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3-AUTOMORPHISM METHOD

AND NONINVARIANT CLASSES OF DEGREES

LEO HARRINGTON AND ROBERT I. SOARE

1. Introduction

A set A of nonnegative integers is computably enumerable (c.e.), also called
recursively enumerable (r.e.), if there is a computable method to list its elements.
Let E denote the structure of the computably enumerable sets under inclusion,
E = ({We}e∈ω,⊆). Most previously known automorphisms Φ of the structure E of
sets were effective (computable) in the sense that Φ has an effective presentation.
We introduce here a new method for generating noneffective automorphisms whose
presentation is ∆0

3, and we apply the method to answer a number of long open
questions about the orbits of c.e. sets under automorphisms of E . For example, we
show that the orbit of every noncomputable (i.e., nonrecursive) c.e. set contains
a set of high degree, and hence that for all n > 0 the well-known degree classes
Ln (the lown c.e. degrees) and Hn = R −Hn (the complement of the highn c.e.
degrees) are noninvariant classes.

Let {We}e∈ω be a standard indexing of the c.e. sets, let E denote the structure
of the computably enumerable sets under inclusion, E = ({We}e∈ω,⊆), and let
Aut(E) denote the group of automorphisms of E . An automorphism Φ ∈ Aut(E) is
effective if there is a recursive function h (called a presentation of Φ) such that for
all n ∈ ω, Φ(Wn) =∗ Wh(n). Soare [26] introduced a method for generating effective
automorphisms of E and proved that any two maximal sets are automorphic. This
effective automorphism method has been substantially developed and applied to
study E and the relationship between the algebraic structure of A ∈ E and deg(A),
the Turing degree of A. (See [28], Chapters XV and XVI, for a presentation of this
method, the maximal set result, references to later results, and for any unspecified
notation or definitions below.) Let A ' B (A 'eff B, A '∆0

3
B) denote that A

is automorphic (effectively automorphic, ∆0
3-automorphic) to B. The orbit of A,

written [A], is {B : A ' B}. The orbit of A is nontrivial if A is noncomputable.
Recently there have been two important new developments concerning auto-

morphisms of E . First, new E-definable properties have been discovered which
demonstrate that certain automorphisms cannot exist ([8] and [12]). Second, a new
method has been developed for generating certain automorphisms Φ whose presen-
tation h is a ∆0

3 function and which will therefore be called ∆0
3-automorphisms.

The purpose of the present paper is to present this method and to apply it to study
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the possible Turing degree of sets B in an arbitrary nontrivial orbit. Before doing
this we summarize some results on the first topic.

A property of c.e. sets is invariant if it is invariant under Aut(E), and E-definable
if there is a first order property in the language L(⊂) which defines it over E . In
1984 Harrington [28, page 339] proved that Post’s property [24] of being a creative
set is E-definable and hence the creative sets form an orbit. In 1991, Harrington
and Soare [8] positively answered a question arising from Post’s 1944 program [24]
which was to find an easily definable property on a noncomputable c.e. set A which
guarantees that A is Turing incomplete, i.e., K 6≤T A, where K is the complete set.

Theorem 1.1 ([8]). There is a nonempty E-definable property Q(A) such that ev-
ery c.e. set A satisfying Q(A) is noncomputable and Turing incomplete.

The discovery of these properties was not accidental, but arose in studying the
dynamic obstacle to producing the required automorphism, and converting that
obstacle to an E-definable property. In a forthcoming paper [12], Harrington and
Soare continue this approach by producing several other E-definable properties
which prevent the existence of certain automorphisms for A which one might expect.

Although not every nontrivial orbit contains a complete set, a large class of orbits
do.

Theorem 1.2 (Harrington-Soare). If A is any c.e. set of promptly simple degree,
then A is automorphic (indeed, effectively automorphic) to a complete set.

Harrington and Soare have also strengthened Theorem 1.2 by proving that it
holds for sets A in a strictly larger class of c.e. degrees called almost prompt (a.p.)
degrees, and hence the class of non-promptly-simple (i.e., tardy) degrees M =
R − PS (i.e., the degrees of halves of minimal pairs) is not invariant as defined
below. The following theorem asserts that a version of Theorem 1.2 holds for every
noncomputable c.e. set A if we enlarge the class of target sets for Φ(A) from the
complete sets to the high sets.

Theorem 1.3. For every noncomputable c.e. set A there is a c.e. set B which is
high (i.e., deg(B′) = 0 ′′) such that A is ∆0

3-automorphic to B.

Theorem 1.3 asserts that every nontrivial orbit contains a high set. (This has
been independently proven by P. Cholak as discussed in §12.) The next theorem,
which is the main result of the present paper, considerably strengthens this by
showing that every nontrivial orbit intersects every upper cone {B : B ≥T D} such
that Q(D) holds. (Note that Theorem 1.4 implies Theorem 1.3 because every such
D is a major subset and hence is high, so B is also.)

Theorem 1.4. For every noncomputable c.e. set A and every c.e. set D which
satisfies the property Q of Theorem 1.1 there is a c.e. set B ≥T D such that A is
∆0

3-automorphic to B.

Theorem 1.4 gives an unexpected connection between the Q property and the
coding of information into a set B in the orbit of A. Its proof uses the fact that by
Harrington and Soare [11] the property Q(D) corresponds to a certain computa-
tional complexity property on D which forces elements x to be enumerated into D
slowly and thus gives time for the corresponding coding markers γ(x) (required for
D = ΓB) to be moved into B slowly enough to respect the automorphism machinery
needed to guarantee A ' B.
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A major open problem has been to determine which subclasses of the c.e. degrees
R (particularly which jump classes Hn and Ln and their complements) are invari-
ant. A class C of c.e. degrees is invariant if it is the set of degrees of sets in some
class C ⊆ E which is invariant under automorphisms of E (e.g. if C is E-definable).
Define Hn = {a ∈ R : a(n) = 0(n+1)}, Ln = {a ∈ R : a(n) = 0(n)}, L0 = {0}, H0

= {0′}, and C = R−C. The degrees in Hn (Ln) are called highn (lown) and the
high1 (low1) degrees are called high (low).

Martin [23] showed that the degrees of maximal c.e. sets are exactly H1. Lachlan
[14] and Shoenfield [25] showed that the degrees of coinfinite c.e. sets with no
maximal supersets are exactly the nonlow2 c.e. degrees L2. Thus, H1 and L2 are
invariant. For the trivial jump classes corresponding to n = 0, L0, L0, and H0

are invariant, while H0 is noninvariant by Theorem 1.2. The following immediate
corollary of Theorem 1.3 answers the invariance question for the downward closed
jump classes for n > 0.

Corollary 1.5. For all n > 0 the downward closed jump classes of c.e. degrees
Lnand Hn are noninvariant.

For the upward closed classes Hn and Ln, n > 0, after the discovery of invariance
of H1 and L2, attention has been focused on L1 because of the important role played
by the low c.e. sets, and researchers had tried unsuccessfully for over 15 years to
find a property defining L1 analogous to the property for L2. However, Harrington
and Soare recently proved the noninvariance of L1 as an immediate corollary of the
following result.

Theorem 1.6 ([13]). There is a nonlow c.e. set D such that every c.e. set A ≤T D
is ∆0

3-automorphic to a low set B.

Corollary 1.7 ([13]). The upward closed jump class L1 is noninvariant.

As in [28, p. 167] let M denote the ideal of c.e. degrees a such that a = 0 or a
is half of a minimal pair. In Corollary 11.9 we shall prove that M is not invariant.

Researchers have tried to classify not only the orbit of a noncomputable c.e.
set A but also its lattice of supersets, denoted by L(A) = {W : A ⊆ W}, or
equivalently L∗(A), the quotient lattice of L(A) modulo the ideal F of finite sets.
Soare [27] proved that if A is a coinfinite low1 c.e. set, then L∗(A) ∼=eff E∗. This
can be extended from low1 to low2 if we replace effective isomorphisms by ∆0

3-
isomorphisms.

Theorem 1.8 (Harrington, Lachlan, Maass, and Soare [7]). If A is a coinfinite
low2 c.e. set, then L∗(A) ∼=∆0

3
E∗.

Theorem 1.8 cannot be extended from L2 to any strictly larger class of c.e.
degrees because Shoenfield proved [25] that every degree a ∈ R − L2 contains an
atomless c.e. set A and hence L(A) 6∼= E . Also one cannot improve Theorem 1.8 to
prove that every low2 c.e. set is automorphic to some low1 set.

Theorem 1.9 ([12]). There is an E-definable property P (X) satisfied by a c.e. set
A which is promptly simple, low2, and such that A is semilow1.5, but such that
P (B) is satisfied by no low1 set B.

It follows from Theorem 1.9 by Maass [19, Theorem 1.2] that if A is as in Theo-
rem 1.9 and B is any promptly simple low1 set, then L∗(A) ∼=eff L∗(B), but A and
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B are not automorphic. The significance is that in order to prove that A and B
are automorphic even if they are promptly simple it does not suffice to prove that
L∗(A) ∼=eff L∗(B) and then to use the prompt simplicity of A and B to satisfy the
hypotheses of the extension theorem apparatus of [28, Chapter XV]. (This stands in
contrast to other results of Maass [18, page 821] that if A and B are both promptly
simple and low, then they are effectively automorphic, or Maass [20] that if A and
B are both hyper-hypersimple and also L∗(A) ∼=∆0

3
L∗(B), then A is automorphic

to B.) In contrast to Theorem 1.1 which produced an incomplete orbit, the next
theorem produces a complete orbit different from that of the creative sets.

Theorem 1.10 ([12]). There is an E-definable property T satisfied by a promptly
simple set A such that for all W, T (W ) implies that K ≤T W .

Theorems 1.3, 1.4, 1.6, and 1.8 all use the ∆0
3-automorphism method. This

method was conceived in 1984 in unpublished work by Harrington who used it to
show that for every c.e. set A, ∅ <T A <T ∅′, there is an r.e. set B automorphic
to A such that B 6≤T A, as announced in [28, p. 379]. The method was further
modified in 1988 to prove Theorem 1.8, and finally developed to the form presented
here by Harrington and Soare in order to prove Theorems 1.3, 1.4, and 1.6 in 1990.

The purpose of this paper is to introduce the ∆0
3-automorphism method in as

general a form as possible, and to use it to prove Theorems 1.2, 1.3, and 9.1.
In §2 and §3 we present the properties required for an automorphism and the
construction necessary to achieve the properties. The Automorphism Theorem 4.2
in §4 states that additional steps may be added to the basic construction (for a
variety of applications in this and subsequent papers) and if they satisfy certain
basic conditions, then the construction will still produce an automorphism. The
Automorphism Theorem is proved in §5 and §6. It will be applied in subsequent
papers [13] and [7] to prove Theorems 1.6 and 1.8.

We assume that A = U0 is a noncomputable c.e. set. In §6 we exploit this
hypothesis by adding Step 6 to the construction in §3. In §7 we add additional

steps to code information into B where B = Û0 is the intended image of A under
the automorphism being constructed. This allows us to state and prove a general
Coding Theorem 7.5 which gives a method for coding information into B while
maintaining B automorphic to A using the Automorphism Theorem 4.2. We use
the Coding Theorem 7.5 to prove Theorem 1.2 (which is Theorem 10.2) in §10 and
Theorem 11.5 in §11.

Of particular interest is the Refined Coding Theorem 7.6 in §7.4 which is a
slight simplification and restatement of the Coding Theorem 7.5 in a form which
is self-contained and can be read and cited in this and subsequent papers without
reading any other section here except §7.4. Here we use it to give short easy proofs
of Theorem 1.3 in §8, and Theorem 9.1 in §9. In our subsequent paper [10] we
use it to prove Theorem 1.4. Thus, it is possible (and perhaps even desirable)
to read this paper by reading §7.4 first followed by §8 and §9, then reading §7.3
for a statement of the Coding Theorem 7.5 followed by §10 and §11 on prompt
and almost prompt sets first taking the coding theorems on faith and suppressing
the automorphism machinery, and later reading the automorphism part. We use
the terms “computably enumerable (c.e.)” and “recursively enumerable (r.e.)”
interchangeably, and likewise “computable” and “recursive”.
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2. The intuition and definitions

2.1. Background. By [28, page 343] building an automorphism of E is equivalent
to building one of E∗, the quotient lattice of E modulo the ideal F of finite sets.
To do this we fix two copies of the natural numbers ω and ω̂. We let variables
x, y, . . . (x̂, ŷ, . . . ) range over ω (ω̂). Normally, we shall specify the definitions and
action for only one side (usually the ω-side) since those for the opposite side will
be entirely dual.

We view the construction of the automorphism Φ as a game between two players
in the sense of Lachlan [15]. Player 1 (whom we call RED) produces two standard
indexings {Un}n∈ω and {Vn}n∈ω of the r.e. sets, where we view Un as being on
the ω-side and Vn on the ω̂-side. Player 2 (whom we call BLUE) responds by

building r.e. sets {Ûn}n∈ω on the ω̂-side and {V̂n}n∈ω on the ω-side. The condition

necessary to show that this correspondence Φ(Un) = Ûn and V̂n = Φ−1(Vn) is an
automorphism is best stated in terms of the following notion of full e-state.

Definition 2.1. Given two sequences of r.e. sets {Xn}n∈ω and {Yn}n∈ω, define
ν(e, x), the full e-state of x with respect to (w.r.t.) {Xn}n∈ω and {Yn}n∈ω, to be
the triple 〈e, σ(e, x), τ(e, x)〉, where

σ(e, x) = {i : i ≤ e & x ∈ Xi}, and

τ(e, x) = {i : i ≤ e & x ∈ Yi}.

To see that Φ is an automorphism it suffices to satisfy the requirement

(∀ν)(∃∞x ∈ ω)[ν(e, x) = ν w.r.t. {Un}n∈ω and {V̂n}n∈ω](1)

⇐⇒ (∃∞ŷ ∈ ŵ)[ν(e, ŷ) = ν w.r.t. {Ûn}n∈ω and {Vn}n∈ω].

Definition 2.2. Given recursive enumerations {Xs}s∈ω and {Ys}s∈ω of r.e. sets X
and Y, define

(i) X \ Y = {z : (∃s)[z ∈ Xs − Ys]},
(ii) X ↘ Y = (X \ Y ) ∩ Y .

2.2. Using a tree T to define the automorphism Φ. In the effective automor-

phism method {Ûn}n∈ω is a recursive sequence of r.e. sets so that Φ has an effective
presentation. For the ∆0

3-automorphism method we combine the ideas of the effec-
tive automorphism method with the tree method of Lachlan [16] as explained in [28,
Chapter XIV]. We shall define in §2.9 a recursive tree T with true path f . For each

n ∈ ω there is some mn ∈ ω such that for every α ∈ T of length mn, Ûα will be a

potential candidate for Ûn and if α ⊂ f , then Uα =∗ Un and Ûα will be the correct

candidate for Ûn. Thus, f will specify the sequence {Ûf�mn}n∈ω which will be the

desired sequence {Ûn}n∈ω. In a tree construction f is not in general recursive but

only ∅′′-recursive, so the sequence {Ûn}n∈ω will only have a ∅′′-recursive (i.e., ∆0
3)

presentation.
We use the usual notation for trees as in [28, page 301]. By coding the intended

nodes we may regard the tree T as a subset of ω<ω. Let [T ] be the set of infinite
paths through T , where h is an infinite path through T if h�n ∈ T for all n. Let
α, β, γ, δ, . . . range over T . Let |α| denote the length of α. Let α ⊆ β (α ⊂ β)
denote that string β extends (properly extends) α. Let λ denote the empty string,
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and α− the predecessor of α if α 6= λ. Let 〈a〉 denote the string consisting of element
a alone. Let α̂β denote the concatenation of string α followed by string β.

Definition 2.3. Let α, β ∈ T .
(i) α is to the left of β (α <L β) if

(∃a, b ∈ ω) (∃γ ∈ T ) [γ̂〈a〉 ⊆ α & γ̂〈b〉 ⊆ β & a < b].

(ii) α ≤ β if α <L β or α ⊆ β.
(iii) α < β if α ≤ β and α 6= β.
(iv) If h ∈ [T ], we say α <L h (h <L α, α < h, h < α) if there exists β ⊂ h such

that α <L β (β <L α, α < β, β < α, respectively).

Note that α ≤ β is a kind of modified Kleene-Brouwer ordering. If α ⊂ β, then
α is a predecessor of β and β is a successor of α. (Thus, we view the tree T as
growing downward with λ as the top node.)

2.3. The α-section Sα, α-region Rα, and r.e. set Yα. We divide the ω-side
into disjoint α-sections, Sα, for α ∈ T . We shall define during the construction in
§3 a function α(x, s) with range T which indicates that x is in section Sα(x,s) at the
end of stage s, and we shall guarantee that α(x) = lims α(s, x) exists. The α-region
Rα consists of all Sγ such that α ⊆ γ. For each stage s we define,

Sα,s = {x : α(x, s) = α},

Rα,s = {x : α(x, s) ⊇ α}, and

Yα,s =
⋃
{Rα,t : t ≤ s}.

Define Sα,∞ = {x : α(x) = α}, and Rα,∞ = {x : α(x) ⊇ α}. An element x will
enter Rα at most once, but x may later leave Rα. Thus, Rα,∞ is a d.r.e. set, but
the sets Yα are r.e. with simultaneous recursive enumeration {Yα,s}α∈T,s∈ω and Yα
consists of those x which enter Rα at some stage. If α ⊂ f , then we shall ensure
that Yα =∗ Rα,∞ so Rα,∞ is r.e. It will follow by §3 (1.2) and (2.2) that if α 6= λ,
then for all x ∈ Yα, x > |α|.

We shall guarantee that for all α ∈ T , α 6= λ,

Yα \ Yα− = ∅, and(2)

α ⊂ f =⇒ Rα,∞ =∗ Yα =∗ ω.(3)

We shall ensure (2) by making x enter Sα− before x enters Rα. Also x will enter
Rα at most once (although x may later leave Rα). During the construction in §3
we shall define a recursive sequence {fs}s∈ω such that f = lim infs fs.

If fs <L α for some s ≥ x we say x is α-ineligible at all stages t ≥ s, and
we insist that x /∈ Sα,t. Hence, Rα,∞ = ∅ for all α with f <L α. Secondly, Yα will
be finite for all α <L f . Finally, Sα,∞ will be finite for all α. These three facts
imply (3).
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2.4. The α-states ν(α, x, s), and lists Eα, Fα,Mα. For conceptual simplicity we
do as little action as possible at each node α ∈ T . If |α| ≡ 1 mod 5 (|α| ≡ 2 mod 5),
we consider one new U set (V set). If |α| ≡ 3 mod 5 (|α| ≡ 4 mod 5), we consider

new α-states ν (ν̂) which may be non-well-resided on Yα (Ŷα). If α ≡ 0 mod 5, we
make no new commitments for the automorphism machinery but we may perform
action for some additional requirement (such as coding information into B for
Theorem 1.3). We shall arrange for all n ∈ ω that for α ⊂ f ,

|α| = 5n+ 1 =⇒ Uα =∗ Un, and(4)

|α| = 5n+ 2 =⇒ Vα =∗ Vn.(5)

We let Uα and Ûα (Vα and V̂α) be undefined if |α| 6≡ 1 mod 5 (|α| 6≡ 2 mod 5). We
let eα (êα) correspond to n in (4) (respectively (5)). Namely, define eλ = êλ = −1
and if |α| ≡ 1 mod 5, then let eα = eα− + 1, and otherwise let eα = eα− . Define
êα similarly with |α| ≡ 2 mod 5 in place of |α| ≡ 1 mod 5. Hence, eα > eα−
(êα > êα−) iff |α| ≡ 1 mod 5 (|α| ≡ 2 mod 5).

Definition 2.4. An α-state is a triple 〈α, σ, τ〉 where σ ⊆ {0, . . . , eα} and τ ⊆
{0, . . . , êα}. The only λ-state is ν−1 = 〈λ, ∅, ∅〉.

The construction in §3 will produce a simultaneous recursive enumeration Uα,s,

Vα,s, Ûα,s, V̂α,s, for α ∈ T and s ∈ ω, of these r.e. sets which we use in the following
definition.

Definition 2.5. (i) The α-state of x at stage s, ν(α, x, s), is the triple

〈α, σ(α, x, s), τ(α, x, s)〉
where

σ(α, x, s) = {eβ : β ⊆ α & eβ > eβ− & x ∈ Uβ,s},

τ(α, x, s) = {êβ : β ⊆ α & êβ > êβ− & x ∈ V̂β,s}.
(ii) The final α-state of x is ν(α, x) = 〈α, σ(α, x), τ(α, x)〉 where σ(α, x) =

lims σ(α, x, s) and τ(α, x) = lims τ(α, x, s).

For each α ∈ T we define the following sets of α-states called lists,

Eα = {ν : (∃∞x)(∃s)[x ∈ Sα,s −
⋃
{Sα,t : t < s} & ν(α, x, s) = ν]}, and

Fα = {ν : (∃∞x)(∃s)[x ∈ Rα,s & ν(α, x, s) = ν]}.
Note that Eα consists of states well visited by elements x when they first enter Rα,
and Fα consists of those states well visited while they remain in Yα so Eα ⊆ Fα.
Each α ∈ T will have an associated listMα (to be defined in §2.8) which is roughly
α’s “guess” at the true Fα such that if α ⊂ f , then Mα = Fα. For α ⊂ f we shall
achieveMα = Fα by ensuring the following properties of Mα,

Eα ⊆Mα,(6)

(a.e. x)[if x ∈ Yα,s, ν0 = ν(α, x, s) ∈Mα,(7)

and RED causes enumeration of x so that

ν1 = ν(α, x, s + 1), then ν1 ∈Mα],
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(a.e. x)[if x ∈ Yα,s, ν0 = ν(α, x, s) ∈ Mα(8)

and BLUE causes enumeration of x so that

ν1 = ν(α, x, s + 1), then ν1 ∈Mα].

