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BOREL SUBGROUPS ADAPTED TO NILPOTENT ELEMENTS

OF STANDARD LEVI TYPE

LUCAS FRESSE

Abstract. Let a reductive algebraic group over an algebraically closed field of
good characteristic be given. Attached to a nilpotent element of its Lie algebra,
we consider a family of algebraic varieties, which incorporates classical objects
such as Springer fiber, Spaltenstein varieties, and Hessenberg varieties. When
the nilpotent element is of standard Levi type, we show that the varieties of
this family admit affine pavings that can be obtained by intersecting with the
Schubert cells corresponding to a suitable Borel subgroup.

1. Introduction

Let G be a connected reductive linear algebraic group over K, an algebraically
closed field. The characteristic of K is assumed to be good for G. We denote by g

the Lie algebra of G. We are interested in nilpotent elements e ∈ g and, especially,
we consider the following object.

Definition 1. Given a nilpotent element e ∈ g, a parabolic subgroup P ⊂ G, and
a subspace V ⊂ g stabilized by the adjoint action of P , we define

Pe,V = {gP ∈ G/P : g−1 · e ∈ V }.
Hereafter, (g, x) �→ g · x denotes the adjoint action G × g → g. The set Pe,V is

then a closed (possibly empty) subvariety of the partial flag variety G/P . As noted
in the following example, some classical objects occurring in representation theory
fit in Definition 1.

Example 1. (a) Let P = B be a Borel subgroup of G and let V = n be the
nilradical of the corresponding Borel subalgebra of g. Then, Pe,V coincides with
the fiber over e of the map G×B n → G · n. This map is the Springer resolution of
the nilpotent cone of g. The variety Be := Pe,V is called a Springer fiber.

(b) Let P ⊂ G be a parabolic subgroup. If V = p is the corresponding parabolic
subalgebra of g, then the variety Pe,V = Pe,p is called a Steinberg variety, studied
in [20]. If V = nP is the nilradical of p, then the variety Pe,V = Pe,nP

is called a
Spaltenstein variety. It coincides with the fiber over e of the natural map G×P nP →
G · nP . The set G · nP is the closure of the Richardson nilpotent orbit associated
to P and this map is a quasi-resolution (i.e., proper, surjective, generically finite
to one, see [2, 3]), which generalizes the Springer resolution. If P = B is a Borel
subgroup, then both varieties Pe,p and Pe,nP

coincide with the Springer fiber Be.
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(c) Assume K of characteristic zero. Let e ∈ g be a nilpotent element. By
the Jacobson–Morozov lemma, we can embed e in a triple {e, h, f} ⊂ g such that
[h, e] = 2e, [h, f ] = −2f , and [e, f ] = h. The semisimple element h induces a
grading g =

⊕
i∈Z

gi where gi = {x ∈ g : [h, x] = ix}. Write g≥j =
⊕

i≥j gi. Then
p := g≥0 is a parabolic subalgebra of g, corresponding to a parabolic subgroup
P ⊂ G, and V := g≥2 is a P -stable subspace. We have e ∈ g2, in fact it turns out

that G · g≥2 = G · e, and the natural map G ×P g≥2 → G · g≥2 is a resolution of

the nilpotent orbit closure G · e, called Dynkin resolution (see [14]). The fiber over
e′ ∈ G · e of this resolution coincides with the variety Pe′,V .

(d) Let P = B be a Borel subgroup with Lie algebra b ⊂ g and let V ⊂ g be a
B-stable subspace which contains b. Then V is called a Hessenberg space and the
variety Pe,V is called a Hessenberg variety (see [8]). In the case where V = b, we
retrieve the Springer fiber Pe,V = Be.

In this paper, we mainly focus on nilpotent elements of standard Levi type. By
virtue of Bala–Carter theory, for every nilpotent element e ∈ g, there is a minimal
Levi subalgebra g0 ⊂ g (unique up to conjugation) containing e. Then, we say that
e is of standard Levi type if it is a regular nilpotent element of g0. If G = GLn(K),
then every nilpotent element of g = gln(K) is of standard Levi type. In general, the
nilpotent elements of standard Levi type do not exhaust all the nilpotent elements.
In Section 2, we review the basic properties of the nilpotent elements of this type.
In Section 5, we show the following characterization:

Proposition 1. Given a nilpotent element e ∈ g, the following conditions are
equivalent:

(i) e is of standard Levi type;
(ii) the group NG(e) := {g ∈ G : g · e ∈ Ke} contains a regular, rank-one

subtorus H = {η(t) : t ∈ K
∗} ⊂ G.

By regular subtorus, we mean a torus that contains regular semisimple elements
of G, or equivalently a torus that admits a finite set of fixed points for its action on
any partial flag variety G/P . If H is as in Proposition 1, then it also acts on any
subvariety of the form Pe,V ⊂ G/P with a finite number of fixed points and this
action stabilizes every irreducible component of Pe,V . Invoking Bia�lynicki-Birula’s
theorem (see [1, §4]), we have the following consequence of Proposition 1.

Corollary 1. Assume that the nilpotent element e ∈ g is of standard Levi type.
Let Pe,V be a variety like in Definition 1 and let X ⊂ Pe,V be a smooth irreducible
component. Then, X admits an affine paving (i.e., there is a decomposition X =⊔k

i=1 Xi such that X1� . . .�Xi is closed for all i ∈ {1, . . . , k} and Xi is isomorphic
to an affine space for all i).

Note that the variety Pe,V may not be irreducible or smooth, which prevents
us from directly applying Bia�lynicki-Birula’s theorem to obtain Corollary 1 for the
whole variety Pe,V . Actually our main purpose is to strengthen the conclusion of
Corollary 1 and to extend it to the whole variety Pe,V . The main result of the
paper is the following theorem.

Theorem 1. Assume that the nilpotent element e ∈ g is of standard Levi type.
Then, there is a Borel subgroup B ⊂ G satisfying the following properties:
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(a) For every parabolic subgroup P ⊂ G and every P -stable subspace V ⊂ g, the
intersection of the variety Pe,V with any B-orbit of the partial flag variety
G/P (if nonempty) is isomorphic to an affine space.

(b) Moreover, for every smooth irreducible component X ⊂ Pe,V , the intersec-
tion of X with any B-orbit of G/P is isomorphic to an affine space.

In particular, Theorem 1 establishes the existence of an affine paving for the
varieties Pe,V associated to the nilpotent elements of standard Levi type. The
existence of an affine paving guarantees good (co)homological properties (we refer
to [7, §1] and [11, §§11–12] for an overview of the notion of affine pavings) and is
especially desirable for varieties arising as fibers of resolutions (see [12]).

It is already known (cf. [7, 17]) that a Springer fiber Be always admits an affine
paving whenever e is a nilpotent element (not necessarily of standard Levi type)
with no term of type E7 or E8 in the minimal Levi subalgebra that contains it (and
the result is speculated to be true also without this restriction). Constructions of
affine pavings for Springer fibers are also discussed in [13, 18, 22]. The existence of
affine pavings for type A Steinberg and Spaltenstein varieties is established in [16]
and [4]. In [16], the paving of the Steinberg variety is obtained, as in Theorem 1, by
intersecting with certain B-orbits. The existence of affine pavings for Hessenberg
varieties associated to nilpotent elements of standard Levi type is shown (when the
base field is of characteristic zero) in [21] (type A case) and [15] (semisimple case),
where the affine paving is also obtained by intersecting with certain B-orbits of the
flag variety. Actually, the results in [15, 21] are more general since they concern
Hessenberg varieties associated to (not necessarily nilpotent) elements of the form
e = es + en with es semisimple, en nilpotent of standard Levi type, [es, en] = 0.

