
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 55, Number 1, January 2018, Pages 1–30
http://dx.doi.org/10.1090/bull/1592

Article electronically published on September 25, 2017

BLACK HOLE FORMATION AND STABILITY:

A MATHEMATICAL INVESTIGATION

LYDIA BIERI

Abstract. The dynamics of the Einstein equations feature the formation of
black holes. These are related to the presence of trapped surfaces in the

spacetime manifold. The mathematical study of these phenomena has gained
momentum since D. Christodoulou’s breakthrough result proving that, in the
regime of pure general relativity, trapped surfaces form through the focusing
of gravitational waves. (The latter were observed for the first time in 2015
by Advanced LIGO.) The proof combines new ideas from geometric analysis
and nonlinear partial differential equations, and it introduces new methods
to solve large data problems. These methods have many applications beyond
general relativity. D. Christodoulou’s result was generalized by S. Klainerman
and I. Rodnianski, and more recently by these authors and J. Luk. Here, we
investigate the dynamics of the Einstein equations, focusing on these works.
Finally, we address the question of stability of black holes and what has been
known so far, involving recent works of many contributors.
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1. Introduction

The Einstein equations exhibit singularities that are hidden behind event hori-
zons of black holes. A black hole is a region of spacetime that cannot be ob-
served from infinity. The first encounters with its intriguing properties go back to
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the famous Schwarzschild solution of the Einstein vacuum (EV) equations in four
spacetime dimensions

(1) Ric(g) = 0.

Ric(g) denotes the Ricci curvature of the Lorentzian metric g of the four-dimensional
spacetime. In 1916 K. Schwarzschild [64] found the first solution to these equations,
after A. Einstein in 1915 had formulated the general theory of relativity and had
derived the Einstein equations [31], [32]. The Schwarzschild solution is spherically
symmetric and depends on the mass M of the body that it describes. Very im-
portantly, Birkhoff [13] in 1923 proved that the Schwarzschild solution is the only
spherically symmetric solution of the EV equations. It describes the gravitational
field outside a nonrotating star or black hole, generally outside of any spherically
symmetric body. The evolution of the body itself does not change the gravitational
field in the exterior. We note at this point that a spherically symmetric object
does not generate any gravitational waves. In the coordinate system, in which the
Schwarzschild solution was first discovered, it has a singularity at r = 2M , where
r denotes the radius of the spheres being the orbits of the rotation group. In 1924
A. Eddington [30] used a coordinate transformation getting rid of this singularity
but did not comment on it. It was G. Lemâıtre [51] who in 1933 observed that
this is only a coordinate singularity and that the Schwarzschild solution behaves
“nicely” there in other coordinates. There is a true singularity at r = 0. By works
of D. Finkelstein [34], M. D. Kruskal [48], J.L. Synge [65], G. Szekeres [70], systems
of coordinates for the complete analytic extension of the Schwarzschild solution
had been found, and dynamical properties of the region r < 2M had been ad-
dressed. Finkelstein [34] in 1958 mentioned that the hypersurface r = 2M is an
event horizon, that is the boundary of the region, which is causally connected to
infinity. More interesting is the behavior of other black hole spacetimes, namely the
Kerr solutions discovered by R. Kerr [41] in 1963. This is a two-parameter family
of axisymmetric solutions of the EV equations (1) having an event horizon, and
the spacetime outside this horizon is a regular asymptotically flat region. Besides
the mass parameter M (positive) this family is characterized also by the angular
momentum a about the axis of symmetry with |a| ≤ M2.

Are black holes rare phenomena, or do we expect them to occur often in the
universe? How do they form, and can they form in the evolution of initial data
that do not contain any black holes? The latter was investigated by Demetrios
Christodoulou in 2008 in his celebrated monograph [25]. Christodoulou’s answer
is yes, and he provides a detailed description of black hole formation in his main
proof. In order to state the main result of [25], we now turn to the notion of a
closed trapped surface.

A concept directly related to the formation of black holes is a closed trapped
surface introduced by R. Penrose [59] in 1965. He defines a trapped surface to be
a spacelike surface such that the expansion scalars with respect to every family
of future-directed null geodesic normals are negative, i.e., infinitesimally virtual
displacements along these normals imply pointwise decrease of the area element.
Penrose proved the following.

Theorem 1 (R. Penrose [59]). A spacetime (M, g) is future null geodesically in-
complete if the following three conditions hold:

1. Ric(V, V ) ≥ 0 for all null vectors V .
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2. There exists a noncompact Cauchy hypersurface H in M.
3. There is a closed trapped surface S in M.

A modern version of this incompleteness theorem can be formulated as follows:

Theorem 2. Consider regular characteristic initial data on a complete null geodesic
cone C. Denote by (M, g) the maximal future development of the data on C. Assume
that M contains a closed trapped surface S. Then (M, g) is future null geodesically
incomplete.

At this point it was not clear at all if closed trapped surfaces form in the evolu-
tion of data that does not contain any such surface. In particular, one can ask what
happens in the situation where the initial conditions are very far from containing
a closed trapped surface. We would like to study the long-time evolution for the
Einstein equations and show that closed trapped surfaces form under physical con-
ditions. Christodoulou did this through analyzing the dynamics of gravitational
collapse.

The first and simplest version of Christodoulou’s main result on the formation
of closed trapped surfaces for the Einstein vacuum equations (1) can be stated as
follows:

Theorem 3 (D. Christodoulou [25]). Closed trapped surfaces form in the Cauchy
development of initial data, which are arbitrarily dispersed, if the incoming en-
ergy per unit solid angle in each direction in a suitably small time interval is large
enough.

We can rephrase this result, saying that if enough energy through gravitational
waves has been concentrated in a small enough time interval, then a closed trapped
surface will form.

Christodoulou’s result was generalized by Sergiu Klainerman and Igor Rodnian-
ski [44] as well as by these authors and Jonathan Luk [42] to allow for more general
initial data.

Next, we can ask if black holes are stable. This question is topic of ongoing
research in the field. Many contributors have studied the first step towards under-
standing this problem.

In the present article, we will first give an introduction to the main ideas of math-
ematical general relativity, then investigate the main steps and methods of the proof
of black hole formation by Christodoulou and the generalization by Klainerman,
Luk, and Rodnianski, then we shall address the stability problem of black holes.
Along the way, we will highlight gravitational waves that were observed for the first
time in 2015 by Advanced LIGO [1].

2. Mathematical general relativity

2.1. Einstein equations and spacetime manifold.
The equations. Albert Einstein in 1915 derived the famous field equations

of gravitation and established the general relativity (GR) theory [31], [32]. Much
different from Newtonian physics where space and time are separate and indepen-
dent concepts, already special relativity (1905) combines space and time into a
(flat) spacetime manifold known as the Minkowski spacetime. General relativity
gives that manifold a curved metric whose curvature encodes the properties of the
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gravitational field. Thus gravitation acts through curvature. Our spacetime mani-
fold carries all the information. “It is all there is, and nothing lives independently
from it.” The Newtonian law under which each mass makes a gravitational field is
replaced by the Einstein field equations

(2) Rij − 1
2Rgij =

8πG

c4
Tij .