(Here (a.e. x) denotes “for almost every x”.) Blue enumeration which satisfies (8) is
called α-legal. Two main constraints on BLUE’s moves will be (6) and (8). Clearly,
(6), (7), and (8) guarantee

Fα ⊆Mα.(9)

During Step 1 of the construction in §3 we shall promptly pull elements x ∈ Yα−,s
into Sα,s+1 in order to ensure

Mα ⊆ Eα.(10)

Hence, by (9), (10), and Eα ⊆ Fα we have

Mα = Fα = Eα.(11)

On the ω̂-side we have dual definitions for the above items by replacing ω, x, Uα,

V̂α by ω̂, x̂, Ûα, Vα respectively. These dual items will be denoted by ν̂(α, x̂, s), Ŝα,

R̂α, Ŷα, Êα, F̂α, and M̂α. We write hats over the α-states, e.g. ν̂1 = ν(α, x̂, s), to
indicate α-states for elements x̂ ∈ ω̂. We shall ensure

M̂α = {ν̂ : ν ∈ Mα},(12)

which implies by (11) that the well-visited α-states on both sides coincide.

Definition 2.6. Given α-states ν0 = 〈α, σ0, τ0〉 and ν1 = 〈α, σ1, τ1〉:
(i) ν0 ≤R ν1 if σ0 ⊆ σ1 and τ0 = τ1.
(ii) ν0 ≤B ν1 if τ0 ⊆ τ1 and σ0 = σ1.
(iii) ν̂0 ≤R ν̂1 if σ̂0 = σ̂1 and τ̂0 ⊆ τ̂1.
(iv) ν̂0 ≤B ν̂1 if σ̂0 ⊆ σ̂1 and τ̂0 = τ̂1.
(v) ν0 <R ν1 (ν0 <B ν1) if ν0 ≤R ν1 (ν0 ≤B ν1) and ν0 6= ν1, and similarly for

ν̂0 <R ν̂1 and ν̂0 <B ν̂1.

The intuition is that if ν0 = ν(α, x, s) and ν0 <R ν1 (ν0 <B ν1), then RED

(BLUE) can enumerate x in the necessaryU sets (V̂ sets) causing ν1 = ν(α, x, s+1).
For ν̂0 and ν̂1 the role of σ and τ is reversed because on the ω̂-side BLUE (RED)

plays the Û sets (V sets), and hence

[ν0 <R ν1 ⇐⇒ ν̂0 <B ν̂1] & [ν0 <B ν1 ⇐⇒ ν̂0 <R ν̂1].(13)

Definition 2.7. Given β ⊆ α ∈ T and an α-state ν0 = 〈α, σ0, τ0〉 or a set Cα of
α-states:

(i) ν0 � β = 〈β, σ1, τ1〉 where we define σ1 = σ0 ∩ {0, . . . , eβ} and we define
τ1 = τ0 ∩ {0, . . . , êβ}.

(ii) ν1 � ν0 (read “ ν0 extends ν1”) if ν0�β = ν1.
(iii) Cα�β = {ν�β : ν ∈ Cα}.
(iv) Given a finite set of α-states, {ν(α, σi, τi) : i ∈ I}, we then define⋃

{ν(α, σi, τi) : i ∈ I} =dfn 〈α, σ, τ〉,

where σ =
⋃
{σi : i ∈ I}, and where we define τ =

⋃
{τi : i ∈ I}.
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The combination of (6)–(11) and their duals together with (12) may cause ad-
ditional upward closure of Mα under ≤B. For example, if eα > eα− (so α builds

Uα and Ûα), suppose ν0 ∈ Mα for some ν0 = 〈α, σ0, τ0〉 with eα ∈ σ0. Hence,

ν̂0 ∈ M̂α by (12). But if for infinitely many ŷ, ν(α, ŷ, s) = ν̂0 and for some s, RED

causes ν(α, ŷ, s + 1) = ν̂1 >R ν̂0 (say by enumerating ŷ in Vβ for some β ⊂ α),

then ν̂1 ∈ M̂α by the dual of (7) and hence ν1 ∈ Mα by (12), and ν0 <B ν1 by

(13) because ν̂0 <R ν̂1. We do not wait for RED to cause ν̂1 ∈ M̂α. Rather in
the following definition we anticipate by now putting all such ν1 ∈ Mα and many
more as well. Indeed for each α which is M-consistent in the following definition
(which includes all α ⊆ f) we put every ν1 in Mα if ν1 is a blue move away from
some ν0 ∈ Mα (i.e., ν0 <B ν1), so long as the blue move from ν0 to ν1 is β-legal,
i.e., ν1�β ∈ Mβ. But by (11) this means we must make all such ν1 well visited on
Rα. Since there is no evidence that RED will actually make the proposed move,
this extreme closure of Mα seems unwarranted and outrageously bold. Step 3 and
Lemma 5.6 prove that it is not.

Definition 2.8. A node α ∈ T is M-inconsistent if eα > eβ, where β = α−, and
there are α-states ν0 <B ν1 such that ν0 ∈ Mα and ν1� β ∈ Mβ but ν1 /∈ Mα.
Otherwise α is M-consistent.

We shall take action in Step 3 of the construction in §3 to ensure that α is
M-consistent if α ⊂ f .

2.5. Non-well-resided α-states and the lists Rα and Bα. Define the set of
non-well-resided α-states,

Kα = {ν1 : ¬(∃∞x)[x ∈ Yα & ν(α, x) = ν1]}.(14)

Likewise define K̂α for the ω̂-side. To satisfy the automorphism requirement (1) we
must show for α ⊂ f that

K̂α = {ν̂ : ν ∈ Kα}.(15)

To achieve (15) note that unlike Eα and Fα of §2.4 Kα is Σ0
3 not Π0

2 so α cannot
guess at Kα directly but only at a certain Π0

2 approximation Nα ⊆ Kα. We divide
Nα into the disjoint union of sets Rα and Bα which correspond to those ν ∈ Nα
which α believes are being emptied by RED and BLUE respectively.

To define Rα and Bα fix α ∈ T , let β = α−, and assume that Rγ , Bγ and their

duals R̂γ , B̂γ have been defined for all γ ⊂ α. We decompose Rα into the disjoint
union,

Rα = Rαα tR<αα , where(16)

R<αα =dfn {ν : ν ∈Mα & ν�β ∈ Rβ}, and(17)

Rαα =dfn Rα −R<αα .(18)

Note that R<αα is determined by Rβ , β ⊂ α, but Rαα may contain new elements and
for α ⊂ f it has the meaning described below in (20). Likewise, let Bα = Bαα tB<αα ,
where B<αα is defined as in (17) but with Bβ in place of Rβ .

If |α| 6≡ 3 mod 5, defineRαα = B̂αα = ∅. If |α| ≡ 3 mod 5, we letMα =Mβ (since
α-states are β-states because eα = eβ and êα = êβ), we define the Π0

2 predicate,

F (β, ν) ≡ (∀x)[[x > |β| & x ∈ Yβ ] =⇒ ν(α, x) 6= ν],(19)
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and we allow Rαα 6= ∅ with the intention that for α ⊂ f ,

Rαα = {ν : ν ∈Mα − (R<αα ∪ B<αα ) & F (β, ν)}.(20)

We define

B̂αα =dfn {ν̂ : ν ∈ Rαα}.(21)

If |α| 6≡ 4 mod 5, define R̂αα = Bαα = ∅. If α ≡ 4 mod 5, we allow R̂αα 6= ∅ (using

the duals of (16)–(20) where e.g. in the dual of (19) we use Ŷβ in place of Yβ), and
we define

Bαα =dfn {ν : ν̂ ∈ R̂αα}.(22)

At most one of Rαα and R̂αα is nonempty so by (22), (21), and (20),

Rαα ∩ Bαα = ∅ & ((Rαα ∪ Bαα) ∩ (R<αα ∪ B<αα ) = ∅),(23)

and hence

Rα ∩ Bα = ∅.(24)

If α ⊂ f , then ν ∈ Rα implies F (α−, ν) and hence

(∀ν ∈ Rα)(∀x ∈ Yα)(∀s)[ν(α, x, s) = ν =⇒ (∃t > s)[ν(α, x, t) 6= ν]].(25)

It will be BLUE’s responsibility to change the α-state of x if ν(α, x, s) ∈ Bα, and
x ∈ Rα. However, Bα ∩Rα = ∅ so if ν(α, x, s) = ν ∈ Rα, then BLUE can wait for
RED to change the α-state of x to meet (25), namely

(∀ν ∈ Rα)(∀x ∈ Rα)(∀s)[if ν(α, x, s) = ν, then(26)

it is an α-admissible move for BLUE to restrain

x from further BLUE enumeration until

(∃t > s)[ν(α, x, s) <R ν(α, x, t)]].

Definition 2.9. A node α ∈ T is R-consistent if

(∀ν0 ∈ Rα)(∃ν1)[ν0 <R ν1 & ν1 ∈ Mα],(27)

and R-inconsistent otherwise.

By applying (26) BLUE will ensure that α is R-consistent for α ⊂ f . Now (27)
(21), and (13) imply for α ⊂ f that

(∀ν̂0 ∈ B̂α)(∃ν̂1)[ν̂0 <B ν̂1 & ν̂1 ∈ M̂α].(28)

By repeatedly applying (28) BLUE can achieve ν̂1 ∈ M̂α − B̂α, namely

(∃ function ĥα)[ĥα : B̂α → (M̂α − B̂α) & (∀ν̂ ∈ B̂α)[ν̂ <B ĥα(ν̂)]].(29)

It is BLUE’s responsibility to move any x̂ ∈ R̂α for which ν(α, x̂, s) = ν̂0 ∈ B̂α
to the target state ν̂1 = ĥα(ν̂0) (and where ĥ is called the target function) so that
BLUE can achieve

(∀x̂ ∈ R̂α)(∀s)[ν(α, x̂, s) ∈ B̂α =⇒ (∃t > s)[ν(α, x̂, t) ∈ M̂α − B̂α]],(30)

and hence BLUE will cause every state ν̂0 ∈ B̂α to be emptied. To achieve (30) on

R̂α it suffices to achieve the following on Ŝγ for each γ ⊇ α,

(∀x̂ ∈ Ŝγ)(∀s)[ν(γ, x̂, s) ∈ B̂γ =⇒ (∃t > s)[ν(γ, x̂, t) ∈ M̂γ − B̂γ ]].(31)
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(For BLUE to achieve (31) from the hypothesis of (30) there is a subtle but

crucial point. Suppose ν0 ∈ Rα so ν̂0 ∈ B̂α. Hence, ν̂′0 ∈ B̂γ for all γ ⊃ α such

that ν̂′0�α = ν̂0. Now by (30) BLUE is required for every x̂ in region R̂α such that

ν(α, x̂, s) = ν̂0 ∈ B̂α to enumerate x̂ in blue sets to achieve ν(α, x̂, t) = ν̂1 >B ν̂0 for

some t > s. However, if x̂ ∈ Ŝγ,s for some γ ⊃ α, then BLUE can only make γ-legal

moves, namely BLUE must ensure that ν(γ, x̂, s) ∈ M̂γ . Hence, on the γ-level if

ν̂′0 = ν(γ, x̂, s) and ν̂′0�α = ν̂0 ∈ B̂α, then ν0 ∈ Rα so ν′0 ∈ Rγ and BLUE needs a
γ-target ν̂′1 >B ν̂′0 for x̂ not merely an α-target ν̂1 >B ν̂0. To obtain this γ-target ν′1,
BLUE can hold some y ∈ Sγ in γ-state ν′0 until, by (26)γ , RED is forced to cause
ν(α, y, t) = ν1 >R ν0, for some t > s, and hence ν(γ, y, t) = ν′1 >R ν

′
0, thus ensuring

that γ is R-consistent and giving a target γ-state ν̂′1 for x̂. This action may have
to be repeated for each of the infinitely many γ ⊇ α, even for those γ <L f . Hence,

(30) constitutes a very strong BLUE constraint on the entire downward cone R̂α.
This procedure for producing an appropriate target j-state ν′1 for j > e when an
e-state ν0 is emptied is taken from the effective automorphism machinery in [28,
Chapter XV], and [26], where it also plays a central role.)

We often refer to the dual of (29) which asserts

(∃ function hα)[hα : Bα → (Mα − Bα) & (∀ν ∈ Bα)[ν <B hα(ν)]],(32)

and which enables us to achieve the dual of (31), namely

(∀x ∈ Sγ)(∀s)[ν(γ, x, s) ∈ Bγ =⇒ (∃t > s)[ν(γ, x, t) ∈Mγ − Bγ ]].(33)

Finally, we have ensured

(∀γ ⊂ f)(∀ν0 ∈Mγ)[(∃<∞x)[x ∈ Yγ & ν(γ, x) = ν0](34)

=⇒ (∃α)γ⊂α⊂f [{ν1 ∈Mα : ν1�γ = ν0} ⊆ Rα ∪ Bα]].

To check (34) fix γ ⊂ f and ν0 ∈ Mγ . By (3) Yγ =∗ ω so if the hypothesis of (34)
holds, then we can choose b such that

(∀x ∈ ω)[x > b =⇒ ν(γ, x) 6= ν0].

Choose α ⊂ f such that α ⊃ γ, |α| > b and |α| ≡ 3 mod 5. Consider any ν1 ∈Mα

such that ν1�γ = ν0. If ν1 /∈ R<αα ∪B<αα , then F (α−, ν1) holds so ν1 ∈ Rαα by (20),
and hence ν1 ∈ Rα by (16).

Equations (21), (25), (30), (34) and their duals guarantee (15).

2.6. Verifying the automorphism requirement (1). We shall arrange that
limα⊂f eα =∞. By (4) and (5) the sets {Uα}α⊂f and {Vα}α⊂f constitute skeletons
for {Wn}n∈ω. By (11), its dual, and (12) we know that the well-visited α-states on
the ω-side and ω̂-side coincide. By (15) the non-well-resided α-states also coincide
so (1) is satisfied. The construction in §3 and verification in §5 will demonstrate
that the equations of §2.3, §2.4, and §2.5 are satisfied. First we need a few more
definitions in §2.8 and §2.9.

2.7. Splitting Sα into S0
α and S1

α. We divide the α-section Sα into two subsec-
tions S0

α and S1
α. For k ∈ {0, 1} let Skα,s denote the set of elements x ∈ Sα,s which lie

in Skα at the end of stage s. The elements x ∈ S0
α may be appointed as α-witnesses

(e.g. the position of an α-coding marker), and may require special enumeration into
or restraint from certain blue sets to meet certain additional requirements (such as
making B high) beyond the automorphism requirements. The other elements of
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Sα, namely x ∈ S1
α, are available to be moved into Sγ for any γ ⊃ α as in §3. For

k ∈ {0, 1}, define

Ekα = {ν : (∃∞x)(∃s)[x ∈ Skα,s −
⋃
{Skα,t : t < s} & ν(α, x, s) = ν]}.(35)

We shall arrange that the stream of elements entering Sα is split into two equivalent
streams entering S0

α and S1
α so that Eα = E0

α = E1
α . Similarly, we define

R1
α,s = {x : x ∈ S1

α,s or (∃γ ⊃ α)[x ∈ Sγ,s]}, and(36)

Y 1
α,s =

⋃
{R1

α,t : t ≤ s}.(37)

We shall arrange that S0
α,∞, the set of permanent residents of S0

α, is finite. Thus,

it will suffice to use R1
α,s and Y 1

α,s (rather than the slightly larger Rα,s and Yα,s) in
§2.8 and Steps 1 and 2 of the construction in §3, since the former are the elements
truly available to those γ ⊃ α.

2.8. The set F+
β and the definition of Mα. In §2.4 we said that every α ∈ T

would have an associated setMα such thatMα = Fα if α ⊂ f . However, although
this is the property we want Mα to have, we cannot simply define Mα to be α’s
guess at Fα because that definition would be circular. Rather we must define here
a certain set F+

β which depends only on β, and then letMα be α’s guess at F+
β so

that Mα = F+
β (= Fα) for α ⊂ f .

Fix α ∈ T such that eα > eβ for β = α−. Define the r.e. set Zeα =
⋃
s Zeα,s

where

Zeα,s+1 =dfn {x : x ∈ Ueα,s+1 & x ∈ Y 1
β,s}.(38)

Define the α-state function ν+(α, x, s) exactly as for ν(α, x, s) in Definition 2.5 but
with Zeα,s in place of Uα,s.

Define

F+
β = {ν : (∃∞x)(∃s)[x ∈ Y 1

β,s & ν+(α, x, s) = ν]},(39)

k+
β = min{y : (∀x > y)(∀s)(40)

[[x ∈ Y 1
β,s & ν+(α, x, s) = ν1] =⇒ ν1 ∈ F+

β ]}.

If eα > eβ , we also define F̂+
β = {ν̂ : ν ∈ F+

β }. (Note that Zeα and hence F+
β

and k+
β depend only upon β not α and thus α can make guesses Mα and kα for

F+
β and k+

β .)

If êα > êβ , we first define F̂+
β and k+

β using the duals of (39) and (40) (with Ŷβ,s,

Vêα , Ẑêα , and ν+(α, x̂, s) in place of Yβ,s, Ueα , Zeα , and ν+(α, x, s), respectively),

and then we define F+
β = {ν : ν̂ ∈ F+

β }. (Note that there is no k̂+
β , only k+

β .)

Every α ∈ T will have associated items Mα and kα such that Mα = F+
β and

kα = k+
β for α ⊂ f . We allow x to enter Yα only if x > kα. If eα = eβ and êα = êβ,

we define F+
β = Fβ , F̂+

β = F̂β , and k+
β = kβ . If

(∃x)(∃s)[x ∈ Yα,s & ν(α, x, s) /∈Mα],(41)

then we say that α is provably incorrect at all stages t ≥ s and we ensure that
α 6⊂ f .
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2.9. The definition of the tree T .

Definition 2.10. We say that α ∈ T is consistent if α is M-consistent (Defini-
tion 2.8), R-consistent (Definition 2.9), and also C-consistent (Definition 6.3).

Note that, by clause (i) in the following Definition 2.11 of T ,

β ∈ T =⇒ [β inconsistent ⇐⇒ β is a terminal node on T ].(42)

We shall show that if α ⊂ f , then α is consistent, and therefore limα⊂f eα = ∞,
so the argument of §2.6 applies.

Definition 2.11. Put λ ∈ T and define Mλ = Rλ = Bλ = ∅, and kλ = eλ =
êλ = −1. If β ∈ T , we put α = β̂〈Mα,Rα,Bα, kα〉 in T providing the following
conditions hold:

(i) β is consistent (as defined in Definition 2.10),
(ii) Mα is a set of α-states, Rα ⊆Mα, Bα ⊆Mα, and Rα ∩ Bα = ∅,
(iii) Mα�β ⊆Mβ,
(iv) [eα = eβ & êα = êβ] =⇒ Mα =Mβ ,
(v) R<αα =dfn {ν ∈Mα : ν�β ∈ Rβ} ⊆ Rα,
(vi) B<αα =dfn {ν ∈ Mα : ν�β ∈ Bβ} ⊆ Bα,
(vii) Rαα =dfn Rα −R<αα 6= ∅ =⇒ |α| ≡ 3 mod 5,
(viii) Bαα =dfn Bα − B<αα 6= ∅ =⇒ |α| ≡ 4 mod 5.

In addition, each α ∈ T has associated dual sets M̂α, R̂α, and B̂α which are
determined fromMα, Bα, and Rα by (12), (22), and (21), respectively. Also α has
associated integers eα and êα (depending only on |α|) as defined at the beginning
of §2.4. (We identify the finite object 〈Mα,Rα,Bα, kα〉 with an integer under some
effective coding so we may regard T ⊆ ω<ω.)

Definition 2.12. The true path f ∈ [T ] is defined by induction on n. Let β = f�n
be consistent. Then f� (n+ 1) is the <L-least α ∈ T , α ⊃ β, of length m = n + 1
such that:

(i) m ≡ 1 mod 5 =⇒ Mα = F+
β & kα = k+

β ,

(ii) m ≡ 2 mod 5 =⇒ M̂α = F̂+
β & kα = k+

β ,

(iii)

m ≡ 3 mod 5 =⇒
[Rαα = {ν : ν ∈Mα − (R<αα ∩ B<αα ) & F (β, ν)}
& B̂αα = {ν̂ : ν ∈ Rαα}],

(iv)

m ≡ 4 mod 5 =⇒
[R̂

α

α = {ν̂ : ν̂ ∈ M̂α − (R̂<αα ∪ B̂<αα ) & F̂ (β, ν)}
& Bαα = {ν : ν̂ ∈ R̂αα}],

(v) unless otherwise specified in (i)–(iv), Mα, Rα, Bα, and kα take the values
Mβ , Rβ , Bβ , and kβ , respectively.

For a consistent β = f�n, note that F+
β is just a finite set of states and k+

β is an
integer, so clearly α exists. We shall prove that if α ⊂ f , then α is consistent, so the
true path f exists and is infinite. Note that each of the conditions in Definition 2.12
is Π0

2. Hence, there is a recursive collection of r.e. sets {Cα}α∈T such that α ⊂ f
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iff |Cα| = ∞. Fix a simultaneous recursive enumeration {Cα,s}α∈T,s∈ω which will
be used in §3 to define a recursive sequence {fs}s∈ω such that f = lim infs fs.

Remark 2.13. It does not hurt the present construction if we expand the tree
T to include other components for action which will not interfere with the auto-
morphism construction. For example, in [10] we modify the tree T by putting
α = β̂〈Mα,Rα,Bα, kα, nα〉 in T providing β ∈ T , nα ∈ ω, and conditions (i)–
(viii) of Definition 2.11 hold as before. The Definition 2.12 is the same but with a
new clause (vi) which asserts that nα must have a certain property depending on
β.

To ensure that Mα ⊆ Eα for (10) we have a list L to be defined in §3. Very
roughly when α ⊂ fs we add to the bottom of L an (unmarked) α-entry of the form
〈α, ν1〉 for each ν1 ∈Mα. At some later stage t+1 > s if we see some x ∈ Yβ,t−Yα,t
such that ν+(α, x, t) = ν1 and ν(α, x, t)� β = ν1� β, then (under Step 1 of §3) we
move x to Sα, enumerate x in Uα,t+1 if necessary so that ν(α, x, t+1) = ν1, and we
mark the α-entry 〈α, ν1〉 on L. When each α-entry 〈α, ν1〉 on L has been marked we
say that L has been α-marked, and we repeat the process by adding new (unmarked)
entries 〈α, ν1〉 to L when next α ⊂ fv. We define m(α, s) to be the number of times
L has been α-marked at stages ≤ s, and we prove that limsm(α, s) =∞ for α ⊂ f .
Let Ls denote that portion of L defined by the end of stage s.

