
Preface  Preview Material  Table of Contents  Supplementary Material 
Student Mathematical Library 2009; 313 pp; softcover Volume: 51 ISBN10: 0821821385 ISBN13: 9780821821381 List Price: US$51 Member Price: US$40.80 Order Code: STML/51 See also: Glimpses of Soliton Theory: The Algebra and Geometry of Nonlinear PDEs  Alex Kasman Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS  Pierpaolo Esposito, Nassif Ghoussoub and Yujin Guo  This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject. Request an examination or desk copy. This book is published in cooperation with IAS/Park City Mathematics Institute. Readership Undergraduate and graduate students interested in ordinary differential equations and numerical methods. Reviews "This volume in the IAS/Park City Mathematical Subseries of the Student Mathematical Library shares with many other volumes of that series an approach that is freshly considered, accelerated and challenging. The authors take their cue from Richard Feynman: 'Imagine that you are explaining your ideas to your former smart, though ignorant, self, at the beginning of your studies!' . . . The authors are clearly intent on building a deeper conceptual understanding and offering correspondingly sophisticated tools. . . . [T]he treatment is subtle and aimed at developing a mature appreciation of important applications. . . . This book offers a sophisticated introduction to differential equations that strong student would likely find very attractive. It would also function nicely for independent or guided selfstudy."  Bill Satzer, MAA Reviews 


AMS Home 
Comments: webmaster@ams.org © Copyright 2014, American Mathematical Society Privacy Statement 