Here c denotes the speed of light, G is the Newtonian gravitational constant, the
indices i, j take on values 0, 1, 2, 3, and the tensors are as follows: Rij is the Ricci
curvature tensor, R is the scalar curvature tensor, gij is the metric tensor, and Tij

denotes the energy-momentum tensor. The latter contains matter or energy present
in the spacetime such as a fluid or electromagnetic fields. If there are matter (or
energy) fields, thus Tij �= 0, then they obey their own evolution equations and
together with the Einstein equations (2) they form a coupled system. One then
solves the Einstein system for the metric tensor gij . If there are no other fields,
then Tij = 0 and equations (2) reduce to the Einstein vacuum (EV) equations (1).

The spacetime. A crucial difference from studying a partial differential equa-
tion on a (Euclidean or curved) background is that we are constructing the manifold
itself by solving the Einstein equations. The resulting spacetime may feature in-
triguing properties, including black hole formation or gravitational waves. The
main goal of mathematical GR is to investigate classes of these manifolds, their
structures and dynamics as well as their stability. This can only be achieved by
solving the Cauchy problem for physical settings via geometric analysis and often
combining various areas of mathematics.

Definition 1. A spacetime manifold is defined to be a four-dimensional, oriented,
differentiable manifold M with a Lorentzian metric g.

Remark. An n-dimensional spacetime is defined in the corresponding way.

Definition 2. A Lorentzian metric g is defined to be a continuous assignment of
a nondegenerate quadratic form gp, being of index 1, in TpM for every p in M.

The simplest example of a Lorentzian metric is the Minkowski metric ημν =
diag(−1,+1,+1,+1). In our Lorentzian manifold (M, g) the tangent space TpM
at each p is flat Minkowskian. We observe that a Lorentzian metric is a special case
of a pseudo-Riemannian metric.

In this article we are interested in purely gravitational questions; therefore, we
are looking for spacetimes (M, g) with g solving the EV equations (1). At this point,
we note that these equations can be written as a system of nonlinear, hyperbolic
partial differential equations (pde).

The Lorentzian structure of our metric allows us to distinguish the following
three types of vectors at a point p in TpM: A vector X ∈ TpM is called timelike if
gp(X,X) < 0, it is called null or lightlike if gp(X,X) = 0, and it is called spacelike
if gp(X,X) > 0. A hypersurface is called spacelike if its normal vector is timelike.
As in GR nothing travels faster than the speed of light; trajectories of massless
particles are null, whereas those for massive objects are timelike. A curve that is
timelike or null is called causal.



BLACK HOLE FORMATION AND STABILITY: A MATHEMATICAL INVESTIGATION 5

We know that in special relativity light travels along light cones (Figure 1).

p

C

Figure 1

In general relativity light travels along null hypersurfaces which are generated
by the congruence of null geodesics (Figure 2).

Figure 2

Let us start with a spacelike 2-surface S in M. At each p ∈ TpM, we identify
two orthogonal future-directed null vectors, namely Lp which is outward pointing,
and Lp which is inward pointing. The corresponding vectorfields defined in this way
on S are L, respectively L. The null hypersurfaces generated by the corresponding
sets of null geodesics orthogonal to S are denoted by C and C. Viewing S as a
hypersurface in C, we denote its second fundamental form by χ, and the second
fundamental form of S in C by χ. Their traceless parts are called the shears and
are denoted by χ̂, χ̂, respectively. The traces trχ and trχ are the expansion scalars.

From above and with this notation, we know that S is trapped if

trχ < 0 and trχ < 0.

Thus the null hypersurfaces look as in Figure 3.

M

S

Figure 3

The mathematical structures behind this picture will be explained in Section
4.2. For the moment, let us note that in order to prove Theorem 3, Christodoulou
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in [25] uses a “natural” foliation of the spacetime into null hypersurfaces Cu and
Cu, the double-null foliation.

We can also think of S as the intersection of Cu with a spacelike hypersurface
Ht, where the Cu are the null hypersurfaces of a foliation of the spacetime (M, g)
with respect to an optical function u. Then we write St,u for the 2-surface. Note
that the St,u are diffeomorphic to S2. The main foliations of the spacetime in
[27] are given first by the time function t, of which the level sets are maximal
spacelike hypersurfaces Ht with vanishing linear momentum, and second by the
optical function u (known as retarded time), for which the level sets are the Cu.
The foliations are such that the density of the St,u in the Ht tends to 1 as t → ∞.

These foliations were crucial in the works by Christodoulou and Klainerman
[27] on the global nonlinear stability of Minkowski space. Christodoulou in [25]
combines the double-null structure and methods from [27] with new features to
investigate black hole formation. Beyond that, these structures prove natural to
describe radiation. In a radiative spacetime, gravitational waves (fluctuations of
the curvature) travel along these null hypersurfaces Cu from their sources, such
as mergers of binary black holes, of neutron stars, or as core-collapse supernovae.
When we observe these waves, we can think of ourselves as located at future null
infinity I+, which is defined to be the endpoints of all future-directed null geodesics
along which for the surfaces S the area radius r → ∞. It has the topology of R×S

2

with the function u taking values in R. In other words, the null hypersurface Cu

intersects I+ at infinity in a 2-sphere S∞,u.
Let us come back to the notion of black holes. In general, we define the black hole

region of an asymptotically flat spacetime (M, g) to be the set of points B ⊂ M
not in the past of future null infinity I+. We write B = M\J−(I+).1

Above we encountered the Schwarzschild and Kerr black holes. In these cases,
all causal geodesics c(s) entering B are incomplete towards the future. We say that
(M, g) is future causally geodesically incomplete. In the Schwarzschild solution the
curvature grows along all incomplete c(s) when the affine parameter s tends to its
supremum. The situation for Kerr is more colorful, as causality breaks down.

2.2. Cauchy problem. The above-mentioned Schwarzschild and Kerr spacetimes
are examples of exact solutions of the Einstein equations. Whereas there exist
quite a few closed-form solutions, many important physical situations do not have
them. Nor do they help to investigate the space of solutions nor understand the
dynamics of GR. In order to study stability problems, gravitational waves, and
questions about the dynamics of the gravitational field, we have to solve the Cauchy
problem (initial value problem). Exact solutions certainly inspired insights into
particular cases, but only solving the Cauchy problem can answer these important
questions. We shall see that for the Einstein equations this mainly means proving
theorems with geometric-analytic methods. Whereas in other fields of pde analysis,
geometry plays less of a role, the geometric nature of GR is crucial and features
extra challenges, but it also can be used to our advantage to obtain estimates.

Within GR, other techniques have been used to approximate solutions to the
Einstein equations. Among them we find methods in perturbation theory and
numerical relativity. Even though the main focus in these other fields is not on
proving theorems, they provide important insights into physical problems.

1This notion of a black hole actually has to be investigated more. We address some issues in
this article. For a nice discussion of black hole spacetimes, see [29].
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It is clear that all these endeavors have to be understood within the larger realm
of the Cauchy problem for the Einstein equations. Moreover, only the mathematical
treatment of the latter yields a full understanding of the physical picture with its
intricate features.

Let us consider a solution of the EV equations (1). Denote by ∇ the covariant
derivative. Then the Bianchi identities

(3) ∇[αRβγ]δε := ∇αRβγδε + ∇βRγαδε + ∇γRαβδε = 0

are equivalent to the contracted Bianchi identities

(4) ∇αRαβγδ = 0

with ∇α := (g−1)αβ∇β .
Under the four constraints from the Bianchi identities, the EV system (1) pro-

vides six independent equations for the ten unknowns of the metric gij . Here,
we encounter the general covariance of the Einstein equations and remark that
uniqueness of solutions holds up to the equivalence under diffeomorphisms. This
mathematical fact has the following physical meaning: the laws of nature do not
depend on the coordinates.