The main novelty of Theorem 1 with respect to the existing literature is that
the affine paving obtained is explicit and of a very special form, the construction is
valid once the characteristic of the base field K is good for G, and the construction
is canonical in the sense that the same Borel subgroup B allows to obtain pavings
of all the varieties Pe,V (and of all their smooth components) for all choices of P
and V . By combining Theorem 1 and Example 1 (c), we also get a positive answer
to [12, Question 4.19] for nilpotent elements of standard Levi type.

The paper is organized as follows. In Section 2, we recall basic facts on nilpo-
tent elements of standard Levi type (the definition, their relation to Bala–Carter
theory, and their classification). The main tool used in the paper is the notion of
cocharacter associated to a nilpotent element, which is recalled in Section 3. This
notion plays a crucial role for the study of nilpotent elements in good characteristic.
The proof of Theorem 1 relies on general constructions done in Section 4, inspired
by ideas developed in [7] and [11]. In Section 5, we give the proofs of Proposition
1 and Theorem 1. The group B fulfilling the conditions of Theorem 1 is explicit
and its construction is explained in detail in Sections 4–5 (see Theorem 4, which
is a more precise version of Theorem 1). Some concrete examples are presented in
Section 6.

2. Nilpotent elements of standard Levi type

The beginning of this section reviews some basic notions related to nilpotent
elements and nilpotent orbits. The references are [5] and [11].

Recall that an element e ∈ g is nilpotent if it belongs to [g, g] and satisfies that
ad e : g → g is a nilpotent endomorphism. The set N ⊂ g of nilpotent elements is
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an irreducible, closed subvariety, consisting of finitely many adjoint G-orbits called
nilpotent orbits and, when the characteristic of the base field K is good (as supposed
here), these orbits can be classified in terms of Bala–Carter theory, as described
below. The regular nilpotent elements, i.e., those satisfying

dimZG(e) = rankG, where ZG(e) = {g ∈ G : g · e = e},

form a single open nilpotent orbit.
A nilpotent element e is distinguished if every torus contained in ZG(e) is con-

tained in the center of G. The regular nilpotent elements are distinguished, and, if
G = GLn(K), then the converse is also true.

If S ⊂ G is a torus, then its centralizer ZG(S) ⊂ G is a connected reductive
group of Lie algebra zg(S) := {x ∈ g : s · x = x ∀s ∈ S}. We call ZG(S) a Levi
subgroup (and zg(S) a Levi subalgebra) as it can be realized as a Levi factor of some
parabolic subgroup and, conversely, a Levi factor of a parabolic subgroup is the
centralizer ZG(S) of some torus S ⊂ G.

Proposition 2 (Bala–Carter). Let e ∈ g be a nilpotent element.

(a) There exists a Levi subgroup L ⊂ G such that e is a distinguished element
of the Lie algebra Lie(L).

(b) More precisely, the Levi subgroups satisfying the property in (a) are exactly
those of the form ZG(S) where S is a maximal torus of ZG(e).

(c) In particular, any two Levi subgroups satisfying (a) are conjugated under
an element of the connected group ZG(e)

0.

A nilpotent element e ∈ g is Richardson if there is a parabolic subgroup P ⊂ G
such that P ·e is an open subset of the nilradical of the Lie algebra Lie(P ). Then, G·e
is a Richardson nilpotent orbit (all of its elements are Richardson). For example,
if e is regular, then e is Richardson, corresponding to P = B, where B ⊂ G is
the unique Borel subgroup with e ∈ Lie(B). At the other extreme, e = 0 is also
Richardson, corresponding to P = G.

A parabolic subgroup P of the derived group G′ ⊂ G is called distinguished
if dimP/UP = dimUP /U

′
P , where U ′

P ⊂ UP ⊂ P denote the unipotent radical
of P and its derived group. When the characteristic of K is good, the notions of
distinguished parabolic subgroups and distinguished nilpotent elements match well.

Theorem 2 (Bala–Carter). A nilpotent element e ∈ g is distinguished if and only
if it is a Richardson nilpotent element corresponding to a distinguished parabolic
subgroup P ⊂ G′. Moreover, the map

(L, P ) �→ G · e,

which maps the pair formed by a Levi subgroup L ⊂ G and a distinguished parabolic
subgroup P ⊂ L′ to the G-orbit of a Richardson element corresponding to P , induces
a bijection between the set of G-orbits of such pairs (L, P ) and the set of nilpotent
orbits of g.

In this paper, we focus on the following family of nilpotent elements.

Definition 2. Let e ∈ g be a nilpotent element. We say that e is of standard
Levi type if there is a Levi subgroup L such that e is a regular nilpotent element of
Lie(L). Then, we say that G · e is a nilpotent orbit of standard Levi type.
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In terms of Bala–Carter theory, the nilpotent orbits of standard Levi type are
those corresponding to (G-orbits of) pairs of the form (L,BL) where L ⊂ G is a
Levi subgroup and BL is a Borel subgroup of L′. The regular nilpotent orbit is
of standard Levi type (corresponding to the pair (G,B) where B ⊂ G′ is a Borel
subgroup). At the other extreme, e = 0 is of standard Levi type (corresponding to
the pair (T, {1G}) where T ⊂ G is a maximal torus).

Example 2. Suppose that the Lie algebra g is simple.
(a) In type An−1, that is, if g = sln(K), then every nilpotent element e is of

standard Levi type. Indeed, up to conjugation e is characterized by the sizes of
its Jordan blocks (π1 ≥ . . . ≥ πk) which form a partition of n, namely (up to
conjugation) e is a standard Jordan matrix⎛

⎜⎝
eπ1

0
. . .

0 eπk

⎞
⎟⎠

where eπi
is a matrix whose coefficients are all zero except those on the upper

subdiagonal, which are equal to 1. Thus, e is regular in the Levi subalgebra l ⊂
sln(K) formed by blockwise diagonal matrices with blocks of sizes π1, . . . , πk along
the diagonal.

(b) In the other classical cases Bn, Cn, Dn, the nilpotent orbits are not all of
standard Levi type. We refer to [10, Appendix 3] or Section 6.2 where the nilpotent
orbits of standard Levi type are described in terms of admissible partitions.

(c) The following table indicates the number of nilpotent orbits of standard Levi
type in the exceptional cases (see [6, §8.4]).

type
number of nilpotent
orbits

number of orbits of
standard Levi type

G2 4 3
F4 16 12
E6 21 17
E7 45 32
E8 70 41

(d) The trivial, minimal, and regular nilpotent orbits of g are always of standard
Levi type. The subregular nilpotent orbit of g is of standard Levi type if and only
if g is of type An, Bn, Dn, or C2.

Remark 1. (a) Let P ⊂ G be a parabolic subgroup. We denote by OP ⊂ g the
Richardson nilpotent orbit corresponding to P (defined above). Let L ⊂ P be a
Levi factor and let e ∈ Lie(L) be a regular nilpotent element, then O′

P := G · e
is a nilpotent orbit of standard Levi type and it is independent of the choice of
the Levi factor L and of the element e. Every Richardson nilpotent orbit (resp.
every nilpotent orbit of standard Levi type) is of the form OP (resp. O′

P ) for some
parabolic subgroup P ⊂ G. However, different parabolic subgroups (even if not
conjugate) can give rise to the same orbits.