3. The construction

To initialize node α means: to remove every x ∈ Sα,s (x̂ ∈ Ŝα,s), and put x in

S1
β (x̂ in Ŝ1

β) for β = α ∩ fs+1 (where α ∩ δ denotes the longest γ such that γ ⊆ α

and γ ⊆ δ); and if x (x̂) is an α-witness as explained in §7, then cancel it as an
α-witness.

We present in this section Steps 1–5 for the construction and a final Step 11
at which we define fs+1. (Steps 1̂–5̂ are the obvious duals to Steps 1–5, and will
not be stated. There is no dual of Step 11.) These properties will produce the
automorphism. In later sections we may add additional Steps n (n̂), 5 < n < 11,
to achieve additional properties.

Stage s = 0. For all α ∈ T define Uα,0 = Vα,0 = Ûα,0 = V̂α,0 = ∅, and define

m(α, 0) = 0. Define Yλ,0 = Ŷλ,0 = ∅, and f0 = λ.
Stage s + 1. Find the least n < 11 such that Step n applies to some x ∈ Yα,s,
and perform the indicated action. If there is no such n, then likewise find the

least n < 11 such that Step n̂ applies to some x̂ ∈ Ŷα,s, and perform the indicated
action. If none of these steps applies, then apply Step 11, and go to stage s+ 1. (It
is important that these steps be performed in the indicated order.)

In the following Steps 1–5 (Steps 1̂–5̂) we let α ∈ T , α 6= λ, be arbitrary, let

β = α−, and let x ∈ Yλ,s (x̂ ∈ Ŷλ,s) be arbitrary.
Step 1. (Prompt pulling of x from R1

β to Sα to ensureMα ⊆ Eα.) Suppose 〈α, ν1〉
is the first unmarked entry on the list Ls such that the following conditions hold
for some x, where ν1 = 〈α, σ1, τ1〉,

(1.1) x ∈ R1
β,s − Yα,s,

(1.2) x > kα and x > |α|,
(1.3) x is α-eligible (i.e., ¬(∃t)[x ≤ t ≤ s & ft < α]),
(1.4) ¬[α(x, s) <L α],
(1.5) x > m(α, s),
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(1.6) ν(β, x, s) = ν1�β,
(1.7) eα > eβ =⇒ ν+(α, x, s) = ν1.

Action. Choose the least x corresponding to 〈α, ν1〉, and do the following.
(1.8) Mark the α-entry 〈α, ν1〉 on Ls, and suppose this is the kth occurrence of

〈α, ν1〉 on Ls.
(1.9) Move x to Siα, where k ≡ i mod 2.
(1.10) If eα > eβ and eα ∈ σ1, then enumerate x in Uα,s+1.

(1.11) If êα > êβ and êα ∈ τ1, then enumerate x in V̂α,s+1. (Hence, ν(α, x, s+1) =
ν1. Also ν1 ∈ Mα because 〈α, ν1〉 ∈ L implies ν1 ∈ Mα.)

(1.12) If α <L α(x, s), then for every γ such that α <L γ, cancel all γ-witnesses
if any exist, where the latter are defined in §7.
Step 2. (Move x from S1

β to S1
α so Yα =∗ ω.) Suppose there is an x such that,

(2.1) x ∈ S1
β,s,

(2.2) x > |α| and x > kα,
(2.3) x is α-eligible,
(2.4) x < m(α, s),
(2.5) α is the <L-least γ ∈ T with γ− = β satisfying (2.1)–(2.4).

Action. Choose the least pair 〈α, x〉 and
(2.6) move x from S1

β to S1
α.

(In Step 2 we need (2.4) so Yα will not grow while α is waiting for another prompt
pulling under Step 1.)
Step 3. (For αM-inconsistent to ensure α 6⊂ f .) Suppose for α ∈ T there exists
x such that,

(3.1) eα > eβ ,
(3.2) x ∈ Sα,s,
(3.3) ν(α, x, s) = ν0 ∈Mα,
(3.4) (∃ν1)[ν0 <B ν1 & ν1�β ∈Mβ & ν1 /∈Mα].

Action. Choose the least such pair 〈α, x〉 and,

(3.5) enumerate x in V̂δ,s+1 for all δ ⊂ α such that eδ ∈ τ1. (This action causes
ν(α, x, s+ 1) = ν1. Hence, α is provably incorrect at all stages t ≥ s+ 1 so α 6⊂ f .)
Step 4. (Delayed RED enumeration into Uα.) Suppose x ∈ Rα,s and

(4.1) eα > eβ ,
(4.2) x /∈ Uα,s,
(4.3) x ∈ Zeα,s =dfn Ueα,s ∩ Yβ,s−1.

Action. Choose the least such pair 〈α, x〉 and,
(4.4) enumerate x in Uα,s+1.

Step 5. (BLUE emptying of state ν ∈ Bα.) Suppose for α ∈ T there exists x such
that either Case 1 or Case 2 holds.
Case 1. Suppose

(5.1) ν(α, x, s) = ν0 ∈ Bα, say ν0 = 〈α, σ0, τ0〉,
(5.2) x ∈ Sα,s,
(5.3) α is M-consistent and R-consistent.

Action. Choose the least such pair 〈α, x〉. Let ν1 = hα(ν0) >B ν0, where hα is a
target function satisfying (32). In §6 and thereafter we shall assume that hα also

satisfies (46). In §7 and thereafter we shall assume that ĥα also satisfies (54). Let
ν1 = 〈α, σ1, τ1〉.

(5.4) Enumerate x ∈ V̂δ for all δ ⊆ α such that êδ > êδ− and also eδ ∈ τ1 − τ0.
(Hence, ν(α, x, s+ 1) = ν1.)
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Case 2. Suppose that (5.1) holds and
(5.5) x ∈ Sγ,s where γ− = α, and
(5.6) γ is either M-inconsistent or R-inconsistent.

Action. Perform the same action as in Case 1 to achieve ν(α, x, s + 1) = ν1.
(In (5.6) note that by (42) γ ∈ T implies (5.3) for α = γ−, so hα exists in

Case 2. Note in Step 5 Case 2 that the enumeration may not be γ-legal, i.e.,
perhaps ν(γ, x, s + 1) /∈ Mγ , but this will not matter because we shall prove that
γ 6⊂ f if γ is inconsistent. Hence, it only matters that the enumeration is α-legal,
i.e., ν(α, x, s) ∈ Mα.)
Step 11. (Defining fs+1, m(α, s+ 1), Ls+1 and Yλ,s+1.)
Substep 11A. (Defining fs+1.) First we define δt by induction on t for t ≤ s+ 1.
Let δ0 = λ. Given δt let v ≤ s be maximal such that δt ⊆ fv if v exists and let
v = 0 otherwise. (Let {Cγ,v}γ∈T,v∈ω be the simultaneous recursive enumeration
specified at the end of §2.9.) Choose the ≤L-least α ∈ T such that α− = δt and
Cα,s 6= Cα,v if α exists and define δt+1 = α. If α does not exist, define δt+1 = δt.
Finally, define fs+1 = δs+1.
Substep 11B. (Defining m(α, s + 1), Ls+1, and their duals.) For every α ⊆ fs+1

if every α-entry 〈α, ν〉 on Ls and every α-entry 〈α, ν̂〉 on L̂s is marked, we say that
the lists are α-marked and we

(11.1) define m(α, s+ 1) = m(α, s) + 1, and

(11.2) add to the bottom of list Ls (L̂s) a new (unmarked) α-entry 〈α, ν〉 (〈α, ν̂〉)
for every such α and every ν ∈ Mα. Let the resulting list be Ls+1(L̂s+1).

If the lists are not both α-marked, then let m(α, s + 1) = m(α, s), Ls+1 = Ls
and L̂s+1 = L̂s.
Substep 11C. (Emptying Rα to the right of fs+1.) For every α such that fs+1 <L
α, initialize α.
Substep 11D. (Moving from S0

α to S1
α.) If currently x is in S0

α but x is not an
α-witness, then move x to S1

α.
(Steps n (n̂), 5 < n < 11, to be defined in later sections, will determine when

x ∈ S0
α starts and stops being an α-witness. Up through the present section there

are no α-witnesses so every x ∈ S0
α is eventually moved to S1

α under Substep 11D,
unless x is first removed from Sα by some other step such as Step 11C or Step 1β
for β <L α.)

Substep 11E. (Filling Yλ and Ŷλ.) Choose the least x /∈ Yλ,s (x̂ /∈ Ŷλ,s) and x < s.

Put x in Sλ (x̂ in Ŝλ).

For each x ∈ Yλ,s+1 (x̂ ∈ Ŷλ,s+1) let α(x, s + 1) (α(x̂, s+ 1)) denote the unique
γ such that x ∈ Sγ,s+1. This completes stage s+ 1 and the construction.

(Note that after each application of Step 11, the other Steps 1–5 and Steps 1̂− 5̂
can apply only finitely often until the next application of Step 11 as we prove in
Lemma 5.6.)

4. The Automorphism Theorem

From now on we assume that A = U0 is a nonrecursive r.e. set. In §6 we introduce
Step 6 to exploit this hypothesis. Step 6 together with Steps 1–5, Steps 1̂–5̂, and
Step 11 of §3 constitute the basic construction designed to ensure that we achieve
an automorphism. We may also want to add in later sections of this paper (and in
subsequent papers) certain additional Steps n (n̂), 6 < n < 11, to ensure special

properties about B = Û0, such as B is high or D ≤T B, for a given set D. We
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now wish to isolate certain minimal conditions which these additional steps must
satisfy so that the resulting construction will still produce an automorphism.

Convention 4.1. From now on Step n (n̂) denotes one of these new steps for
6 ≤ n < 11. In addition we assume that given finitely many elements in Yλ,s,
Step n can apply for at most finitely many stages until another element is put in
Yλ, and similarly for Step n̂.

Theorem 4.2 (Automorphism Theorem). Assume that A = U0 is a nonrecursive

r.e. set. Suppose r.e. sets {Uα}α∈T , {Vα}α∈T , {Ûα}α∈T , and {V̂α}α∈T are enu-

merated by the construction in §3 using Steps 1–5, Steps 1̂–5̂, and Step 11 of §3,
Step 6 of §6, and possibly also some additional Steps n (n̂), 6 < n < 11, such that
for all n, 6 ≤ n < 11, Steps n (n̂) satisfy the following conditions P1–P4 (and their

duals P̂1–P̂4 for Ŝα). Then the correspondence Uα ↔ Ûα and V̂α ↔ Vα, α ⊂ f ,
defines an automorphism of E.

(P1) If α is R-inconsistent or M-inconsistent, then Step n does not apply to
α. If α is C-inconsistent, then Step n applies to α only if n = 6. (Step 6 and
C-inconsistent are defined in §6.)

(P2) Step n cannot enumerate x in any red set Uα. If Step n at stage s + 1

enumerates x in a blue set V̂α, then x ∈ Rα,s, and this enumeration must be α-
legal, i.e., must satisfy (8), so that ν(α, x, s+ 1) ∈ Mα.

(P3) Step n cannot move x from Sα to Sγ for α 6= γ, or from S1
α to S0

α, but can
only appoint some x already in S0

α as an α-witness, and can later cancel x as an
α-witness and simultaneously move x from S0

α to S1
α.

(P4) For all α, S0
α,∞ =∗ ∅.

The importance of the Automorphism Theorem 4.2 is that from now on we need
only verify that the new Steps n (n̂), 6 ≤ n < 11, satisfy conditions (P1)–(P4) (and
their duals) and we need not mention anything about automorphisms explicitly.
For our purposes in this paper conditions (P1)–(P3) for some new Step n will be
immediately verifiable by inspection, and (P4) will be true by Lemma 7.2. On
the other hand the new Steps n (n̂) have great latitude to enumerate and restrain
elements, subject primarily to (P2), Step 5, (P4), and their duals. Namely, suppose
that Step n operates on Sα, where α ⊂ f , and that after some stage vα, α is not
initialized, and no β <L α acts.

First, Step n may cause certain elements x ∈ Sα (not just x ∈ S0
α ) to be

enumerated in various blue sets, so long as this enumeration is α-legal by (P2).
Second, Step n may cause certain elements x ∈ S0

α to become α-witnesses, i.e.,
the positions of α-markers, whereupon by holding x as an α-witness Step n may

restrain x from leaving S0
α, and hence restrain x from being enumerated in V̂γ

for any γ ⊃ α, and may also restrain x from entering any further blue sets V̂γ ,
γ ⊆ α, subject only to Step 5. Note that Steps 1 and 2 cannot apply to x ∈ S0

α

after stage vα, and Step 3 only applies to an α which is M-inconsistent but such
α 6⊂ f by Lemma 5.9. Hence, only Steps 4 and 5 from the basic Steps 1–5, and
11, can apply to x ∈ S0

α after stage vα. The latter will still hold after we add to
the basic construction Step 6 in §6, because Step 6 only applies to an α which is
C-inconsistent and such α 6⊂ f by Lemma 6.4.

An element x enters S0
α at most once (when it is first pulled to Sα by Step 1),

x becomes an α-witness at most once, and if x ceases to be an α-witness, then x
moves from S0

α to S1
α. Finally, the new steps must satisfy (P4), that S0

α,∞ =∗ ∅,
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so that at most finitely many elements are permanently restrained in Sα and thus
almost every x ∈ Sα is available to be passed to Sγ for γ ⊃ α. Hence, the new steps
will not interfere with the basic construction which produces an automorphism.

We shall prove the Automorphism Theorem 4.2 in §5 and §6.

5. The verification

All the lemmas of §5 have obvious duals established by the analogous proofs
except for Lemmas 5.2, 5.6, 5.7, and 5.10, which either do not require duals, or
in which the dual case is explicitly mentioned already. The construction and (P2)
clearly establish the following two lemmas.

Lemma 5.1. At stage s+ 1,
(i) if x enters Rα, α 6= λ, then Step 1 or Step 2 applies to α and x;
(ii) if x moves from Sα to Sδ, then one of the following steps must apply to

x: Step 1δ for δ <L α or δ− = α; Step 2δ for δ such that δ− = α; or Step 11α
Substep C applying to α, so fs+1 <L α; and in the second two cases x enters S1

δ ;
(iii) if x ∈ Sα,s is enumerated in a red set Uα at stage s + 1, then Step 1 or

Step 4 must apply to x;

(iv) if x ∈ Sα,s is enumerated in a blue set V̂α, then Step 1, Step 3, Step 5, or
Step n must apply to x.

Lemma 5.2 (True Path Lemma). f = lim infs fs.

Proof. This is immediate from the definitions of fs in Step 11A, of f in Defini-
tion 2.12, and of Cα in §2.9.

We now verify the properties we stated in the three subsections §2.3, §2.4, and
§2.5, and we divide the lemmas here into three corresponding subsections. For each
lemma there are obvious dual lemmas with similar proofs unless we state and prove
the dual explicitly.

5.1. The lemmas of motion, Yα, and α(x, s).

Lemma 5.3. For all α ∈ T ,
(i) f <L α =⇒ Rα,∞ = ∅,
(ii) α <L f =⇒ Yα =∗ ∅,
(iii) α ⊂ f =⇒ Y<α =dfn

⋃
{Yδ : δ <L α} =∗ ∅.

Proof. (i) Given x choose s > x such that fs <L α. By Step 11C Rα,s = ∅. Now x
is γ-ineligible for all t ≥ s and all γ ⊇ α so x /∈ Sγ,t and hence x /∈ Rα,t by (1.3)
and (2.3).

(ii) Assume α <L f . Hence, |Cα| < ∞, so α ⊂ fs for finitely many s and there
are only finitely many α-entries 〈α, ν〉 on the list L under (11.2). Hence, finitely
many x enter Sα under Step 1 because every such x must mark some unmarked
α-entry on L. Thus, m(α) =dfn limsm(α, s) <∞ since L will be α-marked at most
finitely often. Hence, by (2.4) Step 2 moves only finitely many x into Rα. But each
x enters Rα only under Step 1 or Step 2 so Yα =∗ ∅.

(iii) Immediate by (ii) since there are finitely many δ <L α such that δ− =
α−.

Lemma 5.4. For every α ∈ T if α 6= λ and β = α−, then

(i) Yα \ Yβ = ∅ and Yα ⊆ Yβ,
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(ii) (∀x)(∃≤1s)[x ∈ Rα,s+1 −Rα,s],
(iii) (∀x)(∃≤1s)[x ∈ S0

α,s+1 − S0
α,s],

(iv) Uα \ Yα = V̂α \ Yα = ∅,
(v) α ⊂ f =⇒ (∃vα)(∀x)(∀s ≥ vα)[x ∈ Rα,s =⇒ (∀t ≥ s)[x ∈ Rα,t]].

Proof. (i) Suppose x ∈ Yα,s+1 − Yα,s. Then at stage s + 1 either Step 1 or Step 2
applies to x and α so x ∈ Yβ,s by (1.1) and (2.1).

(ii) Suppose x ∈ Rα,s+1−Rα,s and x ∈ Rα,t−Rα,t+1 for some t > s. Then x < s
by Step 11E. Hence, by Lemma 5.1(ii) at stage t + 1 either: (1) Step 11C applies
to α and x; or (2) Step 1 applies to δ and x for some δ <L α, δ = α(x, t + 1). If
(1), then fs+1 <L α so x is γ-ineligible at all stages v ≥ t + 1 and all γ ⊇ α, and
x can never reenter Rα because of (1.3) and (2.3). If (2), then by Lemma 5.1(ii),
(1.4), and induction on v ≥ t, either for all v ≥ t, α(x, v) <L α so x /∈ Rα,v, or else
Step 11C applies at stage v + 1 to x and some η <L α, η = α(x, v), in which case
the argument for (1) shows that x /∈ Rα,w, for all w ≥ v.

(iii) By (ii), Lemma 5.1, and Step 1 (1.1) and (1.9), x can enter S0
α only when x

first enters Sα and if x ever leaves S0
α, then it can never reenter.

(iv) Enumeration of x in Uα,s+1 (V̂α,s+1) takes place only under Step 1, in which
case x ∈ Yα,s+1, or under Step 4 (respectively, Step 3, Step 5, or Step n), in which
case x ∈ Yα,s already by (P2).

(v) Assume α ⊂ f . Choose vα such that for s ≥ vα, fs 6<L α, and no β <L α
acts at stage s, and hence Y<α,s = Y<α. Thus, if x ∈ Rα,s for s ≥ vα, then x
cannot be pulled to Sγ for γ <L α by Step 1γ and x cannot be removed from Rα
by Step 11C so x must remain in Rγ,t for all t ≥ s.

Lemma 5.5. For all x,
(i) α(x) =dfn lims α(x, s) exists, and

(ii) x is enumerated in at most finitely many r.e. sets Uγ, V̂γ , and hence for
α = α(x),

ν(α, x) =dfn lims ν(α, x, s) exists.

Proof. (i) By (1.2), (2.2), and Lemma 5.1(i), x ∈ Sα,s implies x > |α|. Fix x, let
γ = f � x and choose s > vγ (as defined in Lemma 5.4(v)) such that γ ⊂ fs. Let
δ0 = α(x, s). Clearly, δ0 <L γ or δ0 ⊆ γ by Step 11C. Also by induction on t ≥ s,
if δ1 = α(x, t) and δ2 = α(x, t + 1), then δ2 <L δ1 or δ2 ⊃ δ1 because Step 1 or
Step 2 must have applied to δ1 and x at stage t + 1 since Step 11C cannot apply
to x after stage vγ . But there is no infinite sequence {δ0, δ1, . . . } such that for all
k, δk+1 <L δk or δk+1 ⊃ δk.

(ii) By (i) choose tx ≥ vγ such that α(x, s) = α for all s ≥ tx. Then ν(α, x, s) ⊆
ν(α, x, s+ 1) for all s ≥ tx. Hence,

ν(α, x) =
⋃
{ν(α, x, s+ 1) : s ≥ tx},

where this union is defined as in Definition 2.7(iv).

Lemma 5.6. (i) Step 11 applies infinitely often.
(ii) If the hypotheses of some Step 1–5, n (Step 1̂–5̂, n̂) remain satisfied, then

that step eventually applies.

Proof. (i) If Step 11 applies at stage s, then the finitely many x ∈ Yλ,s (x̂ ∈ Ŷλ,s)
remain the same until the next application of Step 11. Each later application of



636 LEO HARRINGTON AND R. I. SOARE

Step 1–5 (Step 1̂–5̂) chooses some x (x̂) to change position or to be enumerated in

some set Uγ or V̂γ (Ûγ or Vγ). By Lemma 5.5, this can happen at most finitely

often for each x ∈ Yλ,s (x̂ ∈ Ŷλ,s). By Convention 4.1 Steps n or n̂, n ≥ 6, can
apply at most finitely often until the next application of Step 11. Hence, Step 11
applies at some stage t > s.

(ii) Step 11 cannot apply at stage t if the hypotheses for some Step 1–5, n (Step
1̂–5̂, n̂) are satisfied because the latter steps are performed before Step 11 by the
basic construction in §3.

5.2. Exact covering and the lemmas for Eα, Fα and Mα.

Lemma 5.7. If α ⊂ f , α 6= λ, and β = α−, then
(i) (∀γ <L f)[m(γ) =dfn limsm(γ, s) <∞],
(ii) m(α) =dfn limsm(α, s) =∞,
(iii) Eα ⊇Mα = F+

β ,

(iv) Êα ⊇ M̂α = F̂+
β , and

(v) Eα = E0
α = E1

α and Êα = Ê0
α = Ê1

α.

Proof. (i) If γ <L f , then γ ⊂ fs for finitely many s, so finitely many γ-entries are
ever added to L and hence L is γ-marked finitely often and m(γ) <∞.

(ii) Fix α ⊂ f , α 6= λ, and let β = α−. Now α ⊂ f implies Mα = F+
β and

M̂α = F̂+
β . Suppose for a contradiction that m(α) < ∞, say m(α, s) = m0 for all

s ≥ s0.

Claim 1. Every α-entry 〈α, ν1〉 on L (〈α, ν̂1〉 on L̂) is eventually marked.