Classic approach. The Einstein equations split into a set of constraint equa-
tions that the initial data have to obey and a set of evolution equations. The “clas-
sic” initial value problem in GR considers a three-dimensional manifold H with a
complete Riemannian metric ḡ and a symmetric 2-tensor k solving the constraint
equations

∇̄ikij − ∇̄jtrk = 0,(5)

R̄ + (trk)2 − |k|2 = 0,(6)

where barred quantities are with respect to H. The data evolves according to

∂ḡij
∂t

= −2Φkij + LX ḡij ,(7)

∂kij
∂t

= (R̄ij + kijtrk − 2kisk
s
j )Φ + LXkij − ∇̄i∇̄jΦ,(8)

with Φ := 1/
√
−gij∂it∂jt denoting the lapse function and X denoting the shift

vector. The time vector field is T = ΦN + X, and L is the Lie derivative. The
initial data set (H, ḡij , kij) embeds into the Cauchy development (M, g), namely
the Lorentzian spacetime, as a spacelike hypersurface. The imbedding H → M has
first, respectively second, fundamental forms i∗(ḡ) and i∗(k). From this point of
view, it is easy to see that the constraint equations (5)–(6) are then implied by the
contracted Codazzi and Gauss equations.

A general starting point to attack a pde is local and global well-posedness, fol-
lowed by proving existence and uniqueness of solutions, and finally an analysis of
the solutions. However, in GR we face a few subtleties. One of these was mentioned
above already, namely the general covariance of the Einstein equations. Moreover,
the differential structure of the spacetime is not known a priori. Then what should
be the ordering on the regions where solutions are defined? One would wish for
a domain of dependence theorem to hold globally. (We may think of the wave
equation as a simple example to inspire our intuition.) The “magic concept” is
known as global hyperbolicity and means that (M, g) admits a Cauchy hypersurface
(that is a complete, spacelike hypersurface H in M with each causal curve in the
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spacetime intersecting H exactly once). Then the maximal Cauchy development
is given in a unique way as the globally hyperbolic spacetime into which all other
such spacetimes imbed isometrically.

Among the active players in the very early years of GR, we find D. Hilbert and
H. Weyl who contributed substantially to the theory. Let us remind ourselves that
in those days the involved mathematical branches had not yet been as developed as
today. This caused much confusion about mathematical properties of the Einstein
equations and their physical implications. For instance, the pioneers argued about
what it means for a solution to behave differently in different coordinate systems.
Nowadays, the resolution of these issues is not more than an elegant lemma in ge-
ometry. In this context, we understand how important Weyl’s “causally connected”
world emerged in 1923 hinting at the contents of the domain of dependence theorem
which would be established much later. As it turned out, an important tool was
introduced by T. de Donder and C. Lanczos and later used by G. Darmois, namely
the wave coordinates, as we shall see below. Many people contributed towards a
formulation and understanding of the Cauchy problem in GR, we point out also A.
Lichnerowicz, K. Stellmacher, and K. Friedrichs. On the analysis side, important
progress that influenced GR came with the works by H. Lewy, J. Hadamard, J.
Schauder, and S. Sobolev among many others. In these years, a young woman had
made her first and important steps in GR, Yvonne Choquet-Bruhat. She achieved
the big breakthrough in the Cauchy problem in her celebrated works summarized
below. As the purpose of the present article does not allow us to delve deeper
into the history of the mathematical crescendo of the first half of the 20th century,
we refer to Y. Choquet-Bruhat’s paper [20] for a more detailed discussion of the
mathematical progress in GR in these years, whereas the historical facts will be
described in her forthcoming autobiography. See also [12] for a discussion of the
Cauchy problem in view of gravitational waves. Whereas many of the initial prob-
lems in GR have been solved, other hurdles have remained tough nuts to crack and
bear challenges for future mathematical research.

These are some of the reasons why it took a long time until the Cauchy prob-
lem for the Einstein equations was even formulated properly. The breakthrough
had to wait until 1952 when Y. Choquet-Bruhat [19] proved a local existence and
uniqueness theorem for the Einstein equations. And only later were the aforemen-
tioned issues resolved. In 1953, J. Leray [52] discussed global hyperbolicity. The
second breakthrough took place in 1969 when Y. Choquet-Bruhat and R. Geroch
[21] proved the global existence of a unique maximal future development for every
given initial data set.

We state the fundamental theorems by Choquet-Bruhat and Choquet-Bruhat
with Geroch as follows:

Theorem 4 (Y. Choquet-Bruhat, 1952 [19]). Let (H, ḡ, k) be an initial data set
satisfying the vacuum constraint equations. Then there exists a spacetime (M, g)
satisfying the Einstein vacuum equations with H ↪→ M being a spacelike surface
with induced metric ḡ and second fundamental form k.

Theorem 5 (Y. Choquet-Bruhat and R. Geroch, 1969 [21]). Let (H, ḡ, k) be an
initial data set satisfying the vacuum constraint equations. Then there exists a
unique, globally hyperbolic, maximal spacetime (M, g) satisfying the Einstein vac-
uum equations with H ↪→ M being a Cauchy surface with induced metric ḡ and
second fundamental form k.
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The main tool in the proof was the use of wave coordinates (often called harmonic
coordinates even though the metric is Lorentzian). By definition, wave coordinates
xα satisfy the wave equation

�gx
α = 0.

This is equivalent to the connection coefficients of these local wave coordinates
satisfying

gmnΓα
mn = 0.

From the fact that the Riemann curvature tensor can be expressed in terms of the
connection coefficients, it follows that the EV equations in wave coordinates become

(9) �ggαβ = Nαβ(g,∇g)

with Nαβ(g,∇g) denoting nonlinear terms with quadratics in ∇g. Thus, we have a
system of quasilinear wave equations. (9) are the so-called reduced Einstein equa-
tions. Choquet-Bruhat in her proof studies the Cauchy problem for this reduced
system. Combined with the other main idea, which relies on the domain of depen-
dence theorem, this allowed her to prove Theorem 4.

Early analysis of equations of the type like (9) include works by Friedrichs and
Lewy and by Schauder via energy methods and by Hadamard, Petrovsky, and
Sobolev by constructing a parametrix.

The above Theorems 4 and 5 have been generalized to hold for many matter
systems. Moreover, improvements were obtained by Dionne, Fisher and Marsden,
and Hughes, Kato, and Marsden using the energy method for initial data given in
specific classes of Sobolev spaces. Further improvements followed by Tataru, Smith
and Tataru, Klainerman and Rodnianski, and Planchon and Rodnianski. Recently,
the L2 curvature conjecture was proven by Klainerman, Rodnianski, and Szeftel.
The latter show that under certain assumptions the regularity of the data can be
relaxed so far that the existence of the solution depends only on the L2-norms of
the Riemannian curvature tensor and on the gradient of the second fundamental
form. We only cite the references of the latter, namely [47], [46], [66], [67], [68],
[69]; please see [47] for a detailed discussion and an extensive list of references.

Characteristic approach. The characteristic initial value problem for the EV
equations (1) starts from initial data given on null hypersurfaces. The data are
prescribed on either an outgoing null hypersurface or an incoming and an outgoing
null hypersurface intersecting in a spacelike 2-surface. A. Rendall [61] in 1990
proved the following theorem.

