the
local structure. Furthermore, the global algebraic invariants we obtain are exactly
the algebraic invariants Floer computes via his homotopy. Finally, it must be
emphasized that our construction was not done as an academic excercise. For the
delay equation, there is no known manifold structure to which the entire attractor
can be homotoped. The best we can do, and this will be described in detail in the
next section, is to homotope the individual Morse sets to hyperbolic periodic orbits,
i.e. A5 is verified via a homotopy which does not preserve the Morse decomposition
of A2.

2. Delay equations

In the introduction, the results of this paper were presented in a rather abstract
form. This was to emphasize that the assumptions A1 – A5, and consequently
Theorem 1.3, are independent of the evolution equation which generates the flow
ϕ. This is important since this same structure appears in a variety of settings, [7]
and [17]. Nevertheless, we now take the opportunity to demonstrate that these
assumptions are quite natural in the setting of delay equations with negative feed-
back. In fact, as will become quite clear by the end of this section, our work was
strongly motived by the results of J. Mallet–Paret [12].

The assumptions are really of two types:

1. A1 – A3, which are statements concerning the particular dynamical system
being studied, and

2. A4 and A5, which are most naturally verified via a carefully chosen homotopy
to a well understood system.

With this in mind, our discussion proceeds as follows. We begin with a very general
class of equations

ẋ(t) = −f(x(t), x(t − 1))(5)

which is assumed to satisfy the following three hypothesis:

H1: (i) f : R2 → R is C∞;
(ii) ηf(0, η) > 0 for all η 6= 0;

(iii) B > 0 and A+B > 0, where A = ∂f(ξ,η)
∂ξ |(0,0) and B = ∂f(ξ,η)

∂η |(0,0) .

H2: (i) Given K1 > 0 there exists K2 > 0 such that for any φ ∈ X := C[−1, 0]

‖φ‖ ≤ K1 ⇒ ‖T (1)φ‖ ≤ K2;

(ii) There exists K0 such that for any φ ∈ X
lim sup
t→∞

‖T (t)φ‖ ≤ K0.

H3:

ξ, η > 0 ⇒ f(ξ, η) > 0,

ξ, η < 0 ⇒ f(ξ, η) < 0.

The first step is to show that A1 – A3 hold under the stronger assumption that
f is analytic.

Next, we consider a particular delay equation known as Wright’s equation for
which assumptions A4 and A5 can be verified directly. Since Wright’s equation is
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analytic and satisfies H1 – H3, the induced flow satisfies all the assumptions of
Theorem 1.3, and hence, we have a semi-conjugacy to describe the global dynamics
of this equation.

Finally, we extend the result, by considering a specific class of equations satis-
fying H1 – H3 for which we can construct a homotopy to Wright’s equation while
preserving A2 – A5 and the essential properties insured by A1. As will be seen, the
two crucial points which must be addressed are that the attractor remain compact
and that the Morse decomposition be preserved throughout the homotopy.

We begin now by summarizing the results of [12] and along the way verify A1–
A3.

The general theory of delay differential equations (see [8]) guarantees that (5)
generates a semiflow Φ on the Banach space C[−1, 0]. The existence of the global
attractor Ā ⊂ C[−1, 0] can be found in [12]. If one assumes that f is analytic, then
Φ restricted to Ā ⊂ C[−1, 0] is a flow

ϕ̄ : R× Ā → Ā

i.e., A1 is satisfied. Unfortunately, if f is only C∞, then ϕ̄ need not be a flow. To
circumvent this technicality define

A := {x ∈ C(−∞,∞) | x(t) is a bounded global solution of (5)}

endowed with the usual compact open topology of C(−∞,∞). Now define

ϕ(t, x(s)) := x(s+ t), s ∈ (−∞,∞);

then ϕ : R×A → A is a flow. This creates a different problem, however. A is no
longer a subset of C[−1, 0] and ϕ is not the restriction of Φ. Therefore, A1 is not
satisfied. We will return to this point later. For the moment observe that there is
a well defined map π : A → Ā given by restricting the function x ∈ C(−∞,∞) to
C[−1, 0], and in the special case that f is analytic π is a homeomorphism.

As was mentioned in the introduction, one of the more challenging aspects of
verifying the assumptions is to obtain a useful characterization of the Morse decom-
position. To do this Mallet-Paret introduced a discrete Lyapunov function which
measures the rate of oscillation of solutions in A. In particular, for x ∈ A\{0}
(where 0 denotes the function identically equal to zero) let σ = inf{t ≥ 0 | x(t) = 0}
and define

V (x) =

{
the number of zeroes (counting multiplicity) of x(t) in (σ − 1, σ];
1 if σ does not exist.

(6)

Theorem 2.1 ([12, Theorem A]). Given H1 and H2:

(i) if x ∈ A\{0}, then V (ϕ(t, x)) is a non-increasing function of t ∈ R;
(ii) V (x) <∞ and is an odd integer for each x ∈ A\{0};
(iii) V is bounded on A\{0}.

Given this Lyapunov function one is led to the following definition:

Mp := {x ∈ A | V (ϕ(t, x)) = 2p+ 1 for all t ∈ R and 0 /∈ ω(x) ∪ ω∗(x)}.(7)

This collection of sets cannot define a Morse decomposition of A since the trivial
solution 0 ∈ A, but is not contained in any of the sets Mp. Furthermore, since V
is not defined at 0 it is not obvious where 0 should lie in the partial ordering. To
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resolve these questions one must consider the characteristic equation for (5) at the
point 0,

λ+A+Be−λ = 0.(8)

Let 2P denote the number (counting multiplicity) of solutions λ of (8) such that
Re λ > 0. Now define

MP = {x ∈ A | V (ϕ(t, x)) ≥ 2P for all t ∈ R} ∪ 0.(9)

The following theorem verifies A2.

Theorem 2.2 ([12, Theorem B]). Given H1 and H2,

M(A) = {Mp | p = 0, 1, . . . , P}(10)

is a Morse decomposition of A and p > p− 1 defines an admissible order.

Actually, this is a coarse version of Mallet-Paret’s result. In his paper this
theorem is stated in terms of Morse sets Mp, for p = 0, 1, 2, . . . , and a distinct
Morse set containing at least 0. As presented here, all the sets Mp for which
p > P are contained in the same Morse set as the trivial solution 0, namely MP .
The justification for this will be given later. Turning now to A3, we again follow
the lead of [12] (in particular Proposition 4.1 and the remarks following) and for
p = 0, . . . , P − 1, define

Πp : Mp → R2\{0}(11)

by

Πp(x) = (x(0), ẋ(0)).(12)

A Poincaré section for Mp is given by

Ξp := Mp ∩Π−1({(0, ẋ) | ẋ > 0}).(13)

For p > 0 the image of the orbit x(t) winds around the origin infinitely often as
t→ ±∞, and hence, Mp has a Poincaré map. The only point at which hypothesis
H3 has been or will be used is to guarantee the same result for M0.

Remarks. The assumption A3 excludes critical points and suggests the existence
of periodic orbits. With regard to the delay equation it is known (see [12] and
references therein) that each Morse set Mp contains a periodic trajectory. However,
the numerical work referred to in the introduction suggests that the dynamics
within each Morse set may be much more complicated. The point to be made
is the following: there exists a lower bound on the complexity of the Morse sets
(isolated periodic orbits), but no a priori upper bound.

On a more general level it has been shown by M. Mrozek and the authors [15]
that given Morse sets which satisfy assumptions A3 and A4, there always exists a
periodic orbit.

Having verified A1 – A3 in the case of analytic nonlinearities, we now turn to
Wright’s equation,

ẋ(t) = −β(ex(t−1) − 1).(14)

(Observe that the change of variable x = log(1+y) puts (14) into the classical form
of Wright’s equation, namely,

ẏ(t) = βy(t− 1)[1 + y(t)].)(15)
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We choose this equation for two reasons: first, it is analytic, and second, as a
function of β, the local bifurcations about the solution 0 are completely understood.
Since Wright’s equation is analytic, π : A → Ā is a homeomorphism that commutes
with the flows ϕ and ϕ̄ defined on the respective spaces. Thus, all Conley index
computations performed on Ā are valid on A (see [13]). The local bifurcation
information is summarized in the following proposition due to S.-N. Chow and
Mallet-Paret [1].

Proposition 2.3. For β > 0 the bifurcation values for the zero solution to (14)
are

βp = 2pπ +
π

2
, p = 0, 1, 2, . . . ,(16)

and at these values a generic supercritical Hopf bifurcation occurs. Furthermore,
setting β−1 = 0, if β ∈ (βp−1, βp), then 0 is a hyperbolic fixed point with a 2p
dimensional unstable manifold.

Proof. The bifurcation values are well known, and [1], Theorem 9.1, shows that
these give rise to generic supercritical Hopf bifurcations.

Proposition 2.4. For β > βp,

CHn(Mp) ∼=
{

Z if n = 2p, 2p+ 1,

0 otherwise.

For β ∈ (βp, βp+1)

CHn(MP ) ∼=
{

Z if n = 2p+ 2,

0 otherwise.

Proof. The details of this proof involve making use of the algebra associated with
the Conley index theory. The reader who is not familiar with this theory may wish
to read this argument after consulting Section 3 and the references therein.

For the purpose of this proof we shall use the following notation. Let

M(p) := {x ∈ Ā | V (ϕ̄(t, x)) = 2p+ 1 for all t ∈ R and 0 /∈ ω(x) ∪ ω∗(x)},
p = 0, 1, 2, . . . .

Define

M̃ =

{
0 if β ∈ (βp, βp+1),

{x ∈ Ā | V (ϕ̄(t, x)) = 2p+ 1 for all t ∈ R} ∪ 0 if β = βp.

According to [12], Theorem B

{M(p)|p = 0, 1, 2, . . .} ∪ {M̃}
is a Morse decomposition for Wright’s equation with admissible ordering

M(0) < . . . < M(p) < M̃ < M(p+ 1) < . . . .

Observe that for β > βp, Mp = π−1(M(p)) and for β ∈ (βp, βp+1), M̃ = 0. Thus,
by Proposition 2.3, for β ∈ (βp, βp+1)

CHn(M̃) ∼=
{

Z if n = 2p+ 2,

0 otherwise,
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and hence the Conley index of M(P ) is determined. We shall use an induction
argument to compute the index of M(p) or equivalently Mp.

Observe that for all values of β

M(p) ∩M(q) = ∅ if p 6= q.

Therefore, the only point in parameter space where M(p) loses isolation is at βp
where a bifurcation involving 0 occurs. Thus, CH∗(M(p)) remains constant on the
intervals (0, βp) and (βp,∞).

Let β < e−1. Then, for (14) Ā consists of exactly 0 and our Morse decomposition
is of the form

0 ∪ {M(p)|p = 0, 1, 2, . . .},

where M(p) = ∅ for all p. Thus, CH∗(M(p)) ∼= 0. Furthermore, Proposition 2.3
implies that

CHn(Ā) ∼= CHn(0) ∼=
{

Z if n = 0,

0 otherwise.

Now consider β ∈ (β0, β1). For these parameter values

CHn(M̃) = CHn(0) ∼=
{

Z if n = 2,

0 otherwise,

and CH∗(M(p)) ∼= 0 for p > 0. If we now construct the connection matrix (see
[6, 16]) associated to our Morse decomposition, we obtain a degree +1 matrix[

0 0
∆ 0

]
: CH∗(M(0))⊕ CH∗(M̃)→ CH∗(M(0))⊕ CH∗(M̃).

Since CHn(Ā) remains unchanged, the rank condition forces

CHn(M(0)) ∼=
{

Z if n = 0, 1,

0 otherwise.

