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PRODUCTS OF CYCLES

AND THE TODD CLASS OF A TORIC VARIETY

JAMES E. POMMERSHEIM

1. Introduction

The purpose of this paper is to show that the Todd class of a simplicial toric vari-
ety has a canonical expression in terms of products of torus-invariant divisors. The
coefficients in this expression, which are generalizations of the classical Dedekind
sum, are shown to satisfy a reciprocity relation which characterizes them uniquely.
We achieve these results by giving an explicit formula for the push-forward of a
product of cycles under a proper birational map of simplicial toric varieties.

Since the introduction of toric varieties in the 1970s, finding formulas for their
Todd class has been an interesting and important problem. This is partly due to
a well-known application of the Riemann-Roch theorem which allows a formula
for the Todd class of a toric variety to be translated directly into a formula for
the number of lattice points in a lattice polytope (cf. [Dan]). An example of this
application is contained in [Pom], where a formula for the Todd class of a toric
variety in terms of Dedekind sums is used to obtain new lattice point formulas.

Danilov [Dan] posed the problem of finding a formula for the Todd class of a
toric variety in terms of the orbit closures under the torus action. Specifically, he
asked if it is possible, given a lattice, to assign a rational number to each cone in the
lattice such that given any fan in the lattice, the Todd class of the corresponding
toric variety equals the sum of the orbit closures with coefficients given by these
assigned rational numbers. Morelli [Mor] showed that such an assignment is indeed
possible in a natural way if the coefficients, instead of being rational numbers,
are allowed to take values in the field of rational functions on a Grassmannian
of linear subspaces of the lattice. However, if it is required that the coefficients
be rational numbers invariant under lattice automorphisms, such an assignment is
clearly impossible. For example, the nonsingular cone σ in Z2 generated by (1, 0)
and (0, 1) when subdivided by the ray through (1, 1) yields two cones σ1 and σ2

which are both lattice equivalent to σ. By additivity, a consequence of the fact that
the Todd class pushes forward, we deduce that the coefficient assigned to σ must
equal 0, which is absurd.

In this paper, we show that there is a canonical expression for the Todd class
of a simplicial toric variety in terms of products of the torus invariant divisors.
Furthermore, this expression is invariant under lattice automorphisms. That is,
the coefficient of each product depends only on the set of rays with multiplicities
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corresponding to the divisors occurring in the product. To make this precise, we
have

Theorem 1. Given a lattice N , there exists a canonical function f assigning to

each tuple (ρ
(a1)
1 , . . . , ρ

(ak)
k ) of rays with multiplicities ai ∈ N a rational number

f(ρ
(a1)
1 , . . . , ρ

(ak)
k ) such that

(1) f is invariant under lattice automorphisms, and
(2) for any complete, simplicial fan Σ in N ,

TdiXΣ =
∑

f(ρ
(a1)
1 , . . . , ρ

(ak)
k )F a1

ρ1
· · ·F akρk ,

the sum being taken over all tuples of rays ρ
(a1)
1 , . . . , ρ

(ak)
k with each ρj ∈ Σ(1)

and a1 + · · ·+ ak = i.

Here Fρ represents the class in A1XΣ of the invariant divisor corresponding to
the ray ρ, and TdiXΣ represents the codimension-i part of the Todd class as in
[Ful].

The key ingredient in the proof of this theorem is the behavior of products of
cycles under proper birational maps of toric varieties. Given such a map, we show
that there is a canonical way to express the push-forward of a product of cycles
in terms of products of cycles, with coefficients that depend only on local data in
the corresponding fans. The following theorem gives an explicit formula for the
push-forward of any product in the case that a single ray is added.

For a simplicial cone σ = 〈ρ1, . . . , ρd〉 of dimension d, we use the notation multσ
to denote the multiplicity of σ. This is the index of Zρ1 + · · ·+ Zρd in the d-plane
of N which contains σ.

Theorem 2. Let Σ be a complete simplicial fan in a lattice N and let ρ1, . . . , ρd be
rays of Σ generating a d-dimensional cone σ ∈ Σ. Let ρ0 be a ray in the interior of
σ, and let Σ′ be the fan obtained from Σ by adding the ray ρ0. Let π : XΣ′ → XΣ

be the induced proper birational map of toric varieties. We use Ei ∈ A1XΣ′ and
Fi ∈ A1XΣ to denote the classes of the divisors corresponding to the rays ρi, with
F0 = 0. Let m0 = multσ and mi = mult 〈ρ0, . . . , ρ̂i, . . . , ρd〉. Then

(A) For any integers r0, . . . , rd ≥ 0, we have

π∗E
r0
0 · · ·Erdd

mr0
0 · · ·m

rd
d

=
F r00 · · ·F rdd
mr0

0 · · ·m
rd
d

+
∑ (−1)r0+1

(
r1−1
t1−1

)
· · ·
(
rd−1
td−1

)
F t11 · · ·F

td
d

mt1
1 · · ·m

td
d

,

where the sum is taken over all positive integers t1, . . . , td such that t1 + · · ·
+td = r0 + · · ·+ rd. Here we take

(−1
n

)
= (−1)n when n ≥ 0, and

(−1
−1

)
= 0.