Theorem 6 (A. Rendall [61]). Let characteristic smooth initial data for the Ein-
stein vacuum equations be given on null hypersurfaces C1 and C2 that intersect
transversely on a spacelike surface S = C1 ∩ C2. Then there exists a (nonempty)
maximal development (M, g) of the initial data bounded in the past by a neighbor-
hood of S in C1 ∪ C2.

Rendall’s proof reduces the problem to the classic Cauchy problem.
If initial data is given on a single outgoing null hypersurface C, then one has to

introduce adapted conditions at the vertex o of C for the solution.
In Christodoulou’s work [25], which we shall discuss in detail below, the charac-

teristic approach is crucial. To establish his main result, Christodoulou considers
data which is trivial up to a surface S. More precisely, in the context of Rendall’s
Theorem 6, this corresponds to C to the future of S being C1, whereas C2 being
the incoming Minkowski cone C rooting in S.
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A basic difference between the classic and the characteristic initial value problem
is that in the former the constraints for the initial data are given by elliptic pde,
whereas in the latter they can be written as ode (ordinary differential equations).
That is, we can specify some data freely and solve propagation equations along
the generators of null hypersurfaces. Thus, this aspect is much simpler in the
characteristic situation.

The characteristic treatment is more natural for questions concerning gravita-
tional radiation: First, in the investigation of black hole formation through the
focussing of gravitational waves, as is the main present topic. Second, to analyze
gravitational waves coming from sources like the mergers of black holes. The rea-
son is that these waves travel at the speed of light along null hypersurfaces of the
spacetime.

Stability of Minkowski space. Considering asymptotically flat systems under
gravitation, we would like to understand under which conditions there exist global
solutions of a certain smoothness and what their structures are, respectively, when
do singularities (black holes) form. The above theorems do not answer these ques-
tions but constitute the way to start. The major breakthrough [27] was achieved
in 1993 by Christodoulou and Klainerman proving that for asymptotically flat ini-
tial data being small in weighted Sobolev spaces there exists a complete maximal
development as a solution of the EV equations (1). This is known as the global
nonlinear stability of the Minkowski space. We present a summarized version of
their theorem:

Theorem 7 (D. Christodoulou and S. Klainerman, 1993 [27]). Let be given strongly
asymptotically flat initial data for the EV equations (1) being sufficiently small.
Then there exists a unique, causally geodesically complete and globally hyperbolic
solution (M, g), that itself is globally asymptotically flat.

The geometric-analytic proof is monumental, does not depend on coordinates,
and lays open the structures of the solution spacetimes. In a first part, suitable en-
ergies are identified in the Bel–Robinson tensor. The latter is basically a quadratic
of the Weyl tensor and is used heavily also in Christodoulou’s work [25]. We will
give the formula below. Next, the curvature components are estimated from these
energies via a comparison argument. Then, in the main part of the proof, consti-
tuting a large bootstrap argument, under assumptions on the curvature it is shown
that the remaining geometric quantities are controlled. Many of the new features
and ideas in the proof have had impact far beyond GR in the study of other non-
linear hyperbolic pde. See also the semiglobal result by Friedrich [37], later proofs
under more assumptions and using wave coordinates by Lindblad and Rodnianski
[54], [55], as well as the proof for the exterior part with a double null foliation by
Klainerman and Nicolò [43]. The Christodoulou–Klainerman result [27] was gener-
alized in 2000 by N. Zipser [79], [80] for the Einstein–Maxwell system, and in 2007
by L. Bieri [6], [7] for the EV equations with fewer assumptions on the decay at
infinity and less regularity, thereby establishing the borderline case for decay of the
data in the EV situation. The proofs in both these works are geometric-analytic.

A specific feature in the proof of [27] turns out to be crucial not only in order
to establish Theorem 7 but also in Christodoulou’s new constructions in [25]: The
above foliation into null hypersurfaces Cu is not arbitrary, but depends on a suitably
chosen optical function u, whereas the spacelike hypersurfaces Ht are generated by a
foliating maximal time function t. It follows from the proof in [27] that null infinity
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I+ is complete for the data considered; however, what is known as “peeling” does
not hold for all the curvature components. To understand the latter, let us focus
for a moment on radiation, which we introduced as fluctuation of the curvature.
Thus, in order to investigate gravitational waves coming from far-away sources, we
need to determine the properties of the curvature components at null infinity. These
components are obtained through contraction with vector fields of a null frame given
by the above foliations. As the waves propagate at the speed of light (and light
travels along null geodesics), we have to follow them along outgoing null geodesics.
This type of question was addressed already during the 1960s. Trautman [74], Bondi
[15], Bondi, van der Burg, and Metzner [16], Sachs [63], and Penrose [58] pioneered
the use of null hypersurfaces to describe gravitational radiation. Other discussions
were given by Pirani [60], Newman and Penrose [57], Geroch [39], Ashtekar and
Hansen [3], Ashtekar and Schmidt [4], and Ashtekar and Streubel [5].

All these works address gravitational radiation in some way. One of the problems
in studying I+ arises when (as in some of the cited papers) one would like to
expand the metric in power series in r−1 with coefficients depending on u and the
angular coordinates. Or in general we can ask, How smooth should null infinity be?
In the later cited papers, the authors replaced the assumptions about the power
series expansion by another assumption which also requires a minimal regularity.
Thus, if one conformally compactifies the boundary at null infinity, this implies
a minimal regularity of the data, which in the aforementioned works would be
at least C2. However, Christodoulou showed that for physical spacetimes C2 is
impossible. In fact, in the general case considered here, the conformal factor extends
to I+ as a function in C1,α. The works by Christodoulou and Klainerman [27] are
within that regime. From the smoothness follows a specific hierarchy of decay for
the curvature components, which is called peeling. Today, we mainly refer to the
stronger assumptions as the Newman–Penrose picture and to the later more general
situation as the Christodoulou–Klainerman picture.

The above foliation developed in [27] is natural in the way that one follows the
waves along the Cu. In the corresponding null frame the structure equations relate
curvature components with the connection coefficients. A particularly interesting
representative of the latter in view of radiation is the shear χ̂ which satisfies

div/ χ̂ =
1

2
(∇/ trχ + ζtrχ) − χ̂ · ζ − β,

where slashed quantities are on the surfaces St,u, β denotes a curvature component,
and ζ, the torsion 1-form, is another connection coefficient. These equations lay
open structures of the spacetime that had previously been inaccessible; in particular
it could not be captured by the corresponding equations of the Newman–Penrose
formalism. In [27] the authors derived thereby a new method to treat the Cauchy
problem for the Einstein equations (being hyperbolic), coupling elliptic equations
for χ̂ and related quantities on St,u with propagation equations along the null
hypersurfaces Cu. With the coupling term for the above elliptic system being
∇/ trχ, the propagation equation along the generators of Cu reads (above and here
we omit the indices for simplicity)

∂∇/ trχ

∂s
+ trχ∇/ trχ + 2χ̂∇/ χ̂ = 0.

This kind of structure plays an important role as well in [25]. As explained in the
sketch of the proof of Theorem 7, energy estimates for the curvature precede the
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handling of χ̂ and related quantities. In a bootstrap argument with control on the
curvature, the connection coefficients are estimated.

In Christodoulou’s monumental work on black hole formation, incoming gravi-
tational waves follow Cu. This will be treated in Section 4. The latest works on
stability of black holes is addressed in Section 5. Before concentrating on ingoing
waves however, in the next chapter we say a few words about outgoing gravitational
waves that were detected by Advanced LIGO [1] in 2015.