Since the Conley index of M(0) is constant over (β0,∞), we have computed the
desired result for this Morse set. We now apply the induction argument, so assume
β ∈ (βp, βp+1) and that CH∗(M(q)) has been computed for q = 0, . . . , p − 1.
Again, constructing the connection matrix associated to our Morse decomposition
we obtain a degree +1 matrix where the only unknown entries are

∆p : CH∗(M(p))→ CH∗(M̃)

and

∆p−1 : CH∗(M(p− 1))→ CH∗(M(p)).

Again, the rank condition forces

CHn(M(p)) ∼=
{

Z if n = 2p, 2p+ 1,

0 otherwise.
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Remark. Observe that a similar argument shows that for β < βq, CH
∗(Mq) ∼= 0.

This implies that the index theory can give us no information relating Mq, q > P
(assuming, in fact, that it is nonempty) to the structure of the attractor. This
justifies defining MP as in (9). Also, note that Proposition 2.4, in conjunction with
the previous results, implies that Wright’s equation satisfies assumptions A1 – A5.
We now extend this result to the following class of delay differential equations.

Theorem 2.5. Consider the equation

ẋ(t) = −Ax(t)−Bg(x(t − 1)),(17)

where A ≥ 0, B > 0, g ∈ C∞(R,R), ηg(η) > 0 for all η 6= 0, g′(0) = 1, and
g(η) ≥ −K for some positive constant K and for all η. Then assumptions A1 –
A5 are satisfied.

In [12] it is shown that (17) satisfies hypothesis H1 – H3 and hence A2 and A3
hold. Assumptions A4 and A5 will be taken care of simultaneously by prescribing
a homotopy from an arbitrary equation of the form (17) to Wright’s equation. Since
these assumptions are involved with the Conley index, the homotopy must be such
that the index information is preserved. Thus two conditions must be met:

C1: the property of a global compact attractor is preserved,
C2: a lower bound on the number of eigenvalues of 0 with positive real part greater

than zero is maintained.

In actuality, it is sufficient in C1 to show that each Morse set Mp remains compact
over the homotopy, though in applications we do not know how to take advantage
of this fact.

As will be seen in the proof of Theorem 1.3, A1 serves two essential purposes.
The first is to guarantee that the semi-conjugacy is defined from a flow. In the case
of the delay equation this is satisfied by defining ϕ on A. The second purpose is
to be able to compute the Conley index of the attractor (see Corollary 3.2). Using
Wright’s equation we could determine that the Conley index of A is the same as
that of Ā. Furthermore, since the compactness of A will be preserved over the
homotopy, the Conley index of A remains unchanged. Thus, A1 is not required for
this application.

With this in mind we use the following homotopy

F (ξ, η, s) = sAξ − b(s)(sg(η) + (1− s)(eη − 1))(18)

where b(1) = B, and 0 ≤ s ≤ 1. Clearly

ẋ(t) = −F (x(t), x(t − 1), 0)

= −b(0)(ex(t−1) − 1)(19)

is Wright’s equation and

ẋ(t) = −F (x(t), x(t− 1), 1)

= −Ax(t)−Bg(x(t− 1))(20)

is (17). C1 is easily verified since

ẋs(t) = −F (x(t), x(t − 1), s)(21)

is of the form of (17), and hence, there exists a compact attractor for each value of
s ∈ [0, 1].
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Maintaining a lower bound on the number of eigenvalues with positive real part
is slightly more complicated. Observe that

∂F

∂ξ
|(ξ,η,s)=(0,0,s) = As,(22)

∂F

∂η
|(ξ,η,s)=(0,0,s) = b(s).(23)

It is easily checked (alternatively, see [12], proof of Theorem 6.1) that the eigenvalues
µi ± ıνi, i = 0, 1, 2, . . . , of the characteristic equation about 0 are given by

µi(s) = −As− b(s)e−µi(s) cos(νi(s)),(24)

νi(s) = b(s)e−µi(s) sin(νi(s)).(25)

Analysis of these equations leads to the following result (see for example [12, The-
orem 6.1] and references therein).

Theorem 2.6. If B > 0 and A+ B > 0, then the roots λ = µ± ıν of the charac-
teristic equation λ+A+Be−λ = 0 have the following properties:

1. All roots lie in the strips

Σ±k : 2kπ < ±ν < (2k + 1)π, k ≥ 1,

and

Σ0 : |ν| < π.

2. Σ±k contains exactly one root µk ± ıνk, and it is simple.
3. Σ0 contains two roots counting multiplicity: either complex conjugate roots
µ0 ± ıν0, ν > 0, or real roots λ00 ≥ λ0.

4. The real parts of the roots are ordered,

λ0 or µ0 > µ1 > µ2 > . . .→ −∞.
5. Both roots in Σ0 lie on the same side of the imaginary axis, or both are purely

imaginary.

Since we are only concerned with a lower bound on the number of eigenvalues
with positive real part and to simplify the notation, let µ(1) ± ıν(1) denote the
eigenvalues with smallest positive real part. We will prove that there exists a
homotopy F with the property that

µ(s) = µ(1) for all s ∈ [0, 1].(26)

Before providing the proof we shall explain why this is sufficient to verify A4
and A5. As was indicated before we need to show that the homotopy preserves
the Morse decomposition. Thus, along the homotopy we define the Morse sets as
follows. Let 2P be the number (counting multiplicity) of solutions λ of (8) such
that Re λ > 0 for the equation (17). Then for p < P define

Mp,s := {x ∈ A | V (ϕs(t, x)) = 2p+ 1 for all t ∈ R and 0 /∈ ω(x) ∪ ω∗(x)},(27)

where ϕs is the flow induced by (21). Define

MP,s := {x ∈ A | V (ϕs(t, x)) ≥ 2P for all t ∈ R} ∪ 0.(28)

Observe that if for some 0 < s < 1, there are more than 2P eigenvalues with positive
real part, then the additional invariant sets are lumped into the top Morse set MP,s.
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Thus the lower bound of 2P on the number of eigenvalues with positive real part
is sufficient to preserve the Morse decomposition throughout the homotopy.

Also, observe that throughout the homotopy the set defined by (13) defines a
Poincaré section for each Morse set Mp, p = 0, . . . , P − 1.

We still have a free parameter in our homotopy, namely the function b(s) and
we shall now prove that it can be chosen in such a way that (26) is satisfied. This
will be done by showing that there exists a solution for 0 ≤ s ≤ 1 to the following
system of ordinary differential equations:

0 = −A− b′e−µ cos ν + be−µ sin νν′,

ν′ = b′e−µ sin ν + be−µ cos νν′, ′ =
d

ds
,(29)

which was obtained by differentiating (24) and (25). Simple algebraic manipulations
give that

ν′ =
A sin ν

be−µ − cos ν
(30)

assuming, of course, that be−µ − cos ν 6= 0. Applying this to (29) results in the
following pair of equations:

b′ =
A(eµ − b cosν)

be−µ − cos ν
,

ν′ =
A sin ν

be−µ − cos ν
.(31)

We need to solve this system from the point

(b(1), ν(1)) = (B, ν(1))(32)

to the point

(b(0), ν(0)) = (β, ν(0)).

While (B, ν(1)) is uniquely determined by (17), we do not actually know the value,
nor do we know, a priori, (β, ν(0)). However, for our purpose it is sufficient to show
that the solution exists from time s = 1 to time s = 0. Furthermore, having started
with the initial condition (32) which satisfies (24) and (25), for any value of s for
which the solution exists, equations (24) and (25) are valid. Let s ∈ (s0, 1] be the
maximal interval over which the equations are valid given the initial condition (32).
We need to show that s0 ≤ 0. We begin the analysis by observing that

µ = µ(s) = µ(1) > 0

and hence, via equation (24)

µ = −As− b(s)e−µ cos(ν(s)) > 0.

This implies that b(s) 6= 0 and cos ν > 0. Since b(1) > 0, for s0 < s ≤ 1,

(b(s), ν(s)) ∈ R := {b ≥ 0, (2P +
1

2
)π < ν(s) < (2P + 1)π}.

Referring now to Figure 1, which is the phase portrait for (31), we see that R
is invariant in backwards time for all values of s such that F (·, ·, s) satisfies the
assumptions of Theorem 2.5. Thus s0 ≤ 0.

This completes the proof of Theorem 2.5.
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(2P + 1)π

2P π

e µ
b

(B, ν(1))

ν

0

Figure 1. Phase portrait for equation (32).

Concluding Remarks. We finish this section with the conjecture that A1 – A5 hold
for all scalar delay equations with negative feedback which satisfy the hypotheses
H1 – H3. The major difficulty in proving this conjecture is to show that all non-
linearities for which these hypotheses hold can be homotoped to Wright’s equation
while preserving C1 and C2.

3. The hypotheses

In this section, we review the background material needed to construct the semi-
conjugacy f and to show that it is surjective. In particular, we will develop in
greater detail the assumptions set forth in A1–A5. Hypotheses A1 and A2 are
global statements; A3–A5 are local statements. Since the key to the construction
of f will be the ability to connect the local and global information, we will give
special attention in this section to the Conley index machinery for relating local
and global invariants.

We begin with a brief review of the relevent portions of the Conley index theory.
The basic references for this material are [2, 13, 14, 19, 20]. The Conley index
was introduced to study isolated invariant sets: a set S is an isolated invariant
set if S · R = S and there is a compact neighborhood N of S such that S is the
maximal invariant set in N . The neighborhood N is an isolating neighborhood for
S. The Conley index of S studies the nature of the flow around S, rather than
on S itself. But there are various ways of decomposing the flow on S which are
significant in the index theory. The most important of these is an attractor-repeller
pair decomposition. If S is an isolated invariant set, A,R ⊂ S, then the pair (A,R)
is an attractor-repeller pair in S if

1. A is an attractor in S: there is a positively invariant neighborhood U of A in
S with ω(U) = A.

2. R is the dual repeller to A in S: R = S \ {x|ω(x) ⊂ (A)}.
Note that A and R are both isolated invariant sets, and if

C(R,A) = {x ∈ S | α(x) ⊂ R,ω(x) ⊂ A} ,
then S = R∪C(R,A)∪A. That is, an attractor-repeller pair gives a decomposition
of S into (two) finer invariant sets and connecting orbits between them.

More generally, a Morse decomposition is a decomposition of an invariant set
into a finite number of invariant subsets (i.e. Morse sets) and connecting orbits
between them. That is, a Morse decomposition of S consists of a finite collection
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of isolated invariant subsets Mp, indexed by some set P , with a partial order < on
P . The requirement is that, if x ∈ S \

⋃
p∈PMp, then there exist p < q such that

x ∈ C(Mq,Mp). That is, the partial order must respect the flow: orbits can only
flow “down” through the partial order. A partial order on P which respects the flow
is referred to as an admissible partial order. The most natural way to produce an
admissible partial order is to let the flow generate it. Set p < q if C(Mq,Mp) 6= ∅,
and take the transitive closure.

If {Mp}p∈P is a Morse decomposition of S, then each Mp is an isolated invariant
set. S contains more isolated invariant sets, some of which can be produced by the
partial order on P as follows. A subset I ⊂ P is an interval in P if r ∈ I whenever
p < r < q and p, q ∈ I. Disjoint intervals I and J are ordered I < J if i < j for every
i ∈ I, j ∈ J ; they are adjacent if IJ = I∪J is also an interval (i.e. if no element of P
lies “between” I and J). If I is an interval, let M(I) =

⋃
i∈IMi∪

⋃
i,j∈I C(Mj ,Mi).

Then each M(I) is an isolated invariant set, and if I and J are adjacent intervals
with I < J , then (M(I),M(J)) is an attractor-repeller pair for M(IJ).