(B) If γ ∈ Σ′(1), and γ 6= ρi (i = 0, . . . , d), then for any p ∈ A∗XΣ′ ,

π∗(Eγ · p) = Fγ · π∗p.

The idea behind the proof of Theorem 1 is as follows: We start with the well-
known fact that for nonsingular XΣ, the Chern classes are given by

ciXΣ =
∑
σ∈Σ(i)

Fσ

(cf. [Dan, p. 114]). Taking the Todd polynomials (as defined in [Hir]) in these Chern
classes yields an expression for the Todd classes of a nonsingular toric variety in
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terms of products:

TdiXΣ =
∑

λa1 · · ·λadF a1
ρ1
· · ·F adρd ,(∗)

where λi ∈ Q is given by
t

1− e−t =
∞∑
i=0

λit
i, and the sum is taken over all tuples

ρ
(a1)
1 , . . . , ρ

(ad)
d such that each ρi ∈ Σ(1), each ai > 0, and a1 + · · · + an = i. For

singular XΣ, we may always find a sequence of subdivisions

Σ = Σ0,Σ1, . . . ,Σl = Σns,

where Σns is nonsingular and each Σi is obtained from Σi−1 by adding a single ray,
as in Theorem 2. We then have maps

XΣns −→ · · · −→ XΣ1 −→ XΣ.

We may therefore express TdXΣ by taking the expression for TdXΣns in equa-
tion (∗) and pushing forward these products using the formulas of Theorem 2. It
then remains only to check that the expression for TdXΣ obtained in this way is
independent of the resolution chosen.

Finally, we show that the coefficients f of Theorem 1 satisfy a certain reciprocity
relation which characterizes them uniquely.

Theorem 3. The function f of Theorem 1 is uniquely determined by the following
properties:

(1) Define λi ∈ Q by
t

1− e−t =
∞∑
i=0

λit
i. Then for any rays ρ1, . . . , ρd which form

a nonsingular cone (that is, the primitive elements of the lattice N which lie
on the rays ρ1, . . . , ρd form part of a basis of N), we have

f(ρ
(a1)
1 , . . . , ρ

(ad)
d ) = λa1 · · ·λad .

(2) Let ρ1, . . . , ρk be the rays of a k-dimensional simplicial cone in a lattice N
and let ρ0 be a ray in the interior of 〈ρ1, . . . , ρd〉 (d ≤ k), as in Theorem 2.
Let the mi (i = 0, . . . , d) be as in Theorem 2, and fix integers a1, . . . , ak ≥ 1.
Then

∑
(−1)b0+1(b1−1

a1−1)···(
bd−1
ad−1)m

b0
0 · · ·mbd

d f(ρ
(b0)
0 , ρ

(b1)
1 , . . . , ρ

(bd)
d , ρ

(ad+1)
d+1 . . . , ρ

(ak)
k ) = 0,

where the sum is taken over all nonnegative integers b0, . . . , bd such that b0 +
· · ·+ bd = a1 + · · ·+ ad.

The fact that the above properties characterize f follows from the fact that
any fan may be desingularized by a sequence of subdivisions of the type involved
in (2) of the above theorem (cf. [Dan]). The coefficients f for the cones of this
desingularized fan are then given by (1). Thus the above theorem determines an
algorithm for computing the coefficients of the Todd class which appear in Theorem
1.

In the final section of this paper, we use Theorem 3 to obtain an expression for
the codimension three part of the Todd class of a simplicial toric variety in terms
of the classical Dedekind sum. By the standard application of Riemann-Roch, one
may obtain an expression for the degree n − 3 term in the Ehrhart polynomial
of a simple polytope in terms of Dedekind sums. Such a formula may also be
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obtained from the codimension two formula of [Pom] via the inversion formula for
the Ehrhart polynomial, a consequence of Serre duality for toric varieties (cf. [Dan,
p.135]). Kantor and Khovanskii point this out in the context of their combinatorial
Riemann-Roch theorem in [K-K]. Specifically, they indicate how one may obtain
a formula for the degree n − 3 term in the Ehrhart polynomial of a 4-dimensional
polytope if one knows a formula for the degree n− 2 coefficient.

The theorems of this paper are natural generalizations of the results in [Pom].
We make these connections explicit. Theorem 2 of [Pom] states that if d denotes
the codimension of the singular locus of a complete simplicial toric variety XΣ,
then TddXΣ may be expressed as the mock Todd class, TDdXΣ, which is simply
the codimension d part of the formal product (∗), plus local contributions from the
singular orbit closures of codimension d:

TddXΣ = TDdXΣ +
∑
τ∈Σ(d)

t(τ)Fτ ,

where t(τ) is an invariant of the cone τ . The function t and this expression are
special cases of the function f and Theorem 1. Indeed, one easily sees that

t(τ) =
1

mult τ

(
f(ρ

(1)
1 , . . . , ρ

(1)
d )− 1

2d

)
,

where τ = 〈ρ1, . . . , ρd〉 is any d-dimensional simplicial cone with nonsingular (d−1)-
dimensional faces. The case d = 2 is Theorem 3 of [Pom], which gives an expression
for the codimension-two part of the Todd class of a toric variety. This theorem says

exactly that f(ρ
(1)
1 , ρ

(1)
2 ) reduces to the classical Dedekind sum:

f(ρ
(1)
1 , ρ

(1)
2 ) = q

(
s(p, q) +

1

4

)
,

whenever the cone 〈ρ1, ρ2〉 is lattice-equivalent to the cone 〈(1, 0), (p, q)〉 in Z2.
Furthermore, Theorem 3 of this paper, when applied in the case k = d = 2 and
a1 = a2 = 1, yields Theorem 7 of [Pom], which expresses the sum of two arbitrary
Dedekind sums in terms of a single Dedekind sum. This relation is a generalization
of Rademacher’s three-term reciprocity relation for Dedekind sums [Ra].