3. Gravitational radiation

3.1. Gravitational waves. Gravitational waves are fluctuations of the spacetime
curvature traveling at the speed of light along null hypersurfaces Cu. For the
first time, Advanced LIGO [1] detected such waves in 2015. This constitutes the
beginning of a new era in science where these waves through Advanced LIGO and
other detectors will reveal information from regions of the universe that have been
opaque to telescopes or as yet unknown. Thereby, the mathematical understanding
of the dynamics of the Einstein equations, in particular the Cauchy problem, will
be crucial.

A typical source for gravitational waves is the merger of two black holes. They
will spiral in and finally merge, thereby radiating away energy in the form of grav-
itational waves (Figure 4).

SOURCE

Black holes spiral in and finally merge,
sending out gravitational waves.

source

I + I +

H

observe gravitational waves

Gravitational radiation: gravitational 
waves travelling from source along outgoing 
null hypersurfaces.

Figure 4

Let us consider future null infinity I+ defined above and the Christodoulou–
Klainerman result of Theorem 7, but now we omit the smallness assumptions and
start with large initial data that might even contain black holes. More precisely,
let (H0, ḡ, k) be an arbitrary asymptotically flat initial data set, with only vacuum
outside a compact set. By the domain of dependence theorem and the results of
[27], one can show that in the new situation we can still attach a piece of asymptotic
boundary I+ to the Cauchy development of the initial data, I+ being parametrized
by (−∞, u+) × S2 as opposed to (−∞,+∞) × S2 from before. Thus, limits along
appropriate null hypersurfaces Cu can be computed even in the new case. This
follows also from [43].

Gravitational radiation is described on I+. Most important are the limits of
the shears χ̂, χ̂ and the curvature component α which is contracted twice with the

incoming null vectorfield L and decaying like r−1. The radiative amplitude per unit
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solid angle is given by the limit

(10) Ξ(u, θ) = lim
Cu,t→∞

rχ̂

being a symmetric, traceless 2-tensor. Similarly, one defines

(11) Σ(u, θ) = lim
Cu,t→∞

r2χ̂.

In the last chapter of [27] these limits and the asymptotic structures of the space-
times are derived. The following crucial relations emerge from these studies:

∂Σ

∂u
= −Ξ,(12)

∂Ξ

∂u
= −1

4
A,(13)

with A denoting the limit of the curvature component α,

(14) A(u, θ) = lim
Cu,t→∞

rα.

It is interesting to see that the intricate local structures of radiative spacetimes
evolve into a simpler picture at null infinity I+. This is then directly related
to gravitational wave experiments. Gravitational radiation changes the spacetime
while traveling through.

Doing a gravitational wave experiment, we can think of ourselves (and the detec-
tor) sitting at null infinity I+ as the waves are coming from sources very far away.
In fact, we identify our position at retarded time u∗ as (u∗, θ) ∈ I+ and evolving
in u. A detector like Advanced LIGO consists of three test masses m0, m1, m2

suspended by pendulums (or floating on their geodesics if the experiment is done
in space). These masses are located in an L-shape (see Figure 5) and are at large
distance r and angular direction θ from the source. By laser interferometry the
distances of m1 and m2 with respect to the reference test mass m0 are measured.
The u-rate of change of this relative displacement is determined by Ξ(u, θ).

Figure 5

These test masses follow geodesics, and for an experiment on Earth, such as
Advanced LIGO, their relative acceleration is expressed through curvature in the
Jacobi equation,

(15) ∇2
UV = R(U, V )V,

where U denotes the tangent vector for an object in free fall separated from a second
object by a vector V .
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3.2. Memory effect of gravitational waves. So far, we have thought of grav-
itational waves in a region of the spacetime (M, g) as changing that region “in-
stantaneously” while traveling through. However, there is more to the story. It is
predicted that gravitational radiation permanently changes the spacetime, leaving
a footprint in the regions it passes. This is called the memory effect of gravita-
tional waves, today known as the Christodoulou effect. In 1974, Ya. B. Zel’dovich
and A. G. Polnarev [78] found such an effect for the linearized Einstein equations.
However, it was believed to be too small for detection. In 1991, D. Christodoulou
[23] investigated the full Einstein equations and derived a memory that was larger
than the one of the previous work. In fact, L. Bieri and D. Garfinkle showed [11]
that these are two different effects. For memory, see also the following works by
Braginsky and Grishchuk [17], Braginsky and Thorne [18], Blanchet and Damour
[14], Frauendiener [38], Wiseman and Will [76], and more recently Bieri, Chen, and
S.-T. Yau [8], [9], Bieri and Garfinkle [10], [11], Tolish and Wald [73], Flanagan and
Nichols [35], [36], and Favata [33]. We refer to these articles for further references.

To explain how this effect can be measured, we consider the Jacobi equation
(15). In Figure 5, showing the three test masses, the arrows refer to a permanent
displacement in the horizontal plane. For simplicity of the discussion, assume that
the wave source is perpendicular to the plane of the three test masses. Equation
(15) gives an acceleration on the left-hand side and curvature on the right-hand
side. Here is where the two relations (12) and (13) play a crucial role. First using
(13) in (15) where the leading order curvature term is A, and integrating once,
second using (12) to substitute the shear terms and integrate again, and finally
taking the limit as u → ∞, we obtain an equation of the form (omitting indices)

(16) �x = −d

r
(Σ+ − Σ−),

where Σ
+
− denotes the limits of Σ when u → +∞, respectively u → −∞, and �x is

the distance of the permanent relative displacement and d is the initial separation.
It can be shown by geometric-analytic investigations that Σ+ − Σ− is related to

(17) F = C
∫ +∞

−∞
|Ξ|2du

with F
4π being the total energy radiated away in a given direction per unit solid

angle. An experiment on how to detect gravitational wave memory with Advanced
LIGO has recently been suggested in [49] by P. Lasky, E. Thrane, Y. Levin, J.
Blackman, and Y. Chen.

4. The formation of closed trapped surfaces

4.1. Precise formulation of the result: Initial data and evolution. Let us
consider incoming gravitational waves concentrating in a small time interval. The
claim of Theorem 3 by Christodoulou is that if the amount of energy is above a
certain threshold, then a closed trapped surface will form. We are now going to
state this result in a more precise way, explain the setting, and discuss the main
ideas of the monumental proof.

We start by considering a spacetime manifold (M, g) with boundary, being a
smooth solution of the Einstein vacuum equations (1) such that the past boundary
of M is the future null geodesic cone C0 of a point O. Initial data is given on
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C0, assuming that it is trivial in a neighborhood of O, and our (M, g) is to be a
development of this initial data. (See Figure 7.) We introduce T to be a unit future-
directed timelike vector at the vertex O and denote by γ0 the geodesic generated
by T and such that the tangent vector at O to each null geodesic generator has
projection T along T . The generators of the cone C0 are parametrized by an affine
parameter s measured from O and such that s is the parameter of the geodesic null
vectorfield L′ along C0 being the tangent field of each generator. Now, the initial
data is assumed to be trivial for s ≤ r0 for some r0 > 1. This means that they
coincide with the data corresponding to a truncated cone in Minkowski spacetime.
Then the boundary of this region with trivial data is a round sphere of radius r0.
In particular, each generator extends up to parameter value r0 + δ, where δ is a
constant 1 ≥ δ > 0. It is assumed that C0 does not contain any conjugate or cut
points.

The domain of dependence theorem guarantees that the solution spacetime has
a region that is Minkowskian and that is given by the past of a backwards light
cone Ce of a point e on γ0 at distance 2r0 from O.