Proof. Suppose that some α-entry 〈α, ν1〉 on L is never marked. Hence, by Step 11B
there are only finitely many α-entries on L. Choose s1 ≥ s0 such that every α-entry
on L and every entry on L preceding 〈α, ν1〉 which will ever be marked is marked by
stage s1, Y<α,s1 = Y<α, and for all x ≤ m0, x ∈ Yα,s1 iff x ∈ Yα. Hence, Yα = Yα,s1
because no x > m0 can later enter Rα under Step 2 because of (2.4) and no x can
later enter Rα under Step 1 because by (1.8) such an x must cause an (unmarked)
α-entry on L to be marked.

Now ν1 ∈ Mα since 〈α, ν1〉 ∈ L. Also Mα = F+
β since α ⊂ f . Hence, by the

definition of F+
β in (39) of §2.8,

(∃∞x)(∃s > s1)[x ∈ Y 1
β,s & ν+(α, x, s) = ν1].

By the choice of s1 almost every such x also satisfies (1.1)–(1.7). Thus, some such x
is moved to Sα under Step 1 at some stage s+ 1 > s1 and the entry 〈α, ν1〉 is then
marked, contrary to hypothesis. This establishes the claim for L, and the same

proof also establishes it for L̂.

To complete the proof of (ii) use the claim to find s > s0 such that α ⊂ fs+1 and

every α-entry on Ls and L̂s is marked. Now by Step 11B, m(α, s+ 1) > m(α, s) =
m0 contrary to the choice of s0.

(iii) By (ii) and (11.2) for every ν1 ∈ Mα, infinitely often an entry 〈α, ν1〉 is
added to L and later marked when some x ∈ Sα,s −

⋃
{Sα,t : t < s} such that

ν(α, x, s) = ν1. Hence, ν1 ∈ Eα.

(iv) Likewise Êα ⊇ M̂α = F̂+
β by the same proof as in (iii).
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(v) By (iii), for every ν1 ∈Mα = Eα, infinitely often an entry 〈α, ν1〉 is added to L
and later marked when some x ∈ Sα,s −

⋃
{Sα,t : t < s} such that ν(α, x, s) = ν1.

By Step 1 (1.8) and (1.9), infinitely many such x enter Siα, i = 0, 1, and hence
Eα = E0

α = E1
α.

Lemma 5.8. α ⊂ f =⇒ Rα,∞ =∗ Yα =∗ Yλ = ω.

Proof. By Lemma 5.6(i) Step11E must eventually put every element x ∈ ω into
Yλ. By induction we may assume Rβ,∞ =∗ Yβ =∗ ω, for β− = α. By Lemma 5.7
m(α) =∞ and m(γ) <∞ for all γ <L α with γ− = β.

By Lemma 5.3, Y<α =∗ ∅ and almost every x ∈ Rβ not yet in Rα must eventually
lie in Sβ , and hence in S1

β, because S0
β,∞ =∗ ∅ by (P4). Hence, almost every x ∈ Rβ

not yet in Rα must eventually satisfy (2.1)–(2.5) and must eventually move to Sα
by (2.6). By Lemma 5.4(v) almost every such x will remain in Rα forever.

Lemma 5.9. α ⊂ f =⇒ α is M-consistent.

Proof. Let α ⊂ f and β = α−. Assume for a contradiction that α is not M-
consistent. Then eα > eβ and there exist ν0 ∈ Mα, ν1 /∈ Mα, ν0 <B ν1 and
ν1� β ∈ Mβ . By (42) α is a terminal mode on T so Sα = Rα. By Lemmas 5.8
and 5.4(v), Sα,∞ =∗ ω and no x ∈ Sα,s, s > vα, later leaves Sα. By Lemma 5.7,
Eα ⊇Mα so

(∃∞x)(∃s)[x ∈ Sα,s+1 − Sα,s & ν(α, x, s + 1) = ν0].

Choose any such x and s > vα. Now neither Step 1γ nor Step 2γ can apply to
x at any stage t > s. Hence, by the ordering of the steps, Step 3α must apply
to some such x′ at some stage t + 1 > s + 1 with ν(α, x′, t) = ν0 and must cause
ν(α, x′, t+1) = ν1. Thus, α is provably incorrect at all stages v ≥ t+1 so α 6⊂ f .

Lemma 5.10. If α ⊂ f , then

(i) M̂α = {ν̂ : ν ∈Mα},
(ii) Mα = Fα = Eα, and

(iii) M̂α = F̂α = Êα.

Proof. Fix α ⊂ f , and let β = α−. Now (i) holds by the definitions ofMα and M̂α.
Assume (ii) and (iii) for β. We know Eα ⊆ Fα by their definitions, and Mα ⊆ Eα
by Lemma 5.7. Thus, to prove (ii) (and (iii)) it suffices to prove Fα ⊆ Mα, (and

F̂α ⊆ M̂α). By (P2) it suffices to consider Steps 1–5 (1̂–5̂).
Case 1. eα = eβ and êα = êβ.

Then Mα = Mβ . Also Fα ⊆ Fβ since Yα ⊆ Yβ . Finally, Mβ = Fβ by the
inductive hypothesis (ii) for β. Hence,

Fα ⊆ Fβ =Mβ =Mα,

so (ii) holds for α. Likewise, F̂α ⊆ M̂α so (iii) holds for α.
Before considering Case 2 we need a technical sublemma.

Sublemma. If eα > eβ, ν2 = 〈α, σ2, τ2) ∈ F+
β , and ν1 = 〈α, σ1, τ2〉, where σ1 =

σ2 − {eα}, then ν1 ∈ F+
β also.

Proof. Suppose ν2 ∈ F+
β . Then ν3 = ν2 � β ∈ Fβ, and Fβ = Eβ = E1

β by the

inductive hypothesis (ii) for β and Lemma 5.7(v). Hence, by the definition of E1
β,

(∃∞x)(∃s)[x ∈ Y 1
β,s − Y 1

β,s−1 & ν(β, x, s) = ν3].
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But for each such x and s, x /∈ Zeα,s (by the definition of Zeα,s in §2.8) so
ν+(α, x, s) = ν1. Hence, ν1 ∈ F+

β by the definition of F+
β in (39).

Case 2. eα > eβ.

We prove Fα ⊆Mα and its dual F̂α ⊆ M̂α in the next five claims. (The proof
of Case 3, êα > êβ, is entirely dual and will be omitted.)

Claim 1. Fα ⊆Mα.

Proof. Suppose ν1 ∈ Fα. Let ν1 = 〈α, σ1, τ1〉. Then

(∃∞x)(∃s)[x ∈ Yα,s & ν(α, x, s) = ν1].(43)

Note that Yα,s ⊆ Y 1
β,s and ν(α, x, s) ≤R ν+(α, x, s) because Uα,s ⊆ Zeα,s. First

suppose

(∃∞x)(∃s)[x ∈ Yα,s & ν+(α, x, s) = ν1].(44)

Then ν1 ∈ F+
β by definition of F+

β because Yα,s ⊆ Y 1
β,s, and F+

β =Mα since α ⊂ f .

If (44) fails, then for almost every x in (43), ν+(α, x, s) = ν2 >R ν1 so ν2 =
〈α, σ2, τ1〉 where eα /∈ σ1 and σ2 = σ1 ∪ {eα}. Now ν2 ∈ F+

β since Yα,s ⊆ Y 1
β,s, so

ν1 ∈ F+
β =Mα by the Sublemma.

Claim 2. F̂α ⊆ M̂α.

Proof. We establish Claim 2 by the next three claims which are the duals of (6),
(7), and (8).

Claim 3. Êα ⊆ M̂α.

Proof. Assume ν̂1 ∈ Êα. Hence,

(∃∞x̂)(∃s)[x̂ ∈ Ŝα,s+1 − Ŷα,s & ν(α, x̂, s+ 1) = ν̂1].

For every such x and s, x must have entered Ŝα,s+1 under Step 1̂ or Step 2̂ by

(P̂3). If Step 1̂ applied, then we marked an entry 〈α, ν̂1〉 on L̂s so ν̂1 ∈ M̂α by the

definition of L̂ in Step 11. If Step 2̂ applied, then x̂ /∈ Ûα,s+1 because x̂ /∈ Ûα,s by

Lemma 5.4(iv) and no enumeration takes place at stage s+ 1 under Step 2̂. Hence,
eα /∈ σ1 where ν1 = 〈α, σ1, τ1〉.

Let ν3 = ν1�β. Now ν̂3 ∈ F̂β = M̂β so ν3 ∈ Mβ = Fβ and thus either ν1 ∈ F+
β

or ν2 ∈ F+
β where ν2 = 〈α, σ1 ∪ {eα}, τ1〉. But if ν2 ∈ F+

β , then ν1 ∈ F+
β by the

Sublemma. In either case ν1 ∈ F+
β =Mα, so ν̂1 ∈ M̂α.

Claim 4. If x̂ ∈ Ŷα,s, ν̂1 = ν(α, x̂, s) ∈ M̂α, s > vα of Lemma 5.4(v), and RED

causes enumeration of x̂ so that ν̂2 = ν(α, x̂, s+ 1), then ν̂2 ∈ M̂α.

Proof. Suppose this enumeration occurs. Then ν̂1 <R ν̂2 so ν1 <B ν2 by (13). Now

ν1 ∈ Mα since ν̂1 ∈ M̂α. But α is M-consistent by Lemma 5.9 so ν2 ∈ Mα, and

hence ν̂2 ∈ M̂α.

Claim 5. If x̂ ∈ Ŷα,s, ν̂1 = ν(α, x̂, s) ∈ M̂α, s > vα of Lemma 5.4(v), and BLUE

causes enumeration of x̂ so that ν̂2 = ν(α, x̂, s+ 1), then ν̂2 ∈ M̂α.
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Proof. Suppose x̂ ∈ Ŷα,s and BLUE causes this enumeration at stage s + 1, so

ν̂1 <B ν̂2. Since s > vα, x̂ ∈ R̂α,s∩ R̂α,s+1. Hence, Step 1̂, Step 3̂, Step 5̂, or Step n̂

applies to x̂ at stage s+1 for some γ ⊇ α. If Step n̂ applies, then ν̂2 ∈ M̂α by (P̂2).

If Step 1̂γ or Step 5̂γ applies, then ν̂3 = ν(γ, x̂, s+ 1) ∈ M̂γ so ν̂2 = ν̂3�α ∈ M̂α.

(Here Step 5̂γ means Step 5̂ Case 1 for x̂ ∈ Ŷγ,s or Step 5̂ Case 2 for x̂ ∈ Ŷδ,s where

γ = δ−.) If Step 3̂γ applies, then γ ⊃ α (since α is M-consistent and γ is not) and

ν̂3 = ν(γ−, x̂, s+ 1) ∈ M̂γ− by (3.4) so ν̂2 = ν̂3�α ∈ M̂α. This completes the proof
of Claim 5, Claim 2 Case 2, and Lemma 5.10.

5.3. Emptying α-states and the lemmas for Rα and Bα.

Lemma 5.11. α ⊂ f =⇒ α is R-consistent.

Proof. Assume for a contradiction that α ⊂ f and α is not R-consistent. Choose
ν1 ∈ Rα such that for all ν2 ∈ Mα, ν1 6<R ν2. By (42) α is a terminal node on T
so Sα = Rα. By Lemmas 5.8 and 5.4(v), Sα,∞ =∗ ω and no x ∈ Sα,s, s > vα, later
leaves Sα. Now ν1 ∈ Rα ⊆Mα = Eα by Lemma 5.10 so

(∃∞x)(∃s > vα)[x ∈ Sα,s+1 − Yα,s & ν(α, x, s) = ν1].

For each such x and s, x ∈ Sα,t for all t > s + 1 so neither Step 1 nor Step 2 can
apply to x at any stage t > s + 1. Now Step 3 cannot apply to x ∈ Sα,t because
α is M-consistent by Lemma 5.9. Furthermore, Step 5 cannot apply to x ∈ Sα,t
while ν(α, x, t) = ν1 because ν1 ∈ Rα and Rα ∩ Bα = ∅. But if ν(α, x, t) = ν1 for
all t ≥ s, then x witnesses that F (α−, ν1) fails so ν1 ∈ Rα contradicts α ⊂ f . By
(P1) Step n cannot apply to α. Hence, Step 4 applies to x ∈ Sα,t at some stage
t+1 > s+1 such that ν1 = ν(α, x, s) = ν(α, x, t), ν2 = ν(α, x, t+1), and ν1 <R ν2.
Choose ν2 such that this happens for infinitely many x ∈ Sα. Now ν2 ∈ Fα so
ν2 ∈Mα by Lemma 5.10.

Lemma 5.12. If α ⊂ f and ν1 ∈ Bα, then {x : x ∈ Yα & ν(α, x) = ν1} =∗ ∅.
Proof. Fix α ⊂ f and ν1 ∈ Bα. Let vα be as in Lemma 5.4(v). Assume for a
contradiction that x ∈ Rα,s for some s > vα and that for all t ≥ s, γ = α(x, t), and
ν1 = ν(α, x, t). Now γ ⊇ α and α ∈ T so by the Definition 2.11 (vi) of T we have
ν′1 ∈ Bγ for all ν′1 ∈Mγ such that ν′1�α = ν1.
Case 1. γ is R-consistent. Then Step 5 Case 1 applies to x and γ at some stage
t+1 > s so ν′1 = ν(γ, x, t), ν′2 = ν(γ, x, t+1), ν′1 <B ν′2, and ν′2 ∈Mγ−Bγ. Hence,
ν2 = ν′2�α ∈ Mα − Bα, and ν(α, x, t + 1) = ν2 >B ν1.
Case 2. Otherwise. Then at some stage t+ 1 > s, Step 5 Case 2 applies to x and
δ = γ− ⊇ α so ν(α, x, t+ 1) = ν2 >B ν1 as in Case 1 but with δ in place of γ.

Lemma 5.13. If every α ⊂ f is C-consistent, then the correspondence Uα ↔ Ûα
and V̂α ↔ Vα, α ⊂ f , defines an automorphism of E.

Proof. Choose α ⊂ f . By Lemmas 5.9 and 5.11, α is M-consistent and α is also
R-consistent. By our hypothesis, which will be discharged in Lemma 6.4, α is also
C-consistent. Hence, α is consistent by Definition 2.10. Thus, by Definition 2.12, f
is infinite, and hence limα⊂f eα =∞.

By Lemma 5.8, Yα =∗ ω; by Lemma 5.10, we have (11), its dual, and (12) (so
the well-visited α-states on ω coincide with those on ω̂); and by Lemma 5.12 and
its dual, we have (15) (so the well-resided α-states also coincide). It immediately
follows that the automorphism requirement (1) is satisfied as remarked in §2.6.
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6. Using that A is nonrecursive to obtain the set Ĉα
of coding states

For the rest of this paper we assume that RED specifies a nonrecursive r.e. set
A and BLUE replies by constructing an r.e. set B automorphic to A such that B
also codes certain additional information (such as B is high as in the conclusion

of Theorem 1.3). We let U0 = A and B = Ûρ, where ρ = f� 1. Define Bs = Ûρ,s.
(From now on we consider only nodes α ∈ T such that ρ ⊂ α.) To code this
information into B BLUE will choose an α-state ν̂1 with certain properties, choose

a witness ŷ ∈ Ŝ0
α in α-state ν̂1, begin by holding ŷ in B and in α-state ν̂1, and

perhaps later attempt to move ŷ into B. To see that Ĉα 6= ∅ where Ĉα is the set
of α-states ν̂1 (called coding states) with the necessary properties we now use the

nonrecursiveness of A to verify that the dual set Cα 6= ∅, where Ĉα = {ν̂ : ν ∈ Cα}.
Definition 6.1. (i) Let Wα be that subset of Mα which is generated by the fol-
lowing three clauses:

1. [ν1 = 〈α, σ1, τ1〉 & 0 ∈ σ1] =⇒ ν1 ∈ Wα,
2. (∃ν2)[ν1 <R ν2 & ν2 ∈ Wα] =⇒ ν1 ∈ Wα,
3. [ν1 ∈ Bα & (∀ν2 ∈ Mα)[ν1 <B ν2 =⇒ ν2 ∈ Wα]] =⇒ ν1 ∈ Wα.

(ii) Define W#
α = {ν1 : ν1 = 〈α, σ1, τ1〉 ∈ Wα & 0 6∈ σ1}.

(iii) Define Vα =Mα −Wα.

Note that Wα consists of the α-states ν1 ∈ Mα for which RED has a winning
strategy Fα to force any x in α-state ν1 into A. Namely, if ν(α, x, s) = ν1 and (1)
holds, then x ∈ U0 = A already; if (2), then RED can change the α-state of x
from ν1 to Fα(ν1) = ν2 >R ν1; and if (3), then by (22) and (28) RED can wait for
BLUE to change x from α-state ν1 to some ν2 >B ν1 and then RED can apply Fα
to ν2. Hence, this winning strategy can be identified with a function,

Fα : (W#
α − Bα)→Wα & (∀ν1 ∈ (W#

α − Bα))[ν1 <R Fα(ν1)].(45)

Similarly, if ν(α, x, s) = ν1 ∈ Vα, then BLUE has a winning strategy Gα to keep
x out of A. Namely, BLUE keeps x in α-state ν1 unless ν1 ∈ Bα in which case by
the negation of (3), BLUE can change x to some α-state Gα(ν1) = ν2 >B ν1 such
that ν2 ∈ Vα. Meanwhile if RED causes ν(α, x, t) = ν3 >R ν1 at some t > s, then
by the negation of (2), ν3 ∈ Vα so BLUE continues to play as for ν1. By repeatedly
applying Gα if necessary we may assume that range(Gα) ∩ Bα = ∅. Hence, from
now on we may assume that BLUE’s target function hα of (32) agrees with the
function Gα on their common domain, namely hα also satisfies

(∀ν ∈ Vα ∩ Bα)[ν1 <B hα(ν1) = Gα(ν1) ∈ Vα − Bα].(46)

(Thus, by using this hα any BLUE enumeration under Step 5 of §3 is automatically
following BLUE’s winning strategy Gα for all ν1 ∈ Vα.)

Definition 6.2. If α 6= λ, let Cα be the set of ν1 ∈Mα such that
(i) ν1 ∈ W#

α ,
(ii) ¬(∃ν2 ∈Mα)[ν1 <B ν2],
(iii) ν1 /∈ Nα =dfn Rα ∪ Bα.

Property (ii) asserts that ν1 is maximal with respect to α-legal enumeration in
blue sets, and the import of (iii) is that ν1 /∈ Rα. Hence, if x is in state ν1, then
RED can hold x forever in that state (and hence in A), or by (i) RED can later
force x to eventually enter A.
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Definition 6.3. (i) A node α ∈ T is C-consistent if α = λ or Cα 6= ∅, and α is
C-inconsistent otherwise.

(ii) A node α ∈ T is consistent if α isM-consistent (Definition 2.8), R-consistent
(Definition 2.9), and also C-consistent.

Any inconsistent α is terminal by (42). From now on we assume that the follow-
ing Step 6 has been added to the construction in §3. (Step 6 will ensure that α is
C-consistent for α ⊂ f . There is no dual Step 6̂.)
Step 6. Suppose α ∈ T , α is C-inconsistent, but M-consistent and R-consistent,
x ∈ Sα,s, ν(α, x, s) = ν1, and

(∃ν2 ∈ Mα)[ν1 <B ν2].

Action. Choose the least such pair 〈α, x〉, and the first such ν2 ∈ Mα. Let

ν2 = 〈α, σ2, τ2〉. Enumerate x in V̂β,s+1 for all β ⊆ α such that êβ > êβ− and
êβ ∈ τ2. (Hence, ν(α, x, s + 1) = ν2.)

Clearly, Step 6 satisfies conditions (P1)–(P4) of the Automorphism Theorem 4.2,
because ν2 ∈ Mα.

Lemma 6.4. If α ⊂ f , then α is C-consistent.

Proof. Assume for a contradiction that α ⊂ f and α is C-inconsistent. As in
Lemmas 5.8 and 5.11, α is terminal on T , Sα = Rα, Sα,∞ =∗ ω, and no x ∈ Sα,s,
s > vα, later leaves Sα. Thus, neither Step 1 nor Step 2 can apply to any x ∈ Sα,s
after stage vα, and neither Step 3 nor Step 5 Case 2 can ever apply because α is
M-consistent and R-consistent by Lemmas 5.8 and 5.11. For each ν1 ∈Mα define
the r.e. set

Dν1 = {x : (∃s > vα)[x ∈ Sα,s & ν(α, x, s) = ν1]}.
Now Dν1 ⊆ A for every ν1 ∈ Vα because by (P1) the only red (blue) enumeration
of x after x ∈ Dν1,s comes from Step 4 (Step 5), but in Step 5 the target function
hα now satisfies (46) so ν(α, x, t) ∈ Vα for all t ≥ s.

Let Kα be as in (14). For each ν1 ∈ Mα − Kα such that 0 6∈ σ1 (i.e., each ν1

well-resided on A) let Eν1 = {x : ν(α, x) = ν1}. If ν1 ∈ Vα, then Eν1 ⊆ Dν1 ⊆ A.
Since A is nonrecursive, there must exist ν1 ∈ (Mα−Kα)∩W#

α . Hence, ν1 /∈ Nα =
Rα∪Bα because Nα ⊆ Kα. By Step 6, every such ν1 must satisfy Definition 6.2(ii),
and hence ν1 ∈ Cα. Thus, α is C-consistent.

Lemmas 6.4 and 5.13 complete the proof of the Automorphism Theorem 4.2.

7. Moving α-witnesses into B

Let A and B be as at the beginning of §6. Let the set of coding states Ĉα be the

dual of Cα of §6, namely Ĉα = {ν̂ : ν ∈ Cα}. To code information into B we define

Step 7̂ in §7.1, which determines when an element x̂ ∈ Ŝ0
α in some state ν̂1 ∈ Ĉα

becomes an α-witness; various versions of Steps n̂, 9 ≤ n < 11, defined in later
sections (to prove one of several different theorems about B) will determine when
an α-witness x̂ later becomes activated indicating that x̂ wants to enter B; Step 8̂
defined in §7.2 processes an activated witness until it enters B; and finally the
Coding Theorem 7.5 in §7.3 proves that this coding procedure succeeds. (There are

no dual steps 7, or 8.) Let L̂α (Ĵα) denote the d.r.e. set of α-witnesses (activated

α-witnesses) and L̂α,s (Ĵα,s) the set of elements in L̂α (respectively Ĵα) at the end
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of stage s. We shall assume from now on that any additional Steps n̂, 9 ≤ n < 11,

cannot add elements to or remove elements from L̂α.