Cappell and Shaneson [C-S] have announced an extension of the program of
[Pom], in which they use facts about L-classes of singular spaces to obtain an
explicit formula for the Todd class of a simplicial toric variety which can be seen
to satisfy the conditions of Theorem 1. Showing that the expressions of [C-S]
coincide with the Todd class formulas of this paper is equivalent to verifying that the
exponential sums involved in the formula of Cappell-Shaneson satisfy the reciprocity
relations of Theorem 3. This would be of considerable number-theoretic interest.
For example, as noted above, even in codimension two, Theorem 3 leads to new
non-trivial number theory. In higher dimensions, the formula of [C-S] predicts that
the function t(τ), which is a very restricted version of the function f , coincides
with Zagier’s higher-dimensional Dedekind sums [Zag]. Zagier’s reciprocity law for
these sums is then equivalent to a very special case of Theorem 3. (Namely, taking
k = d, all ai = 1, letting ρ1, . . . , ρd be the standard basis of Zd, and ρ0 = (q1, . . . , qd)
with gcd(qi, qj)=1 yields Zagier’s reciprocity relations.) Thus it seems reasonable
to expect that Theorem 3 in full generality would lead to many interesting results
about exponential sums.
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It should also be pointed out that Theorem 1 may be interpreted as saying that
there is a canonical lifting of the Todd class of a simplicial toric variety to the
equivariant cohomology ring. The coefficients of this lifting may be computed in
terms of local combinatorial data by using the relations of Theorem 3. In this
context, Theorem 2 is a local formula for the push-forward maps on the equivariant
cohomology of a simplicial toric variety.

2. Background on toric varieties

For the necessary background on toric varieties, we refer the reader to [Pom, p.
4–5], which is a summary of basic facts which we will use freely without repeating
here. These facts are collected from the survey article [Dan] and the book [Oda],
which provide complete definitions and proofs. The reader will also find a very
readable introduction to the subject of toric varieties in [Ful2].

It will be useful to point out a few pieces of notation that we will use throughout.
We will fix a lattice N of dimension n, and let M = Hom (N,Z) be the dual

lattice with 〈 , 〉 : M ×N −→ Z the natural pairing. If Σ is a fan in N , XΣ will be
the associated toric variety, and for each cone σ ∈ Σ, V (σ) will denote the closed
subvariety of XΣ corresponding to σ. We will use A∗XΣ to denote the Chow ring
of XΣ with rational coefficients. Fσ will denote the class of V (σ) in A∗XΣ.

If Σ′ is a subdivision of Σ, with π : XΣ′ −→ XΣ the induced map of toric
varieties, then whenever σ′ ∈ Σ′ and σ ∈ Σ, we will use Eσ′ for the class of V (σ′)
in A∗XΣ′ and Fσ for the class of V (σ) in A∗XΣ.

3. The push-forward of products

In this section we prove Theorem 2, which describes how to push a product of
cycles forward under a proper birational map of toric varieties.

We will prove Part B first. Let π : XΣ′ −→ XΣ be as in the statement of the
theorem, and let γ be distinct from ρ0, . . . , ρd. We must show

π∗(Eγp) = Fγ(π∗p)

for any p ∈ A∗XΣ′ .
Since Σ is simplicial, the function which takes the value 1 on γ and 0 on all other

rays of Σ may be extended to a continuous piecewise linear function s on N with
values in Q. Some integral multiple of s takes all values in Z, and hence defines a
Cartier divisor on XΣ. Hence, we may consider Fγ as an element of Pic(XΣ)⊗Q.
The pull-back π∗Fγ is obtained by considering s as a support function on Σ′. Since
s vanishes on ρ1, . . . , ρd, it vanishes also on ρ0 by linearity. Thus s vanishes at all
rays of Σ′ except γ, and we obtain

π∗Fγ = Eγ

in Pic(XΣ)⊗Q.
One now sees from the projection formula that

π∗(Eγp) = Fγ(π∗p),

which proves Part B of Theorem 2.
To prove Part A, we will need the following lemma which allows us to compute

push-forwards of products inductively:
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Lemma. With the notations of Theorem 2, let p be any element of A∗XΣ′ , and let
1 ≤ i, j ≤ d, with i 6= j. Then

(1) π∗(Eip) =
mi

mj
π∗(Ejp) +

(
Fi −

mi

mj
Fj

)
π∗p,

(2) π∗(E0p) = −m0

mj
π∗(Ejp) +

(
m0

mj
Fj

)
π∗p.

Proof. Let 1 ≤ j ≤ d. If s is the continuous piecewise linear support function on
Σ which takes the value 1 at ρj and 0 at all other rays of Σ, then an easy lattice
computation shows that

s(ρ0) =
mj

m0
.