An advanced time function u on C0 is defined by

(18) u = s− r0.

In the proof, the spacetime will be constructed from the initial data, whereby the
level sets Cu of u are required to be ingoing null hypersurfaces.

In analogy to the previous sections, we denote by χ̂ the trace-free part of χ,
which is the second fundamental form of the sections Ss of C0 corresponding to
constant values of the affine parameter s, and we let g/ be the induced metric on
Ss. Thus, χ̂ is the shear of these sections.

We introduce the following crucial function:

(19) e =
1

2
|χ̂|2g/ .

This e is an invariant of the conformal intrinsic geometry of C0.
With these tools, we now state the following version of the main theorem:

Theorem 8 (Closed trapped surface formation; D. Christodoulou [25]). Let k, l be
positive constants such that k > 1 > l. Let initial data be given as described above,
and assume that

(20)
r20
8π

∫ δ

0

e du ≥ k

8π

with the integral along C0 where u ∈ [0, δ] for some δ > 0. Then, if δ is suitably
small, the maximal development of the data contains a closed trapped surface S
diffeomorphic to S2 and has area

(21) Area(S) ≥ 4πl2 .

The notion in Theorem 3 of incoming energy per unit solid angle in each direction
in a suitably small time interval is replaced in Theorem 8 by the left-hand side of
(20). The reason is that the incoming energy per unit solid angle in each direction
in the advanced time interval [0, δ] is only defined at past null infinity. Thus, from
Theorem 8 Christodoulou derives another result with initial data given at past null
infinity, formulated for the moment in Theorem 9 below. We will analyze the details
of Theorem 9 in the next sections. For these investigations one has to let r0 → ∞
and thereby move C0 back to past null infinity I−. From our previous discussions
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about radiation at future null infinity I+, it is straightforward to see that the limit
of the rescaled quantity of e corresponds to the analogue of |Ξ|2 defined through
(10), and because we are at past null infinity, we have to replace χ̂ by χ̂.

Theorem 9 (Closed trapped surface formation; D. Christodoulou [25]). Let k, l be
constants as in Theorem 8. Let smooth asymptotic initial data be given at past null
infinity I− being trivial for u ≤ 0. Assume that the incoming energy per unit solid
angle in each direction in the advanced time interval [0, δ] is greater than or equal
to k

8π . Then, if δ is suitably small, the maximal development of the data contains

a closed trapped surface S diffeomorphic to S2 and has area

(22) Area(S) ≥ 4πl2.

4.2. The optical structure.
Double null foliation. This foliation relies on the two optical functions u and

u. In (18) we defined u. We emphasize that for each value v the corresponding level
set of u is the incoming null hypersurface Cv. Now, the function u conjugate to u is
introduced such that for each v the v-level set of u is the outgoing null hypersurface
Cv. The notation hereafter for these outgoing null hypersurfaces is Cu and, for the
incoming ones, Cu. We note that the outgoing level sets Cu of u emanate from

points on γ0, and that u|γ0
measures arc length from O along γ0 minus r0.

The intersections

(23) Su,u = Cu ∩ Cu

are spacelike 2-surfaces.

Figure 6

Furthermore, we define the Ht by

u + u = t .

It is clear that we do not expect this foliation to exist for very long. Though it
will exist up to a null hypersurface Cδ and a hypersurface Hc for small δ and for
u0 < c < 0. We denote this region by MR.

The proof of the main theorem (Theorems 8 and 9) will rely on a continuity
argument: Regarding (M, g) we suppose that the generators of Cu and Cu have
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no end points in M\γ0. This means in particular that the Cu do not contain any
conjugate or cut points in M and that the Cu do not contain any focal or cut

points in M\γ0. Then it follows that in MR\γ0 the Cu and Cu are smooth, Ht is a

spacelike hypersurface, and the spacelike 2-surfaces Su,u are embedded in MR\γ0.
(We note that the Su,u are diffeomorphic to S2.)

The optical functions u and u themselves obey the eikonal equation,

(g−1)μν∂μu∂νu = 0,

(g−1)μν∂μu∂νu = 0.

Next, we are going to introduce three null frames related to this structure.
First, the future-directed null geodesic vectorfields L′ and L′ are given by

(24) L′μ = −2(g−1)μν∂νu, L′μ = −2(g−1)μν∂νu .

From this is defined a positive function Ω as follows:

−g(L′, L) = 2Ω−2.

We observe that Ω is the inverse density of the double null foliation.
Second, the normalized vectorfields L̂ and L̂ are defined as

(25) L̂ = ΩL′, L̂ = ΩL′.

They satisfy

g(L̂, L̂) = −2.

Third, we define the vectorfields L and L as

(26) L = Ω2L′, L = Ω2L′.

They satisfy

Lu = 0 = Lu,

Lu = 1 = Lu.

We find that the integral curves of L are the generators of the outgoing null
hypersurfaces Cu parametrized by u and that the integral curves of L are the
generators of the incoming null hypersurfaces Cu parametrized by u. Following the

notation of [25], we define the flow Φτ generated by L on any Cu and the flow Φτ

generated by L on any Cu. The Φτ : Su,u → Su+τ,u and Φτ : Su,u → Su,u+τ are
diffeomorphisms.

Thus, the above structures yield canonical coordinate systems. Let (θ1, θ2)
be local coordinates on a domain U on S0,u0

. Then we can extend these to
Φu(Φu(U)) ⊂ Su,u+u0

. Now, given two domains U1 and U2 with coordinates

(θA;A = 1, 2), respectively (θ′A : A = 1, 2), covering S0,u0
, MR\γ0 is covered

by two regions with coordinates (u, u, θA : A = 1, 2) and (u, u, θ′A : A = 1, 2),
respectively. (u, u) ∈ D\γ0. The domain D is depicted in Figure 7.

The vectorfields L and L in these canonical coordinates read as

L =
∂

∂u
, L =

∂

∂u
+ bA

∂

∂θA
,

with bA obeying

∂bA

∂u
= 4Ω2ζ#A
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for the torsion ζ. (It is ζ#A = (g/ −1)ABζB and ζA = ζ( ∂
∂θA ).) Finally, the metric

g in these coordinates is given by

(27) g = −2Ω2(du⊗ du + du⊗ du) + g/ AB(dθA − bAdu) ⊗ (dθB − bBdu).

It turns out that stereographic coordinates on the sphere are especially nice to
work with in this problem.

4.3. “The” theorems. The overarching principle of the proof of black hole forma-
tion is twofold: First, the spacetime has to be constructed and it has to be shown
that it exists long enough such that a closed trapped surface can form. This solu-
tion has to be “nice” enough (i.e., sufficiently smooth, no focal points for instance).
Second, the formation of a trapped surface has to be proven.

These are formulated in “the” two main theorems, namely the existence theorem,
Theorem 10, and the closed trapped surface formation theorem, Theorem 8.

The former is much more difficult and subtle to establish than the latter. There-
fore, the sketch of the proof of Theorem 10 will take most of the remaining part of
this article, whereas Theorem 8 is shown in a more straightforward manner. One
main reason for this lies in the existence of the double null foliation requiring that
(in the region of interest) the incoming and outgoing null hypersurfaces do not
produce caustics. Generally, it is not unusual for null hypersurfaces to generate
caustics, especially when gravity is strong. Thus, Christodoulou [25] had to inves-
tigate (and thereby mathematically describe) physical situations where gravity is
sufficiently strong to form a trapped surface but not too strong to form caustics (or
at least not until after the trapped surface has formed).