(b) The map O′
P �→ OP is, nevertheless, well defined, surjective, but in gen-

eral not injective: the nilpotent orbits of standard Levi type are in general more
numerous than the Richardson nilpotent orbits (see [10, §2.5]).

(c) Actually, it is known from Spaltenstein [18, §III] that there is a duality map
d on the set of nilpotent orbits, satisfying (in fact, almost characterized by) the
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properties d ◦ d ◦ d = d (i.e., d is an involution on its image) and d(O′
P ) = OP for

every parabolic subgroup P ⊂ G. If g = sln(K), then the duality d is the bijection
Oπ �→ Oπ∗ , which maps the nilpotent orbit Oπ corresponding to a partition π =
(π1 ≥ . . . ≥ πk) to the nilpotent orbit Oπ∗ corresponding to the dual partition
π∗ = (π∗

1 ≥ . . . ≥ π∗
π1
) defined by π∗

j = |{i = 1, . . . , k : πi ≥ j}|.

3. Cocharacters associated to nilpotent elements

A cocharacter is a morphism of algebraic groups τ : K∗ → G. In particular, a
cocharacter defines a Z-grading of the Lie algebra

g =
⊕
i∈Z

g(i; τ )

where
g(i; τ ) = {x ∈ g : τ (t) · x = tix}.

A cocharacter also defines a parabolic subgroup

(1) Q(τ ) = {g ∈ G : lim
t→0

τ (t)gτ (t)−1 exists}

and a Levi decomposition Q(τ ) = L(τ )U(τ ), where

U(τ ) = {g ∈ G : lim
t→0

τ (t)gτ (t)−1 = 1G}(2)

and L(τ ) = ZG(τ ) := {g ∈ G : τ (t)g = gτ (t) ∀t ∈ K
∗}.(3)

Moreover, the Lie algebras of Q(τ ), U(τ ), and L(τ ) are, respectively,

Lie(Q(τ )) =
⊕
i≥0

g(i; τ ), Lie(U(τ )) =
⊕
i≥1

g(i; τ ), Lie(L(τ )) = g(0; τ ).

The following notion plays a key role in what follows (see [11, §5.3]).

Definition 3. Let e ∈ g be a nilpotent element. A cocharacter τ : K∗ → G is said
to be associated to e if the following conditions are satisfied:

(a) e ∈ g(2; τ );
(b) there is a Levi subgroup L ⊂ G such that e is distinguished in Lie(L) and

τ (K∗) ⊂ L′.

We have (see [11, Lemma 5.3]):

Proposition 3. Let e ∈ g be a nilpotent element. Then, there exists a cocharacter
associated to e. Two cocharacters associated to e are conjugate under ZG(e)

0.

We also point out the following simple consequence of Definition 3 (a):

Lemma 1. Let e ∈ g be nilpotent and let τ : K∗ → G be a cocharacter associated
to e. Then, we have

NG(e) = τ (K∗)ZG(e).

Proof. By Definition 3 (a) and the fact that K is algebraically closed, we have

τ (K∗) · e = {t2e : t ∈ K
∗} = K

∗e.

Then, for every g ∈ NG(e), we can find t ∈ K
∗ such that g · e = τ (t) · e, i.e.,

g ∈ τ (t)ZG(e). �

The next statement underlines the properties of the parabolic subgroup Q(τ ) for
τ as in Definition 3 (see [11, Proposition 5.9]).
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Proposition 4. Let e ∈ g be a nilpotent element and let τ : K∗ → G be a cochar-
acter associated to e. The parabolic subgroup Q(τ ) corresponding to τ satisfies the
following properties:

(a) Q(τ ) · e =
⊕

i≥2 g(i; τ );

(b) ZG(e) ⊂ Q(τ );
(c) Q(τ ) is independent of τ , that is, if τ ′ : K∗ → G is another cocharacter

associated to e, then Q(τ ′) = Q(τ ).

We conclude this section with the characterizations of the cocharacters associated
to the distinguished and the regular nilpotent elements.

Lemma 2. Let e ∈ g be a nilpotent element and let τ : K∗ → G be a cocharacter
associated to e. If e is a distinguished nilpotent element, then the grading induced
by τ is even, that is, we have g(i; τ ) = 0 whenever i is odd.

Proof. It follows from the proof of [11, Lemma 5.3 (a)] that there exists a cocharac-
ter associated to e, which induces an even grading of g. We deduce from Proposition
3 that every cocharacter associated to e fulfills this property. �

Lemma 3. Let e ∈ g be a distinguished nilpotent element and let τ : K∗ → G be a
cocharacter associated to e. The following conditions are equivalent:

(i) e is a regular nilpotent element;
(ii) τ is a regular cocharacter, i.e., ZG(τ ) is a (maximal) torus of G.

Proof. We write Q = Q(τ ), q =
⊕

i≥0 g(i; τ ), l = g(0; τ ), and m =
⊕

i≥2 g(i; τ ).

The assumption and Lemma 2 guarantee that q = l ⊕ m. Using Proposition 4 (a)
and (b), we obtain

dimZG(τ ) = dim l = dimQ− dimQ · e = dimZQ(e) = dimZG(e).

It follows:

dimZG(τ ) = rankG ⇔ dimZG(e) = rankG.

Whence the equivalence between (i) and (ii). �

4. Borel subgroups adapted to nilpotent elements

In this section, we suppose that e ∈ g is a nilpotent element. We do preliminary
constructions that involve a cocharacter τ associated to e, the corresponding par-
abolic subgroup Q(τ ), and a Borel subgroup adapted to these data. In the next
section, we will specialize to the case where e is of standard Levi type.

Throughout this section, we fix the following notation:

• Let S0 be a maximal torus of ZG(e);
• Let G0 = ZG(S0), so that e is a distinguished nilpotent element of g0 :=
Lie(G0) (see Proposition 2 (b));

• Let τ : K∗ → G be a cocharacter associated to e such that τ (K∗) ⊂ G′
0 (it

exists by virtue of Proposition 2 (c) and Proposition 3) and let Q(τ ) ⊂ G
be the corresponding parabolic subgroup;

• Note that S0 and τ generate a torus S0τ (K
∗), contained in G0 and Q(τ ).
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Definition 4. With the notation as above, we say that a Borel subgroup B ⊂ G
is adapted to the pair (S0, τ ) if it satisfies the following conditions:

(a) S0τ (K
∗) ⊂ B ⊂ Q(τ );

(b) B ∩ L(τ ) is contained in a parabolic subgroup of G admitting G0 as Levi
factor.

Lemma 4. Borel subgroups adapted to (S0, τ ) in the sense of Definition 4 always
exist.

Proof. Take Q0 ⊂ G a parabolic subgroup admitting G0 as Levi factor. Then
Q0∩L(τ ) is a parabolic subgroup of L(τ ) and there is a Borel subgroup B1 of L(τ )
such that S0τ (K

∗) ⊂ B1 ⊂ Q0 ∩ L(τ ). Set B = B1U(τ ). �

The purpose of the section is to establish the following statement.

Proposition 5. Let e ∈ g be a nilpotent element. Let (S0, τ ) be as above and let
B ⊂ G be a Borel subgroup adapted to the pair (S0, τ ) in the sense of Definition 4.
Let S = S0τ (K

∗).
Let P ⊂ G be a parabolic subgroup, V ⊂ g be a P -stable subspace, and consider

the variety Pe,V = {gP ∈ G/P : g−1 ·e ∈ V } as in Definition 1. Let X denote either
the whole variety Pe,V or a smooth irreducible component of Pe,V . Let Bx0 ⊂ G/P
be a B-orbit, with x0 ∈ G/P , and let (Bx0)

S denote the subset of points fixed by S.