Hence it follows that

π∗(Fj) = Ej +
mj

m0
E0.

As before, we regard this as an equation in Pic(XΣ)⊗Q.
Now by the projection formula,

π∗((Ej +
mj

m0
E0)p) = Fj(π∗p),

from which Part (2) of the lemma follows.
We also see that

π∗(Fi −
mi

mj
Fj) =(Ei +

mi

m0
E0)− mi

mj
(Ej +

mj

m0
E0)

= Ei −
mi

mj
Ej .

Hence, by the projection formula,

π∗((Ei −
mi

mj
Ej)p) = (Fi −

mi

mj
Fj)π∗p,

which yields Part (1) of the lemma.

We now prove Theorem 2, Part A, beginning with two remarks:

(1) If all ρj > 0, j = 1, . . . , d, then the left-hand side vanishes since 〈ρ1, . . . , ρd〉 /∈
Σ′. Also, the sum on the right-hand side is easily seen to vanish — all terms
are 0 unless ρ0 = 0, in which case there are two cancelling terms. Thus in
what follows, we may always assume that some ρj = 0 with 1 ≤ j ≤ d.

(2) Another easy case is when e =
∑d
i=0 ri < d. In this case, each product of

binomial coefficients appearing on the right-hand side vanishes, and so the
equation asserts that π∗ is multiplicative. But this follows immediately from
[Pom, p. 6]. The proof is an easy exercise in intersection theory if we remember
that π is an isomorphism except above V (σ).

Let e=
∑d
i=0 ri be the degree of the monomial involved, and let k= #{i|ri> 0,

i = 0, . . . , d}. As before we induct on e− k, which represents the number of coinci-
dences in the monomial. We distinguish the cases r0 = 0 and r0 > 0. They will be
handled respectively by Parts (1) and (2) of the lemma.

Suppose first that r0 = 0. By Remark 1, it follows that there exists j (j =
1, . . . , d) such that rj = 0. Thus k ≤ d − 1. So if all ri ≤ 1, then e ≤ d − 1, and
we are done by Remark 2. Otherwise there exists some i (i = 1, . . . , d) such that
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ri > 1. Let p denote the product Er00 · · ·Erdd with the exponent of Erii diminished
by one. Part (1) of the lemma tells us that

π∗(E
r0
0 · · ·E

rd
d ) = π∗(Eip) =

mi

mj
π∗(Ejp) +

(
Fi −

mi

mj
Fj

)
π∗p.

Note however that both π∗(Ejp) and π∗p are known by induction. In this way we
obtain an expression for π∗(E

r0
0 · · ·E

rd
d ), and a straightforward calculation shows

that the expression so obtained matches the right-hand side of the theorem. We
omit the calculation which reqires nothing more than the identity

(
p
q

)
=
(
p−1
q

)
+(

p−1
q−1

)
.

Now assume r0 > 0. As before, choose j such that rj = 0. Part (2) of the lemma

then reduces the computation of π∗(E
r0
0 · · ·Erdd ) to that of π∗(E

r0−1
0 · · ·Erdd ) and

π∗(E
r0−1
0 · · ·Erdd ·Ej). Again we omit the computation.

4. An expression for the Todd class

In this section, we prove Theorem 1, which gives a canonical expression for
the Todd class of a simplicial toric variety in terms of products of torus-invariant
divisors. We also see that the coefficients in this expression satisfy the reciprocity
relation of Theorem 3.

To prove Theorem 1, we follow the sketch outlined in the introduction. We begin
with a complete simplicial fan Σ, and let

Σ = Σ0,Σ1, . . . ,Σl = Σns

be a sequence of fans, where Σns is nonsingular and each Σi is obtained from Σi−1

by adding a single ray, as in Theorem 2. For each tuple ρ
(a1)
1 , . . . , ρ

(ak)
k of rays of Σ

with multiplicities ai ≥ 0 we define a rational number fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k )

as follows:
First, we always take fΣ,Σ1,...,Σns(ρ

(a1)
1 , . . . , ρ

(ak)
k ) = 0 if those ρi such that ai > 0

do not form a cone of Σ.
If l = 0, so that Σ = Σns is nonsingular, then set

fΣ(ρ
(a1)
1 , . . . , ρ

(ak)
k ) = λa1 · · ·λak .

Otherwise, we define fΣ,Σ1,...,Σns inductively in terms of fΣ1,...,Σns . To fix nota-
tion, suppose that Σ1 is obtained from Σ by adding the ray ρ0 in the interior of
the cone 〈ρ1, . . . , ρd〉 ∈ Σ, and let m0, . . . ,md be the multiplicities as in Theorem
2. Let ρd+1, . . . , ρk ∈ Σ(1) be distinct rays, all distinct from ρ1, . . . , ρd, and let
a1, . . . , ak ≥ 0. If ai = 0 for any i = 1, . . . , d, then set

fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k ) = fΣ1,...,Σns(ρ

(a1)
1 , . . . , ρ

(ak)
k ).