In the present work, we will let P denote the set {0, 1, . . . , P}, with ordering
0 < 1 < . . . < P . If I is an interval, we will denote the largest index value in I by
i; the smallest by i. That is, I = {i, . . . , i}. Let ĩ = 2i− 2i+ 1. Note that I < J if
i < j, and are adjacent if i+ 1 = j.

These are the structures the Conley index studies. The Conley index of an
isolated invariant set is defined in terms of an index pair: a compact pair (N,L)
such that

1. N \ L is an isolating neighborhood for S.
2. L is positively invariant in N , i.e. if x ∈ L and x·[0, T ] ⊂ N , then x·[0, T ] ⊂ L.
3. L is an exit set for N , i.e. if x ∈ N and x · T 6∈ N , then x · t ∈ L for some

0 < t < T .

An index pair is further said to be regular if, in addition, the function $ : N →
[0,∞) defined by

$(x) =

{
sup{t > 0|x · [0, t] ⊂ N \ L} if x ∈ N \ L,
0 if x ∈ L,

is continuous. Observe that this implies that for a regular index pair L is a neigh-
borhood deformation retract (along flow lines) in N . Index pairs (indeed, regular
index pairs) always exist, and the homotopy type of the quotient space N/L is
independent of the index pair chosen. It is that homotopy type which defines the
Conley index of S.

If regular index pairs are ordered by inclusion, we have an inverse system
{H∗(Nα, Lα)} of index pairs, with the inclusion-induced cohomology map
H∗(Nα, Lα) → H∗(Nβ , Lβ) an isomorphism for every β < α. The inverse limit
of this system, denoted CH∗(S), is the cohomology Conley index of S. Since each
bonding map in the system is an isomorphism, we have CH∗(S) ∼= H∗(Nα, Lα)
for every α. That is, the cohomology of any index pair represents the cohomology
Conley index.

The following propositions will be of heuristic value in understanding the coho-
mology index assumptions of A4. However, before stating the first proposition we
recall some definitions. Let Φ : R+ × X → X be a continuous semi-flow on the
metric space X . A set A ⊂ X attracts a set B ⊂ X under Φ if for any ε > 0 there
exists T = T (ε, A,B) such that Φ(T,B) is contained in an ε-neighborhood of A. A
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compact invariant set A is a global compact attractor (see Hale [9]) if every compact
invariant set of Φ is contained in A and ω(B) ⊂ A for every bounded set B ⊂ X .

In the following proposition we shall use the Conley index theory for arbitrary
metric spaces as developed by K. Rybakowski [19]. The essential difference between
the theories is that Rybakowski replaces the assumption of local compactness in the
spaceX with a form of asymptotic compactness of the semi-flow called admissibility.
In particular, the definition of index pairs remains the same, however, compactness
is replaced by closedness.

Proposition 3.1. Let A be a global compact attractor in X. Let A ⊂ A be an
attractor in A and hence, in X. If B is a bounded isolating neighborhood of A,
then there exists a natural inclusion-induced monomorphism CH∗(A) → H∗(B),
which is an isomorphism when B is positively invariant.

Proof. Since A is an attractor, given any neighborhood U of A there exists a
bounded neighborhood N ⊂ U such that (N, ∅) is an index pair for A. Thus

CH∗(A) ∼= H∗(N).

Now choose B to be a bounded neighborhood of A such that N ⊂ B. Then there
exists T > 0, sufficiently large, such that Φ(T,B) ⊂ N . Observe that this implies
that Φ(R+, B) = Φ([0, T ], B). Now Φ(R+, B) is a bounded positively invariant
neighborhood of A and hence, ω(Φ(R+, B)) = A. Therefore, the inclusion map
B → Φ(R+, B) induces a map CH∗(A) → H∗(B). Of course, if B is positively
invariant, B = B ·R+ and the map is an isomorphism.

In general, we have the following diagram of maps (with all unlabeled maps
inclusions) and ΦT (x) = Φ(T, x):

Φ(R+, B)
ΦT→ Φ([T,∞), B) → Φ(R+, B)

↑ ↑ ↘ ↑

B → Φ(T,B) → B

Since Φ(R+, B) is positively invariant, the map ΦT is homotopic to the identity in
Φ(R+, B), and so the composition

H∗(Φ(R+, B))→ H∗(Φ([T,∞), B))
Φ∗T→ H∗(Φ(R+, B))

is the identity isomorphism. In particular, H∗(Φ(R+, B)) → H∗(Φ([T,∞), B)) is
an isomorphism which factors as

H∗(Φ(R+, B))→ H∗(B)→ H∗(Φ([T,∞), B)).

Thus the inclusion-induced map H∗(Φ(R+, B))→ H∗(B) is injective.

Corollary 3.2. If X is a Banach space and A is a global compact attractor for a
continuous semi-flow Φ on X, then

CH∗(A) ∼=
{

Z if n = 0,
0 otherwise.

Proof. Let B := {x ∈ X | ‖x‖ < K} for K sufficiently large. Then B is a neighbor-
hood of A and ω(B) = A. Therefore, CH∗(A) maps monomorphically into

H∗(B) ∼=
{

Z if n = 0,
0 otherwise.
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Since A 6= ∅, the CH∗(A) is as above.

Proposition 3.3. If S is a normally hyperbolic invariant set for a flow on a man-
ifold with orientable unstable manifold of (normal) dimension u, then CHq+u(S) ∼=
Hq(S).

In an attractor-repeller decomposition, the Conley indices of the total invariant
set, attractor and repeller are naturally related by an index triple. An index triple
for an A-R pair (A,R) in S is a triple of compact spaces (N,M,L) such that (N,L)
is an index pair for S, (N,M) is an index pair for R and (M,L) is an index pair for
A. Such triples exist for any attractor-repeller decomposition, as do regular index
triples: triples such that both L and M are neighborhood deformation retracts in
N . Then the cohomology exact sequence of the triple

δ→ Hk(N,M)→ Hk(N,L)→ Hk(M,L)
δ→

induces an exact sequence

δ→ CHk(R)→ CHk(S)→ CHk(A)
δ→

which is known as the cohomology attractor-repeller sequence. The boundary map
δ is called the connection map, as δ 6= 0 implies that connections between R and A
exist.

All of these objects have generalizations to Morse decompositions. Index triples
are generalized to index filtrations, and the attractor-repeller sequence is general-
ized to the construction of connection matrices. However, we will not require this
additional machinery in this work, so we will forgo a description of it.

For systems satisfying A1, A2 and A4, the attractor-repeller sequence allows
us to compute the cohomology Conley index for any set M(I).

Proposition 3.4. If I is an interval in P, then

CHk(M(I)) =

{
Z if k = 2i or k = 2i+ 1 < 2P,
0 otherwise.

Proof. We proceed by downward induction on i − i. If i − i = P , then I = P
and the statement is true by Corollary 3.2. Now assume the result for all J with
j − j > i− i. We can also assume that i− i > 0. Suppose i > 0: let k = i− 1, and
let K = I ∪ k. Then the attractor-repeller sequence of the pair (k, I) is

→ CHn−1(M(K))→ CHn−1(Mk)
δ→ CHn(M(I))→ CHn(M(K))→;

CHn(M(I)) is flanked by zeros, except in dimensions 2k+1, 2i and (possibly) 2i+1.
It is easy to see that CH2k(M(K))→ CH2k(Mk), δ : CH2k+1(Mk)→ CH2i(M(I))

and CH2i+1(M(I))→ CH2i+1(M(K)) must all be isomorphisms.
If i = 0, then i < P and we can work with the attractor-repeller pair (I, k),

where k = i+ 1. The calculation in this case is similar.

Corollary 3.5. If I and J are adjacent intervals, then δ : CH2i+1(M(I)) →
CH2j(M(J)) is an isomorphism.

In our present work, we will need to consider one new feature of the cohomology
index: a pairing of the cohomology Conley index of an invariant set and the Cech
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cohomology of the invariant set. If (N,L) is an index pair for an isoloated invariant
set S, the cup product defines a pairing

Hp(N)⊗Hq(N,L)→ Hp+q(N,L).

Since the collection

{Nα | (Nα, Lα) is an index pair}
is cofinal with the set of neighborhoods of S, this pairing defines a pairing

Ȟp(S)⊗ CHq(S)→ CHp+q(S).

This pairing exists for any invariant set in any flow. In our setting, if TI ∈
CH2i(M(I)) is a generator, there is a map

ΘI : Ȟp(M(I))→ CHp+2i(M(I))

defined by

Θ(z) = z ∪ TI .
Note that Θ(1) = TI .

Another important aspect of the index will be its behavior under semi-conjugacies
(cf. [13, 14]). The essence of the matter is that the index theory is natural with
respect to semi-conjugacies, as long as one works with pre-images, rather than im-
ages. A technicality is that the semi-conjugacy must be a proper map: pre-images
of compact sets must be compact. That is, if f : X → Y is a proper semi-conjugacy,
and S an isolated invariant set in Y with index pair (N,L), then T = f−1(S) is an
isolated invariant set in X with index pair (f−1(N), f−1(L)). Thus there are maps
f∗ : CH∗(T ) → CH∗(S) and f∗ : CH∗(S) → CH∗(T ). The pairing defined above
commutes with this map: there is a commutative diagram

Ȟp(S)⊗ CHq(S) → CHp+q(S)
↓ f∗ ⊗ f∗ ↓ f∗

Ȟp(T )⊗ CHq(T ) → CHp+q(T )

Similarly, if {Mp} is a Morse decomposition of S, then {Tp = f−1(Mp)} is a
Morse decomposition of T , and any admissible ordering on S gives an admissible
ordering on T . Thus we can use the same ordering for both decompositions, and if I
is an interval in that ordering, there is a map CH∗(M(I))→ CH∗(T (I)). Moreover,
the attractor-repeller sequence is natural: if I and J are adjacent intervals with
I < J , there is a commutative diagram

δ→ CHp(M(J)) → CHp(M(IJ)) → CHp(M(J)) →
↓ f∗ ↓ f∗ ↓ f∗

δ→ CHp(T (J)) → CHp(T (IJ)) → CHp(T (J)) →
We now turn to the a consideration of the cross-section hypothesized in A3 and

the homotopy hypothesized in A5. It is not obvious that these two conditions
are related, but we will see that the homotopy assumption will provide crucial
information about the dynamics on the cross-section. We define a set Ξ ⊂ A to be
a (local) transverse cross section or Poincaré section if there is an open set U in A
such that

1. There exists an ε > 0 such that, for every x ∈ Ξ, x · (−ε, ε) ∩ Ξ = x.
2. If u ∈ U , there exist t− < 0 < t+ with u · t−, u · t+ ∈ Ξ.
3. Ξ ∩ U 6= ∅.
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Note that we do not require that Ξ ⊂ U . There may be points in Ξ whose orbit
never intersects Ξ in forward time, or whose orbit never intersects Ξ in backwards
time. If S is an isolated invariant set, we say that Ξ is a Poincaré section for S if
S ⊂ U .

We can define on U a “first-intersection time”

T (u) = min{t > 0 | u · t ∈ Ξ}.(33)

T is necessarily discontinuous at Ξ∩U (if x ∈ Ξ∩U , then T (x)� 0, while T (x·−ε) =
ε), and define Ξ to be a continuous Poincaré section if the only discontinuity of T
is the obligatory one at Ξ in Ξ · (−ε, 0]. In particular, if the Poincaré section is
continuous, there is a continuous “first-return map” r : Ξ ∩ U → Ξ defined by
r(x) = x · T (x). (For a more general discussion see [15].)