7.1. Appointing α-witnesses and Step 7̂. As input to Step 7̂ we have a recursive
function g(α, s). The choice of g will depend on the theorem being proved. For
example, in Theorem 1.3, g(α, s) = 1 for all α and s. Furthermore, g may even be
defined during the construction (as in Theorem 9.1) providing that for all α and s,
g(α, s) is defined by the end of stage s.

We order the set L̂α of α-witnesses so that for all α and every i, 1 ≤ i ≤ g(α, s),
we attempt to define a primary witness ŷα,i,s and a backup witness ŷ′α,i,s. (The

intuition is explained in the example in §8.1.) First we divide the witness set L̂α
into the disjoint union of subsets L̂′α,i, 1 ≤ i, such that L̂′α,i,s is the set of elements

in L̂α,i at the end of stage s, and L̂′α,i,s = {ŷα,i,s, ŷ′α,i,s} if these are defined. We

define L̂′α,i,s, ŷα,i,s, and ŷ′α,i,s, by induction on s as follows.

Definition 7.1. (i) If x̂ ∈ L̂α,s+1− L̂α,s (necessarily because Step 7̂ Case 1 applies
at stage s + 1 so there will be at most one such x̂), then let i be the least j ≥ 1

such that |L̂′α,j,s| < 2. Put x̂ in L̂′α,i,s+1.

(ii) x̂ remains in L̂′α,i until, if ever, x̂ is removed from L̂α, at which time x̂ is also

removed from L̂′α,i.
(iii) Define ŷα,i,s and ŷ′α,i,s by

ŷα,i,s = (µx̂)[x̂ ∈ L̂′α,i,s], and ŷ′α,i,s = (µx̂)[x̂ > ŷα,i,s & x̂ ∈ L̂′α,i,s],(47)

if these elements exist.

Step 7̂. (Putting x̂ into L̂α.) Assume α is consistent as defined in Definition 6.3.

Case 1. If 1 ≤ i ≤ g(α, s), |L̂′α,i,s| < 2, and there exists x̂ ∈ Ŝ0
α,s such that

(7.1) ν(α, x̂, s) ∈ Ĉα, and

(7.2) x̂ > max(
⋃
t≤s L̂α,t),

then put the least such x̂ into L̂′α,i,s+1, for the least such i.

Case 2. For all i > g(α, s), remove ŷα,i,s and ŷ′α,i,s from L̂α and from Ŝ0
α, and put

them in Ŝ1
α.

Lemma 7.2. Assume that the construction of §3 is performed but also with Step 6
and Step 7̂ and perhaps with additional Steps n (n̂), 8 ≤ n < 11. Let g(α, s) be the
function for Step 7̂. Suppose (∀γ ⊂ f)[lim infs g(γ, s) < ∞]. Then for all α ∈ T ,

S0
α,∞ = ∅, and Ŝ0

α,∞ =∗ ∅, so conditions (P4) and (P̂4) of the Automorphism
Theorem 4.2 are satisfied.

Proof. There is no Step 7 so Lα,s = ∅ for all s, and every element x ∈ S0
α,s is

eventually removed from S0
α by Step 11D, so S0

α,∞ = ∅. Hence, condition (P4) is

satisfied. If α 6⊂ f , then Ŝα,∞ =∗ ∅ by Lemma 5.3. Now consider α ⊂ f . Let

g(α) = lim infs g(α, s). By Lemma 5.6, Step 7̂ infinitely often has an opportunity

to act. By Step 7̂ Case 2, |L̂α,∞| ≤ 2g(α), and hence by Step 11D, |Ŝ0
α,∞| ≤ 2g(α).

Thus, Ŝ0
α,∞ =∗ ∅, and condition (P̂4) is satisfied.

Note that if g(α, s) = m, for all α and s (for example, m = 1 in Theorem 1.3 of

§8), then |L̂α,s| ≤ 2m for all s and hence Case 2 of Step 7̂ will never apply.
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7.2. Coding states Ĉα and Step 8̂. In this section we use the coding states Ĉα to

produce a strategy formalized in Step 8̂ below for moving x̂ ∈ Ĵα into B. Assume

α ⊂ f . Since Cα 6= ∅ by Lemma 6.4, we have by (12), (21), and (22) that Ĉα 6= ∅
where Ĉα = {ν̂ : ν ∈ Cα}. Choose any ν̂1 ∈ Ĉα. By the dual of Definition 6.2 and
(13) we have,

ν̂1 ∈ Ŵ#
α ,(48)

¬(∃ν̂2 ∈ M̂α)[ν̂1 <R ν̂2],(49)

ν̂1 6∈ N̂α =dfn R̂α ∪ B̂α.(50)

If ν(α, x̂, s) = ν̂1 ∈ Ĉα, then by (49) ν̂1 is maximal with respect to α-legal red

moves so RED cannot change the α-state of x̂, and by (50), ν̂1 6∈ B̂α so BLUE

does not have to change the state; and hence BLUE can hold x̂ in α-state ν̂1 forever
if he chooses. However, BLUE can later force x̂ into B as follows. By the dual of

Definition 6.1 and the remarks following it, if ν̂2 = 〈α, σ2, τ2〉 ∈ Ŵ#
α , then

0 6∈ σ2 (so if ν(α, x̂, s) = ν̂2, then x̂ 6∈ Bs), and(51)

BLUE has a winning strategy, F̂α, to force(52)

any element x̂ in α-state ν̂2 into B.

Namely, by the dual of (45), we have

(∀ν̂2 ∈ (Ŵ#
α − R̂α))[ν̂2 <B F̂α(ν̂2) ∈ Ŵα].(53)

By repeatedly applying F̂α if necessary we may assume in (53) that F̂α(ν̂3) 6∈ B̂α.

Hence, from now on we may assume that the target function ĥα for (29) used in

Step 5̂α agrees with F̂α on their common domain, namely,

(∀ν̂2 ∈ (Ŵ#
α ∩ B̂α) ) [ν̂2 <B ĥα(ν̂2) = F̂α(ν̂2) ∈ Ŵα − B̂α],(54)

so that while x̂ ∈ Ŝα any BLUE enumeration under Step 5̂α Case 1 automatically

follows strategy F̂α.

Step 8̂. (To move x̂ ∈ Ĵα toward B.) Suppose

(8.1) x̂ ∈ Ĵα,s −Bs, and

(8.2) ν(α, x̂, s) = ν̂1 ∈ Ŵ#
α − R̂α.

Action. Choose the least such pair 〈α, s〉. Let F̂α(ν̂1) = ν̂2 = 〈α, σ̂2, τ̂2〉. (Neces-

sarily F̂α(ν̂1)↓ because ν̂1 ∈ Ŵ#
α .)

(8.3) Enumerate x̂ in Ûδ,s+1 for all δ ⊆ α such that êδ ∈ σ̂2.

(8.4) If x̂ ∈ Bs+1−Bs, then move x̂ from Ŝ0
α to Ŝ1

α, and let x̂ be cancelled as an

α-witness (i.e., remove x̂ from L̂α, and hence from Ĵα).

Clearly, Step 8̂ satisfies (P̂1)–(P̂4) of the Automorphism Theorem 4.2 because

Ŵα ⊆ M̂α so (P̂2) is satisfied; the others are obvious.
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7.3. The Coding Theorem.

Definition 7.3. Let the basic coding construction denote the construction in §3
(consisting of Steps 1–5, 1̂–5̂, and 11) but also with Step 6, Step 7̂, and Step 8̂ (as
defined in §6, §7.1, and §7.2, respectively).

Definition 7.4. For the following theorem define t(α, i) by

t(α, i) =

{
(µt)(∀s ≥ t)[i ≤ g(α, s)] if t exists,
∞ otherwise.

Theorem 7.5 (Coding Theorem). Let A = U0 be a given nonrecursive r.e. set,

and let B = Ûρ where ρ = f� 1. Let g(α, s) be a recursive function (to be used in

Step 7̂). Perform the basic coding construction consisting of Steps 1–6, 11, 1̂–5̂,
7̂, 8̂, and possibly with additional Steps n̂, 9 ≤ n < 11, defined later which satisfy

conditions (P̂1)–(P̂3) from the Automorphism Theorem 4.2.
(i) (∀γ ⊆ f)[lim infs g(γ, s) <∞] =⇒ A is ∆0

3-automorphic to B.

In addition, if the Steps n̂, 9 ≤ n < 11, satisfy the following conditions (Q̂1)–

(Q̂4), then conclusions (ii)–(viii) hold.

(Q̂1) Step n̂ may not put any element x̂ into the witness set L̂α.

(Q̂2) Step n̂ may not remove any element x̂ from the witness set L̂α.

(Q̂3) If Step n̂ puts x̂ into Ĵα,s+1 − Ĵα,s, then x̂ ∈ L̂α,s, and Step n̂ may not

remove any element x̂ from Ĵα.

(Q̂4) If x̂ ∈ Ŝ0
α,s, then Step n̂ may not enumerate x̂ ∈ Ûα,s+1− Ûα,s for any blue

set Ûα.
Assume α ⊂ f , α 6= λ. Choose vα such that for all s ≥ vα, α is not initialized

and no β <L α acts at stage s. Then for all x̂ and s and all i ≥ 1,

(ii) Ĵα,s ⊆ L̂α,s ⊆ Ŝ0
α,s, and L̂α and Ĵα are d.r.e. sets;

(iii) [x̂ ∈ (Ŝ0
α,s − Ĵα,s) & ν(α, x̂, s) = ν̂1 ∈ Ĉα] =⇒ ν(α, x̂, s+ 1) = ν̂1;

(iv) x̂ ∈ L̂α,s − Ĵα,s =⇒ [ν(α, x̂, s) ∈ Ĉα & x̂ ∈ Bs];
(v) x̂ ∈ Ĵα,s −Bs =⇒ ν(α, x̂, s) ∈ Ŵ#

α ;

(vi) [s ≥ max{vα, t(α, i)} & ŷα,i,s ∈ Ĵα,s] =⇒ ŷα,i,s ∈ B;

(vii) i ≤ lim infs g(α, s) =⇒ (∃∞s)[ŷα,i,s ↓ & ν(α, ŷα,i,s, s) ∈ Ĉα];
(viii) [i ≤ lim infs g(α, s) & (∃<∞s)[ŷα,i,s ∈ Bs+1−Bs]] =⇒ [lims ŷα,i,s <∞].

In addition, if Steps n̂, 9 ≤ n < 11, satisfy the following condition (Q̂5), then
conclusion (ix) holds for α and i as above.

(Q̂5) Step n̂ may not put ŷ′α,i,s into Ĵα,s+1−Ĵα,s, and may put ŷα,i,s into Ĵα,s+1−
Ĵα,s only if ŷ′α,i,s is defined.

(ix) i ≤ lim infs g(α, s) =⇒ [ (a.e. s)[ŷα,i,s ↓] & (∃∞s)[ŷα,i,s ↓ & ŷ′α,i,s ↓]].

Proof. (i) Clearly, Step 6, Step 7̂, and Step 8̂ satisfy conditions (P1)–(P3) and

(P̂1)–(P̂3) of the Automorphism Theorem 4.2. By hypothesis Steps n̂, 9 ≤ n < 11,

satisfy conditions (P̂1)–(P̂3) also. By the hypothesis in (i), lim infs g(α, s) <∞, so

by Lemma 7.2, conditions (P4) and (P̂4) are satisfied also. Hence, A is automorphic
to B by the Automorphism Theorem 4.2.

(ii) By (Q̂1) x̂ can only enter L̂α under Step 7̂, and hence only while x̂ ∈ Ŝ0
α. If

x̂ leaves L̂α, then x̂ can never reenter L̂α by (7.2) of Step 7̂, and by Step 11D, x̂

eventually leaves Ŝ0
α and never reenters. By (Q̂3) x̂ can enter Ĵα only while x̂ ∈ L̂α,
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and x̂ will later leave Ĵα exactly when x̂ leaves L̂α. Hence, Ĵα,s ⊆ L̂α,s ⊆ Ŝ0
α,s, and

L̂α and Ĵα are d.r.e.
(iii) Suppose x̂ ∈ (Ŝ0

α,s − Ĵα,s) and ν(α, x̂, s) = ν̂1 ∈ Ĉα. Steps 1̂ and 2̂ cannot

apply to x̂ at stage s + 1 because x̂ ∈ Ŝ0
α,s; Step 3̂ cannot apply because α ⊂ f ;

Step 4̂ cannot apply because ν̂1 ∈ Ĉα so (49) asserts that ν̂ is maximal with respect

to α-legal red enumeration; Step 5̂ cannot apply because ν̂1 /∈ B̂α by (50); and

Step 8̂ cannot apply because x̂ /∈ Ĵα,s. Hence, only some Step n̂, 9 ≤ n < 11, or

Step 11 can apply to x̂. By hypothesis (Q̂4), Step n̂ cannot enumerate x̂ in any blue

set Ûβ , and by condition (P̂2), Step n̂ cannot enumerate x in any red set Vβ , and
Step 11 does not cause any enumeration of x, so ν(α, x̂, s+ 1) = ν̂1. By hypothesis

(Q̂2), Step n̂ cannot remove x̂ from L̂α, so x̂ ∈ Ŝ0
α,s+1 unless Step 11D removes x̂

from Ŝ0
α because x̂ 6∈ L̂α.

(iv) If x̂ enters L̂α at stage s+1, then x̂ ∈ Ŝ0
α,s ∩ Ŝ0

α,s+1, and ν(α, x̂, s) = ν̂1 ∈ Ĉα
by Step 7̂, which must apply to x̂ by (Q̂1). Hence, by the argument in (iii), while

x̂ remains in L̂α,t − Ĵα,t, it remains in α-state ν̂1, and in Ŝ0
α,t+1 because Step 11D

cannot apply to x̂. If ν(α, x̂, t) = ν̂1, then x̂ 6∈ Bt by the duals of the Definitions 6.2

and 6.1 which define Ĉα and Ŵ#
α respectively.

(v) If x̂ enters Ĵα at stage s, then x̂ ∈ L̂α,s by (ii), and ν(α, x̂, s) = ν̂1 ∈ Ĉα ⊆ Ŵ#
α

by (iii) and (iv). Fix some t ≥ s and assume by induction that x̂ ∈ Ĵα,t ∩ Ĵα,t+1,

and ν(α, x̂, t) = ν̂1 ∈ Ŵ#
α . Suppose ν̂1 6= ν̂2 = ν(α, x̂, t + 1). Then by (Q̂4) and

the remarks in the proof of (iii), either Step 4̂, 5̂, or 8̂ must have applied to x̂ at

stage t + 1. If Step 4̂ applied, then ν̂2 ∈ Ŵ#
α because Ŵα must be closed under

α-legal red moves by the dual of Definition 6.1(i)(3). If Step 5̂ or Step 8̂ applied,

then ν̂1 /∈ R̂α so ν̂2 = F̂α(ν̂1) ∈ Ŵα by (53) and (54). If x̂ 6∈ Bt+1, then ν̂2 ∈ Ŵ#
α .

(vi) Assume ŷα,i,s = x̂ ∈ Ĵα,s for s ≥ max{vα, t(α, i)}. Now x̂ cannot be

removed from L̂α by Step 1̂ (1.12) or Step 11C because s ≥ vα, cannot be removed

by Step 7̂ Case 2, because s ≥ t(α, i), and cannot be removed by Step n̂ by (Q̂2).

Hence, x̂ remains in Ĵα, L̂α, and Ŝ0
α, until x̂ enters B. While x̂ ∈ Ĵα,t − Bt, we

have ν(α, x̂, t) = ν̂1 ∈ Ŵ#
α by (v). If ν̂1 ∈ R̂α, then there exists v > t such that

ν̂1 <R ν(α, x̂, v) = ν̂2 because Steps 5̂ and 8̂ cannot apply while x̂ remains in state

ν̂1, so Step 4̂ must cause x̂ to be enumerated in a red set (which must occur by (25)

and (26) since α ⊂ f). If ν̂1 ∈ Ŵ#
α − R̂α, then eventually Step 5̂ or 8̂ applies to x̂

at some stage v > t and causes ν̂1 <B ν(α, x̂, v) = ν̂3 = F̂α(ν̂1) ∈ Ŵα. Since x̂ can

change α-state at most finitely often, eventually ν(α, x̂, v) = 〈α, σ, τ〉 ∈ Ŵα − Ŵ#
α

where 0 ∈ σ so x̂ ∈ Bv.
(vii) Choose u ≥ max{vα, t(α, i)}. Now α is C-consistent by Lemma 6.4. Also

Ê0
α = Êα. Hence, for some ν̂1 ∈ Ĉα infinitely many elements x̂ enter Ŝ0

α in α-state

ν̂1 and remain in Ŝ0
α and in α-state ν̂1 until either they enter L̂α or are removed

from Ŝ0
α by Step 11D. But Step 7̂ is performed before Step 11. Hence, Step 7̂

Case 1 ensures that ŷα,i,w = x̂ is defined for some w ≥ u, and some x̂ such that
ν(α, x̂, w) = ν̂1.

(viii) Assume i ≤ lim inf g(α, s). By (iv) and (vi), the hypothesis (∃<∞s)[ŷα,i,s ∈
Bs+1−Bs] is equivalent to (∃<∞s)[ŷα,i,s ∈ Ĵα,s+1− Ĵα,s]. By (vi) and (vii) choose

w > max{vα, t(α, i)} such that ŷα,i,w ↓= x̂, ν̂(α, x̂, w) = ν̂1 ∈ Ĉ, and for all s ≥ w,
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ŷα,i,s 6∈ Ĵα,s. Hence, by (iv) for all s ≥ w, ŷα,i,s 6∈ Bs. Now by the same argument

as in (iii) and (iv), x̂ remains in L̂α − Ĵα and in α-state ν̂1 forever after stage w.

Hence, lims ŷα,i,s = x̂. If in addition we assume (∃<∞s)[ŷ′α,i,s ∈ Ĵα,s+1− Ĵα,s], then
by the same proof lims ŷ

′
α,i,s exists.

(ix) Choose u ≥ max{vα, t(α, i)}. By (vii), ŷα,i,w ↓= x̂ for some w ≥ u. Either

ŷα,i,s ↓= x̂ for all s ≥ w or else for some v > w, x̂ ∈ L̂α,v − L̂α,v+1 in which case

x̂ ∈ Bv+1 − Bv by (8.4). But then x̂ ∈ Ĵα,t+1 − Ĵα,t, for some t, w < t < v, by

(iv). Hence, ŷ′α,i,t ↓= x̂′ by condition (Q̂5), and necessarily ŷ′α,i,v ↓= x̂′ as well

because by (Q̂1), (Q̂2), and the choice of w, neither ŷα,i,s nor ŷ′α,i,s can change in
value at any stage s, t < s ≤ v. Thus, ŷα,i,v+1 ↓= x̂′ by the definition of ŷα,i,s+1 in
Definition 7.1 . Hence, ŷα,i,s ↓ for all s ≥ w. Also ŷα,i,t ↓= x̂ and ŷ′α,i,t ↓= x̂′ so the
second conjunct in the conclusion of (ix) is also satisfied.

7.4. The Refined Coding Theorem. The main point of the Coding Theorem 7.5
is that for applications in this and subsequent papers we may view it as a kind of

“black box” with inputs g(α, s) and Ĵα and output L̂α, which we can apply without
knowing anything about the internal workings of the basic coding machinery from

§1–§6, §7.1, §7.2 (such as Steps 1-6, 1̂–8̂, and 11, Ŝ0
α, etc.), but only the material from

§7.3. The construction can thus be split into two parts performed simultaneously,
the first (the basic coding construction) done by the “automorphism builder” and
the second done by the “coder”. The coder gives up direct control over enumerating

elements into B but can enumerate into B indirectly by putting elements of L̂α into

Ĵα.
For an intended application (such as Theorem 1.3 in §8 or Theorem 9.1 in §9)

the coder specifies, as additional input to the basic coding construction, additional

Steps n̂, 9 ≤ n < 11, satisfying conditions (P̂1)–(P̂3) and (Q̂1)–(Q̂5), which are easy
to verify, and a recursive function g(α, s). By Theorem 7.5 the basic coding con-

struction will produce a set L̂α of α-witnesses labeled as ŷα,i,s and ŷ′α,i,s (according
to Definition 7.1) such that by Theorem 7.5(ix) and (viii) if 1 ≤ i ≤ lim infs g(α, s),

then ŷα,i,s ↓ for almost every s, and if the coder puts ŷα,i,s ∈ Ĵα,s+1 − Ĵα,s for at
most finitely many s, then lims ŷα,i,s and lims ŷ

′
α,i,s exist.

Assume α ⊂ f . Choose vα such that for all s ≥ vα, α is not initialized and no
β <L α acts at stage s. Let ŷα,i,s = x̂, s > vα, for 1 ≤ i ≤ lim infs g(α, s) and s >

max{vα, t(α, i)}. By withholding x̂ from the set Ĵα of activated witnesses, the coder
can ensure by Theorem 7.5(iv) that x̂ will not enter B. If the coder later changes

his mind and inserts x̂ in Ĵα, then x̂ must eventually enter B by Theorem 7.5(vi).
Finally, the coder must ensure that lim infs g(α, s) <∞, which implies that B is

automorphic to A by Theorem 7.5(i). This is a significant restriction. For example,

one cannot code K into B by putting ŷα,i,s into Ĵα exactly if i ∈ Ks because for

each i ∈ K one must keep ŷα,i,s ∈ L̂α− Ĵα, which would cause lim infs g(α, s) =∞.
(By the main result of Harrington and Soare [8] we know that we cannot always
achieve K ≤T B.) Nevertheless, the restriction lim infs g(α, s) < ∞ still allows a
lot of information to be coded into B as we shall see in Theorems 1.3, 9.1, and 1.4.

We now wish to reformulate the Coding Theorem 7.5 so that it formally ex-
presses this intuition but in such a way that it is self-contained and can be cited in
subsequent papers without knowledge of the rest of this paper analogously as the
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Extension Theorem in [26] was cited in subsequent papers on effective automor-
phisms. (We still need the full Coding Theorem 7.5 in §10 and §11.)