Otherwise we define fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k ) to equal∑ 1

ma1
1 · · ·m

ad
d

(−1)b0+1

(
b1 − 1

a1 − 1

)
· · ·
(
bd − 1

ad − 1

)
mb0

0 · · ·m
bd
d(∗)

× fΣ1,...,Σns(ρ
(b0)
0 , ρ

(b1)
1 , . . . , ρ

(bd)
d , ρ

(ad+1)
d+1 . . . , ρ

(ak)
k ),

where the sum is taken over all nonnegative integers b0, . . . , bd such that b0 + · · ·
+bd = a1 + · · ·+ ad.
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It then follows from Theorem 2 that for the map π : XΣ1 −→ XΣ,

π∗

(∑
fΣ1,...,Σns(β

(a1)
1 , . . . , β(ar)

r )Ea1

β1
· · ·Earβr

)
=
∑

fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k )F a1

ρ1
· · ·F arρr ,

where the sums are taken over all positive integers r, all rays β1, . . . , βr of Σ1, all
rays ρ1, . . . , ρr of Σ, and all positive integers ai. Hence it is clear by induction that

TdXΣ =
∑

fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k )F a1

ρ1
· · ·F arρr .

We must show that fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k ) is independent of the chosen se-

quence of subdivisions Σ1, . . . ,Σns. First we show that fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k )

depends only on Σ, Σns, and ρ
(a1)
1 , . . . , ρ

(ak)
k . That is, it does not depend on the

intermediate subdivisions Σ1, . . . ,Σl−1. To do this, let Σ,Σ′1, . . . ,Σns be another

sequence of subdivisions ending in the same nonsingular fan Σns. Let ρ
(a1)
1 , . . . , ρ

(ak)
k

be any tuple of rays of Σ. We will show by induction on the number of nonzero
exponents ai that

fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k ) = fΣ,Σ′1,...,Σns

(ρ
(a1)
1 , . . . , ρ

(ak)
k ).

Observe that by definition these numbers depend only on those cones of the sub-
divisions Σ,Σ1, . . . ,Σns and Σ,Σ′1, . . . ,Σns which lie within the cone σ=〈ρ1, . . . , ρk〉.
Thus in the sequence of fans Σ,Σ1, . . . ,Σns, let us skip every step in which the added
ray lies outside σ. This determines a new sequence of fans Σ,Γ1, . . . ,Γ, where at
each stage the single ray added is contained in σ. By construction Γ and Σns agree
within σ. Thus while Γ may be singular outside σ, all cones of Γ which are con-
tained in σ are nonsingular. So we may choose a desingularization Γ,∆1, . . . ,∆ns

where at each step a single ray is added outside σ.
Similarly, by omitting the addition of rays outside σ, the sequence Σ,Σ′1, . . . ,Σns

determines a sequence Σ,Γ′1, . . . ,Γ, with all added rays contained in σ. It is clear
that this sequence ends in the same fan Γ.

We then have

fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k ) = fΣ,Γ1,...,Γ,∆1,...,∆ns(ρ

(a1)
1 , . . . , ρ

(ak)
k )(∗∗)

and fΣ,Σ′1,...,Σns
(ρ

(a1)
1 , . . . , ρ

(ak)
k ) = fΣ,Γ′1,...,Γ,∆1,...,∆ns

(ρ
(a1)
1 , . . . , ρ

(ak)
k ).

Now consider

α =
∑

fΓ,∆1,...,∆ns(β
(a1)
1 , . . . , β(ar)

r )Ea1

β1
· · ·Earβr ∈ A∗XΓ

summed over all tuples of rays of Γ with each βi ⊂ σ and multiplicities ai ≥ 0.
Pushing forward these products under the map π : XΓ −→ XΣ, it follows from

Theorem 2 that

π∗(α) =
∑

fΣ,Γ1,...,Γ,∆1,...,∆ns(ρ
(a1)
1 , . . . , ρ

(ak)
k )F a1

ρ1
· · ·F arρr

=
∑

fΣ,Γ′1,...,Γ,∆1,...,∆ns
(ρ

(a1)
1 , . . . , ρ

(ak)
k )F a1

ρ1
· · ·F arγr ,

where the sums are taken over all ai ≥ 0. Note that each term we get downstairs
involves only the rays of σ since all rays upstairs are contained in σ and all added
rays in the sequences Σ,Γ1, . . . ,Γ and Σ,Γ′1, . . . ,Γ also lie within σ.
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In the above equation, those terms for which some ai = 0 cancel by induction.
In light of (∗∗), we thus obtain∑

fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k )F a1

ρ1
· · ·F arρr

=
∑

fΣ,Σ′1,...,Σns
(ρ

(a1)
1 , . . . , ρ

(ak)
k )F a1

ρ1
· · ·F arγr ,

where this time the sum is taken over all ai > 0.
Once again taking into account that the computation of the coefficients above

depends only on the parts of the above fans lying in σ, the following proposition
implies that coefficients on the right-hand side match those on the left:

Proposition. Let σ = 〈ρ1, . . . , ρd〉 be a d-dimensional simplicial cone in an n-
dimensional lattice N . Let P be a homogeneous polynomial of degree n in the rays
ρ1, . . . , ρd which is divisible by ρi for all i = 1, . . . , d. Suppose that for any complete,
simplicial fan Σ in N which contains the cone σ, the polynomial P represents 0 in
A∗XΣ. Then P = 0.

The proof amounts to constructing a collection of toric varieties which separate
polynomials in the rays of σ. This is done in the Appendix.