This map defines a discrete dynamical system on Ξ. If Ξ is a Poincaré section
for an isolated invariant set S, then S ∩ Ξ is an isolated invariant set for this
discrete system. Mrozek [18] has developed a cohomological Conley index theory
for discrete systems which is very much analogous to the continuous index theory.
The cohomology index of the map r and the isolated invariant set S ∩Ξ consists of
a pair (CH∗(S ∩ Ξ), r∗), where CH∗(S ∩ Ξ) is a cohomology algebra derived from
index pairs for S ∩ Ξ and r∗ : CH∗(S ∩ Ξ) → CH∗(S ∩ Ξ) is an automorphism
induced by r. The precise details of the construction of CH∗(S ∩ Ξ) are rather
lengthy, so we will content ourselves with listing the following relevant properties
of the discrete index (cf, [15, 18] for details):

1. The discrete cohomology index (CH∗(S∩Ξ), r∗) is independent of the section
Ξ chosen.

2. If Ξ∩S is a hyperbolic fixed point with unstable dimension u and r orientation
preserving on the unstable manifold, then

CHn(Ξ ∩ S; Z) ∼=
{

Z, n = u,
0, n 6= u,

and r∗ = id.
3. If S is an isolated invariant set in a flow with a Poincaré section Ξ, there is

a long exact sequence, known as the index suspension sequence, which relates
the continuous index of S and the discrete index of Ξ ∩ S:

→ CHn(S)
ι→ CHn(S ∩ Ξ)

id−r∗−→ CHn(S ∩ Ξ)
δ→ CHn+1(S)→ .

4. This sequence is natural with respect to semi-conjugacies: Suppose S, T are
isolated invariant sets in flows which are related by a semi-conjugacy f , with
S = f−1(T ). If T admits a Poincaré section Y , then Ξ = f−1(Υ) is a Poincaré
section for S, and there is a commutative diagram

→ CHn(S)
ι′→ CHn(S ∩ Ξ)

id−r′∗−→ CHn(S ∩ Ξ)
δ′→ CHn+1(S) →

↓ f∗ ↓ f∗ ↓ f∗ ↓ f∗

→ CHn(T )
ι→ CHn(T ∩Υ)

id−r∗−→ CHn(T ∩Υ)
δ→ CHn+1(T ) →

5. All of these structures are invariant under continuation: Suppose M × [0, 1]
admits a parameterized family of flows (i.e. there is a flow on M× [0, 1] which
is constant on the [0,1] variable) and S is an isolated invariant set in M×[0, 1].
Then each St = S ∩M × t is isolated in M for the t flow. Moreover, if Ξ is
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a Poincaré section for S, then each Ξt = Ξ ∩M × t is a Poincaré section for
St. Then the Conley indices of St and St ∩ Ξt are independent of t (up to
isomorphism, of course).

The index suspension sequence shows that the continuous index CH∗(S) can
be computed from the discrete index (CH∗(S ∩ Ξ), r∗), i.e. there is a short exact
sequence

0→ coker(id− rn−1∗)→ Hn(S)→ ker(id− rn∗)→ 0.

This sequence also shows that the discrete cohomology algebra CH∗(S ∩Ξ) cannot
be reconstructed from CH∗(S). In [15], for instance, there is an example of two
isolated invariant sets which both have Poincaré sections, and which have the same
continuous index, but which produce discrete systems on the cross-sections with
non-isomorphic discrete indices. What the continuous index does compute is the
subalgebra

E1(r∗) = {z ∈ CH∗(S ∩ Ξ) | r∗(z) = z}.
So in our application, the assumptions A3 and A4 provide enough information
to compute this “1-eigenspace”. Unfortunately, this is not quite sufficient for our
purposes. We will require knowledge of the “generalized 1-eigenspace”

GE1(r∗) = {z ∈ CH∗(S ∩ Ξ) | (r∗ − id)k(z) = 0 for some k},
and will need the additional hypothesis A5 to compute it.

Specifically, A3 assumes that each Morse set Mp, p < P , admits such a Poincaré
section Ξp, A4 gives the continuous index of Mp and A5 assumes that the Morse
set and its cross-section continue to a set which is the disjoint union of a hyperbolic
periodic orbit and a set with trivial index. The existence of the Poincaré section
guarantees the existence of the index suspension sequence

→ CHn(Mp)→ CHn(Mp ∩ Ξp)
id−r∗−→ CHn(Mp ∩ Ξp)→ CHn+1(Mp)→

and the knowledge of the continuous index of Mp decouples this long exact sequence
into the following sequences:

0→ Z→ CH2p(Mp ∩ Ξp)
id−r∗−→ CH2p(Mp ∩ Ξp)→ Z→ 0

and

0→ CHn(Mp ∩ Ξp)
id−r∗−→ CHn(Mp ∩ Ξp)→ 0

for all n 6= 2p. From this we see that

E1
∼=
{

Z, n = 2p,
0, n 6= 2p.

Since S continues to a disjoint union of an orientable hyperbolic periodic or-
bit and a set with zero index, the index suspension sequence decomposes into
the index sequence of a hyperbolic periodic orbit and an index sequence with
GE1(r∗) = E1(r∗) = 0. Of course, an orientable hyperbolic periodic orbit pro-
duces a hyperbolic fixed point on the section, whose discrete index is given above.
Thus GE1 = E1. This will prove to be exactly the property we need, and for
convenience we label it as

A5′: For each Mp, p < P , the corresponding isolated invariant set Mp ∩ Ξp for
the discrete dynamical system rp : Ξp ∩ Up → Ξp has a discrete cohomology
Conley index (CH∗(Mp ∩ Ξp), r

∗
p) with E1(r∗p) = GE1(r∗p).
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An equivalent statement is that the composition CH∗(S)
δ◦ι−→ CH∗(S) is an iso-

morphism. All of this can then be summarized as:

Proposition 3.6. A system which satisfies the assumptions A1 – A5 also satisfies

the assumption A5′, and for such a system, there is an isomorphism CH∗(S)
δ◦ι−→

CH∗(S) which is natural with respect to semi-conjugacies.

As mentioned above, there are examples that show that S can have the index of
an orientable hyperbolic periodic orbit (cf. [15]) and admit a cross-section, yet not
satisfy A5′ (which can be loosely thought of as “A3 and A4 do not imply A5′ ”).
On the other hand, it is not clear whether or not A1 – A4 imply A5′ — that is,
whether these counter-examples can be embedded as Morse sets in an attractor in
a manner consistent with the assumptions.

4. The flow on D2P

In this section, we explicitly construct the model flow on D2P and explore some
of its properties. Our development of this construction may seem unnecessarily
labored, but it will serve two purposes. First, it will provide all of the needed
ingredients for constructing the map f : A → D2P and proving that it is surjective.
Second, it serves as a motivating example — the features of the flow on D2P that
are brought out by this construction are those that we seek to display for the flow
on A.

To begin, consider

X̃ =
P−1∏
p=0

S1
p × {P} × [0, P ]× IP−1.

We will construct D2P as a quotient space of X̃, and define the flow on D2P in
a natural way during this construction. First, we define an equivalence relation
on [0, P ]× IP−1. If (x, τ1, . . . , τP−1) ∈ [0, P ] × IP−1, define l, r : [0, P ]× IP−1 →
{0, . . . , P} by

l(x, τ1, . . . , τP−1) =

 P if x = P,
k if k ≤ x, τk = 1, and ∀k < p < x, τp 6= 1,
0 if no such k exists,

r(x, τ1, . . . , τP−1) =

 0 if x = 0,
k if k ≤ x, τk = 1, and ∀x < p < k, τp 6= 1,
P otherwise.

Define an equivalence relation on [0, P ] × IP−1 by (x, τ) ∼ (x′, τ ′) if x =
x′, l(x, τ) = l(x′, τ ′), r(x, τ) = r(x′, τ ′) and τp = τ ′p for every l(x, τ) < p < r(x, τ).
Let

η : [0, P ]× IP−1 → Q = [0, P ]× IP−1/ ∼(34)

be the quotient map. That is, we identify points on the face τk = 1 which have the
same value for x and the same values for some of the τp’s (which ones are required
to agree depends on x, via the functions l and r). This process (with P = 3) is
illustrated in Figure 2. The identification map collapses {x = 0} and {x = 3}
each to a point, and collapses each of the lines {τ1 = 1, x = c | 0 < c ≤ 1} and
{τ2 = 1, x = c | 2 ≤ c < 3} to a point.
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x = 0 x = 1 x = 2 x = 3

 τ2 

 τ1

η

Figure 2. The identification map η for P = 3.

Note that, since η only identifies subfaces to points, Q is homeomorphic to IP

(though η is not a homeomorphism). Now choose a homeomorphism λ : Q →
∆P which sends [k, 0, . . . , 0, τk = 1, 0, . . . , 0] to the vertex vk and sends η({τi1 =
. . . = τin = 0}) to the subface opposite vii , . . . , vin (i.e. the subface expressed in
barycentric coordinates as {ti1 = . . . = tin = 0}). Define

X̂ =
P−1∏
p=0

S1
p × {P} ×∆P

and define a map σ : X̃ → X̂ by σ = (id× λ) ◦ η.

To construct a map from X̂ to D2P , we make use of the join construction.
Recall that the join of two spaces A and B is defined by A ∗B = A×B× [0, 1]/ ∼,
where (a, b, 0) ∼ (a, b′, 0) and (a, b, 1) ∼ (a′, b, 1) are the only nontrivial equivalence
relations. A multiple join A0 ∗ A1 ∗ . . . ∗ An can be defined by taking successive
joins ((. . . ((A0 ∗ A1) ∗ A2) . . . ) ∗ An), but it can also be defined as follows. Take
A0 × . . .×An ×∆n and define the equivalence relation

(a0, . . . , an, t0, . . . , tn) ∼ (a′0, . . . , a
′
n, t
′
0, . . . , t

′
n)(35)

if (t0, . . . , tn) = (t′0, . . . , t
′
n) and, for every i, either ti = 0 or ai = a′i. A useful

way to view the multiple join is to take π : A0 ∗ A1 ∗ . . . ∗ An → ∆n, defined
by π2 : [a0, . . . , an, t0, . . . , tn] = (t0, . . . , tn). Then the preimage of (t0, . . . , tn)
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is Ai1 × . . . × Aik , where Aj is included in the product if and only if tj 6= 0. In
particular, if σ = [vi1 . . . vik ] is the closed face of ∆n spanned by vertices vi1 , . . . , vik ,
then π−1(σ) is naturally homeomorphic to Ai1 ∗ . . . ∗Aik .

Two standard join constructions are Sp ∗Sq, which is homeomorphic to Sp+q+1,
and A ∗ pt, which is homeomorphic to CA, the cone on A. With these two con-
structions, we obtain the following fact:

Proposition 4.1. The multiple join S1
0 ∗ . . . ∗ S1

P−1 is homeomorphic to S2P−1;

the multiple join S1
0 ∗ . . . ∗ S1

P−1 ∗ {P} is homeomorphic to D2P .

We may assume that the homeomorphism g : S1
0 ∗ . . . ∗ S1

P−1 ∗ {P} → D2P

takes {P} to {0}, S1
p ∗ . . . ∗ S1

q to {x |
∑2q+1
r=p x2

r = 1} and S1
p ∗ . . . ∗ S1

P−1 ∗ {P} to

{x | xr = 0 for r < p}. The map η̂ : X̂ → D2P that we seek is then just the natural

identification map
∏P−1
p=0 S

1
p × {P} ×∆P → S1

0 ∗ . . . ∗ S1
P−1 ∗ {P}, followed by g.

Denote the composition

X̃
η→ X̂

η̂→ S1
0 ∗ . . . ∗ S1

P−1 ∗ {P}
g→ D2P

by

Q = g ◦ η̂ ◦ η.