(a) If X ∩ (Bx0) 
= ∅, then X ∩ (Bx0)
S 
= ∅.

(b) Moreover, in this case, there is a map

ρ : X ∩ (Bx0) → X ∩ (Bx0)
S

whose restriction ρ−1(C) → C over each connected component C ⊂ X ∩
(Bx0)

S is an algebraic affine bundle.
(c) In particular, if X ∩ (Bx0)

S is isomorphic to an affine space, then so is
X ∩ (Bx0).

The proof is given in the following subsections. It is inspired by [7, §3] and
[11, §11].

4.1. A preliminary lemma. In this subsection, σ : K∗ → G denotes a cocharacter
and Q(σ), L(σ), U(σ) are the parabolic subgroup, Levi subgroup, and unipotent
radical corresponding to σ in the sense of (1)–(3). Let B, T ⊂ G be a Borel subgroup
and a maximal torus such that

σ(K∗) ⊂ T ⊂ B ⊂ Q(σ).

Let P ⊂ G be another parabolic subgroup. It is well known that the flag variety
G/P consists of finitely many B-orbits (each one comprising a unique T -fixed point)
and so of finitely many Q(σ)-orbits. For a σ(K∗)-stable subset X ⊂ G/P , we denote
by Xσ the corresponding subset of σ(K∗)-fixed points. The map

(4) rσ : G/P → (G/P )σ, gP �→ lim
t→0

σ(t)gP

is well defined.

Lemma 5. Let Q(σ)x0 ⊂ G/P be a Q(σ)-orbit with x0 ∈ (G/P )T .

(a) The fixed point set (Q(σ)x0)
σ consists of the single L(σ)-orbit L(σ)x0 and

is a projective variety (in particular it is a connected component of (G/P )σ

and each connected component of (G/P )σ is of this form).
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(b) rσ restricts to an algebraic affine bundle Q(σ)x0 → (Q(σ)x0)
σ; moreover,

for every q ∈ Q(σ), writing q = �u where � ∈ L(σ) and u ∈ U(σ), we have
rσ(qx0) = �x0.

(c) rσ(Bx0) = (Bx0)
σ.

Proof. Let q = �u ∈ Q(σ) with � ∈ L(σ) and u ∈ U(σ). We first check the relation

(5) rσ(qx0) = �x0.

Since σ(t)� = �σ(t) and σ(t)x0 = x0, we obtain

σ(t)qx0 = �σ(t)uσ(t)−1x0 for all t ∈ K
∗.

Relation (5) then follows by letting t → 0 (and invoking (2)).
The first claim in part (a) of the lemma is a consequence of relation (5) and the

fact that the restriction of rσ to (Q(σ)x0)
σ is the identity. It implies that (Q(σ)x0)

σ

is isomorphic to the quotient L(σ)/M0 where M0 = {g ∈ L(σ) : gx0 = x0}. Write
x0 = g0P with g0 ∈ G. An element g ∈ G satisfies gx0 = x0 if and only if
g ∈ g0Pg−1

0 . Thus M0 = L(σ) ∩ (g0Pg−1
0 ). The fact that x0 is fixed by σ(K∗)

yields σ(K∗) ⊂ g0Pg−1
0 . Since L(σ) = ZG(σ), the last inclusion implies that M0 is

a parabolic subgroup of L(σ), hence L(σ)/M0 is a projective variety. This completes
the proof of part (a).

Relation (5) establishes the second claim in part (b) of the lemma. It follows from
Bia�lynicki-Birula’s theorem (see Theorem 3 below) that the map rσ restricts to an
algebraic affine bundle r−1

σ (C) → C for every connected component C ⊂ (G/P )σ.
Now (5) implies that r−1

σ ((Q(σ)x0)
σ) = Q(σ)x0. Whence the first claim in part (b)

of the lemma.
The inclusion B ⊂ Q(σ) yields the inclusion U(σ) ⊂ B. Thereby, every element

in B can be written b = �u with � ∈ L(σ) ∩B and u ∈ U(σ) ⊂ B. By (5), we have
rσ(bx0) = �x0 ∈ (Bx0)

σ, whence rσ(Bx0) = (Bx0)
σ. This establishes part (c) of

the statement. �
The proof uses the following result, which is a weak version of [1, Theorem 4.1].

Theorem 3. Let X be a smooth, projective variety equipped with an algebraic
action of K

∗, so giving rise to the retraction rX : X → XK
∗
, x �→ limt→0 t · x,

where XK
∗ ⊂ X denotes the subset of K∗-fixed points. Let Y ⊂ X be a smooth,

K
∗-stable, locally closed subvariety and assume that rX(Y ) = Y K

∗
:= Y ∩ XK

∗
.

Then, Y K
∗
is smooth and, for every connected component C ⊂ Y K

∗
, the restriction

Y ∩ r−1
X (C) → C of rX is an algebraic affine bundle.

Proof. The smoothness of Y K
∗
is a consequence of the facts that Y is smooth

and that the group K
∗ is linearly reductive (see [11, Theorem 11.7]). Then, the

assumptions allow us to apply [1, Theorem 4.1], which yields an algebraic affine
bundle γ : Y ∩ r−1

X (C) → C, fulfilling certain additional properties. The fact that
γ coincides with the restriction of rX is explained in [11, §§11.15–16]. �
4.2. First step of the proof of Proposition 5. In this subsection, we show the
following statement.

Proposition 6. Same notation as in Proposition 5.

(a) Assume that Pe,V ∩ (Q(τ )x0) 
= ∅. Then, Pe,V ∩ (Q(τ )x0)
τ is nonempty,

smooth, and the retraction rτ (see (4)) restricts to a well-defined map

r′τ : Pe,V ∩ (Q(τ )x0) → Pe,V ∩ (Q(τ )x0)
τ
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whose restriction r′−1
τ (C) → C over each connected component C ⊂ Pe,V ∩

(Q(τ )x0)
τ is an algebraic affine bundle.

(b) Assume that X ∩ (Bx0) 
= ∅. Then, X ∩ (Bx0)
τ 
= ∅, and rτ restricts to

a well-defined map X ∩ (Bx0) → X ∩ (Bx0)
τ whose restriction over each

connected component of X ∩ (Bx0)
τ is an algebraic affine bundle.

The proof relies on Lemma 5 and on the following fact, which is a reformulation
of [7, Proposition 3.2].

Lemma 6. Same notation as in Proposition 6. The variety Pe,V ∩ (Q(τ )x0) is
smooth.

Proof of Lemma 6. Write x0 = g0P . Consider the closed subset of Q(τ ) given by

A = {q ∈ Q(τ ) : q−1 · e ∈ g0 · V }.
By definition of A, the map

A → Pe,V ∩ (Q(τ )x0), q �→ qx0

is well defined, surjective, and smooth. We also consider the map

A → (g0 · V ) ∩ (Q(τ ) · e), q �→ q−1 · e.
Again, the definition of A ensures that this map is well defined, surjective and,
moreover, it is smooth. Note that (g0 · V ) ∩ (Q(τ ) · e) is an open subvariety of

(g0 · V ) ∩ Q(τ ) · e, which is a smooth variety, as the intersection of two linear
subspaces of g (by Proposition 4 (a)). Thereby, the varieties (g0 ·V )∩ (Q(τ ) · e), A,
and Pe,V ∩ (Q(τ )x0) are smooth. �

Proof of Proposition 6. We first emphasize properties of the map rτ :

(6) rτ (Q(τ )x0) = (Q(τ )x0)
τ , rτ (Bx0) = (Bx0)

τ ,

and

(7) rτ (Pe,V ) ⊂ Pe,V .