We have shown to this point that fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k ) is independent

of the intermediate subdivisions and depends only on the final subdivision Σns.

This means that for each tuple ρ
(a1)
1 , . . . , ρ

(ak)
k of rays of Σ and each nonsingular

subdivision Σns, there is a number f(Σns; ρ
(a1)
1 , . . . , ρ

(ak)
k ) which may be defined by

f(Σns; ρ
(a1)
1 , . . . , ρ

(ak)
k ) = fΣ,Σ1,...,Σns(ρ

(a1)
1 , . . . , ρ

(ak)
k ),

where the intermediate subdivisions are chosen arbitrarily. We will now finish the

proof of Theorem 1 by showing that f(Σns; ρ
(a1)
1 , . . . , ρ

(ak)
k ) is independent of Σns.

Suppose that Σ′ns is another nonsingular subdivision of Σ. We aim to show that

f(Σns; ρ
(a1)
1 , . . . , ρ

(ak)
k ) = f(Σ′ns; ρ

(a1)
1 , . . . , ρ

(ak)
k ).

To do this, we invoke the following result of R. Morelli:

Theorem (Morelli, [Mor2]). If ∆ and ∆′ are two nonsingular fans with the same
support, then there exists a sequence of smooth toric varieties

X∆ = X∆0 , X∆1 , . . . , X∆l
= X∆′

where each X∆i+1 is obtained from X∆i by an equivariant blow-up or blow-down
along an orbit closure.

Since the computation of f(Σns; ρ
(a1)
1 , . . . , ρ

(ak)
k ) and f(Σ′ns; ρ

(a1)
1 , . . . , ρ

(ak)
k ) de-

pends only on the portions of Σns and Σ′ns which lie within the cone σ = 〈ρ1, . . . , ρd〉,
we consider the fans ∆ = Σns ∩ σ and ∆′ = Σ′ns ∩ σ. By Morelli’s theorem applied
to these two fans, it suffices to check that

f(Σns; ρ
(a1)
1 , . . . , ρ

(ak)
k ) = f(Σ′ns; ρ

(a1)
1 , . . . , ρ

(ak)
k )

in the case where Σns is obtained from Σ′ns by the addition of a single ray. By
independence of the intermediate subdivisions it suffices to show

fΣ,Σ1,...,Σns(ρ
(a1)
1 , . . . , ρ

(ak)
k ) = fΣ,Σ1,...,Σns,Σ′ns

(ρ
(a1)
1 , . . . , ρ

(ak)
k ).
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Because the right-hand side is ultimately computed in terms of the values of fΣns,Σ′ns
,

and the left-hand side in terms of the values of fΣns , it is enough to show that

fΣns,Σ′ns
(ρ

(a1)
1 , . . . , ρ

(ak)
k ) = fΣns(ρ

(a1)
1 , . . . , ρ

(ak)
k )

for any cone σ = 〈ρ1, . . . , ρr〉 ∈ Σns.
Looking at equation (∗), and using the definition of f for nonsingular cones, we

are reduced to the following identity:

Lemma. Given integers a1, . . . , ad > 0,∑
(−1)b0+1

(
b1 − 1

a1 − 1

)
· · ·
(
bd − 1

ad − 1

)
λb0 · · ·λbd = 0,

where the sum is taken over all b0, . . . , bd ≥ 0 such that b0 + · · ·+ bd = a0 + · · ·+ad.

Proof. The expression above equals the coefficient of ta1+···+ad in( ∞∑
b0=0

(−1)b0+1λb0t
b0

)( ∞∑
b1=0

(
b1 − 1

a1 − 1

)
λb1t

b1

)
· · ·
( ∞∑
bd=0

(
bd − 1

ad − 1

)
λbd t

bd

)
.

Setting h(t) =
1

1− e−t =
∞∑
b=0

λbt
b−1, one easily calculates the derivatives

h(a−1)(t) =
(a− 1)!

ta

( ∞∑
b=0

(
b− 1

a− 1

)
λbt

b

)
,

so that we are reduced to finding the coefficient of ta1+···+ad in(
t

1− et

)(
ta1

(a1 − 1)!
h(a1−1)(t)

)
· · ·
(

tad

(ad − 1)!
h(ad−1)(t)

)
.

By Cauchy’s Integral Formula, the desired coefficient C satisfies

(a1 − 1)! · · · (ad − 1)! · C =
1

2πi

∫
1

1− eth
(a1−1)(t) · · ·h(ad−1)(t)dt,

where we integrate around a circle centered at the origin. With the substitution
u = 1− e−t, the integral becomes

−
∫
u−1 d

(a1−1)

dt(a1−1)
(u−1) · · · d

(ad−1)

dt(ad−1)
(u−1)du.

However, one easily verifies that
d(a−1)

dt(a−1)
(u−1), when expressed in terms of u, con-

tains only terms with negative exponents. Hence, the integrand contains no terms
of exponent greater than −(d + 1). In particular, there is no u−1 term, so the
integral vanishes, and the lemma is established.

5. Codimension three

In this section, we illustrate Theorem 3 by using it to give a formula for the
codimension three part of the Todd class of a toric variety.