Note that there is a well-defined function

ρ : D2P → [0, P ](36)

with ρ(µ(α0, . . . , αP−1, x, τ1, . . . , τP−1) = x.

We now construct a flow on X̃ which induces the desired flow on D2P . On each
S1
k, take the rotational flow with period 1. On [0, P ] × IP−1, define a flow which

has as its rest point set {x = 0, P} ∪
⋃P−1
k=1 {x = k, τk = 1}, and otherwise has a

“decreasing horizontal” flow:

(x, τ) · t = (φ(x, τ, t), τ)

with φ(x, τ, t) independent of τi for i < l(x, τ) or i > r(x, τ) and φ̇(x, τ, 0) ≤ 0 for all
x and τ . Such a flow clearly exists: choose a function h : Q→ [−1, 0] with h−1(0)

as prescribed above, and let ẋ = hη(x, τ), τ̇ = 0. This flow on X̃ then induces flows

on X̂ and D2P in the natural way. That is, the quotient map η has the property
that, if η(x) = η(y), then η(x · t) = η(y · t). The other quotient map involved, η̂,
has the same property. The map Q is, by construction, a proper semi-conjugacy
between the flow on X̃ and the induced flow on D2P .

If (α0, . . . , αP−1, x, τ1, . . . , τP−1) ∈ X̃, then the x-coordinate is a Lyapunov
function: ẋ ≤ 0, with ẋ = 0 only at rest points. Also, the functions l and r now
have dynamical interpretation: the ω-limit set of (α0, . . . , αP−1, x, τ1, . . . , τP−1) is

P−1∏
p=0

S1
p × {P} × {(l(x, τ1, . . . , τP−1), τ1, . . . , τP−1)}

and the α-limit set is

P−1∏
p=0

S1
p × {P} × {(r(x, τ1, . . . , τP−1), τ1, . . . , τP−1)}.



1118 CHRISTOPHER McCORD AND KONSTANTIN MISCHAIKOW

The conditions that define r and l thus define the stable and unstable sets of each
rest point set Xp = {x = p, τp = 1}, p = 1, . . . , P − 1:

Wu(Xp) = {x ≤ p, τp = 1, and∀x < q < p, τq 6= 1},
W s(Xp) = {x ≥ p, τp = 1, and∀p < q < x, τq 6= 1},

while X0 = {x = 0} and XP = {x = P} have

Wu(X0) = X0, Wu(XP ) = {x > max {k | τk = 1}} ,
W s(X0) = {x < min {k | τk = 1}} , W s(XP ) = XP .

All of this implies that the collection {Xp}Pp=0 is a Morse decomposition, with

flow-defined order 0 < 1 < . . . < P .
Since Q is a semi-conjugacy and ρ ·Q is a Lyapunov function on X̃, ρ is a “weak”

Lyapunov function. That is, ρ is non-increasing on orbits, and is only constant on
the sets Πp = Q(Xp) = {x2

2p + x2
2p+1 = 1} (for 0 ≤ p < P ) and ΠP = 0 = Q(P ).

Each of these sets consists of a single periodic orbit (except, of course, for 0, which
is a fixed point). From the construction of Q and the information on stable and

unstable sets above, we see that {Πp}Pp=0 is a Morse decomposition, with flow-

defined ordering 0 < 1 < . . . < P . Moreover, Wu(ΠP ) = D2P , while Wu(Πp) ={∑2p+1
r=0 x2

r = 1
}
. That is, this flow on D2P is conjugate to the flow ψ described in

Section 1. Let

G : D2P → D2P(37)

denote this conjugacy.
Some of the properties of this flow will be of particular importance in the con-

struction of the semi-conjugacy:

Lemma 4.2. If I is an interval in P, then Π(I) is homeomorphic to the ĩ-sphere
if i < P , and is homeomorphic to the (̃i− 1)-disk if ī = P .

Proof. Recall that ĩ = 2i − 2i + 1. First, consider the case of ī < P . From
the discussion above, it is clear that the connecting orbit set Cq,p = W s(Πp) ∩
Wu(Πq) between Πq and Πp is the image of S1

p × S1
p+1 × . . . × S1

q−1 × S1
q ×

int(span{vp, vp+1, . . . , vq−1, vq}) under gη̂. Thus, Π(I) is the image of S1
i × . . . ×

S1
i
× span{vi, . . . , vi}. But Proposition 4.1 implies that this is a ĩ-sphere.

The argument when ī = P is similar.

Corollary 4.3. The flow ψ on D2P satisfies the assumptions A1 – A5.

Proof. We need only verify the Conley index statements of A4. For 0 ≤ p ≤ P , let
Np = ρ−1([0, p+ 1

2 ]), and let N−1 = ∅. Then the pair (Np, Np−1) is an index pair
for Πp. It suffices then to show that

1. If p ≤ q < P , then the pair (Nq, Np) has the same homotopy type as the pair
(S2q+1, S2p−1).

2. If p ≤ P , then the pair (NP , Np) has the same homotopy type as the pair
(D2P , S2p+1).

(Cf. Proposition 3.4.)
Clearly, NP = D2P . Any attracting interval I = {0, . . . , p} with p < P has

Π(I) = S2p+1, with dual repeller Π(P \ I) = D2P−2p−2. Any N(I) must have
empty intersection with Π(P \ I). If D2P is viewed as S2p+1 ∗ D2P−2p−2, then
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any positively invariant neighborhood of S2p+1 which has empty intersection with
D2P−2p−2 must have a strong deformation retraction onto S2p+1.

Corollary 4.4. For every interval I in P, the map Hk(Π(I))
ΘI−→ CHk+2i(Π(I))

is an isomorphism.

Proof. The case of q = P is trivial, so we consider only the case q < P . We can

view S2̄i+1 as S2i−1 ∗ S ĩ, and (S2̄i+1, S2i−1) as (S ĩ × C(S2i−1), S ĩ × S2i−1). Then

the map Hk(Π(I))
ΘI−→ CHk+2i(Π(I)) is represented by the map

Hk(S ĩ × C(S2i−1)⊗H2i(S ĩ × C(S2i−1), S ĩ × S2i−1)

∪→ Hk+2i(S ĩ × C(S2i−1), S ĩ × S2i−1).

This map is clearly an isomorphism.

5. Reparameterizing the flow

The first step in the proof of Theorem 1.3 is to reparameterize the flow ϕ with
respect to time. The new reparameterized flow ϕ̃ will have the following three
important properties.

1. ϕ̃ preserves the qualitative behavior of ϕ, in particular, for every x ∈ A,
ϕ(R, x) = ϕ̃(R, x).

2. In the vicinity of each Morse set, the orbits of ϕ̃ have a constant “velocity”
with respect to an angle coordinate. This will be used in the next section
to map, via the semi-conjugacy, each Morse set to a single periodic orbit. In
order to do this continuously a uniform rate of return on each component of
the chain recurrent set is required.

3. Away from the Morse sets the orbits of ϕ̃ have a constant “velocity” with
respect to a global Lyapunov function. The Lyapunov function will be con-
structed in the next section and will be used as a global coordinate on A.
Roughly speaking, what will be required is that given two points which have
the same Lyapunov value and which cannot be distinguished by local infor-
mation, i.e. via their behavior near Morse sets, must maintain the same
Lyapunov values throughout their orbits.

A brief outline of this section is as follows. We begin with an abstract description
of how the flow will be reparameterized. This is followed by a specific choice of iso-
lating neighborhoods for the Morse sets. Then in these isolating neighborhoods we
reparametrize ϕ, thereby obtaining a new flow ϕ′. Then a global reparameterization
is performed and ϕ̃ is obtained.

5.1. Defining reparameterizations. Let ϕ : R × A → A be a continuous flow
on a compact metric space A. Let D be a compact local section of ϕ and assume
that there exists a continuous function

τ : D → (0,∞)

such that for every x ∈ D,

ϕ((0, τ(x)), x) ∩D = ∅.
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The compactness of D and Urysohn’s lemma imply the existence of a local section
U which contains D and a continuous function ρ : A → (0,∞) of the form

ρ(x) =

{
τ(x) if x ∈ D,
1 if x 6∈ U,(38)

such that ϕ((0, ρ(x)), x) ∩ U = ∅. Define ϕ′l : [0, 1]× U → A by

ϕ′l(t, x) = ϕ(tρ(x), x).(39)

Let

Γ := ϕ′l([0, 1]× cl(U)) = {ϕ(t, x)|x ∈ cl(U), 0 ≤ t ≤ ρ(x)}.
Observe that Γ is compact. Now let x ∈ A; then there exists a sequence of intervals

{[σ−i (x), σ+
i (x)] ⊂ R|σ+

i < σ−i+1}
such that

ϕ(t, x) ∈
{

Γ if t ∈ [σ−i (x), σ+
i (x)],

A\Γ if t ∈ (σ+
i (x), σ−i+1(x)).

(40)

Obviously, the number of intervals depends on the point x. For some points no
intervals will exist, while for others some intervals might be unbounded. To stan-
dardize the notation, if the intervals exist, we shall assume that they are labeled
so that σ+

−1 < 0 ≤ σ+
0 . We can now extend the map ϕ′l to a flow inductively in the

following manner. Assume that σ−0 ≤ 0 and t > 0. Let

νn(x) =
σ+

0 (x)

τ(x)
+ n+

n∑
i=1

(σ−i (x)− σ+
i−1(x)),

ηn(x) =
σ+

0 (x)

τ(x)
+ n+

n+1∑
i=1

(σ−i (x)− σ+
i−1(x))

and define

ϕ′(t, x) =

{
ϕ(t− νn, ϕ′(νn, x)) if t ∈ [νn, ηn],
ϕ′l(t− ηn, ϕ′(ηn, x)) if t ∈ [ηn, νn+1].

(41)

The definitions for t < 0 or σ−0 ≥ 0 are similar. Since ρ(x) = 1 if x ∈ ∂U , it is easy
to check that ϕ′ is a continuous flow.

Definition 5.1. Using this inductive definition we shall refer to ϕ′ as the reparam-
eterization of ϕ through D.

Observe that if τ |∂D = 1, then U can be chosen to be D and ϕ′ will still be
continuous.

5.2. Isolating neighborhoods. For technical reasons which will become apparent
later, we need more control on the isolating neighborhood of Mp. To obtain this,
we need to make a slight digression.

Proposition 5.2 (Conley [2]). Let A be a compact invariant set under a flow ϕ
with Morse decomposition M(A) = {Mp|p = 0, . . . , P}. Then, there exists a Lya-
punov function

V : A → [0, P ]

such that:

(i) if x ∈Mp, then V (x) = p,
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(ii) if x /∈
⋃P
p=0Mp, then V (x) > V (ϕ(t, x)) for all t > 0.

Given the Lyapunov function V of Proposition 5.2, let

Q+(ν) = {x ∈ A | V (x) ≥ ν},
Q−(ν) = {x ∈ A | V (x) ≤ ν},

and define

Rp(t, δ) = A\{ϕ([0, t], Q+(p+ δ)) ∪ ϕ([−t, 0], Q−(p− δ))}.(42)

The following proposition indicates how this Lyapunov function can be used to
choose isolating neighborhoods.

Proposition 5.3. Let Kp be an isolating neighborhood for the Morse set Mp. De-
fine

Np = cl(Rp(t̄,
1

4
)), p = 0, . . . , P.

