
Preface  Preview Material  Table of Contents  Index  Supplementary Material 
 Difference sets belong both to group theory and to combinatorics. Studying them requires tools from geometry, number theory, and representation theory. This book lays a foundation for these topics, including a primer on representations and characters of finite groups. It makes the research literature on difference sets accessible to students who have studied linear algebra and abstract algebra, and it prepares them to do their own research. This text is suitable for an undergraduate capstone course, since it illuminates the many links among topics that the students have already studied. To this end, almost every chapter ends with a coda highlighting the main ideas and emphasizing mathematical connections. This book can also be used for selfstudy by anyone interested in these connections and concrete examples. An abundance of exercises, varying from straightforward to challenging, invites the reader to solve puzzles, construct proofs, and investigate problemsby hand or on a computer. Hints and solutions are provided for selected exercises, and there is an extensive bibliography. The last chapter introduces a number of applications to realworld problems and offers suggestions for further reading. Both authors are experienced teachers who have successfully supervised undergraduate research on difference sets. Request an examination or desk copy. Readership Undergraduate students, graduate students, and research mathematicians interested in algebra and combinatorics. Reviews "It is a welcome addition to all undergraduate libraries."  CHOICE "This book would seem tailormade as a text for a senior seminar or capstone course. It is clearly written, emphasizes motivation, contains lots of examples, has a good bibliography and contains a respectable number of exercises at the end of each chapter. ... Reading this book taught me some nice mathematics that I didn't know before, and it did so in an interesting, enjoyable way."  MAA Reviews 


AMS Home 
Comments: webmaster@ams.org © Copyright 2014, American Mathematical Society Privacy Statement 