Theorem 7.6 (Refined Coding Theorem). Let A = U0 be a given nonrecursive

r.e. set. Perform the basic coding construction (consisting of Steps 1–6, 11, 1̂–5̂,
7̂, 8̂), and possibly with additional Steps n̂, 9 ≤ n < 11, which we may specify
later, and which may be performed at any stage during the construction, but which

must satisfy condition (R̂1) below. Let T be the priority tree of the construction,
f the true path through T , and {fs}s∈ω the recursive approximation to f so that

f = lim infs fs. Let B = Ûρ where ρ = f � 1, and Bs = Ûρ,s. Let g(α, s) be a
recursive function which we may define during the construction but such that for
all α ∈ T , g(α, s) is defined by the end of stage s. For α ∈ T and i ∈ ω, define
t(α, i) by

t(α, i) =

{
(µt)(∀s ≥ t)[i ≤ g(α, s)] if t exists,
∞ otherwise.

For every α ∈ T , α 6= λ (the empty node on T ), the construction will produce a

d.r.e. set of α-witnesses, L̂α = lims L̂α,s, and pairwise disjoint subsets L̂′α,i,s ⊆ L̂α,s
such that |L̂′α,i,s| ≤ 2 and L̂α,s =

⋃
{L̂′α,i,s : i ≤ g(α, s)}, and from which ŷα,i,s

and ŷ′α,i,s are defined by

ŷα,i,s = (µx̂)[x̂ ∈ L̂′α,i,s], and ŷ′α,i,s = (µx̂)[x̂ > ŷα,i,s & x̂ ∈ L̂′α,i,s],

if these elements exist. From L̂α we may select a subset Ĵα = lims Ĵα,s of activated
α-witnesses using the additional Steps n̂, 9 ≤ n < 11, providing that these steps

satisfy the following property (R̂1).

(R̂1) If x̂ ∈ L̂α,s, then Step n̂ may put x̂ in Ĵα,s+1− Ĵα,s. Step n̂ may not remove

x̂ from L̂α or Ĵα, or add x̂ to L̂α. (It is understood that Step n̂ may not perform
any other action which would affect the automorphism machinery but Step n̂ may
perform additional external action, such as defining a use function ψBs(j).)

Assume α ⊂ f , α 6= λ. Choose vα such that for all s ≥ vα, α is not initialized
and no β <L α acts at stage s. Then for all x̂ and s and all i ≥ 1,

(i) (∀γ ⊆ f)[lim infs g(γ, s) <∞] =⇒ A is ∆0
3-automorphic to B;

(ii) x̂ ∈ L̂α,s − Ĵα,s =⇒ x̂ ∈ Bs;
(iii) [s ≥ max{vα, t(α, i)} & ŷα,i,s ∈ Ĵα,s] =⇒ (∃t > s)[ŷα,i,s ∈ Bt];
(iv) i ≤ lim infs g(α, s) =⇒ (∃∞s)[ŷα,i,s ↓];
(v) [i ≤ lim infs g(α, s) & (∃<∞s)[ŷα,i,s ∈ Bs+1 −Bs]] =⇒ [lims ŷα,i,s <∞].

In addition, if Steps n̂, 9 ≤ n < 11, satisfy the following condition (R̂2), then
conclusion (vi) holds for α and i as above.

(R̂2) Step n̂ may not put ŷ′α,i,s into Ĵα,s+1−Ĵα,s, and may put ŷα,i,s into Ĵα,s+1−
Ĵα,s only if ŷ′α,i,s is defined.

(vi) i ≤ lim infs g(α, s) =⇒ [ (a.e. s)[ŷα,i,s ↓] & (∃∞s)[ŷα,i,s ↓ & ŷ′α,i,s ↓]].

Proof. If Steps n̂, 9 ≤ n < 11, satisfy condition (R̂1), then they satisfy conditions

(P̂1)–(P̂3) and conditions (Q̂1)–(Q̂4). Note that condition (Q̂5) is (R̂2). Apply the
Coding Theorem 7.5.

Note that Step n̂, 9 ≤ n < 11, may be performed at any stage, unlike the other
Steps m (m̂), m ≤ 8 or m = 11, which must be performed in the order specified in

§3, i.e., are performed at stage s + 1 only if no Step k (k̂), k < m, wants to act.
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The reason here is that the action of Step n̂, 9 ≤ n < 11, is entirely external to

the automorphism construction, since by condition (R̂1) the Step n̂ can merely put

some element x̂ of L̂α into Ĵα, indicating a desire that x̂ begin its journey toward B.

However, Ĵα is not a set internal to the automorphism machinery, so the journey of
x̂ does not actually begin until some later stage t+ 1 when Step 8̂ recognizes that

x̂ is in Ĵα,t −Bt, and changes the α-state of x̂ from ν̂1 ∈ Ĉα to ν̂2 = F̂α(ν̂1).
It will be crucial in later applications such as Theorem 1.4 proved in [10] that

we allow these new Steps n̂, 9 ≤ n < 11, to be performed at any stage in the
construction because timing is crucial for them. However, notice that Step n̂ can

perform at most finitely much action on the finitely many elements x̂ ∈ Ŷα,s so
Lemma 5.6 still applies even if we still insist that Step 11 apply only when no other
step (including Step n̂) wants to act.

Remark 7.7. For the special case of α = ρ =dfn f � 1 in the Refined Coding

Theorem 7.6(iii) if ŷρ enters Ĵρ, then ŷρ definitely enters B unless ŷρ is removed

from L̂ρ because either fs <L ρ (which happens at most finitely often) or g(ρ, s)

decreases sufficiently to cancel ŷρ under Step 7̂ Case 2. Here U0 = A and Ûρ = B.
For α = ρ there are only two ρ-states ν0 = 〈ρ, σ0, ∅〉 and ν1 = 〈ρ, σ1, ∅〉, where
σ0 = ∅ and σ1 = {0} represent the states x /∈ U0 and x ∈ U0 respectively. Both
ν0 and ν1 are in Mρ because A is nonrecursive, and hence both ν̂0 and ν̂1 are in

M̂ρ, by (12). While ŷρ ∈ L̂ρ − Ĵρ necessarily ŷρ lies in ρ-state ν̂0, the only ρ-state

in B. When ŷρ enters Ĵρ, then at the next application of Step 8̂ we move ŷρ into
ρ-state ν̂1, and thus into B. (The second action does not necessarily happen exactly
simultaneously unless we make a slight change in our construction for the special
case of ρ by performing any Step 8 ρ-action before action for any γ 6= ρ, but for
later coding applications [10] it is enough to know that ŷρ enters B after at most a
small delay.)

7.5. The Second Refined Coding Theorem. In the Refined Coding Theo-
rem 7.6 if the function g satisfies g(α, s) = g(α) for all s, then the statement
can be simplified further as we now state for easy reference in later papers.

Theorem 7.8 (Second Refined Coding Theorem). Let A = U0 be a given nonre-
cursive r.e. set, and g a recursive function. Perform the basic coding construc-
tion (consisting of Steps 1–6, 11, 1̂–5̂, 7̂, 8̂), and possibly with additional Steps n̂,
9 ≤ n < 11, which we may specify later, and which may be performed at any stage

during the construction, but which must satisfy condition (R̂1) below. Let T be the
priority tree of the construction, f the true path through T , and {fs}s∈ω the recur-

sive approximation to f so that f = lim infs fs. Let B = Ûρ where ρ = f� 1, and

Bs = Ûρ,s. For every α ∈ T , α 6= λ (the empty node on T ), the construction will

produce a d.r.e. set of α-witnesses, L̂α = lims L̂α,s, and pairwise disjoint subsets

L̂′α,i,s ⊆ L̂α,s such that |L̂′α,i,s| ≤ 2 and L̂α,s =
⋃
{L̂′α,i,s : i ≤ g(α)}, and from

which ŷα,i,s and ŷ′α,i,s are defined by

ŷα,i,s = (µx̂)[x̂ ∈ L̂′α,i,s], and ŷ′α,i,s = (µx̂)[x̂ > ŷα,i,s & x̂ ∈ L̂′α,i,s],

if these elements exist. From L̂α we may select a subset Ĵα = lims Ĵα,s of activated
α-witnesses using the additional Steps n̂, 9 ≤ n < 11, providing that these steps

satisfy the following property (R̂1).
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(R̂1) If x̂ ∈ L̂α,s, then Step n̂ may put x̂ in Ĵα,s+1 − Ĵα,s. (Step n̂ may not

remove x̂ from L̂α or Ĵα, or add x̂ to L̂α.)
Assume α ⊂ f , α 6= λ. Choose vα such that for all s ≥ vα, α is not initialized

and no β <L α acts at stage s. Then for all x̂ and s and all i ≥ 1,
(i) A is ∆0

3-automorphic to B;

(ii) x̂ ∈ L̂α,s − Ĵα,s =⇒ x̂ ∈ Bs;
(iii) [s ≥ vα & ŷα,i,s ∈ Ĵα,s] =⇒ (∃t > s)[ŷα,i,s ∈ Bt];
(iv) i ≤ g(α) =⇒ (∃∞s)[ŷα,i,s ↓];
(v) [i ≤ g(α) & (∃<∞s)[ŷα,i,s ∈ Bs+1 −Bs]] =⇒ [lims ŷα,i,s <∞].

In addition if Steps n̂, 9 ≤ n < 11, satisfy the following condition (R̂2), then
conclusion (vi) holds for α and i as above.

(R̂2) Step n̂ may not put ŷ′α,i,s into Ĵα,s+1−Ĵα,s, and may put ŷα,i,s into Ĵα,s+1−
Ĵα,s only if ŷ′α,i,s is defined.

(vi) i ≤ lim infs g(α, s) =⇒ [ (a.e. s)[ŷα,i,s ↓] & (∃∞s)[ŷα,i,s ↓ & ŷ′α,i,s ↓]].

8. The proof of Theorem 1.3

In this section we add the necessary extra steps and lemmas to the construc-
tion and verification of the Refined Coding Theorem 7.6 to prove Theorem 1.3.

Specifically, we add new Steps 9̂ and 1̂0 so that B = Ûρ is high, where ρ = f�1.

8.1. The function Ψ to make B high. To ensure that B is high it suffices to
construct a B-recursive functional ΨB(i, j) with use function ψ(i, j) such that for
all i,

Inf(i) = lim
j

ΨB(i, j),(55)

where Inf = {i : Wi is infinite}. If α ⊂ f and α ≡ 0 mod 5, then α will achieve (55)
for i = |α|/5. The following α-module to accomplish this has two α witnesses, the

primary witness ŷ, and the secondary witness ŷ′, both in some α-state in Ĉα when
first appointed. We let ps denote the value of the parameter p at the end of stage
s (e.g. ŷs, ŷ

′
s, Ψs(i, j), and ψs(i, j)) and we let ps ↓ (ps ↑) denote that the value of

parameter p is defined (undefined) at the end of stage s. It is assumed that any
parameter p retains its value during stage s unless specified otherwise.

At some stage s+ 1 for certain j < s if j ≥ |Wi,s| we may define Ψs+1(i, j) = 0
and ψ(i, j) > ŷs+1. At some later stage t+ 1 > s+ 1 if j < |Wi,t| and

ŷ′t is defined,(56)

we put ŷ into Ĵα,t+1− Ĵα,t (thus starting the journey of ŷ toward B as in §7). When
ŷ ∈ Bv+1−Bv at some stage v+1 ≥ t+1 we redefine Ψw(i, j) = 1 and ψw(i, j) = 0
for all stages w ≥ v + 1. We also define ŷv+1 = ŷ′v (= ŷ′t using (56)) and define

ψv+1(i, k) > ŷv+1,(57)

for all k < s such that ŷv < ψv(i, k) and Ψv+1(i, k) = 0. Hence, (57) continues to
hold for all k such that Ψv+1(i, k) = 0 (i.e., such that ψv+1(i, k)↓> 0). We let ŷ′v+1

be undefined and we later redefine ŷ′ under Step 7̂ and (47). However, such x̂ may
not appear until much later. While ŷ′ is undefined then by (56) we do not allow ŷ

to enter Ĵα or B. This action ensures that for α ⊂ f , (a.e. s)[ŷs ↓], and hence

(a.e. j)(∀s)[ψs(i, j)↓> 0 =⇒ ŷs < ψs(i, j)],
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so that if later |Wi,t| > j, we can always redefine Ψ(i, j) = 1 by putting ŷ into B.
This guarantees (55).

8.2. The construction for Theorem 1.3. We use here the basic coding con-

struction as in the Refined Coding Theorem 7.6 but with the additional Steps 9̂, 1̂0

defined below, which will clearly satisfy conditions (P̂1)–(P̂3) and (Q̂1)–(Q̂5). We

define g(α, s) = 1 for all α and s. Hence, we have |L̂α,s| ≤ 2 for all s. Let ŷα,s and
ŷ′α,s denote ŷα,1,s and ŷ′α,1,s respectively so

ŷα,s = (µx̂)[x̂ ∈ L̂α,s], and ŷ′α,s = (µx̂)[x̂ > ŷα,s & x̂ ∈ L̂α,s],(58)

if these elements exist.
Step 9̂. (To define ψs+1(i, j) if ŷα,s is defined.) Suppose α, i, and j are such that
|α| = 5i, ŷα,s ↓ (and hence α is C-consistent), and

(9.1) ψs(i, j)↑, and
(9.2) j < |Rα,s|.

Action. Choose the least such triple 〈α, i, j〉. Define

(9.3) Ψs+1(i, j) =

{
1 if j < |Wi,s|,
0 otherwise.

(9.4) If Ψs+1(i, j) = 1, define ψs+1(i, j) = 0.
(9.5) If Ψs+1(i, j) = 0, define

ψs+1(i, j) = (µz)(∀δ ≤L α)[ŷδ,s+1 ↓ =⇒ ŷδ,s+1 < ẑ].

Step 1̂0. (To activate ŷα,s.) Suppose |α| = 5i, and ŷα,s ↓, and

(10.1) ŷα,s /∈ Ĵα,s,
(10.2) ŷ′α,s ↓,
(10.3) ŷα,s < ψs(i, j), and
(10.4) Ψs(i, j)↓= 0 and j < |Wi,s|.

Action. Put ŷα,s in Ĵα,s+1.

8.3. The verification for Theorem 1.3. Note that condition (9.2) prevents
Step 9̂ from defining ψ(i, j) for more than finitely many j until a new element
is added to Yλ (namely at the next application of Step 11) so Lemma 5.6 still holds.

Now Steps 9̂ and 1̂0 clearly satisfy conditions (P̂1)–(P̂3) and (Q̂1)–(Q̂5), so A is
automorphic to B by Theorem 7.6(i). It remains to see that B is high.

Lemma 8.1. Assume α ⊂ f and |α| = 5i. Then
(a.e. j ) (∀s)[ψs(i, j)↓> 0 =⇒ ŷα,s < ψs(i, j)].

Proof. Let vα be as in Theorem 7.6. By Theorem 7.6(vi) choose s1 ≥ vα such that
for all s ≥ s1, ŷα,s ↓. By (9.2) ψs1(i, j) ↑ for all j > some j0. For each j > j0
Step 9̂γ will define ψs+1(i, j) for some s + 1 > s1 and some γ, α ≤L γ, such that
|γ| = |α| = 5i, and by (9.5),

ψs+1(i, j)↓= ẑ > 0 =⇒ ŷα,s+1 < ẑ,(59)

if Ψs+1(i, j) = 0. Now if ψt+1(i, j) is ever redefined at some stage t + 1 > s + 1,
then (9.5) again applies at stage t + 1 so (59) continues to hold with t in place of
s.

Lemma 8.2. For all i and j in ω,
(i) ψ(i, j) = lims ψs(i, j) exists, and
(ii) Inf(i) = limj Ψ(i, j).
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Proof. Fix i. Choose α ⊂ f , |α| = 5i. Choose s1 as in Lemma 8.1. Hence, for every

j, ψs(i, j)↓ for some s ≥ s1 because if ψ(i, j) is undefined, then Step 9̂α eventually
will apply and define it. If j < |Wi,s| and ψ(i, j) is defined or redefined at stage
s+ 1, then for all t ≥ s+ 1, Ψt(i, j) = 1 and ψt(i, j) = 0 by (9.3)–(9.5).
Case 1. |Wi| < ∞. Let j0 = |Wi|, and choose s2 ≥ s1 such that |Wi,s2 | = j0.
Choose s3 ≥ s2 such that for all j < j0 and all s ≥ s3, ψs(i, j) = ψs3(i, j). Hence,

by (10.4), ŷα,s never enters Ĵα,s+1 at any stage s+1 ≥ s3. Thus, by Theorem 7.6(v),

ŷα = lim
s
ŷα,s = ŷα,s3 ,(60)

and no ŷβ, β <L α, changes in value after stage s1. For every j ≥ j0 as soon as
Ψs(i, j) ↓ we have Ψt(i, j) = 0 and ψt(i, j) > 0 for all t ≥ s by (9.3)–(9.5). To see
that limt ψt(i, j) exists, fix j ≥ j0 and s4 ≥ s3 such that for all s ≥ s4, Ψs(i, j) = 0
and (9.2) holds for j. If ψ(i, j) is ever redefined at any stage s5 + 1 > s4, then
by (9.5) and (60), and choice of s1, ψs(i, j) = ψs5(i, j) for all s ≥ s4. If not, then
ψs(i, j) = ψs4(i, j) for all s ≥ s4.
Case 2. |Wi| =∞. Clearly, lims ψs(i, j) exists for all j by the sentence preceding
Case 1. To see that Ψ(i, j) = 1 for a.e. j, fix j such that Lemma 8.1 holds for j.
Choose t ≥ s1 such that j < |Rα,t| and j < |Wj,t|. If Ψt(i, j) = 0, then at some

stage v + 1 ≥ t Step 1̂0 will apply to 〈α, i, j〉 causing ŷα,v to enter Ĵα,v+1. But by
the Refined Coding Theorem 7.6(iii), ŷα,v will enter B at some stage w+ 1 ≥ v+ 1
so by (9.4) we redefine ψw+1(i, j) = 0 and Ψw+1(i, j) = 1, and they retain these
values forever.

9. Avoiding a downward cone

The Refined Coding Theorem 7.6 yields a very short proof of the following the-
orem of Harrington which was announced in [28, page 379] but was never written
up or published.

Theorem 9.1 (Harrington). For all r.e. sets A and C such that ∅ <T A and
C <T K there is an r.e. set B '∆0

3
A such that B 6≤T C.

Proof. We shall meet for all e the requirement,

{e}C = B =⇒ K ≤T B ⊕ C.
Let {Cs}s∈ω and {Ks}s∈ω be recursive enumerations of C and K. Let Bs be as in
Theorem 7.6. Define the usual length of agreement function,

`(e, s) = max{x : (∀y < x)[{e}Css (y)↓= Bs(y)]}.
For every α ∈ T , |α| = 5e, define g(α, s) = `(e, s). Add to the basic coding construc-

tion of Theorem 7.6 the following step, which clearly satisfies conditions (P̂1)–(P̂3)

and (Q̂1)–(Q̂4), but not necessarily (Q̂5).

Step 9̂. If |α| = 5e, i ∈ Ks, and ŷα,i,s ↓, then put ŷα,i,s in Ĵα,s+1.
Assume that {e}C = B. Choose α ⊂ f , |α| = 5e. Then lims `(e, s) = ∞, so

lims g(α, s) = ∞. Hence, for all i, t(α, i) < ∞ (as defined in Definition 7.4), and
clearly t(α, i) is computable in B ⊕C. Fix i. To compute whether i ∈ K, find s >
max{vα, t(α, i)} such that ŷα,i,s ↓. Now i ∈ K iff yα,i,s ∈ B by Theorem 7.6(ii),
(iii), (iv), and (v). Hence, K ≤T B ⊕C ≤T C, contrary to the hypothesis C <T K
that C is incomplete. Therefore {e}C 6= B. Let x = (µy)[{e}C(y) 6= B(y)]. Thus,
lim infs g(α, s) = x. Hence B is automorphic to A by Theorem 7.6(i).
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By combining the method of this theorem with that for Theorem 1.3 in §8 we can
easily prove the following combined theorem, whose details we leave to the reader.

Theorem 9.2. For all r.e. sets A and C such that ∅ <T A and C <T K there is
a high r.e. set B '∆0

3
A such that B 6≤T C.

10. Prompt sets and a proof of Theorem 1.2

Definition 10.1. An r.e. set A is prompt if A is of promptly simple degree, i.e.,
A ≡T S for a promptly simple set S (as defined in [28, Definition XIII.1.2]) and A
is tardy otherwise. Similarly, an r.e. degree is prompt if it contains a prompt set
and is tardy otherwise. By the Promptly Simple Degree Theorem [28, Theorem
XIII.1.7(iii)] A being prompt is equivalent to the following property which for this
paper we may take as the definition. Let {As}s∈ω be any recursive enumeration of
A. Then there is a recursive function p such that for all s, p(s) ≥ s, and for all e,

We infinite =⇒ (∃∞x) (∃s) [x ∈We, at s & As�x 6= Ap(s)�x],(61)

namely infinitely often A “promptly permits” on some element x ∈We.

This section is devoted to using the Coding Theorem 7.5 to prove Theorem 1.2
that a prompt set A is automorphic to a complete set B, which for convenience we
restate here as Theorem 10.2. It is also possible using the effective automorphism
machinery of [28, Ch. XV] to construct such a B which is effectively automorphic to
A but we do not carry this out here. This generalizes the result of Cholak, Downey,
and Stob [4] which asserted the same conclusion under the stronger hypothesis that
A is promptly simple, rather than merely prompt. In §11 we show that the proof
here works for a strictly larger class of sets beyond the prompt sets which we call
almost prompt sets.

Theorem 10.2. If A is any prompt r.e. set, then A is automorphic to a complete
set B.

Proof. Let A be a prompt set. As in §6 and §7 let U0 = A, ρ = f � 1, so Uρ = A

(by our assignment of indices (4)), and let B denote Ûρ. We shall arrange the
construction so that K ≤T B.

For the rest of this paper we replace the sets W#
α of Definition 6.1 and Cα of

Definition 6.2 by the following new versions W#
α and Dα, respectively.