Then, there exists t̄, sufficiently large, such that Np is an isolating neighborhood of
Mp, with the following properties:

(i) Np ⊂ Kp;
(ii) if p 6= q, then Np ∩Nq = ∅;
(iii) ∂Np = L+

p ∪ L−p , where

L+
p = {x ∈ Np|V (ϕ(−t̄, x)) = p+

1

4
},

L−p = {x ∈ Np|V (ϕ(t̄, x)) = p− 1

4
};

(iv) ϕ(R, x)∩Np = ϕ(Ip(x), x) where Ip(x) is a closed interval (possibly empty or
unbounded);

(v) (Np, L
−
p ) is a regular index pair for ϕ and (Np, L

+
p ) is a regular index pair for

ϕ∗, the flow obtained from ϕ by reversing the direction of time.

Proof. (i) If x ∈ A is such that p− 1
2 ≤ V (x) ≤ p+ 1

2 and ϕ(R, x)∩(Q+(ν)∪Q−(ν)) =
∅, then x ∈Mp. Furthermore, if U is a neighborhood of Mp, then there exists T > 0
such that if p− 1

2 ≤ V (ϕ(t, x)) ≤ p+ 1
2 for all t ∈ [−T, T ], then x ∈ U .

(ii) and (iii) are obvious.
(iv) Since V is a Lyapunov function, if x ∈ Np and ϕ(s, x) 6∈ N − p for some

s > 0, then ϕ(t + t̄, x) ∈ Q−(p − 1
4 ) for all t ≥ s. Hence ϕ(t, x) 6∈ Np for all t ≥ s.

A similar argument applies if ϕ(s, x) 6∈ Np and s < 0.
(v) This follows from the fact that V is a Lyapunov function and (iii).

Since by this proposition Ip(x) is a closed interval, we shall write

Ip(x) = [ap(x), bp(x)](43)

with the understanding that if Ip(x) = ∅, then ap(x) and bp(x) are not defined, and
if Ip(x) is unbounded, then ap(x) = −∞ or bp(x) =∞. Let

Θp := {x ∈ A|Ip(x) 6= ∅};
then the fact that (Np, L

±
p ) are regular index pairs implies the following lemma.

Lemma 5.4. The functions ap, bp : Θp → [−∞,∞] are continuous.
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5.3. A local reparameterization. We now concentrate on the flow in neighbor-
hoods of the Morse sets. By A3, for each Mp there exists a neighborhood Kp with
Poincare section Ξp. Recall (33) that this implies the following. If x ∈ Kp ∩ Ξp,
then there exists T (x) > 0 such that ϕ(T (x), x) ∈ Ξp and ϕ((0, T (x)), x) ∩ Ξp = ∅.
Let ϕ′ be the reparameterization of ϕ through

⋃P
p=0 Ξp induced by T .

Let Kp be an isolating neighborhood of Mp such that if x ∈ Ξp ∩ Kp, then
ϕ′([−2, 2], x) ⊂ Kp. Of course, this implies that ϕ′(±2, x) ∈ Ξp. Furthermore, if
x ∈ Kp, then there exists a unique ξx ∈ Ξp and a unique sx ∈ [0, 1) such that

ϕ′(sx, ξx) = x.(44)

For the remainder of this paper Np is as in Proposition 5.3, i.e. Np = cl(Rp(t̄,
1
4 )).

5.4. The global reparameterization. By Proposition 5.3(iv), for each x ∈ A
there exists an interval I ′p(x) such that

ϕ′(R, x) ∩Np = ϕ′(I ′p(x), x).

As before, let I ′p(x) = [a′p(x), b′b(x)]. Observe that a′p, b
′
p : Θp → [−∞,∞] are still

continuous functions.
Before we can describe the global reparameterization we need some technical

results. Let us begin by defining functions

W+
p : L+

p → [p, p+
1

4
]

and

W−p : L−p → [p− 1

4
, p]

by

W+
p (x) = p+

1

2π
tan−1

(
b′p(x)

2

)
,

W−p (x) = p+
1

2π
tan−1

(
a′p(x)

2

)
,

where tan−1(±∞) := ±π2 . Since a′p(x) and b′p(x) are continuous, using these defi-
nitions the following statements are obvious:

• x ∈ L+
p ∩ L−p implies that a′p(x) = b′p(x) = 0, and hence, W±p (x) = p;

• if x ∈ L+
p , then

ω(x) ⊂Mp ⇔ b′p(x) =∞ ⇔ W+
p (x) = p+

1

4
;

• if x ∈ L−p , then

α(x) ⊂Mp ⇔ a′p(x) = −∞ ⇔ W−p (x) = p− 1

4
;

• W±p is continuous.

Let

Zp = {x ∈ A|V (x) = p+
1

4
}.

Define

D+
p = ϕ(t̄, Zp)
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and observe that L+
p ⊂ D+

p . Now set

D−p = L−p ∪ (D+
p \L+

p )

and observe that D−p is a compact local section for ϕ′. Extend the functions W±p
to

W̄±p : D±p → [p− 1

4
, p+

1

4
]

as follows:

W̄+
p (x) =

{
W+
p (x) if x ∈ L+

p ,
p otherwise,

W̄−p (x) =

{
W−p (x) if x ∈ L−p ,
p otherwise.

Define τ : D−p → (0,∞) by

ϕ′(τ(x), x) ∈ D+
p−1.

Let λp : D−p → (0, 1) be defined by

λp(x) = W̄−p (x) − W̄+
p−1(ϕ′(τ(x), x)),

and let Λp = {(t, x)|0 ≤ t ≤ λp(x), x ∈ D−p }. Define ϕ̃1
l : Λ1 → A by

ϕ̃1
l (t, x) = ϕ′

(
t
τ1(x)

λ1(x)
, x

)
.

Let ϕ̃1 be the reparameterization of ϕ′ through Λ1. Inductively, for p = 2, . . . , P ,
define ϕ̃p to be the reparameterization of ϕ̃p−1 through Λp generated by ϕ̃pl : Λp →
A, where

ϕ̃pl (t, x) = ϕ̃p−1

(
t
τp(x)

λp(x)
, x

)
.

Finally, let

ϕ̃ = ϕ̃P .

6. The semi-conjugacy

The construction of the map f : A → D2P of Theorem 1.3 involves several steps.

Step 1. Define a discontinuous function

f̃ : A → X̃ :=

(
P−1⊗
p=0

S1
p

)
× {P} × [0, P ]× [0, 1]P−1.(45)

Step 2. Using the quotient map Q : X̃ → D2P described in Section 4, show that
f̂ : A → D2P given by f̂ = Q ◦ f̃ is continuous.

Step 3. Define ψ̃ : R× f̂(A)→ f̂(A) by

ψ̃(t, f̂(x)) = f̂(ϕ̃(t, x))(46)

and show that ψ̃ is a continuous flow.
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Step 4. Define

f = G ◦ f̂ ,
where G : D2P → D2P is the conjugacy of Section 4, and observe that f is the
desired map.

Before proceeding with the details, we present an informal description of the
steps involved in defining f in an attempt to explain why this construction is
natural. Consider a point x ∈ A. To describe its dynamics in terms of the Morse
decomposition, there are several obvious parameters which should be included.

1. For each Morse set Mp one would like to know how “close” the orbit of x
passes by Mp. Thus we shall define a function

τp : A → [0, 1], p = 1, . . . , P − 1,

with the property that τp(x) = 1 implies that ω(x) or α(x) ⊂ Mp, while
τp(x) = 0 implies that the orbit of x does not intersect int(Np), the isolating
neighborhood of Mp.

2. Since our Morse sets have Poincaré sections, we should also measure the phase
with which the orbit of x passes near Mp. This will be done via “angle”
functions

θp : A → S1
p , p = 0, . . . , P − 1.

Since there is no Poincaré section for MP , we set

θP (x) = P.

3. Given a point x (not in a Morse set), we cannot yet distinguish x from its
integer translates x · n: τp(x) = τp(x

′) and θp(x) = θp(x
′) for every p. Thus,

to distinguish these points we shall make use of a Lyapunov function

V : A → [0, P ].

Given these functions define

f̃(x) = (θ0(x), . . . , θP−1(x), θP (x), V (x), τ1(x), . . . , τP−1(x)) .

It is easily seen that f̃ cannot be continuous. In particular, if the orbit of x does
not pass through Np, then the angle function θp cannot be defined. Similarly, if
one considers a sequence of points whose ω-limit set is in Mp, then τp = 1 on this
sequence. However, this sequence may limit to a point whose ω-limit set is in Mq

where q > p, in which case τp = 0 for the limit point. The quotient performed in

step two addresses this problem, i.e. the resulting map f̂ : A → D2P is continuous.
Step 3 indicates that the image of ϕ̃ under f̂ induces a flow on D2P . At this

point it will become clear that Section 5 was written with this step in mind. Step
4 obviously concludes the construction.

Let us, finally, begin constructing f̃ . We start with the definition of

θp : A → S1
p := R/Z, p = 0, . . . , P − 1.

Recall (44) that if x ∈ Np, then there exists a unique ξx ∈ Ξp and a unique
sx ∈ [0, 1) such that ϕ′(sx, ξx) = x. Using the conventions described in Section 5,
let

ϕ̃([ãp(x), b̃p(x)], x) = ϕ̃(R, x) ∩Np.
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Define

θp(x) =


0 if [ãp(x), b̃p(x)] = ∅,
ãp(x) + sϕ̃(ãp(x),x)) if ãp(x) > −∞,
b̃p(x) + sϕ̃(b̃p(x),x)) if b̃p(x) <∞,
sx otherwise.

Lemma 6.1. Let Θp = {x ∈ A| [ãp(x), b̃p(x)] 6= ∅}. Then

θp : Θp → S1
p

and

θp : A\Θp → S1
p

are continuous.

Proof. The result is obvious in the case of A\Θp since θp is constant in this case.

Observe that ãp(x) and b̃p(x) are continuous on Θp. Furthermore, if ãp(x) > −∞
and b̃p(x) <∞, then there exists n ∈ {0, 1, 2, . . .} such that

sϕ̃(b̃p(x),x)) = sϕ̃(ãp(x),x)) + n.

Recall that if x ∈ Np, then ϕ′([−2, 2], x) ⊂ Kp. Since Np ⊂ int(Kp), θp is continu-
ous at x ∈ Np. But θp(x) = θp(ϕ̃(t, x)) for all t ∈ R, thus θp is continuous.

Let us now turn our attention to

τp : A → [0, 1], p = 1, . . . , P − 1.(47)

Define

λp(x) =


∞ if b̃p(x) =∞, or ãp(x) = −∞,
0 if Ĩp(x) = ∅,
b̃p(x) − ãp(x) otherwise.

(48)

and

τp(x) =
2

π
tan−1(λp(x)),(49)

where tan−1(∞) = π
2 . Observe that if τp(x) = 1, then x limits to Mp either in

forward time or backward time (or both). Furthermore, if τp(x) = 0, then the orbit
of x passes no closer to Mp than the set L+

p ∩ L−p . The continuity of ãp(x) and

b̃p(x) gives rise to the following lemma.

Lemma 6.2. x ∈ A is a point of discontinuity of τp if and only if there exists a
sequence {xn} ⊂ A such that xn → x and ω(x) ⊂ Mp while ω(xn) ⊂ Mq with
q < p, or α(x) ⊂Mp while α(xn) ⊂Mq with q > p.

Finally, we need to define the Lyapunov function

V : A → [0, P ].

We begin by defining local Lyapunov functions

Vp : Np → [p− 1

4
, p+

1

4
]
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by

Vp(x) =


p if x ∈Mp,

W+
p (ϕ̃(ãp(x), x)) + 1

2π tan−1
(
ap(x)

2

)
if ãp(x) > −∞,

W−p (ϕ̃(̃bp(x), x)) + 1
2π tan−1

(
bp(x)

2

)
if b̃p(x) <∞.