In order to state the existence theorem, Theorem 10, we briefly revisit the initial
data from Section 4.1. There we give initial data on a complete future null geodesic
cone C0, the data being trivial for s ≤ r0. We consider the restriction of the initial
data to s ≤ r0 + δ, thus restricting to u ∈ [0, δ] where the data is trivial for u ≤ 0.
At the vertex O and thereby on Cu0

, we set u equal to u0 = −r0. As 2(u−u0) along
γ0 equals the arc length from O, our u is determined everywhere. Therefore, the
spacetime that we want to construct will be bounded in the future by H−1 where
u + u = −1, and by Cδ. Following the notation of [25], we call this development
M−1, and we call M ′

−1 the nontrivial region of M−1 given by u > 0.
The existence theorem is stated as follows.

Theorem 10 (Existence; D. Christodoulou [25]). Let initial data be given as de-
scribed in Section 4.1 and in the previous paragraph. Let δ be sufficiently small.
Then the maximal development under the Einstein vacuum equations (1) contains a
region M−1 where the foliation given in Section 4.2 can be constructed such that the
null hypersurfaces Cu and Cu contain no cut or conjugate points. M−1 is bounded
in the future by the spacelike hypersurface H−1 and the incoming null hypersurface
Cδ.

This existence theorem not only establishes the solution but it also yields impor-
tant information on the geometric and analytic structures of these solutions, thus
on spacetimes where closed trapped surfaces begin to form.

4.4. Proof of the existence theorem. Before we start discussing the essentials
of the proof, let us ask the following question: Knowing the energy method from
pde theory, does there exist something similar for the Einstein equations? Yes,
there is a generalized form of this idea as we mentioned already above in the ideas
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of the proof of Theorem 7. As an ultra short summary we may recall that energy
controls curvature which controls the other geometric quantities in a bootstrap
argument. Of course, interesting structures are hiding behind these concepts that
have to be unraveled. It is important that the energies are constructed with respect
to “useful” vectorfields. In the following outline of the main points of the proof of
Theorem 10, we are going to investigate these structures and connect them with
new features of the problem under study.

In this section, we give a sketch of the main methods and ideas of the proof of the
existence theorem, Theorem 10. While two of these methods were introduced by
Christodoulou and Klainerman in [27], the third method was developed by Chris-
todoulou in [25].

One of the methods from [27] is specific to the Einstein equations, whereas the
other can be applied to a broad range of nonlinear hyperbolic pde, in particular to all
Euler–Lagrange systems of hyperbolic pde. The first of these methods concerns the
Bianchi identities (3) with the goal to obtain estimates for the spacetime curvature
W . We remark that in an Einstein vacuum spacetime (M, g) the curvature Rαβγδ is
equal to the Weyl curvature Wαβγδ. (This is clear from the fact that the Riemannian
curvature Rαβγδ splits into its traceless part Wαβγδ and a part containing the Ricci
and scalar curvature which are zero by virtue of the EV equations (1).) More
generally, a Weyl field W on (M, g) is a 4-covariant tensorfield with the algebraic
properties of the Weyl or conformal curvature tensor. Left ∗W and right W ∗

Hodge duals of W can be defined, and it is shown that ∗W = W ∗. There is
a nice analogy with Maxwell’s theory of electromagnetism. A Weyl field satisfies
equations that are similar to Maxwell’s equations for an electromagnetic field. The
Bianchi equations for W are the linear equations

(28) ∇αWαβγδ = Jβγδ,

with Jβγδ being a Weyl current. Moreover, the following holds

∇[αWβγ]δε = εμαβγJ
∗μ
δε,
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where ε denotes the volume form for of the spacetime manifold and J∗
βγδ =

1
2J

μν
β εμνγδ. If the Weyl field W is the spacetime curvature itself, then the cor-

responding Weyl current vanishes and we are back to the Bianchi identities (3).
Let us define the deformation tensor (Y )π̂ of Y to be the trace-free part of LY g.

We may think of this quantity to measure how the conformal geometry of (M, g)
changes under the flow of Y .

We have to deal with more general Weyl fields. And as the Lie derivative LY W
of a Weyl field is in general not a Weyl field because it has trace, Christodoulou and
Klainerman introduce the modified Lie derivative L̂Y W , which is trace free and has
all the other properties of a Weyl field, thus it is a Weyl field. Similarly, this holds
for J . Due to certain conformal covariance properties of the Bianchi equations, it
follows that the Weyl current associated to L̂Y W is the sum of L̂Y J and a bilinear
term that is itself linear in (L)π̂ and its first covariant derivative and in W and its
first covariant derivative.

New Weyl fields are generated from the original curvature tensor of (M, g) by

consecutively applying L̂Yi
for i = 1, . . . , n where Y1, . . . , Yn are commutation vec-

torfields.
In order to make use of some form of the energy method for the Einstein equa-

tions, we introduce the Bel–Robinson tensor Q(W ) associated to W . This Q plays a
role similar to the energy momentum–stress tensor T for the electromagnetic field.

(29) Qαβγδ =
1

2
(Wαργσ W ρ σ

β δ + ∗Wαργσ
∗W ρ σ

β δ ) .

It satisfies the positivity condition

(30) Q (X1, X2, X3, X4) ≥ 0,

where X1, X2, X3, and X4 are future-directed causal vectors. Q is symmetric and
trace free in any pair of indices. Moreover, if W satisfies the Bianchi equations,
then Q is divergence free,

(31) Dα Qαβγδ = 0.

In general, divQ equals an expression linear in W and in J .
From Q for a given W we define the energy-momentum density vectorfield

P (W ;X1, X2, X3)
α associated to W and to the three multiplier vectorfields

X1, X2, X3, which are future-directed causal:

(32) P (W ;X1, X2, X3)
α = −Q(W )αβγδX

β
1 X

γ
2X

δ
3 .

It follows that divP equals the sum of −(divQ(W ))(X1, X2, X3) and a bilinear
expression that is linear in Q(W ) and in (X1)π̂, (X2)π̂, (X3)π̂.

The divergence theorem in spacetime together with the positivity property of
Q(W ) yield control of all the derivatives of the curvature up to required order m.
This latter control is realized via the integrals on the future boundary.

The second method from [27] (with wide applications) used in [25] is tightly
interwoven with the first one and is rooted in the specific foliations of the spacetime
(discussed above). Whereas the optical function u lay open the structures of the
natural flow of outgoing gravitational waves along the Cu and played a crucial role
in [27] and [23], the optical function u is most crucial in [25] because it follows
incoming gravitational radiation along the Cu. The trapped surfaces that form in

the evolution in [25] are sections Su,u given in (23) of “late” Cu everywhere along
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which precisely these Cu have negative expansion. These structures also allow
us to identify natural vectorfields that are used within the energy method. One
requirement is that the set of commutation vectorfields has to span the tangent
space to M at each point.

Finally, the third and newest method of Christodoulou in [25] is the so-called
short pulse method. It has a wide range of applications in other nonlinear pde.
It is a specific way of treating the focusing of incoming waves. A main feature is
that initial data has to be sufficiently large so that a closed trapped surface will
form. In a broader context, one can consider Euler–Lagrange systems of (nonlinear)
hyperbolic pde and establish an existence theorem for large initial data and study
the evolution to understand interesting phenomena that may occur.

We recall that a heuristic version of the main theorem above includes “large”
incoming energy during a “small” time interval. Thus, there is a small parameter
involved that we call δ. In what follows we will analyze the role of this parameter
in the data thereby explaining the short pulse method.