Relation (6) follows from Lemma 5, whereas relation (7) follows from the fact that
Pe,V is closed in G/P and stable by the action (t, x) �→ τ (t)x (the last fact is a
consequence of Definition 3 (a) and the definition of the variety Pe,V in Definition
1). Combining the first part of (6) with (7), we obtain

(8) rτ (Pe,V ∩ (Q(τ )x0)) = Pe,V ∩ (Q(τ )x0)
τ .

Lemma 6 and relation (8) allow us to apply Theorem 3, which yields part (a) of
the proposition.

If X is a smooth irreducible component of Pe,V , then it is also stable by the
action (t, x) �→ τ (t)x, i.e.,

(9) rτ (X) ⊂ X,

and it follows from Theorem 3 that the restriction

X → Xτ , x �→ lim
t→0

τ (t)x

(still denoted r′τ ) of rτ is an algebraic affine bundle over each connected component
of Xτ . In what follows, let X denote (as in the statement) either the whole variety
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Pe,V or a smooth irreducible component of Pe,V . Combining the second relation in
(6) with (7) or (9), we get

r′τ (X ∩ (Bx0)) = X ∩ (Bx0)
τ .

Whence X ∩ (Bx0)
τ 
= ∅ whenever X ∩ (Bx0) 
= ∅. Actually, since the orbit Bx0 is

arbitrary, it also follows that

(10) r′−1
τ (X ∩ (Bx0)

τ ) = X ∩ (Bx0).

Part (b) of the proposition now follows from part (a) and relation (10). �

4.3. Second step of the proof of Proposition 5. In addition to the notation
introduced at the beginning of Section 4, we consider:

• Q0 ⊂ G a parabolic subgroup admitting G0 as Levi factor, such that Q0 ∩
L(τ ) contains B ∩ L(τ ) (see Definition 4);

• τ0 : K∗ → G a cocharacter corresponding to G0, Q0, and its unipotent
radical U0 in the sense of relations (1)–(3); that is,

Q0 = {g ∈ G : lim
t→0

τ0(t)gτ0(t)
−1 exists},(11)

U0 = {g ∈ G : lim
t→0

τ0(t)gτ0(t)
−1 = 1G},(12)

G0 = ZG(τ0).(13)

Lemma 7. Every b ∈ B can be written b = b1u1u2, where b1 ∈ B ∩ L(τ ) ∩ G0,
u1 ∈ L(τ )∩U0, and u2 ∈ U(τ ) (where U(τ ) denotes the unipotent radical of Q(τ )).

Proof. Since b ∈ B ⊂ Q(τ ), there are b2 ∈ L(τ ) and u2 ∈ U(τ ) such that b = b2u2.
So, b2 = bu−1

2 ∈ BU(τ ) ⊂ B, hence b2 ∈ B ∩ L(τ ) ⊂ Q0 ∩ L(τ ). Since Q0 contains
the torus τ (K∗), the intersection Q0 ∩ L(τ ) is a parabolic subgroup of L(τ ), with
Levi decomposition

Q0 ∩ L(τ ) = (G0 ∩ L(τ ))(U0 ∩ L(τ )).

Thereby, there exist b1 ∈ G0 ∩ L(τ ) and u1 ∈ U0 ∩ L(τ ) such that b2 = b1u1.
Whence b1 = b2u

−1
1 ∈ B(U0 ∩ L(τ )) ⊂ B. The proof is complete. �

Lemma 8.

(a) Given S ⊂ G a torus, there exists a cocharacter σ : K∗ → S such that
ZG(S) = ZG(σ).

(b) Let S1, S2 ⊂ G be tori such that ZG(S1) = ZG(S2) =: L, then for every
parabolic subgroup P ⊂ G, we have (G/P )S1 = (G/P )S2.

Proof. (a) The cocharacter σ can be constructed by arguing as in [11, §11.11] and
[19, §8.4.5].

(b) The assumption shows in particular that S := S1S2 is a torus of L. Applying
part (a) we find a cocharacter σ : K∗ → S1 such that L = ZG(σ). Thus, (G/P )σ ⊃
(G/P )S1 ⊃ (G/P )S. Let Q(σ) ⊂ G be the parabolic subgroup associated to σ in the
sense of (1) and let Q(σ)x0 ⊂ G/P be a Q(σ)-orbit. By the Bruhat decomposition,
we know that the fixed point set (Q(σ)x0)

S is nonempty, and we have the inclu-
sion (Q(σ)x0)

S ⊂ (Q(σ)x0)
σ. Actually (Q(σ)x0)

S is L-stable whereas (Q(σ)x0)
σ

is a single L-orbit (see Lemma 5 (a)), whence the equality (Q(σ)x0)
S = (Q(σ)x0)

σ.
Since this holds for all Q(σ)-orbit, we obtain (G/P )σ = (G/P )S1 = (G/P )S. Sim-
ilarly, we have (G/P )S2 = (G/P )S, therefore (G/P )S1 = (G/P )S2 . �
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Applying Lemma 8 in our case, since G0 = ZG(τ0) = ZG(S0), we obtain that

(G/P )τ0 = (G/P )S0 .

We consider the retraction

rτ0 : G/P → (G/P )S0 , x �→ lim
t→0

τ0(t)x.

In this subsection, we establish the following proposition.

Proposition 7. Same notation as in Proposition 5. The map rτ0 restricts to a
well-defined map

X ∩ (Bx0)
τ → X ∩ (Bx0)

S0τ(K
∗),

whose restriction over each connected component of X∩(Bx0)
S0τ(K

∗) is an algebraic
affine bundle.

Proof. Since the cocharacter τ0 has values in the center of G0 and e is an element of
Lie(G0), we see that τ0 stabilizes e, which implies that the variety Pe,V is stable by
the action (t, x) �→ τ0(t)x, as well as X whenever X is an irreducible component of
Pe,V . The fact that G0 = ZG(τ0) also implies that the tori τ0(K

∗), τ (K∗) commute,
hence τ0(K

∗) ⊂ L(τ ), which implies that (Q(τ )x0)
τ is also stabilized by the action

(t, x) �→ τ0(t)x. We conclude that τ0 induces an algebraic action of K
∗ on the

variety Pe,V ∩ (Q(τ )x0)
τ , as well as on the fixed point set Xτ whenever X ⊂ Pe,V

is a component.
It follows from Lemma 5 (a) and Proposition 6 that the variety Pe,V ∩ (Q(τ )x0)

τ

is smooth and projective. By Theorem 3, the map rτ0 restricts to a map

Pe,V ∩ (Q(τ )x0)
τ → Pe,V ∩ (Q(τ )x0)

S0τ(K
∗),

which is an algebraic affine bundle over each connected component of the right-hand
side. If X is a smooth component of Pe,V , then the fixed point set Xτ is smooth
and projective. By Theorem 3, rτ0 restricts to a map

Xτ → XS0τ(K
∗),

which is an algebraic affine bundle over each connected component of XS0τ(K
∗). In

order to complete the proof of the proposition, it then suffices to check the following
equality:

(14) r−1
τ0 ((Bx0)

S0τ(K
∗)) ∩ (G/P )τ = (Bx0)

τ .