To define V off of the isolating neighborhoods observe that if x ∈ A\
⋃P
p=0Np,

then there exists a unique dx ∈ D−px , px ∈ {1, 2, . . . , P} and a unique αx ∈ [0, 1)
such that

ϕ̃(αx, dx) = x.

Now define

V (x) =

{
px − αx if x 6∈

⋃P
p=0 Np,

Vp(x) if x ∈ Np.
The following lemma is easily checked.

Lemma 6.3. The Lyapunov function V is continuous. Furthermore,

(i) if ϕ̃([0, t], x) ∩
(⋃P

p=0Np
)

= ∅, then

V (ϕ̃(t, x)) = V (x)− t;
(ii) if ϕ̃([0, t], x) ⊂ Np, ϕ̃([0, t], y) ⊂ Np, θp(x) = θp(y), τp(x) = τp(y), and

V (x) = V (y), then

V (ϕ̃(t, x)) = V (ϕ̃(t, y)).

With these constructions in mind f̃ : A → x̃ is defined by

f̃(x) = (θ0(x), θ1(x), . . . , θP (x), V (x), τ1(x), . . . , τP−1(x))

= (θ(x), V (x), τ(x)).(50)

As was mentioned in the introductory remarks of this section, this function is not
continuous. Hence we define

f̂ = Q ◦ f̃ .

Proposition 6.4. f̂ : A → D2P is continuous.

Proof. Since Q and V are continuous, it is clear that any possible lack of continuity

of f̂ arises from the maps τ and θ. As will be shown, the discontinuities induced
by τ are eliminated via the quotient map η (34) while those of θ disappear via the
quotient to the join (35).

Case 1. Assume p < V (x) < p+ 1 and τp(x) = τp+1(x) = 1.

This implies that ω(x) ⊂ Mp and α(x) ⊂ Mp+1. In addition, for r 6= p, p + 1,

Ĩr(x) = ∅, τr(x) = 0, Ĩp+1 = (−∞, b̃p+1(x)], and Ĩp = (ãp(x),∞). Let {xn} ⊂ A
such that xn → x as n → ∞. By continuity of the flow, for n sufficiently large

and q = p, p + 1, Ĩq(x) 6= ∅, and |̃bp(xn) − ãp(xn)| → ∞. Thus τq(xn) → τq(x) as
n→∞, i.e. in this case τq is continuous at x. Obviously, if τr(xn)→ τr(x) for all
r 6= p, p+ 1, then we are done with this part of the argument. Therefore, without
loss of generality, we may assume that for some fixed r and for n sufficiently large

τr(xn) = 1. This implies that f̃(xn)→ x̃ ∈ X̃, where

x̃ = (θ̃, Ṽ , τ̃1, . . . , τ̃p−1, 1, 1, τ̃p+2, . . . , τ̃r−1, 1, τ̃r+1, . . . , τ̃P−1).
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By continuity,

V (x) = lim
n→∞

V (xn) = Ṽ

and

θq(x) = lim
n→∞

θq(xn) = θ̃q.

Thus, ηϕ̃(xn)→ ηϕ̃(x), and hence,

lim
n→∞

f̂(xn) = f̂(x).

Therefore, in this case f̂ is continuous.

Case 2. Assume p− 1 < V (x) < p+ 1 and τp−1(x) = τp+1(x) = 1.

This implies that ω(x) ⊂ Mp and α(x) ⊂ Mp+1. There are two subcases to

consider: int(Ĩp(x)) 6= ∅ and int(Ĩp(x)) = ∅. In the first case, we have that Ĩp(x) =

[ãp(x), b̃p(x)] and ãp(x) < b̃p(x). If xn → x and τp−1(xn) = τp+1(xn) = 1, then

the continuity of ãp and b̃p implies that f̃(xn) → f̃(x). If xn → x but for some
r = p− 1, p+ 1 and n sufficiently large τr(xn) = 1, then the same argument as in
Case 1 applies.

Therefore, we may assume that int(Ĩp(x)) = ∅. Again, assume that xn → x and
that τp±1(xn) = 1. Then τp(xn) → τp(x) = 0, τ(xn) → τp(x), and θr(xn)(xn) →
θr(x) for r 6= p. This, of course, is the equivalence relation used to define the join

(35). Therefore, f̂(xn)→ f̂(x).
One now needs to consider what happens when the condition τp±1(xn) = 1 is

dropped. However, the argument once again reverts back to Case 1.

Case 3. Assume p− 1 < V (x) < p+ 1 and τq(x) = τr(x) = 1 where q ≤ p ≤ r.

This is, of course, the general case. As before, ω(x) ⊂ Mq and α(x) ⊂ Mr. Let
xn → x. If τl(xn) 6→ τl(x), then l < q or l > r and one uses the argument in Case 1,
i.e. the quotient η, to obtain continuity. If for some q < l < r, θl(xn) 6→ θl(x), then
τl(xn)→ τl(x) = 0 and the argument in Case 2 applies, i.e. the quotient leading to
the join forces continuity.

We are now at Step 3 and define ψ̃ by (46).

Proposition 6.5. ψ̃ is a continuous flow on f̂(A) ⊂ D2P .

Proof. The continuity of ψ̃ is clear; what needs to be verified is that it admits a

group action by R. It is trivial to check that ψ̃(0, f̂(x)) = f̂(ϕ̃(0, x)) = f̂(x). The

following three observations make it clear that ψ̃(s + t, f̂(x)) = ψ̃(s, ψ̃(t, f̂(x))).
First, τ(x) = τ(ϕ̃(t, x)) for all t ∈ R. Second, θp(ϕ̃(·, x)) is periodic in t with
period 1. Third, if V (x) = V (y), θ(x) = θ(y) and τ(x) = τ(y), then V (ϕ̃(t, x)) =
V (ϕ̃(t, y)) for all t ∈ R. This last observation follows from the fact that if τ(x) =

τ(y), then b̃p(x)− ãp(x) = b̃p(y)− ãp(y). Therefore, via f̃ , ϕ̃ induces an action on a

subset of X̃ with the same properties as the flow on X̃ described in Section 4.

Finally, by Step 4 we have obtained a continuous map from A to D2P which
commutes with the flows ϕ̃ and ψ.
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7. Surjectivity of f

In order to justify our assertion that the flow on A has at least as much structure
as the flow ψ on D2P , we must show that the semi-conjugacy f maps onto D2P .
Before we do so, it is worth noting the roles our assumptions A1 – A5 have
played in developing the semi-conjugacy. The compactness in A1, the existence of
Morse decomposition in A2, and the existence of transverse sections in A3 have
all been used repeatedly in constructing f . The index assumptions in A4 and
the continuation of the Morse sets to periodic orbits in A5 have been of heuristic
importance in determining how to construct the flow on D2P , but they have not
been used in the construction of f or ψ in any essential way. That is, we could have
constructed the flow ψ on D2P and the semiconjugacy f : A → D2P using only
A1 – A3. However, the remaining assumptions A4 and A5 will be crucial for the
next step: proving that f is a surjective.

To do so, note that f−1(Πp) = Mp. If 0 ≤ p < q ≤ P , let

χq,p = C(Πq ,Πp) ∩ ρ−1(p+
1

2
),

where ρ is given by (36), and let Cq,p = f−1(χq,p). ThenCq,p (resp. χq,p) is a section
of C(Mq,Mp) (resp. C(Πq ,Πp)). So it suffices to show that fp = f |Mp : Mp → Πp

is surjective for every p, and fq,p = f | Cq,p : Cq,p → χq,p is surjective for every
p < q. Note that every Πp and every χq,p is either a point, a circle or a 2-torus. To
prove that every fp and every fq,p is surjective, we make use of the following fact.

Lemma 7.1. Let f : X →
∏n
i=1 S

1
i be a map. If the induced map on Čech coho-

mology, f∗ : Ȟn(
∏n
i=1 S

1
i )→ Ȟn(X), is nonzero, then f maps X onto

∏n
i=1 S

1
i .

Proof. If f is not surjective, then it maps into some Y =
∏n
i=1 S

1
i \ y. But Y

retracts onto an (n−1)-complex in
∏n
i=1 S

1
i , so Ȟn(Y ) = 0. Then Ȟn(

∏n
i=1 S

1
i )→

Ȟ∗(Y )
f∗→ Ȟn(X) is trivial.

In fact, to prove f is a surjection, it suffices to show that f∗I and f∗P,I are
injections, where I = {0, . . . , P − 1}. We will actually prove a much stronger
cohomological statement. In doing so, we will make repeated use of the Conley
index information of A4, while the assumption in A5 about the continuation of
the Morse sets to hyperbolic periodic orbits will be used only once. Actually, it is
not A5, but the weaker cohomological assumption A5′, which we will use.

Theorem 7.2. Given a dynamical system which satifies A1 – A4 and A5′, sup-
pose I, J are disjoint intervals in P with I < J . Let

χJ,I = C(Π(J),Π(I)) ∩ ρ−1(̄i+
1

2
),

and let CJ,I = f−1(χJ,I). Then f∗I : Ȟ∗(Π(I))→ Ȟ∗(M(I)) and f∗J,I : Ȟ∗(χJ,I)→
Ȟ∗(CJ,I) are injective.

The proof of this theorem occupies the rest of this section. In outline, the
proof is as follows. For any system satisfying A1–A3 and any interval I, the
map ΘI : Ȟk(M(I)) → CHk+2i(M(I)) is preserved by f∗. That is, there is a
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commutative diagram

Ȟk(Π(I))
ΘI→ CHk+i(Π(I))

↓ f∗I ↓ f∗

Ȟk(M(I))
Θ′I→ CHk+i(M(I))

(51)

But both Ȟk(Π(I))
ΘI→ CHk+i(Π(I)) and CHk+i(Π(I))

f∗−→ CHk+i(M(I)) are
isomorphisms, so f∗ : Ȟk(Π(I))→ Ȟk(M(I)) must be injective. The injectivity of
f∗J,I then follows from the injectivity of f∗I and f∗J by a few Mayer-Vietoris diagram
chases.

Proposition 7.3. If f∗p : CH2p(Πp) → CH2p(Mp) is an isomorphism, then so is

f∗p : CH2p+1(Πp)→ CH2p+1(Mp).

Proof. The isomorphisms guaranteed by A5′ are intertwined by f∗, i.e. there is a
commutative diagram

CH2p(Mp)
δ′◦ι′−→ CH2p+1(Mp)

↓ f∗ ↓ f∗

CH2p(Πp)
δ◦ι−→ CH2p+1(Πp)

Since all other maps in the diagram are isomorphisms, so is f∗p : CH2p+1(Πp) →
CH2p+1(Mp).

Proposition 7.4. The map f∗I : CH∗(Π(I)) → CH∗(M(I)) is an isomorphism
for every interval I.

Proof. We proceed by induction on the cohomology dimension. If CH0(M(I)) 6= 0,
then I is an attracting interval, and the cohomology indices are computed by the
cohomologies of neighborhoods N of Π(I) and N ′ = f−1(N) of M(I). The map
f∗I : H0(N) → H0(N ′) is certainly an isomorphism. If CH1(M(I)) 6= 0, then
I = {0} and the result follows from Proposition 7.3.

Now, assume that for all I and all k′ < k, f∗ : CHk′(Π(I)) → CHk′(M(I)) is
an isomorphism. We consider the cases of k even and k odd separately. If k is even
and CH∗(M(I)) is nonzero, then k = 2i with i > 0. Let p = i−1 and let J = p∪I.
Then the attractor-repeller sequence yields:

. . .→ CH2p+1(Π(J)) → CH2p+1(Πp)
δ→ CH2i(Π(I)) → . . .