If τ is a two-dimensional cone in a lattice, then τ determines a Dedekind sum
as follows [Pom, p. 12]: For some relatively prime integers p and q, τ is lattice-
equivalent to the cone 〈(1, 0), (p, q)〉 in Z2. We define the Dedekind sum s(τ) asso-
ciated to τ as the classical Dedekind sum s(p, q). The following formula determines



PRODUCTS OF CYCLES AND THE TODD CLASS OF A TORIC VARIETY 823

the codimension-two part of the Todd class of a toric variety:

f(ρ
(1)
1 , ρ

(1)
2 ) = mult (〈ρ1, ρ2〉)

(
s(〈ρ1, ρ2〉) +

1

4

)
.

This is a restatement of [Pom, Theorem 3].
Now let σ = 〈ρ1, ρ2, ρ3〉 be a three-dimensional simplicial cone in a lattice N . For

{i, j, k} = {1, 2, 3}, let sijk be the Dedekind sum associated to the two-dimensional

cone σijk which is the image of σ in the lattice N/Zρi.

Theorem 4. The codimension-three part of the Todd class of a simplicial toric
variety is given by the following formulas:

(1) f(ρ(3)) = 0,

(2) f(ρ
(2)
1 , ρ2) =

1

24

[
mult 〈ρ1, ρ2〉

]2

,

(3) f(ρ1, ρ2, ρ3) = mult 〈ρ1, ρ2, ρ3〉
(

1

8
+
s1

23 + s2
13 + s3

12

2

)
.

Proof. (1) is clear from Theorem 3, Part A as λ3 = 0.
For the proof of (2), we use the formula of Theorem 3, Part B and induction

on mult 〈ρ1, ρ2〉. Choose any ray ρ0 in the interior of 〈ρ1, ρ2〉 which subdivides this
cone into two cones of smaller multiplicities. This is possible by standard arguments
(cf. [Dan, p. 123]). With k = d = 2, a1 = 2, and a2 = 1, Theorem 3 reads:

m0
2m2f(ρ

(2)
0 , ρ2) +m0m1

2f(ρ0, ρ
(2)
1 )−m0m2

2f(ρ0, ρ
(2)
2 )−m1

2m2f(ρ
(2)
1 , ρ2) = 0.

By induction, f(ρ0, ρ
(2)
1 ) =

1

24
m2

2, and f(ρ
(2)
0 , ρ2) = f(ρ0, ρ

(2)
2 ) =

1

24
m1

2. Thus

we obtain f(ρ
(2)
1 , ρ2) =

1

24
m0

2, as desired.

To prove (3), again we subdivide using a ray ρ0 ∈ 〈ρ1, ρ2, ρ3〉 with the property
that the subdivided cones have multiplicities smaller than mult 〈ρ1, ρ2, ρ3〉. This
time, however, such a ρ0 may or may not lie in the interior of 〈ρ1, ρ2, ρ3〉. We will
distinguish these two possibilities. We will use µi...j to abbreviate mult 〈ρi, . . . , ρj〉,
and M i

jk will denote the multiplicity of the two-dimensional cone σijk which is the

image of 〈ρi, ρj , ρk〉 in the lattice N/Zρi.
First assume ρ0 ∈ 〈ρ1, ρ2〉. Theorem 3 with k = 3, d = 2, and a1 = a2 = a3 = 1

says

f(ρ1, ρ2, ρ3)

m0
=
f(ρ0, ρ1, ρ3)

m2
+
f(ρ0, ρ2, ρ3)

m1
− m0

2µ2
03 +m1

2µ2
13 +m2

2µ2
23

24m0m1m2
,

and by induction,

f(ρ0, ρ1, ρ3) = m2

(
1

8
+
s0

13 + s1
03 + s3

01

2

)
, and

f(ρ0, ρ2, ρ3) = m1

(
1

8
+
s0

23 + s2
03 + s3

02

2

)
.
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However, by [Pom, Theorem 7],

s3
01 + s3

02 = s3
12 −

1

4
+

1

12

[
M3

01

M3
02M

3
12

+
M3

02

M3
01M

3
12

+
M3

12

M3
01M

3
02

]
,

s0
13 + s0

23 = 0 since s(−p, q) = −s(p, q), and s1
03 = s1

23, s2
03 = s2

13. Taking into ac-

count the easily-verified multiplicity relation M i
jk =

µijk
µikµjk

, the desired expression

for f(ρ1, ρ2, ρ3) now follows.
Next we assume that ρ0 is in the interior of 〈ρ1, ρ2, ρ3〉. This time we take

k = d = 3 and a1 = a2 = a3 = 1 in Theorem 3, and obtain

f(ρ1, ρ2, ρ3)

m0
=
f(ρ0, ρ1, ρ2)

m3
+
f(ρ0, ρ1, ρ3)

m2
+
f(ρ0, ρ2, ρ3)

m1

+
1

24m0m1m2m3

( 3∑
i=1

µ0im0mi(mi −m0)−
∑

1≤i<j≤3

µijmimj(mi +mj)

)
.

Again the right-hand side is known completely by induction, and all follows from
the equations

sk0i + sk0j = skij −
1

4
+

1

12

[
Mk

0i

Mk
0jM

k
ij

+
Mk

0j

Mk
0iM

k
ij

+
Mk
ij

Mk
0iM

k
0j

]
,

s0
12 + s0

13 + s0
23 =

1

4
− 1

12

[
M0

12

M0
13M

0
23

+
M0

13

M0
12M

0
23

+
M0

23

M0
12M

0
13

]
(where {i, j, k} = {1, 2, 3}), which are consequences of Theorems 7 and 8, respec-
tively, in [Pom].