The orbit Bx0 being arbitrary, (14) ensues once we show

(15) rτ0((Bx0)
τ ) ⊂ (Bx0)

S0τ(K
∗).

Let us check (15). First, we know from the Bruhat decomposition that the fixed

point set (Bx0)
S0τ(K

∗) is nonempty, hence we may assume without any loss of
generality that x0 is a S0τ (K

∗)-fixed point. Let x ∈ (Bx0)
τ , thus there is b ∈ B

such that x = bx0. Write b = b1u1u2, where b1 ∈ B ∩ G0 ∩ L(τ ), u1 ∈ U0 ∩ L(τ ),
and u2 ∈ U(τ ) (see Lemma 7). The facts that x is a τ (K∗)-fixed point and that x0

is a S0τ (K
∗)-fixed point yield

x = τ (t)x = b1u1τ (t)u2τ (t)
−1x0 for all t ∈ K

∗,

hence, letting t → 0 (and using (2)), we get x = b1u1x0. Similarly,

τ0(t)x = b1τ0(t)u1τ0(t)
−1x0 for all t ∈ K

∗,
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so letting t → 0 we obtain

rτ0(x) = lim
t→0

τ0(t)x = b1x0 ∈ (Bx0)
S0τ(K

∗)

(see (12)). Whence (15). The proof of the proposition is now complete. �
Proposition 5 is finally obtained by combining Proposition 6 (b) and Proposi-

tion 7.

Remark 2. As noted by the referee, in the case where X = Pe,V , Proposition 5 can
be demonstrated more directly by first showing that X ∩ (Bx0) is smooth (as in
[15, Proposition 3.7 and Corollary 4.9]) and then applying [7, §1.5] (or Theorem 3).

5. Proof of the main results

This section contains the proofs of the main results stated in Section 1. Some
preliminaries are needed.

5.1. Preliminary lemmas. We start with two general lemmas.

Lemma 9. Let S ⊂ G be a torus and let L = ZG(S) be the corresponding Levi
subgroup. Let H ⊂ L be a subgroup. The following conditions are equivalent:

(i) the number of HS-fixed points in the flag variety G/P is finite, for all
parabolic subgroups P ⊂ G;

(ii) the number of H-fixed points in the flag variety L/P0 is finite, for all par-
abolic subgroups P0 ⊂ L.

Proof. Let Q ⊂ G be a parabolic subgroup admitting L as a Levi factor. Let
P ⊂ G be an arbitrary parabolic subgroup. The flag variety G/P admits finitely
many Q-orbits and each one is of the form QgP where gP is an S-fixed point, i.e.,
S ⊂ gPg−1. The last fact implies that P0 := L∩(gPg−1) is a parabolic subgroup of
L (and each parabolic subgroup of L can be obtained in this way, for appropriate P ,
g). From Lemma 5 (a) and Lemma 8, we know that there is a natural isomorphism

(QgP )S = LgP → L/P0.

This map being L-equivariant, it yields an isomorphism between fixed point sets

(QgP )HS ∼= (L/P0)
H .

The parabolic subgroups P ⊂ G and P0 ⊂ L being arbitrary, we get the equivalence
between (ii) and:

(i’) For every parabolic subgroup P ⊂ G, there is a finite number of HS-fixed
points in each Q-orbit of the flag variety G/P .

Since there are finitely many Q-orbits in any flag variety G/P , we know that (i)
and (i’) are equivalent. This completes the proof. �
Lemma 10. Let σ : K

∗ → G be a cocharacter. The following conditions are
equivalent:

(i) The cocharacter σ is regular (i.e., ZG(σ) is a maximal torus).
(ii) For every parabolic subgroup P ⊂ G, the fixed point set (G/P )σ is finite.

Proof. Applying Lemma 9 to the groups S = σ(K∗) and H = {1G}, we see that
(ii) is equivalent to:

(i’) the flag variety ZG(σ)/P0 is a finite set for all parabolic subgroups P0 ⊂
ZG(σ).
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Condition (i’) is clearly equivalent to saying that the Levi subgroup ZG(σ) is a
(necessarily maximal) torus, hence it is equivalent to (i). �

The next lemma is a key argument in the proof of Proposition 1 and Theorem 1.
This is also the first place where the assumption that e is of standard Levi type is
invoked (the results of the previous section hold without this assumption).

Lemma 11. Let e ∈ g be a nilpotent element. Let S0 ⊂ ZG(e) be a maximal torus
and let G0 = ZG(S0) be the corresponding Levi subgroup, so satisfying that e is
a distinguished nilpotent element of Lie(G0). Let τ : K∗ → G be a cocharacter
associated to e such that τ (K∗) ⊂ G′

0. Assume that e is a nilpotent element of
standard Levi type. Then the torus S0τ (K

∗) has a finite number of fixed points in
the flag variety G/P , for all parabolic subgroups P ⊂ G.

Proof. By assumption, e is a regular nilpotent element of Lie(G0). Note that τ
is also a cocharacter associated to e in the group G0. Then, from Lemma 3, we
have that τ is a regular cocharacter of G0. Hence, for every parabolic subgroup
P0 ⊂ G0, the fixed point set (G0/P0)

τ is finite (see Lemma 10). Applying Lemma
9 to the torus S = S0 and the group H = τ (K∗), we deduce that the fixed point
set (G/P )S0τ(K

∗) is finite for all parabolic subgroups P ⊂ G. �

5.2. Proof of Proposition 1. The implication (i)⇒(ii) is a consequence of Lem-
mas 8, 10, and 11.

Before proving the inverse implication, we do a preliminary construction. Let S0

be a maximal torus of ZG(e) and let τ : K∗ → ZG(S0) be a cocharacter associated
to the nilpotent element e, then it follows from Lemma 1 that

(16) S0τ (K
∗) is a maximal torus of NG(e).

Now let us show the implication (ii)⇒(i). Assume that the group NG(e) contains
a regular rank one subtorus, the image of a regular cocharacter η : K∗ → G. The
torus η(K∗) lies in a maximal torus of NG(e). Since all the maximal tori of NG(e)
are conjugate, up to replacing η by a suitable conjugate, we may assume that
η(K∗) ⊂ S0τ (K

∗). It follows from Lemma 10 that the torus S0τ (K
∗) has a finite

number of fixed points in the flag variety G/P , for all parabolic subgroups P ⊂ G.
Invoking Lemma 9 with S = S0 and H = τ (K∗), and again applying Lemma 10,
we obtain that τ is a regular cocharacter of ZG(S0). Finally, from Lemma 3, we
conclude that e is a regular element of Lie(ZG(S0)), hence a nilpotent element of
standard Levi type in g. The proof of Proposition 1 is complete.

5.3. Proof of Theorem 1. We establish the following more precise statement.

Theorem 4. Let e ∈ g be a nilpotent element of standard Levi type. Let S0

be a maximal torus of ZG(e) and let τ : K∗ → G0 := ZG(S0) be a cocharacter
associated to e. Finally, let B ⊂ G be a Borel subgroup adapted to (S0, τ ) in the
sense of Definition 4. Then, for every parabolic subgroup P ⊂ G and every P -stable
subspace V ⊂ g, denoting by X either the whole variety Pe,V or a smooth irreducible
component of Pe,V , the following holds true: for every B-orbit Bx0 ⊂ G/P , the
intersection X ∩ (Bx0) is either empty or isomorphic to an affine space.