↓ f∗J ↓ f∗p ↓ f∗I
. . .→ CH2p+1(M(J)) → CH2p+1(Mp)

δ→ CH2i(M(I)) → . . .

Since δ is an isomorphism (for both Π and M) and f∗p is an isomorphism by induc-
tion, f∗I is an isomorphism.

If k is odd and CHk(M(I)) is nonzero, then k = 2ī + 1. If I = {ī}, then
Proposition 7.3 implies that f∗I is an isomorphism on CHk(Π(I)). If not, let K =
I \ {ī} and consider the attractor-repeller sequence diagram

. . .→ CH 2̄i+1(Π(K)) → CH 2̄i+1(Π(I))
p∗→ CH 2̄i+1(Πī) → . . .

↓ f∗K ↓ f∗I ↓ f∗
ī

. . .→ CH 2̄i+1(M(K)) → CH 2̄i+1(M(I))
p∗→ CH 2̄i+1(Mī) → . . .

Then the maps p∗ are isomorphisms, as is f∗
ī

, so f∗I is an isomorphism.
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Lemma 7.5. The diagram (51) commutes.

Proof. If (N,L) is an index pair for Π(I), then (N ′, L′) = (f−1(N), f−1(L)) is an
index pair for M(I). There is a commutative diagram

Hk(N)⊗Hi(N,L)
∪→ Hk+i(N,L)

↓ f∗ ⊗ f∗ ↓ f∗
Hk(N ′)⊗Hi(N ′, L′)

∪→ Hk+i(N ′, L′)

(52)

Since f∗I : CHi(Π(I))→ CHi(M(I)) is an isomorphism, the commutativity of this
diagram implies that diagram (51) commutes.

This shows that f∗I : Ȟ∗(Π(I)) → Ȟ∗(M(I)) is injective for all intervals I. We
now turn to the proof that f∗J,I : Ȟ∗(χJ,I)→ Ȟ∗(CJ,I) is injective. We will consider
the cases P ∈ J and P 6∈ J separately.

Proposition 7.6. If I and J are disjoint intervals with I < J and P 6∈ J , then
f∗J,I : Ȟ∗(χJ,I)→ Ȟ∗(CJ,I) is injective.

Proof. First, note that χJ,I ∼= Π(I) ×Π(J) ∼= S ĩ × S j̃. To prove f∗J,I : Ȟ∗(χJ,I)→
Ȟ∗(CJ,I) is injective, it suffices to prove f∗J,I : Ȟ ĩ+j̃(χJ,I)→ Ȟ ĩ+j̃(CJ,I) is injective.
The naturalness of f∗J,I with respect to the cup-product will then force the rest of

Ȟ∗(χJ,I) to inject as well.
First, assume that I and J are adjacent intervals. Then M(I) and M(J) form

an attractor-repeller pair for M(IJ). Choose an index triple (NIJ , NI , L) for the
attractor-repeller pair (Π(I),Π(J)), and let

(N ′IJ , N
′
I , L
′) = (f−1(NIJ), f−1(NI), f

−1(L))

be the corresponding index triple for (M(I),M(J)). Let N(J) = N(IJ) \N(I)

and N(J)′ = N(IJ)′ \N(I)′. Choose NIJ and NI sufficiently small that the maps

H∗(N ′K)
ΘK−→ CH∗(M(K)) are surjective for K = I, J and IJ . Let N = NI ∩NJ

and N ′ = N ′I ∩ N ′J . Then C(M(J),M(I)) ∩ N ′ is a transverse section to the
flow on C(M(J),M(I)), and so is homeomorphic (via the flow) to CJ,I . Likewise,
C(Π(J),Π(I))∩N is homeomorphic to χJ,I . Clearly, f(N ′J) ⊂ NJ and f(N ′) ⊂ N .

Now consider the commutative diagram

H2j̄−2i(N)⊗H2i(NIJ , L)
f∗⊗f∗−→ H2j̄−2i(N ′)⊗H2i(N ′IJ , L

′)
↓ δ ⊗ id ↓ δ′ ⊗ id

H2j̄−2i+1(NIJ)⊗H2i(NIJ , L)
f∗⊗f∗−→ H2j̄−2i+1(N ′IJ)⊗H2i(N ′IJ , L

′)
↓ ∪ ↓ ∪

H2j̄+1(NIJ , L)
f∗−→ H2j̄+1(N ′IJ , L

′)

(53)

where δ and δ′ are the Mayer-Vietoris boundary operators of the exact couples
(NIJ ;NI , NJ) and N ′IJ ;N ′I , N

′
J) respectively.

The maps f∗ : H∗(NIJ , L) −→ H∗(N ′IJ , L
′) represent the map on the co-

homology Conley index, and so are isomorphisms. Likewise, the cup product

H2j̄−2i+1(NIJ) ⊗H2i(NIJ , L)
∪→ H2j̄+1(NIJ , L) is an isomorphism. If δ is an iso-

morphism, then the composition from H2j̄−2i(N)⊗H2i(NIJ , L) to H2j̄+1(N ′IJ , L
′)

is an isomorphism, and f∗ : H2j̄−2i(N)→ H2j̄−2i(N ′) is injective.
But Π(I) is a (2ī − 2i + 1)-sphere, Π(J) is a (2j̄ − 2j + 1)-sphere, and Π(IJ)

is the join of Π(I) and Π(J). Therefore, up to homotopy, NIJ , NI , NJ and N
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are, respectively, S ĩ ∗ S j̃ = S ĩ+j̃+1, S ĩ × C(S j̃), C(S ĩ) × S j̃ and S ĩ × S j̃ . Then
the boundary map δ is represented by the boundary map of the Mayer-Vietoris
sequence

→ H ĩ+j̃(S ĩ)⊕H ĩ+j̃(S j̃)→ H ĩ+j̃(S ĩ × S j̃) δ→ H ĩ+j̃+1(S ĩ+j̃+1)→ .

Since H ĩ+j̃(S ĩ)⊕H ĩ+j̃(S j̃) = H ĩ+j̃+1(S ĩ)⊕H ĩ+j̃+1(S j̃) = 0, δ is an isomorphism.
This completes the proof for adjacent pairs of intervals.

If I and J are not adjacent, let K = {p | ī < p < j}. Then CJ,IK = CJ,I ∩CJ,K
and χJ,IK = χJ,I ∩ χJ,K . Moreover, χJ,IK ∼= S j̃ × (S ĩ ∗ Sk̃), with χI,J embedded

as S j̃ × S ĩ × C(Sk̃) and χI,K embedded as S j̃ × Sk̃. There is then a commutative
Mayer-Vietoris diagram

δ→ Hp(S j̃ × S ĩ+k̃+1) → Hp(S j̃+ĩ)⊕Hp(S j̃+k̃) → Hp(S j̃ × S ĩ × Sk̃)
δ→

↓ f∗ ↓ f∗ ⊕ f∗ ↓ f∗
δ′→ Hp(N ′J,IK) → Hp(N ′J,I)⊕Hp(N ′J,K) → Hp(N ′J,I ∩N ′J,K)

δ′→
where N ′J,I and N ′J,K are compact neighborhoods of CJ,I and CJ,K , and NJ,IK =
NJ,I ∪NJ,K . Since J and IK are adjacent intervals,

f∗J,IK : H ĩ+j̃+k̃+1(S j̃ × S ĩ+k̃+1)→ H ĩ+j̃+k̃+1(N ′J,IK)

is injective for NJ,IK sufficiently small. But

H ĩ+j̃+k̃(S j̃ × S ĩ × Sk̃)
δ→ H ĩ+j̃+k̃+1(S j̃ × S ĩ+k̃+1)

is an isomorphism, so

f∗ : H ĩ+j̃+k̃(S j̃ × S ĩ × Sk̃)→ H ĩ+j̃+k̃(N ′J,I ∩N ′J,K)

is injective. The cup product structure on H∗(S j̃ × S ĩ × Sk̃) then forces

f∗ : H ĩ+j̃(S j̃ × S ĩ × Sk̃)→ H ĩ+j̃(N ′J,I ∩N ′J,K)

to be injective. Since H ĩ+j̃(S j̃+ĩ) → H ĩ+j̃(S j̃ × S ĩ × Sk̃) is an isomorphism, this

implies that f∗J,I : H ĩ+j̃(S j̃+ĩ)→ H ĩ+j̃(N ′J,I) is injective.

Proposition 7.7. If I and J are disjoint intervals with I < J and P ∈ J , then
f∗J,I : Ȟ∗(χJ,I)→ Ȟ∗(CJ,I) is injective.

Proof. Since P ∈ J , we have Π(J) ∼= Dj̃−1 and χJ,I ∼= Dj̃−1×Br×S ĩ, where Br is
a point if I and J are adjacent, and an open r = 2j−2ī−2 ball otherwise. Clearly,

it suffices to show that f∗J,I : Ȟ ĩ(χI)→ Ȟ ĩ(CJ,I) is injective.

First, suppose I = P \ J , so that ĩ = 2ī + 1 = 2j − 1. Then (N,L) =

(ρ−1[j − 1
2 , P ], ρ−1(j − 1

2 )) is an index pair for Π(J) with L = χJ,I . Let (N ′, L′) =

(f−1(N), f−1(L)). Since (N,L) ' (Dj̃−1, S j̃−2), we have a commutative diagram

0 → H 2̄i+1(L)
δ→ H2j(N,L) → 0

↓ f∗ ↓ f∗

Hp(N ′) → H 2̄i+1(L′)
δ′→ H2j(N ′, L′) → Hq(N ′)

with f∗ : H2j(N,L) → Hq(N ′, L′) an isomorphism by 7.4. The composition from

H 2̄i+1(L) to H2j(N ′, L′) is then an isomorphism, so f∗ : H ĩ(L)→ H ĩ(L′) is injec-
tive.
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If I and J are adjacent, but K = P \ IJ 6= ∅, then K and IJ form an adjacent
pair of intervals. Let L = ρ−1(j − 1

2 ), and let L′ = f−1(L). Then L = χJ,I ∪ χJ,K ,
with χJ,K open in L and χJ,I a strong deformation retract of some neighborhood
LI . Let LK = χJ,K and let L′I = f−1(LI), L

′
K = f−1(LK).

As noted above, LK ∼= Dj̃−1 × B ĩ+1 × Sk̃ and LI ∼= Dj̃−1 × Sp̃ × Dk̃+1. The

intersection L0 = LK ∩ LI is then homotopic to Dj̃−1 × S ĩ × Sk̃.
Now consider the Mayer-Vietoris diagram

→ H ĩ+k̃(LI)⊕H ĩ+k̃(LK) → H ĩ+k̃(L0)
δ→ H ĩ+k̃+1(L) →

↓ ↓ ↓
→ H ĩ+k̃(L′I)⊕H ĩ+k̃(L′K) → H ĩ+k̃(L′0)

δ′→ H ĩ+k̃+1(L′) →

The previous calculation shows that f∗ : H ĩ+k̃+1(L) → H ĩ+k̃+1(L′) is injective,

and δ is an isomorphism, so f∗ : H ĩ+k̃(L0) → H ĩ+k̃(L′0) is injective. Then, as in

Proposition 7.6, this implies that f∗ : H ĩ(LI)→ H ĩ(L′I) is injective.
The proof for I and J not adjacent now follows, using the same argument as in

Proposition 7.6.
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Abstract. A semi-conjugacy from the dynamics of the global attractors for
a family of scalar delay differential equations with negative feedback onto the
dynamics of a simple system of ordinary differential equations is constructed.
The construction and proof are done in an abstract setting, and hence, are valid
for a variety of dynamical systems which need not arise from delay equations.
The proofs are based on the Conley index theory.
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