Appendix: Proof of the proposition

Proof. It suffices to show that given a monomial ρr11 . . . ρrdd of degree n with all
ri > 0, there exists a fan Σ such that the given monomial represents a nonzero
element of A∗XΣ, but any other monomial of degree n represents 0 in A∗XΣ. We
construct such a fan.

Let e1, . . . , ed be a basis of the plane containing σ and extend this to a basis
e1, . . . , en of N . Let γi, i = d+ 1, . . . , n, be defined by

(γd+1, . . . , γn) = (ρ1, . . . , ρ1, . . . , ρd, . . . , ρd),

where each ρi occurs ri − 1 times. We then define rays ρi = ei + γi and ρ′i = −ei
for i = d + 1, . . . , n. Let Σ be any complete simplicial fan containing the cones
〈ρ1, . . . , ρn〉 and 〈ρ1, . . . , ρd, ρ

′
d+1, . . . , ρ

′
n〉. For a ray ρ ∈ Σ(1), we set Fρ = [V (ρ)] ∈

A1XΣ and set Fi = Fρi and F ′i = Fρ′i for short.
We must show that for integers a1, . . . , ad > 0 whose sum is n,

F a1
1 · · ·F

ad
d 6= 0 ∈ A∗XΣ iff ai = ri for all i = 1, . . . , d.

Claim. If ρ is any ray other than some ρi or ρ′i, then 〈ρ1, . . . , ρd, ρ〉 /∈ Σ.

Proof. We may write

ρ = a1ρ1 + · · ·+ adρd + ad+1βd+1 + · · ·+ anβn,

where for all i > d, βi = ρi or ρ′i, and ai ≥ 0 for all i > d. It follows that for
sufficiently large M > 0 (M > |ai|, i = 1, . . . , d),

ρ+M(ρ1 + · · ·+ ρd) ∈ 〈ρ1, . . . , ρd, βd+1, . . . , βn〉.
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But it is clear that

ρ+M(ρ1 + · · ·+ ρd) ∈ 〈ρ1, . . . , ρd, ρ〉.

Under the assumption that 〈ρ1, . . . , ρd, ρ〉 ∈ Σ, the intersection of this cone with
〈ρ1, . . . , ρd, βd+1, . . . , βn〉 is their common face 〈ρ1, . . . , ρd〉 = σ. We conclude that
ρ+M(ρ1 + · · ·+ ρd) ∈ σ, so ρ lies in the plane containing σ. Hence the dimension
of 〈ρ1, . . . , ρd, ρ〉 is at most d and so this cone cannot belong to the simplicial fan
Σ. This proves the claim.

By the claim, it follows that whenever ρ is any ray other than some ρi or ρ′i,
F1 · · ·FdFρ = 0. And since our given product is divisible by F1 · · ·Fd, we can do
all our computation in A∗XΣ/(Fρ : ρ 6= ρi, ρ

′
i).

Let f1, . . . , fn be the basis of M = Hom (N,Z) dual to e1, . . . , en. For i =
1, . . . , d, let mi be an element of the d-plane spanned by f1, . . . , fd satisfying for
j = 1, . . . , n:

〈mi, ρi〉 6= 0, but 〈mi, ρj〉 = 0 for any other j ∈ {1, . . . , d}.

One then checks that if d+ 1 ≤ j ≤ n, then 〈mi, ρj〉 = 〈mi, ρi〉 whenever 1 ≤ i ≤ d
and γj = ρi. Also, 〈mi, ρ

′
j〉 = 0 for all 1 ≤ i ≤ d and d+ 1 ≤ j ≤ n.

We use the mi to obtain the following linear relations for i = 1, . . . , d:

Fi = −
∑
j∈Si

Fj ,

where the sum is taken over the set Si of those j (d+ 1 ≤ j ≤ n) such that γj = ρi.
There are ri − 1 such j.

Also, using m = fi, i = d+ 1, . . . , n, we obtain the linear relation

Fi = F ′i .

Furthermore, since 〈ρi, ρ′i〉 /∈ Σ, FiF
′
i = 0, and hence for all i = d+ 1, . . . , n,

F 2
i = 0.

It is now quite easy to evaluate the product:

F a1
1 · · ·F add = F1 · · ·Fd

(
−
∑
j∈S1

Fj

)a1−1

· · ·
(
−
∑
j∈Sd

Fj

)ad−1

.

Now if (a1, . . . , ad) 6= (r1, . . . , rd), then for some i, ai > ri, in which case the

factor

(
−
∑
j∈Si

Fj

)ai−1

, when expanded, contains no squarefree terms. Hence the

whole product vanishes.
On the other hand, if (a1, . . . , ad) = (r1, . . . , rd), then the product simplifies to

(−1)n−d(e1 − 1)! · · · (ed − 1)!F1 · · ·Fn,

which is nonzero since F1 · · ·Fn =
1

mult 〈ρ1, . . . , ρn〉
[pt].

This completes the proof of the proposition.
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