Proof of Theorem 4. In view of Proposition 5 (c), the proof reduces to show that
X ∩ (Bx0)

S is isomorphic to an affine space, where S = S0τ (K
∗). We claim that
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X ∩ (Bx0)
S , if nonempty, is a singleton, actually we claim that

(17) (Bx0)
S is a singleton.

Clearly, the proof is complete once we show (17). By Lemma 11, using also Lemmas
8 and 10, the group T := ZG(S) is a maximal torus of G (contained in B). In
particular ZG(T ) = ZG(S). Invoking Lemma 8 (b), we deduce that

(G/P )S = (G/P )T .

By the Bruhat decomposition, every B-orbit of G/P comprises a unique T -fixed
point. Whence (17). The proof of the theorem is complete. �

6. Examples

We illustrate the previous results in the cases of the general linear group G =
GL(V ) and of the symplectic group G = Sp(V, ω). In each case, we explain the con-
struction of an explicit Borel subgroup adapted to a nilpotent element of standard
Levi type.

6.1. Case of the general linear group. Let V be a vector space of finite di-
mension n ≥ 1. Consider the group G = GL(V ). Its Lie algebra g = End(V )
coincides with the space of linear endomorphisms of V . A nilpotent element is then
an endomorphism e ∈ End(V ), which is nilpotent in the usual sense.

The lengths π = (π1 ≥ π2 ≥ . . . ≥ πk) of the Jordan blocks of e form a partition
of n. Represent the partition π by a Young diagram and view this Young diagram
as a set of boxes, still denoted by π, where πi denotes the subset of boxes in the
i-th row. Consider a basis {va : a ∈ π} parametrized by π, such that:

• e(va) = 0 if a belongs to the first column of π;
• e(va) = va′ where a′ denotes the box next to a on the left, otherwise.

Thus {va} is a Jordan basis for the endomorphism e, with the i-th Jordan block
Vi := 〈va : a ∈ πi〉K corresponding to the boxes in the i-th row of π.

Given (t1, . . . , tk) ∈ (K∗)k, define h(t1, . . . , tk) ∈ GL(V ) by va �→ tiva whenever
a ∈ πi and set S0 = {h(t1, . . . , tk)} ∼= (K∗)k. Then, S0 is a maximal torus of ZG(e).

The corresponding Levi subgroup is G0 := ZG(S0) =
∏k

i=1 GL(Vi) and its derived

group is G′
0 =

∏k
i=1 SL(Vi).

Next, we construct a cocharacter associated to e. To do this, we attribute a
weight ν(a) ∈ Z to each box a ∈ π as follows. Suppose a ∈ πi, and let

ν(a) = #{boxes of πi on the right of a} −#{boxes of πi on the left of a},
where #A denotes the cardinal of a set A. Then, we define τ : K∗ → GL(V ) by

τ (t) : va �→ tν(a)va for all a ∈ π.

It is readily seen that we have τ (t)eτ (t)−1 = t2e and the image of τ is contained in
G′

0, hence τ is a cocharacter associated to e.
Finally, a Borel subgroup adapted to (S0, τ ) can be obtained as follows. Fix a

permutation r = (r1, . . . , rk) of (1, . . . , k) and consider the ordering ≺ of the rows
of π defined by r, that is, let πr1 ≺ . . . ≺ πrk . There is a unique total order < on
the boxes of the diagram π such that:

• the weight ν is nonincreasing: if a < a′, then ν(a) ≥ ν(a′);
• if a ∈ πi and a′ ∈ πj have the same weight, then a < a′ ⇔ πi ≺ πj .
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Denote by a1, . . . , an the boxes of π enumerated according to this order, i.e., so that
a1 < . . . < an. Define B ⊂ GL(V ) as the subgroup of the automorphisms that are
upper triangular in the basis (va1

, . . . , van
). Then, B is a Borel subgroup adapted

to (S0, τ ) in the sense of Definition 4. Note that different Borel subgroups can be
obtained, depending on the choice of the permutation r.

Example 3. Let e ∈ End(K7) be a nilpotent endomorphism with three Jordan
blocks of lengths (4, 2, 1). Its Jordan form can be represented by the Young diagram:

The following tableau indicates the weight ν(a) for each box of the diagram:

3 1 −1 −3

1 −1
0

Consider the natural ordering of the rows from top to bottom (i.e., (r1, r2, r3) =
(1, 2, 3)). Then, the numbering of the boxes a1, . . . , a7 constructed according to the
procedure described above is as follows (we put i in the box ai):

1 2 5 7

3 6
4

In the so-obtained basis (va1
, . . . , va7

), the matrix of e becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The tori S0 and τ (K∗) correspond to the subgroups of matrices of the form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 0 0 0 0 0 0
0 t1 0 0 0 0 0
0 0 t2 0 0 0 0
0 0 0 t3 0 0 0
0 0 0 0 t1 0 0
0 0 0 0 0 t2 0
0 0 0 0 0 0 t1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t3 0 0 0 0 0 0
0 t 0 0 0 0 0
0 0 t 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 t−1 0 0
0 0 0 0 0 t−1 0
0 0 0 0 0 0 t−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally, the adapted Borel subgroup B corresponds to the subgroup of upper tri-
angular matrices.

Remark 3. The result in Theorem 1 (b) concerns only smooth components of va-
rieties of the form Pe,V . However, [9, §6.2] points out a singular component X of
a Springer fiber Be (corresponding to e ∈ End(K7) of Jordan form (3, 2, 2)), whose
intersection with each B-orbit (for an adapted B) is isomorphic to an affine space.

6.2. Case of the symplectic group. Assume that the vector space V has even
dimension n = 2p and is endowed with a symplectic form ω : V ×V → K. Consider
the symplectic group G = Sp(V, ω) formed by the automorphisms g ∈ GL(V ) that
preserve the symplectic form, i.e., ω(gv, gv′) = ω(v, v′) for all v, v′ ∈ V . Its Lie
algebra is the symplectic Lie algebra g = sp(V, ω) formed by the endomorphisms
x ∈ End(V ) that are antiadjoint with respect to ω, i.e., ω(xv, v′) + ω(v, xv′) = 0
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for all v, v′. The characteristic of the base field K is assumed to be different from
2, so that it is good for G.

Remark 4. Recall that a possible interpretation of the elements of Sp(V, ω) and
sp(V, ω) in terms of matrices is as follows. Consider a basis (v1, . . . , vn) of V such
that

(18) ω(vi, vj) =

{
1 if i+ j = n+ 1,
0 otherwise,

for all 1 ≤ i ≤ j ≤ n.

Let Jp denote the p×p sized matrix with 1’s on the antidiagonal and 0’s elsewhere,

and let K =
(

0 Jp

−Jp 0

)
∈ SLn(K). Then, through the basis (v1, . . . , vn), the

group Sp(V, ω) interprets as the group of matrices g ∈ SLn(K) such that (gt)Kg =
K, and the Lie algebra sp(V, ω) interprets as the space of matrices x ∈ Mn(K) such

that (xt)K +Kx = 0, that is, of the form x =
(

P R

S −P δ

)
with P,R, S ∈ Mp(K),

R = Rδ, S = Sδ, where Xδ stands for the symmetric of X by the antidiagonal.
A Borel subgroup of Sp(V, ω) is formed by the upper triangular matrices g such

that (gt)Kg = K, i.e., the blockwise matrices of the form g =
(

P PR

0 (P−1)δ

)
with

P ∈ GLp(K) upper triangular and R ∈ Mp(K) such that R = Rδ.