Definition 10.3. Let W#
α be that set of ν1 = 〈α, σ1, τ1〉 ∈ Mα such that

0 6∈ σ1 & (∃ν2 = 〈α, σ2, τ1〉)[ν2 ∈Mα & σ1 ⊂ σ2 & 0 ∈ σ2].

Definition 10.4. Define Dα exactly as Cα of Definition 6.2 except with the new
version of W#

α in clause (i). Namely, let Dα be the set of ν1 = 〈α, σ1, τ1〉 such that
ν1 ∈Mα and

(i) ν1 ∈ W#
α ,

(ii) ¬(∃ν2 ∈Mα)[ν1 <B ν2],
(iii) ν1 /∈ Nα =dfn Rα ∪ Bα.

(The condition (i) for Dα is similar to that for Cα but simpler. Both conditions
assert that 0 6∈ σ1, so that if ν(α, x, s) = ν1, then x is not yet in Uρ = A, and that
RED has a winning strategy for putting x in Uρ = A. However, in the case of Dα
this strategy involves only one move by RED, namely changing x from α-state ν1

to ν2, which is an α-legal red move because ν2 ∈ Mα.)
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For the rest of this paper we replace all instances of Cα in §6 and §7 by Dα. For
example, in Step 6 and Step 7̂ we replace Cα by Dα, and we replace C-consistent
everywhere by D-consistent defined as follows.

Definition 10.5. (i) A node α ∈ T is D-consistent if α = λ or Dα 6= ∅, and
D-inconsistent otherwise.

(ii) A node α ∈ T is consistent if α isM-consistent (Definition 2.8), R-consistent
(Definition 2.9), and also D-consistent.

The rest of the proof is divided into two parts. In the first part we use that A
is prompt to get Dα 6= ∅ for α ⊂ f analogous to Lemma 6.4 for A nonrecursive.
In the second part we use Dα 6= ∅ for α ⊂ f to code K ≤T B analogously as
we used Cα 6= ∅ for α ⊂ f to code information into B when A is nonrecursive in
Theorems 1.3 and 9.1 in §8 and §9.

10.1. Using A prompt to get Dα 6= ∅ for α ⊂ f . For the automorphism con-
struction of §3 we let {Un,s}n>0,s∈ω be a given recursive enumeration of all r.e. sets
as before, but we change the enumeration {U0,s}s∈ω of U0 = A to achieve Dα 6= ∅
for α ⊂ f . Fix α 6= λ. Let k ∈ ω and let F be a finite set of α-states ν = 〈α, σ, τ〉
such that 0 6∈ σ (i.e., ν is an α-state of A = Uρ). We use integers to code the finite
sets F and nodes α ∈ T and we identify 〈α, F, k〉 with an integer i coding it. For
each 〈α, F, k〉 define a recursive function,

`(〈α, F, k〉, s) = max{x : x ≥ k & (∀y)k≤y<x [y ∈ Uρ,s ∨ ν(α, y, s) ∈ F ]}.
We shall define an r.e. sequence of r.e. sets {Zi}i∈ω. By the Recursion Theorem

and the Slowdown Lemma [28, Lemma XIII.1.5] we may assume that we have a
recursive function H(i) such that for all i, WH(i) = Zi, and WH(i),s ∩Zi, at s = ∅,
namely any element enumerated in Zi appears strictly later in WH(i). Now add to
Step 11 in §3 the following Substep 11F to be performed at the end of stage s+ 1
if Step 11 is performed there. (Of course, it is the blue player who is speeding up
the enumeration of A.)
Substep 11F. (Speeding up A.) Let v be the maximum stage w ≤ s such that
Step 11 was performed at stage w, if such exists, and 0 otherwise. For each i =
〈α, F, k〉, i < s, such that

`(i, s) > max{`(i, t) : t < v},(62)

enumerate `(i, s) in Zi,s+1. Let

ti,s = (µu)[`(i, s) ∈WH(i), at u],

if (62) holds for i, and ti,s = s + 2 otherwise. Now ti,s ≥ s + 2 by the Slowdown
Lemma. Let t = max{ti,s : i < s}. Compute p(t) for the function p given in (61).
For each x ∈ Ap(t) put x in U0,s+1.

(Note that adding Substep 11F does not interfere with the construction or proof
of the Automorphism Theorem 4.2 or Coding Theorem 7.5 because Substep 11F

does not enumerate an element x in any red set Uα or blue set V̂α and does not
move x among the Siα. It only changes the enumeration {U0,s}s∈ω of U0 = A by
making U0,s ⊇ As, and the construction and proof of Theorem 7.5 must work with
any recursive enumeration {Un,s}n,s∈ω of the r.e. sets.)

Lemma 10.6. Suppose the construction of the Coding Theorem 7.5 is done but
with Dα everywhere in place of Cα (e.g. in Step 6 and Step 7̂), with the additional
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Substep 11F as above added to Step 11, and with A = U0 prompt. Then for all α,
λ 6= α ⊂ f , Dα 6= ∅.

Proof. Suppose α ⊂ f , α 6= λ, but Dα = ∅. Then α is D-inconsistent. By (42) α is
a terminal node on T so Sα = Rα. By Lemmas 5.8 and 5.4(v), Sα,∞ =∗ ω and no
x ∈ Sα,s, s > vα, later leaves Sα. Let F = {ν1, ν2, . . . , νn} be the set of α-states

ν = 〈α, σ, τ〉 which are well-resided on A (i.e., the α-states in Mα − Kα such that
0 6∈ σ). Define

k = (µm)(∀x ≥ m)[x ∈ A =⇒ ν(α, x) ∈ F ].

Let i = 〈α, F, k〉. Now lims `(i, s) =∞. Choose w ≥ vα such that A�k = Aw�k.
Now there are infinitely many stages s+ 1 > w such that (62) holds for `(i, s) and
Substep 11F applies to i at stage s+1. For infinitely many such applications by
(61) there will be some element x < `(i, s), such that x ∈ U0,s+1 − Uρ,s. Hence,
there is some single ν1 ∈ F , ν1 = 〈α, σ1, τ1〉, such that for infinitely many elements
x, ν(α, x, s) = ν1 and Substep 11F applies to x at some stage s + 1 > w and
x ∈ U0,s+1 − Uρ,s. Since s > vα and α ⊂ f , Steps 1, 2, and 3 cannot apply to x by
the same argument as in Lemma 5.11. Thus, by the ordering of the steps, x will
remain in α-state ν1 until Step 4 applies to x, which must happen at some stage
t + 1 > s + 1 because x ∈ U0,s+1 − Uρ,s. Hence, ν(α, x, t) = ν(α, x, s) = ν1, and
ν(α, x, t+ 1) = ν2 where ν2 = 〈α, σ2, τ1〉, σ2 ⊇ σ1 ∪ {0}.

Since this happens for infinitely many x, ν2 ∈ Mα. Thus, ν2 witnesses that ν1

satisfies clause (i) of Definition 10.4. By the definition of F , ν1 6∈ Kα ⊇ Nα so ν1

satisfies clause (iii) of Definition 10.4, and by Step 6, ν1 satisfies clause (ii) as in
Lemma 6.4. Hence, α is D-consistent.

10.2. Using D̂α 6= ∅ to code K into B. Assume α ⊂ f . Since Dα 6= ∅ by

Lemma 10.6, we have by (12), (21), and (22) that D̂α 6= ∅ where D̂α = {ν̂ : ν ∈ Dα}.
Choose any ν̂1 = 〈α, σ̂1, τ̂1〉 ∈ D̂α. By the dual of Definition 10.4 and (13) we have

0 6∈ σ̂1 & (∃ν̂2 = 〈α, σ̂2, τ̂1〉)[ν̂2 ∈ M̂α & σ̂1 ⊂ σ̂2 & 0 ∈ σ̂2],(63)

¬(∃ν̂2 ∈ M̂α)[ν̂1 <R ν̂2], namely ν̂1 is red maximal,(64)

ν̂1 6∈ N̂α =dfn R̂α ∪ B̂α.(65)

For Step 7̂ we define g(α, s) = 1 for all α and s as in §8. By the Coding Theorem 7.5
we get α-witnesses ŷα,s = x̂ in state ν̂1 ∈ Dα. By (64) ν̂1 is maximal with respect

to α-legal red moves so RED cannot change the α-state of x̂. By (65), ν̂1 6∈ B̂α so
BLUE does not have to change the state, and can hold x̂ in α-state ν̂1 and hence
in B forever if he chooses. However, by (63), BLUE can move x̂ from α-state ν̂1

to ν̂2 and hence to B whenever he likes. Fix a function F̂α such that

(∀ν̂1 ∈ D̂α)[F̂α(ν̂1) = ν̂2 satisfies (63)].(66)

The new function F̂α will be used in the action of Step 8̂ which will now be per-
formed during any application of the following Steps 9̂ and 1̂0. (We do not need

Step 8̂ itself now because when BLUE wants to enumerate some witness ẑ in B he

simply does so directly, rather than by putting it in Ĵα.)

Step 9̂. Suppose |α| = 5i, ŷα,s ↓ = x̂, and ν(α, x̂, s) = ν̂1. If i ∈ Ks, perform the

action of Step 8̂ of §7.2 on x̂ at stage s+1. (Namely, choose the least such pair

〈α, x〉. Let F̂α(ν̂1) = ν̂2 = 〈α, σ̂2, τ̂2〉. Enumerate x̂ in Ûδ,s+1 for all δ ⊆ α such that
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êδ ∈ σ̂2. Since x̂ ∈ Bs+1 −Bs, move x̂ from Ŝ0
α to Ŝ1

α, and let x̂ be cancelled as an
α-witness.)

Step 1̂0. Suppose ŷα,s ↓= x̂, ŷ′α,s ↓= x̂′, and that at stage s+1 either:

(i) x̂ and x̂′ will be removed from Ŝ0
α (and from L̂α) because Step 11C applies

to α (i.e., fs+1 <L α); or

(ii) one of x̂ and x̂′ will be pulled from Ŝ0
α to some Ŝβ, β <L α, under Step 1̂β.

(Necessarily x̂ not x̂′ will be pulled since x̂ < x̂′, both are in the same α-state, and
at most one element is pulled at a time.)

Then perform the action of Step 8̂ of §7.2 on x̂′, as in Step 9̂ above. (Both x̂ and

x̂′ will be cancelled as α-witnesses at stage s+1 under Step 11C or Step 1̂β (1.12).)

(Strictly speaking Step 1̂0 is not a new step but rather a modification to the

earlier Steps 11 and 1̂ since the action of Step 1̂0 must be performed at that point
in the construction when the latter Steps 11 or 1̂ apply.)

Lemma 10.7. Suppose the construction of the Coding Theorem 7.5 is done but
with Dα everywhere in place of Cα (e.g. in Step 6 and Step 7̂), with the additional

Substep 11F, with Steps 9̂ and 1̂0 as above, and with A = U0 of promptly simple

degree. Let B = Ûρ, where ρ = f�1. Then
(i) A is automorphic to B, and
(ii) K ≤T B.

Proof. (i) Substep 11F does not affect the Coding Theorem construction by the

remark immediately following Substep 11F. Step 9̂ clearly satisfies conditions (P̂1)–

(P̂3). So does Step 1̂0 but since its action is performed at a different point in the
construction, we need to verify that it does not interfere. Suppose ŷα,s ↓= x̂,

ŷ′α,s ↓= x̂′, and that at stage s+1, x̂ is pulled to Ŝβ by Step 1̂β for some β <L α.
Then x̂ is not enumerated in any sets at stage s + 1, so the previous argument

for Ŝβ is not affected. By Step 1̂ (1.12), x̂′ is moved from Ŝ0
α to Ŝ1

α as before and

cancelled as an α-witness, but x̂′ is not being pulled to any Ŝβ. Also by Step 1̂0
(i), x̂′ is enumerated in blue sets to achieve α-state Fα(ν̂1), but this enumeration is

α-legal, and so satisfies condition (P̂2). Hence, the previous arguments for both β

and α are not affected by Step 1̂0 (i). If Step 1̂0 (ii) applies, then similarly both x̂

and x̂′ have this blue enumeration before being moved from Ŝα, but neither is being

pulled to any Ŝβ , both are being cancelled as α-witnesses, and this enumeration is
α-legal, so it cannot affect the previous argument. Finally, g(α, s) = 1 for all α and
s, so by the proof of Theorem 7.5(i), A is automorphic to B.

(ii) We claim that for all i ∈ ω,

i ∈ K ⇐⇒ (∃α)|α|=5i (∃s) [ŷα,s ↓ ∈ B & ŷ′α,s ↓ ∈ B].(67)

First suppose i ∈ K. Choose α ⊂ f , |α| = 5i. Now Step 9̂ never applies to α,

and Step 1̂0 does not apply to α at any stage s > vα. Hence, by the proof of the
Coding Theorem 7.5(viii), lims ŷα,s ↓ = x̂ and lims ŷ

′
α,s ↓= x̂′ and x̂, x̂′ ∈ B.

Now suppose (67) holds, and let ŷα,s = x̂, and ŷ′α,s = x̂′. Neither x̂ nor x̂′ can

be removed from L̂α by Step 1̂ (1.12) or by Step 11C at any stage t > s else by

Step 1̂0 one of x̂, x̂′ must enter B. Hence, by the same proof as in the Coding

Theorem 7.5(iii) and (iv), both x̂ and x̂′ remain forever in L̂α and in B. But then

i ∈ K because if i ∈ Kt for some t > s, then by Step 9̂ one of x̂, x̂′ must enter B.
This completes the proof of the lemma and of Theorem 10.2.



656 LEO HARRINGTON AND R. I. SOARE

Notice that in the above proof we must appeal to the proof rather than merely

the statement of the Coding Theorem 7.5 because here we have no set Ĵα and the
work previously performed by Step 8̂ is now done during Steps 9̂ and 1̂0 so the

conditions (Q̂2) and (Q̂4) do not strictly hold. (This is why we use the Coding
Theorem 7.5 here rather than the Refined Coding Theorem 7.6 as we did in §10
and §11.) However, if we make the following notational changes, then the obvious
modification of the former proof (which we omit) still establishes the following
theorem.

Theorem 10.8 (Prompt Coding Theorem). Let A = U0 be a prompt set. In the

statement of the Coding Theorem 7.5 replace everywhere Cα by Dα, and Ĵα,s by Bs;

add to conditions (Q̂2) and (Q̂4) the clause “unless simultaneously x̂ is enumerated
in B”. Then all the conclusions of the Coding Theorem 7.5 hold except in (ii) for

the inclusion Ĵα,s ⊆ L̂α,s ⊆ Ŝ0
α,s. (Note that conclusions (iv), (v), and (vi) are

now tautologies.)

(The reason we were able to achieve K ≤T B in Theorem 10.2 using Dα but
not with Cα is the following. When both ŷα,s = x̂, and ŷ′α,s = x̂′ for any α such
that |α| = 5i, we define Ψs(i) = Ks(i) and define the use function ψs(i) = x̂′. If

later either x̂ or x̂′ will be removed from L̂α, or if i enters K, then we must put

x̂ or x̂′ into B according to Step 1̂0 in order to correct ψ(i). For Dα this is an
α-legal move which can be performed immediately whether or not α ⊂ f . For Cα
this action requires considerable time delay and is only guaranteed to succeed as in
Theorem 7.5(vi) if α ⊂ f , which we cannot determine effectively when we first must
define ψs(i). It is precisely this difficulty which was exploited by Harrington and
Soare in [8] to construct a nontrivial E-definable property Q(A) which guarantees
that A is incomplete.)

11. Almost prompt sets

11.1. Almost prompt sets and complete sets.

Definition 11.1. (i) A set X ≤T K is n-r.e. if X = lims Xs for some recursive
sequence {Xs }s∈ω such that for all x, X0(x) = 0 and

card{ s : Xs(x) 6= Xs+1(x) } ≤ n.
For example, the only 0-r.e. set is ∅, the 1-r.e. sets are the usual r.e. sets, and the
2-r.e. sets are the d.r.e. sets.

(ii) Such a sequence {Xs}s∈ω is called an n-r.e. presentation of X .

It is well known and easy to show [28, Exercise III.3.8, p. 38] that for n > 0, X is
n-r.e. iff

X = (We1 −We2) ∪ (We3 −We4) ∪ . . . ∪ We2k+1
, or(68)

X = (We1 −We2) ∪ (We3 −We4) ∪ . . . ∪ (We2k+1
−We2k+2

),(69)

according as n = 2k + 1 is odd or n = 2k + 2 is even.

Definition 11.2. For n = 0 let X0
0 = ∅. For n > 0 and e = 〈e1, e2, . . . , en〉 define

Xn
e = (We1 −We2) ∪ . . . ,(70)
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as in (68) or (69) according as n is odd or even. We say that 〈n, e〉 is an n-r.e.
index for Xn

e . Let

Xn
e,s = (We1,s −We2,s) ∪ . . . .(71)

Definition 11.3. Let A be an r.e. set and let {As}s∈ω be a recursive enumeration
of A. We say A is almost prompt, abbreviated a.p., if there is a nondecreasing
recursive function p(s) such that for all n and e,

Xn
e = A =⇒ (∃x)(∃s)[x ∈ Xn

e,s & x ∈ Ap(s)].(72)

Note that, as in the case of promptly simple, this definition is independent of
the enumeration of A; if p(s) works for the enumeration {As}s∈ω, and if {A′s}s∈ω
is another enumeration of A, define p′(s) = (µt)[A′t ⊇ Ap(s)]. We may think of Def-
inition 11.3 as asserting that A will p-promptly hit every approximation {Xn

e,s}s∈ω
for every n-r.e. set Xn

e = A where the recursive approximation Xn
e,s is determined

by the standard enumeration {We,s}e,s∈ω of the r.e. sets. The next lemma shows

that if we specify another collection of n-r.e. sets {X̂n
e }n,e∈ω, by some recursive

approximation {X̂n
e,s}n,e,s∈ω, then there is a recursive function q such that A will

q-promptly hit {X̂n
e,s}n,e,s∈ω if X̂n

e = A.

Lemma 11.4 (Conversion Lemma). Assume that A is almost prompt via {As}s∈ω
and p. Suppose that {Ye,s}e,s∈ω is a strong array of finite sets, Ye =

⋃
s∈ω Ye,s, and

there is a recursive function h(n, e, i) such that for every 〈n, e〉 the n-r.e. set X̂n
e

and its recursive approximation X̂n
e,s are defined by

X̂n
e = (Yh(n,e,1) − Yh(n,e,2)) ∪ (Yh(n,e,3) − Yh(n,e,4)) ∪ . . . ,(73)

X̂n
e,s = (Yh(n,e,1),s − Yh(n,e,2),s) ∪ (Yh(n,e,3),s − Yh(n,e,4),s) ∪ . . . .(74)

Then there is a nondecreasing recursive function q(s) such that

X̂n
e = A =⇒ (∃x)(∃s)[x ∈ X̂n

e,s & x ∈ Aq(s)],(75)

or equivalently,

X̂n
e =∗ A =⇒ (∃∞x)(∃s)[x ∈ X̂n

e,s & x ∈ Aq(s)].(76)

Proof. We first shall define r.e. sets Zn,e,i = Yh(n,e,i), and by the Recursion Theorem

there is a recursive function H(n, e, i) such that for all n, e and i, WH(n,e,i) = Zn,e,i,
and a recursive function G(n, e) such that

Xn
G(n,e) = (WH(n,e,1) −WH(n,e,2)) ∪ (WH(n,e,3) −WH(n,e,4)) ∪ . . . ,

so Xn
G(n,e) = X̂n

e because WH(n,e,i) = Zn,e,i = Yh(n,e,i) for all n, e, i ∈ ω. We define

t(s) at stage s of the following construction. Then we define q(s) = p(t(s+ 1)).

Stage s = 0. Define t(0) = 0, and Zn,e,i0 = ∅ for all n, e, i. (Without loss of
generality we may assume that Yh(n,e,i),0 = ∅ for all n, e, i, since otherwise we

replace Yh(n,e,i),s by Ŷh(n,e,i),s where Ŷh(n,e,i),0 = ∅ and Ŷh(n,e,i),s+1 = Yh(n,e,i),s.)
Stage s+ 1. For each e, n ≤ s, do substep i for every i ≤ n, first for each even i in
increasing order of i, then for each odd i in increasing order of i.
Substep i. For each x ≤ s if x ∈ Yh(n,e,i),s+1 − Zn,e,is , put x in Zn,e,is+1 , define
t(n, e, i, x, s) = (µt)[x ∈ WH(n,e,i,),t], and note that t(n, e, i, x, s) > s + 1 by the
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Slowdown Lemma [28, Lemma XIII.1.5]. Otherwise, define t(n, e, i, x, s) = s + 2.
Define

t(s+ 1) = (µt)[t > t(s) & t ≥ max{t(n, e, i, x, s) : n, e, i, x ≤ s}].

Note that t(s+ 1) > t(s) and t(s+ 1) > s+ 1.

Claim 1. For all n, e, s,

(i) X̂n
e,s = Xn

G(n,e),t(s), and

(ii) (X̂n
e,s ∪ X̂n

e,s+1) ⊇
⋃
{Xn

G(n,e),v : t(s) ≤ v ≤ t(s+ 1)}.

Proof. Now (i) follows for all s because for all i ≤ n, WH(n,e,i),t(s+1) = Zn,e,is+1 =
Yh(n,e,i),s+1. For (ii) suppose x ∈ Xn

G(n,e),v for some v, t(s) ≤ v ≤ t(s + 1). If

v = t(s), then x ∈ X̂n
e,s by (i) for s. If v > t(s), then x ∈WH(n,e,2i),v−WH(n,e,2i+1),v

for some 2i ≤ n. Hence, x ∈ Zn,e,2is+1 − Zn,e,2i+1
s+1 . Hence, by the order in which we

perform substep j (with all even j being performed first before any odd j) we have

x ∈ Yh(n,e,2i),s+1 − Yh(n,e,2i+1),s+1. Thus, x ∈ X̂n
e,s+1 by (74). This proves (ii).

Claim 2. If X̂n
e = A, then (∃x)(∃s)[x ∈ X̂n

e,s & x ∈ Aq(s)].