A nilpotent element e ∈ sp(V, ω) is an antiadjoint endomorphism, which is nilpo-
tent in the usual sense. Its Jordan form π = (π1 ≥ . . . ≥ πk) is a partition of n
where, for every odd integer q, the number of parts πi that are equal to q is even.
Conversely, if π is a partition satisfying this property, then it occurs as the Jordan
form of a nilpotent element of sp(V, ω), which is uniquely determined up to its
nilpotent orbit. As in Section 6.1, we represent π by a Young diagram that we view
as a set of boxes, and we view πi as the subset of boxes in the i-th row of π. In
fact, we partition the set of rows of π by writing

π = (π+
1 � π−

1 ) � . . . � (π+
� � π−

� ) � (π0
1 � . . . � π0

m)

where:

• {π+
1 , π

−
1 }, . . . , {π+

� , π
−
� } are � pairwise distinct pairs of rows such that, for

each i, π+
i , π

−
i have the same length, with � maximal;

• π0
1 , . . . , π

0
m are the remaining rows, whose lengths are therefore pairwise

distinct, even.

Thus m is the number of parts of the partition π, which occur with odd multiplicity.
The following fact is shown in [10, Theorem A.3].

Proposition 8. The nilpotent element e ∈ sp(V, ω) is of standard Levi type if and
only if m ∈ {0, 1}.

For the moment, we do not assume that e is of standard Levi type (hence m is
arbitrary). To each box a ∈ π, we attach a sign ε(a) ∈ {1,−1} and a dual box
a∗ ∈ π in the following way:

• if a, a′ are, respectively, the j-th box from the left in π+
i and the j-th box

from the right in π−
i , then set ε(a) = (−1)j = −ε(a′), a∗ = a′, and a′∗ = a;

• if a, a′ are, respectively, the j-th box from the left and the j-th box from
the right in π0

i , then set ε(a) = (−1)j and a∗ = a′.
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There is a basis {va : a ∈ π} parametrized by the boxes of π and satisfying the
following requirements:

• e(va) = 0 if a belongs to the first column of π;
• e(va) = va′ where a′ denotes the box next to a on the left, otherwise;
• ω(va, va′) = ε(a) if a′ = a∗, and ω(va, va′) = 0 otherwise.

Thus {va} is a Jordan basis for the endomorphism e, where the Jordan blocks
V ε
i := 〈va : a ∈ πε

i 〉K correspond to the rows πε
i of π, for all i, all ε ∈ {+, 0,−}.

Given (t1, . . . , t�) ∈ (K∗)�, let h(t1, . . . , t�) ∈ Sp(V, ω) be given by va �→ tiva
for a ∈ π+

i , va �→ t−1
i va for a ∈ π−

i , and va �→ va for all a ∈ π0
i . Then, S0 :=

{h(t1, . . . , t�)} ∼= (K∗)� is a maximal torus of ZG(e).
A cocharacter associated to e is obtained as follows. For every a ∈ πε

i we set

ν(a) = #{boxes of πε
i on the right of a} −#{boxes of πε

i on the left of a}
for all i, all ε ∈ {+, 0,−}. Then, let τ : K∗ → Sp(V, ω) be defined by

τ (t) : va �→ tν(a)va for all a ∈ π.

It is easy to see that τ is a cocharacter associated to e. It is also straightforward
to check that the torus S0τ (K

∗) is regular if and only if m ∈ {0, 1}, thus one can
retrieve Proposition 8 by applying Proposition 1.

Finally (without necessarily assuming that e is of standard Levi type), we con-
struct a Borel subgroup adapted to (S0, τ ). Consider the order ≺ on the set of rows
{π1, . . . , πk} = {π+

i , π
−
j , π

0
h} given by

π+
1 ≺ . . . ≺ π+

� ≺ π0
1 ≺ . . . ≺ π0

m ≺ π−
� ≺ . . . ≺ π−

1 .

There is a unique total order < on π such that:

• ν(a) ≥ ν(a′) whenever a < a′;
• if a ∈ πi and a′ ∈ πj satisfy ν(a) = ν(a′), then a < a′ ⇔ πi ≺ πj .

Let a1 < . . . < an be the boxes of π written in increasing order. It is easy to check
that a∗i = an−i+1 for all i ∈ {1, . . . , n}. Setting vi = ε(ai)vai

for i ∈ {1, . . . , p},
and vi = vai

for i ∈ {p + 1, . . . , 2p}, we get a basis satisfying (18). The subgroup
B ⊂ Sp(V, ω) of automorphisms that are upper triangular in the basis (v1, . . . , vn)
is a Borel subgroup (see Remark 4), which is adapted to (S0, τ ).

Example 4. Assume V = K
10 and let e ∈ sp(V, ω) be a nilpotent element of

Jordan form π = (3, 3, 2, 1, 1), represented by the Young diagram:

By Proposition 8, e is of standard Levi type. We denote by π+
1 , π

+
2 the first and

fourth rows of π, by π−
1 , π

−
2 the second and fifth rows, and by π0

1 the third row.
Putting the weight ν(a) in each box a, we get:

2 0 −2

2 0 −2

1 −1
0
0
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The order on the boxes a1, . . . , a10 of the diagram is indicated in the following
tableau, where we put i in the box ai:

1 4 9

2 7 10

3 8
5
6

We get

vi = vai
for i ∈ {2, 4, 6, 7, 8, 9, 10} and vi = −vai

for i ∈ {1, 3, 5}.

The matrix of e in the basis (v1, . . . , v10) is then the following:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The tori S0 and τ (K∗) correspond to the subgroups of matrices of the forms

Δ(t1, t
−1
1 , 1, t1, t2, t

−1
2 , t−1

1 , 1, t1, t
−1
1 ) and Δ(t2, t2, t, 1, 1, 1, 1, t−1, t−2, t−2),

where Δ(t1, . . . , tn) stands for the n×n sized diagonal matrix with entries t1, . . . , tn
along the diagonal. Finally, B ⊂ Sp(V, ω) corresponds to the group of upper
triangular matrices g ∈ SL10(K) described in Remark 4.

Remark 5. The case of the orthogonal group is similar. Let V be a vector space
of finite dimension n ≥ 1 (even or odd), endowed with an orthogonal form φ :
V × V → K. Let G = SO(V, φ) ⊂ SL(V ) be the subgroup of automorphisms that
preserve φ, its Lie algebra is g = so(V, φ) the space of endomorphisms of trace
0, which are antiadjoint with respect to φ. A nilpotent element e ∈ so(V, φ) is
an antiadjoint endomorphism, which is nilpotent in the usual sense. Its Jordan
form π = (π1 ≥ . . . ≥ πk) is a partition of n where the even parts occur with
even multiplicities. Let π0

1 , . . . , π
0
m ∈ {π1, . . . , πk} be the values occurring with odd

multiplicities in the partition π. It is shown in [10, Theorems A.2, A.4] that e is of
standard Levi type if and only if

m ∈ {0, 1} or (m = 2 and 1 ∈ {π0
1 , π

0
2}).

This conclusion can be retrieved through Proposition 1. In fact, following the same
scheme as above, one can construct a maximal torus S0 ⊂ ZG(e), a cocharacter τ
associated to e, and a Borel subgroup adapted to (S0, τ ), to which the results of
this paper can be applied.
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