Proof. Assume X̂n
e = A. Then Xn

G(n,e) = A, because Xn
G(n,e) = X̂n

e . Hence,

(∃x)(∃v)[x ∈ Xn
G(n,e),v & x ∈ Ap(v)],(77)

by (72). Fix such x and v and find the unique s such that t(s) ≤ v < t(s+ 1). Now

x ∈ (X̂n
e,s ∪ X̂n

e,s+1) by Claim 1. But v ≤ t(s + 1) implies p(v) ≤ p(t(s + 1)) =
q(s) ≤ q(s+ 1), so x ∈ Aq(s) ⊆ Aq(s+1). Thus, x is an instance of (75) for either s
or s+ 1. Thus, (75) is satisfied.

To see that (76) is satisfied we use a proof similar to that in [28, Theorem
XIII.1.7(iii)]. For every n, e, k ∈ ω define,

X̃n
e,k = A � k ∪ (X̂n

e ∩ [k,∞)),

and

X̃n
e,k,s = A�k ∪ (X̂n

e,s ∩ [k,∞)),

where {Ye,s}e,s∈ω has been suitably adjusted to achieve (74) for X̃n
e,k,s. If X̂n

e =∗

A, then (∃k0)(∀k ≥ k0)[X̃n
e,k = A], so (75) applied to {X̃n

e,k,s} produces one xk

satisfying (75) for {X̂n
e,s}, and the set {xk}k≥k0 verifies (76) for {X̂n

e,s}.

Theorem 11.5. If A is any almost prompt set, then A is automorphic to a com-
plete set B.

Proof. It suffices to prove that Lemma 10.6 holds with A prompt replaced by A
almost prompt because then the remainder of the proof is the same as in §10.2. Fix
α 6= λ. Let F be a finite set of α-states ν = 〈α, σ, τ〉 such that 0 6∈ σ (i.e., α-states
of A = Uρ). We use integers to code the finite sets F and nodes α ∈ T and we
identify 〈α, F 〉 with an integer i coding it. For i = 〈α, F 〉 define

Y is = {x : ν(α, x, s) ∈ F}.(78)
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By our assignment of indices eβ , êβ in (4) and (5), there are at most |α| many

indices eβ, or êβ for β ⊆ α, so there are at most n = 2|α| many different α-states.
Hence, the recursive sequence {Y is }s∈ω witnesses that Y i =dfn lims Y

i
s is n-r.e. for

n = 2|α|. Thus, as in (70) and (71) there are r.e. sets Y ij , 1 ≤ j ≤ n, such that

Y is = (Y i1,s − Y i2,s) ∪ . . . .(79)

We slightly modify the automorphism construction presented in §3 as follows.
Stage s+ 1 = 2t. Do the next step in the construction exactly as in §3.
Stage s+ 1 = 2t+ 1. Define Y is as above. Perform no action in the automorphism
construction, so Y is = Y is+1. From Y is and Y is+1 define t(s+1) and q(s) = p(t(s+1))
as in the Conversion Lemma 11.4. For each x ∈ Aq(s), put x in U0,s+1.

Hence, by the Conversion Lemma 11.4 applied to the strong array {Y ij,s}i,j,s∈ω
the recursive function q(s) satisfies,

Y i =∗ A =⇒ (∃∞x)(∃s)[x ∈ Y is & x ∈ Aq(s) ⊆ U0,s+1].(80)

Lemma 11.6. Suppose that A = U0 is an a.p. set. Suppose the construction of the
Coding Theorem 7.5 is done but with the modification for odd and even stages as
above to define the enumeration {U0,s}s∈ω of U0, and with Dα everywhere in place
of Cα. Then for all α, λ 6= α ⊂ f , Dα 6= ∅.

Proof. Suppose α ⊂ f , α 6= λ, but Dα = ∅. Then α is D-inconsistent. By (42) α is
a terminal node on T so Sα = Rα. By Lemmas 5.8 and 5.4(v), Sα,∞ =∗ ω and no
x ∈ Sα,s, s > vα, later leaves Sα. Let F = {ν1, ν2, . . . , νn} be the set of α-states

ν = 〈α, σ, τ〉 which are well resided on A (i.e., the α-states in Mα − Kα such that
0 6∈ σ).

For i = 〈α, F 〉 define Y i and Y ij,s as in (78) and (79). Now Y i =∗ A. Hence, by
(80) there is a single ν1 ∈ F , ν1 = 〈α, σ1, τ1〉 such that for infinitely many elements
x, ν(α, x, s) = ν1 ∈ F , so x 6∈ Uρ,s, but x ∈ U0,s+1.

Since s > vα and α ⊂ f , Steps 1, 2, and 3 cannot apply to x by the same
argument as in Lemma 5.11. Thus, by the ordering of the steps, x will remain in
α-state ν1 until Step 4 applies to x, which must happen at some stage t+ 1 > s+ 1
because x ∈ U0,s+1−Uρ,s, so x ∈ Uρ,t+1−Uρ,t. Hence, ν(α, x, t) ≥R ν(α, x, s) = ν1,
and ν(α, x, t + 1) = ν2 where ν2 = 〈α, σ2, τ1〉, σ2 ⊇ σ1 ∪ {0}.

Since this happens for infinitely many x, ν2 ∈ Mα. Thus, ν2 witnesses that ν1

satisfies clause (i) of Definition 10.4. By the definition of F , ν1 6∈ Kα ⊇ Nα so ν1

satisfies clause (iii), and by Step 6, ν1 satisfies clause (ii) as in Lemma 6.4. Hence,
α is D-consistent.

This completes the proof of Lemma 11.6. The rest of Theorem 11.5 follows
exactly as in §10.2.

Notice that the construction for Theorem 11.5 just before Lemma 11.6 compared
to the Step 11F for prompt illustrates the difference between A being prompt versus
being merely almost prompt. Step 11F only had to apply at occasional stages
(namely those when Step 11 applies), because when it applied we could challenge
the promptness of A to produce infinitely often a p-prompt reply. Here the a.p.
hypothesis gives us infinitely many q-prompt replies but we cannot actively produce
one so we must do the q-speedup at every stage of the automorphism construction
or else all the speedups may occur at stages when we are not prepared.



660 LEO HARRINGTON AND R. I. SOARE

11.2. Properties of almost prompt sets.

Theorem 11.7. If A is any r.e. set of promptly simple degree, then A is almost
prompt.

Proof. Using (61) let A be an r.e. set of promptly simple degree, {As}s∈ω a recursive
enumeration of A, and p(s) a nondecreasing recursive function such that for all e,

We infinite =⇒ (∃∞x) (∃s) [x ∈We, at s & As�x 6= Ap(s)�x],(81)

We shall define a nondecreasing recursive function q(s) such that A, {As}s∈ω,
and q(s) satisfy the Definition 11.3 of A being a.p. Define a recursive function

`(〈n, e〉, s) = max{x : (∀y)y<x [y ∈ As ∨ x ∈ Xn
e,s]}.

For i = 〈n, e〉 we shall define an r.e. sequence of r.e. sets {Zi}i∈ω. By the
Recursion Theorem we may assume that we have a recursive function H(i) such
that WH(i) = Zi for all i ∈ ω. For each i < s such that

`(i, s) > max{`(i, t) : t < s},(82)

enumerate `(i, s) in Zi,s+1. Let

ti,s = (µu)[`(i, s) ∈WH(i),u],

if (82) holds for i, and ti,s = s + 2 otherwise. Now ti,s ≥ s + 2 by the Slowdown
Lemma [28, Lemma XIII.1.5]. Define

q(s) = (µv)[v > max{q(t) : t < s} & v ≥ max{p(ti,s) : i < s}].

Clearly, q(s) is recursive and nondecreasing. Fix i = 〈n, e〉 such that Xn
e = A.

Then lims `(i, s) = ∞. At infinitely many stages s we enumerate `(i, s) in Zi,s+1,
so by (81) and our definition of q(s), we must get

(∃x)(∃s)[x ∈ Xn
e,s & x ∈ Aq(s)].

Thus, (72) and Definition 11.3 are satisfied so A is a.p.

Theorem 11.8. (∃ a tardy r.e. set A)(∀r.e. Z ≥T A)[ Z is almost prompt ].

Proof. We construct A and B nonrecursive r.e. sets whose degrees form a mini-
mal pair using the usual negative requirements Ne, e ∈ ω, and negative restraint
function r(e, s) as in the usual minimal pair construction in [28, Theorem IX.1.2].
The positive requirement P2e+1 : B 6= {e} and strategy to meet it are the same
as before. Let {(Φj , Zj)}j∈ω enumerate all pairs (Φ, Z) such that Φ is a partial
recursive functional and Z is an r.e. set. Let ϕj(x) be the use function for Φj(x).
In the minimal pair construction we made A merely nonrecursive by meeting the

requirement P2e : A 6= {e}. Now we shall construct A so that if Φ
Zj
j = A, then Zj

is a.p. via gj, where

gj(s) = (µt > s)(∀y ≤ s)[ΦZj,tj,t (y) = At(y)].

(Since A itself is a.p. it is of course nonrecursive.) Given i = 〈j, n, e〉 our new
positive requirement on A is:

P2i : Φ
Zj
j = A & Xn

e = Zj =⇒ (∃y)(∃s)[y ∈ Xn
e,s ∩ Zj,gj(s)].
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Define

`A(j, s) = max{x : (∀y < x)[Φ
Zj,s
j,s (y) = As(y)]}.

We say requirement P2i, i = 〈j, n, e〉, requires attention at stage s + 1 if As ∩
ω[i] = ∅ (i.e., P2i has not yet received attention), and there exists x ∈ ω[i] such
that:

x > r(i, s);(83)

`A(j, s) > x; and(84)

(∀y ≤ ϕi,s(x))[ y ∈ (Xn
e,s ∪ Zj,s) ].(85)

The construction at stage s + 1 is as before. We choose the least n such that
requirement Pn requires attention, and the least corresponding x, and enumerate
x in As+1 if n is even and in Bs+1 if n is odd.

It follows as in [28, Lemma 1, p. 155] that for all i, r(i) = lim infs r(i, s) is finite.
It remains to see that for all i requirement P2i is met, since P2i+1 is satisfied as
before. Fix i and s0 such that for all k < 2i, requirement Pk is satisfied and never
receives attention after stage s0, but P2i is not satisfied.

Assume Φ
Zj
j = A and Xn

e = Zj . Let i = 〈j, n, e〉. Then there exists x ∈ ω[i]−As
such that (83)–(85) hold of x and i at some stage s + 1 > s0. Then P2i receives
attention at stage s+ 1 and x ∈ As+1 −As. Let z = ϕi,s(x). Now by (83),

Φ
Zj,s|\z
j,s (x)↓= As(x) = 0 6= 1 = As+1(x).

Since Φ
Zj
j = A, we must have

Φ
Zj,t
j,t (x)↓= A(x) = 1,

for some t > s. By (85), we must have

(∃y ≤ z)[y ∈ (Xn
e,s − Zj,s) & y ∈ Zj,gj(s)].

Hence, requirement P2i is satisfied.

This proof illustrates a crucial difference between A being prompt versus A
being a.p. We can make A tardy as above because the restraint function r(i, s)
can permanently restrain at most finitely many elements. However, if the opponent
attempts to make Xn

e = A, then for each x ∈ Xn
e , x must lie in Xn

e,s for almost all
s. Hence, for every such x we have cofinitely many stages s to achieve x ∈ Ap(s) in
order to arrange that A is a.p., and there are infinitely many such x since we build
A coinfinite.

Corollary 11.9. The class of r.e. sets A such that A is tardy (i.e., such that A is
recursive or deg(A) is half of a minimal pair) is not invariant under automorphisms
of E, and hence is not E-definable.

Proof. By [28, Theorem XIII.2.2] if A is r.e., then deg(A) is half of a minimal pair
iff A is tardy and nonrecursive. By Theorem 11.8 there is a nonrecursive tardy r.e.
set A such that for all B ≡T A, B is a.p.; by Theorem 11.5, B is automorphic to a
complete set C; and hence deg(C) is not half of a minimal pair.
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Ambos-Spies and Nies [1] exhibited a property P (A) which holds of an r.e. set
A iff deg(A) is half of a minimal pair. Hence, like the property Q(A) in Theo-
rem 1.1, P (A) guarantees that A is incomplete. However, unlike Q(A) the property
P (A) was not defined in the language of E but required an extra predicate. By
Corollary 11.9 there can be no E-definable property defining this class of r.e. sets.

Theorem 11.10. If A is low and simple, then A is almost prompt.

Proof. Let HA = {e : We ∩ A 6= ∅}. If A is low (or even if A is semi-low),
then HA ≤T 0′. Let g(e, s) be a recursive function such that lims g(e, s) is the
characteristic function of HA.

Let Wa = A. Fix s. Define Wj(e,k) = We ∩ [k,∞), and g(e, k, s) = g(j(e, k), s).
For every x, e ≤ s, if x ∈We,s+1 −We,s, let

t(x, e, s) = (µt ≥ s)[x ∈Wa,t ∨ (∀k ≤ x)[g(e, k, t) = 1]],

and t(x, e, s) = s otherwise. If We ⊆∗ A, then the second clause fails for almost all
x and s. Let h(s) = max{t(x, e, s) : x, e ≤ s}. Define As = Wa,h(s). Putting the
enumerations {As}s∈ω, and {We,s}e,s∈ω into Definition 2.2, we have

(∀e)[We ⊆∗ A =⇒ We \ A =∗ ∅].(86)

We claim that A is a.p. via the identity function p(s) = s. Suppose that

A = Xn
e = (We1 −We2) ∪ (We3 −We4) . . . ,(87)

as in (70). Without loss of generality we may assume that the indices ej have been
adjusted so that

(∀j)1≤j<n(∀s)[Wej ⊇Wej+1 & Wej ,s ⊇Wej+1,s].(88)

Choose the maximum odd j ≤ n such that Wej −Wej+1 is infinite (i.e., choose the
rightmost parenthetical component of (87) which is infinite). By (87), (88), and
the maximality of j, Wej+1 ⊆∗ A, so by (86) we have Wej+1 \ A =∗ ∅. But since A

is simple the infinitely many elements in Z =dfn Wej \ A cannot all remain in A
forever. By the maximality of j and (88) they cannot move to another component
of Xn

e . Hence, infinitely many of the x ∈ Z ↘ A must be in A \ Wej+1 and must
therefore witness x ∈ Xn

e,s ∩ As.

Lemma 11.11. If A is almost prompt, and B is r.e., then C = A ⊕ B is almost
prompt.

Proof. Let C = A ⊕ B =dfn {2x : x ∈ A} ∪ {2x + 1 : x ∈ B}. Let A be a.p. via
{As}s∈ω and p(s). Let {Bs}s∈ω be a recursive enumeration ofB. Let Cs = As ∪Bs.
Given Xn

e as in (70), define Y ne = {x : 2x ∈ Xn
e } and define Y ne,s = {x : 2x ∈ Xn

e,s}.
Let q(s) be obtained from p(s) and {Y ne,s}n,e,s∈ω as in the Conversion Lemma 11.4.

Assume Xn
e = C. Then Y ne = A. Hence, x ∈ Y ne,s ∩ Aq(s) for some x and s, because

A is a.p., so 2x ∈ Xn
e,s ∩ Cq(s). Thus, C is a.p. via q(s).

Theorem 11.12. In every nonzero r.e. degree d there exists an almost prompt set
A.

Proof. By the Robinson Jump Interpolation Theorem [28, Theorem VIII.4.4],
choose a low r.e. degree b ≤ d. Choose B ∈ b low and simple, and choose D ∈ d
r.e. Let A = B ⊕D. Then A ∈ d and A is a.p. by Theorem 11.11.
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11.3. Very tardy sets.

Definition 11.13. Let A be an r.e. set and let {As}s∈ω be a recursive enumeration
of A.

(i) We say A is very tardy if A is not almost prompt, namely if for every nonde-
creasing recursive function p(s),

(∃n)(∃e)[Xn
e = A & (∀y)(∀s)[y ∈ Xn

e,s =⇒ y 6∈ Ap(s)]].(89)

(ii) We say A is n-tardy if in (i) the fixed n works uniformly for all such functions
p, namely for every nondecreasing recursive function p(s), there exists e such that
the matrix of (89) holds.

The main idea about a very tardy set A is that if x ∈ Xn
e,s, then x can later enter

A, but x must first undergo a delay until at least stage p(s) + 1 before doing so.
Since prompt sets are almost prompt it follows that very tardy sets are tardy, hence
the name. Note that A is 0-tardy iff A = ω, and A is 1-tardy iff A is recursive. The
2-tardy and 3-tardy sets play a special role in our work.

In [8] Harrington and Soare introduced a property Q(A) which holds of some
nonrecursive sets and guarantees that A is incomplete. In [10] and [11] we shall
show that Q(A) implies that A is 2-tardy, and that if A is a small major subset of
C and is 2-tardy, then Q(A) holds via C. Thus, the property of 2-tardy is what
we want to ensure incompleteness of A, but unfortunately the property of being
2-tardy is not E-definable, so we needed to pass to Q(A) to achieve an equivalent
E-definable property. This connection between Q(A) and A being 2-tardy will also
be used in [10] where we prove Theorem 1.4.

As in [8] we say (in the style of [5]) that an r.e. set B is hemi-Q, written HQ(B),
if there is an r.e. set A satisfying Q(A) such that A can be split into the disjoint
union of nonrecursive r.e. sets B and C. Note that if HQ(B), then B ≤T A so B
must be incomplete because A is. Since HQ(B) is E-definable, any automorphic
image of B must also be incomplete. If HQ(B), then B is 3-tardy.

It is easy to prove that if A and B are very tardy, then so are A ∩ B and
A ∪ B, just as the tardy sets are also closed under union and intersection. However,
the almost prompt sets are closed under neither union nor intersection, just as
the prompt sets are closed under neither union nor intersection. In contrast the
promptly simple sets form a filter [28, Exer. XIII.1.12].

12. Related results and open questions

Harrington explained in outline form the ∆0
3-automorphism method to P. Cholak

who subsequently developed in [2] and [3] an alternative version and extension of
the method and used it to prove some related results. In particular, Cholak proved
that for every high r.e. degree d and every coinfinite r.e. set A there is an r.e. set B
in d such that L∗(A) ∼= L∗(B). This is quite interesting because it represents the
next development in the program initiated by Martin [23] who proved it for the case
of A a maximal set, and Lachlan [14] who extended it for the case of A hh-simple
(i.e., of L∗(A) a Boolean algebra). Maass, Shore, and Stob [22] had proved that the
conclusion could not be strengthened to assert A ' B. Cholak also used his version
of the method to give an alternative proof of Theorem 1.3. In his announcement
Cholak also raised the following three questions:

1. (Item 6.) For all promptly simple high degrees h and for all promptly simple
sets A is there an r.e. set B ∈ h such that A '∆0

3
B?
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2. (Item 8.) For all high degrees h is there a nonrecursive r.e. set A such that
for all r.e. sets B with deg(B) ≥ h, A 6'∆0

3
B?

3. (Item 11.) Let A be a promptly simple set and and p a promptly simple
degree. If A is semi-low2 and has the outer splitting property, then is there
an r.e. set B with deg(B) ≤ p, such that A '∆0

3
B?

We negatively answer these questions by Theorem 1.10, Theorem 1.4, and Theo-
rem 1.9 respectively.

For any A ⊆ ω let EA be the lattice of subsets of ω which are r.e. in A. T. Ham-
mond [6] used the effective automorphism machinery with the improvement to
semi-low1.5 by Maass [19] to prove that EA ∼=eff EB if and only if A′ ≡T B′. Re-
cently Hammond and Harrington have used the ∆0

3-automorphism method to prove
that if A′′ ≡T B′′, then EA ∼= EB by an isomorphism which is recursive in A′′.

Downey and Stob [5] introduced a property HHM(A), half-hemimaximal of
an r.e. set A, and proved that such sets are automorphic to complete sets. The
properties HHM(A) and almost prompt overlap (because low simple sets have
both properties) but do not coincide, because there is an atomless set which is
prompt and hence a.p. but no HHM set is atomless.

Question 1. Can Theorem 11.10 be strengthened to show that if A is low2 and
simple, then A is almost prompt?

Question 2. Characterize those r.e. sets A such that A is automorphic to a com-
plete set.

The key property needed in the proof seems to be something like Dα 6= ∅ as in
Lemma 10.6 and Lemma 11.6, but it is not clear which external property of A this
corresponds to. Notice that both the HHM and a.p. properties guarantee some-
thing like this but these apparently do not exhaust the possibilities. Nevertheless,
further study of them may yield insight about how to code a complete set into a
given orbit.

Toward this end Harrington and Soare have considered the property of A being
d-simple defined by Lerman and Soare [17]. A coinfinite set A is d-simple if for all
X there exists Y ⊆ X such that

(i) X ∩ A = Y ∩ A, and
(ii) (∀Z)[Z −X infinite =⇒ (Z − Y ) ∩ A 6= ∅].
Let D be the class of degrees containing a d-simple set. Lerman and Soare

showed [17] that D includes the high degrees but D splits the low degrees. Since
any d-simple set is clearly simple it follows by Theorem 11.10 that any low d-simple
set is automorphic to a complete set.

Question 3. Is every d-simple set automorphic to a complete set?

This question is not of great intrinsic interest itself, but it appears to be on the
cutting edge of the symmetry between the methodologies for generating automor-
phisms and for producing invariant properties (such as Q(A)), and may therefore
be useful in gaining insight into the completeness phenomenon and Question 2.

Question 4. Find an E-definable property which defines those degrees containing
an r.e. set which is not automorphic to a complete one.

Harrington and Soare believe that they will be able to answer this question by
constructing an E-definable property which is similar to the property HQ(A).
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Abstract. A set A of nonnegative integers is computably enumerable (c.e.),
also called recursively enumerable (r.e.), if there is a computable method to
list its elements. Let E denote the structure of the computably enumerable sets
under inclusion, E = ({We}e∈ω ,⊆). Most previously known automorphisms
Φ of the structure E of sets were effective (computable) in the sense that Φ
has an effective presentation. We introduce here a new method for generat-
ing noneffective automorphisms whose presentation is ∆0

3, and we apply the
method to answer a number of long open questions about the orbits of c.e.
sets under automorphisms of E. For example, we show that the orbit of ev-
ery noncomputable (i.e., nonrecursive) c.e. set contains a set of high degree,
and hence that for all n > 0 the well-known degree classes Ln (the lown c.e.

degrees) and Hn = R −Hn (the complement of the highn c.e. degrees) are
noninvariant classes.
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