After a technical setup, one starts with the simple task to analyze the equations
along Cu0

. As Cu0
is a null hypersurface and one faces a characteristic initial

value problem, one can prescribe free data not worrying about constraints. Then
the full set of data (including all the curvature components and their transversal
derivatives) is easily obtained by integrating ode along the generators of Cu0

.
The free data can be given as 2-covariant, symmetric, positive definite tensor

density m on the sphere and depending on u, moreover m being of weight −1 and
detm = 1. In particular, we write

(33) m = expψ

with ψ ∈ Ŝ the latter denoting the space of symmetric, trace-free, two-dimensional
matrices. Thus, exp : Ŝ → H+

1 is an analytic diffeomorphism. The transformation
rule turns out to be especially simple for stereographic charts on S2.

For the short pulse ansatz in [25] Christodoulou considers an arbitrary, two-di-
mensional, smooth, symmetric, trace-free matrix-valued map ψ0 on S2 that depends
on s ∈ [0, 1] and that extends smoothly to s ≤ 0. Introduce the following:

(34) ψ(u, θ) =
δ

1
2

|u0|
ψ0(

u

δ
, θ), (u, θ) ∈ [0, δ] × S2.

Then the equations along C0 are analyzed and yield a specific structure of the
spacetime curvature along Cu0

. In order to state these, we decompose the spacetime
curvature Rαβγδ with respect to the natural foliation discussed above. This yields
the following for any vectors X,Y ∈ TPSu,u at a point p:

α(X,Y ) = R(X, L̂, Y, L̂),

α(X,Y ) = R(X, L̂, Y, L̂),

β(X) =
1

2
R(X, L̂, L̂, L̂),

β(X) =
1

2
R(X, L̂, L̂, L̂),

ρ =
1

4
R(L̂, L̂, L̂, L̂),

σε/ (X,Y ) =
1

2
R(X,Y, L̂, L̂),
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where ε/ denotes the area form of Su,u. We note that α, α are symmetric, 2-
covariant, trace-free tensorfields on Su,u, whereas β, β are 1-forms on Su,u and ρ, σ
are functions on these surfaces. The following structures are obtained for these
components along Cu0

:

sup
Cu0

|α| ≤ O2(δ
− 3

2 |u0|−1),

sup
Cu0

|β| ≤ O2(δ
− 1

2 |u0|−2),

sup
Cu0

|ρ| , sup
Cu0

|σ| ≤ O3(|u0|−3),

sup
Cu0

|β| ≤ O4(δ|u0|−4),

sup
Cu0

|α| ≤ O5(δ
3
2 |u0|−5).(35)

Pointwise quantities are taken with respect to the induced metric g/ on the 2-
surfaces.2

One of the deep insights of the work [25] is disclosed on the right-hand side
of (35): This particular dependence on δ of the curvature components is called
the short pulse hierarchy. Indeed, we read off a nonlinear hierarchy. (A direct
computation shows that the linearized equations would give a different hierarchy.)

With the ansatz (34) one observes that the amplitude of the pulse is proportional
to the square root of the pulse length. This interesting relation only shows in
nonlinear theory, it does not exist in a linear one. A closer look makes evident that
this hierarchy is required for trapped surfaces to form in M−1. Thus, it is the heart
of the proof of the existence theorem, Theorem 10.

The main challenge of this method is to prove that the specific hierarchy is
preserved in the evolution. Towards this goal, vectorfields with specific weights are
chosen in connection with the energies and currents defined above. In particular,
as multiplier vectorfields we take L and K with

K = u2L.

Then for each Weyl field (curvature and modified Lie derivatives of curvature) one
defines energy-momentum density vectorfields P (W ;X1, X2, X3)

α (see (32)) with
the vectorfields K,L in place of X1, X2, X3.

The commutation vectorfields are L, S and Oi with i = 1, 2, 3, where the latter
are the rotation fields and S is defined by

S = uL + uL.

The modified Lie derivatives L̂Y of the curvature are taken with respect to the
commutation vectorfields, thus Y replaced by L, S,Oi : i = 1, 2, 3. In particular
there are first-order and second-order modified Lie derivatives of the spacetime
curvature.

Next, one defines the total second-order energy-momentum densities P
(n)
2 for

n = 0, 1, 2, 3 as the sum of

δ2l P (n)(W )

2The Op(δl|u0|s) denote the product of δl|u0|s with a nonnegative and nondecreasing contin-

uous function of the Cp-norm of ψ0 on [0, 1]× S2.
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over all the Weyl fields in a specific way, where l denotes an index according to the

number of L̂L operators applied to R. Then specific energies E
(n)
2 (u) are defined

via integrals on Cu and fluxes F
(n)
2 (u) via integrals on the Cu of the 3-forms dual

to the P
(n)
2 . From these, one defines the following quantities:

E(n)
2 = sup

u

(
δ2qnE

(n)
2 (u)

)
, n = 0, 1, 2, 3,(36)

F (3)
2 = sup

u

(
δ2q3F

(3)
2 (u)

)
,(37)

with exponents qn : n = 0, 1, 2, 3 given as

q0 = 1, q1 = 0, q2 = −1

2
, q3 = −3

2
.

One of the main goals then is to bound the quantities in (36) and (37) in terms of
the initial data.

We recall from above that the final piece in the proof of the existence theorem
is to estimate all the other geometric quantities in a bootstrap argument under
corresponding assumptions on the curvature. In particular, the behavior of the
shear χ̂ will be crucial in view of (19) and Theorem 8, respectively 9. In general, one
may have the first idea to just integrate propagation equations for the connection
coefficients along the generators of Cu and Cu, but in such a procedure a derivative
would be “lost” because the connection coefficients are estimated at the same level
as the curvature components. One has to make use of elliptic estimates for the
connection coefficients on the Su,u and couple these with propagation equations.
We already referred to this above, as Christodoulou and Klainerman developed this
method in [27] to prove the global nonlinear stability of Minkowski spacetime.

These are the main ideas [25] of Christodoulou’s proof of existence. Beyond
these, more intricate challenges had to be overcome and the proof bears many
conceptual and technical novelties that we do not address here. However, the main
achievements summarized in this section allow us to understand the formation of
closed trapped surfaces in Theorems 8 and 9. This will be discussed in the next
section.

4.5. Formation of closed trapped surfaces. The closed trapped surface forma-
tion theorems, Theorems 8 and 9, are simpler to prove than the existence theorem,
Theorem 10. From the proof of the latter, not only is the spacetime constructed
that is required in Theorems 8, respectively 9, but also the structure of the curva-
ture and connection coefficients has been revealed. In particular the expansion trχ
and the shear χ̂ are estimated.

From the existence result it follows that on M ′
−1 it is

(38) |trχ +
2

|u| | ≤ O(δ|u|−2).

Thus if δ is sufficiently small, then trχ is negative everywhere on M ′
−1. Therefore,

a surface Su,u in M ′
−1 is a indeed a trapped sphere if and only if everywhere on Su,u

it is trχ < 0.
One also finds that on M ′

−1 it is

(39) |χ̂|2 ≤ O(δ−1|u|−2).
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In the proof of the formation of closed trapped surfaces, it is then shown that
trχ < 0, which is deduced from the behavior of χ̂ that is from e of (19).

This concludes our discussion of the pioneering result [25] establishing the for-
mation of closed trapped surfaces for the Einstein equations.

4.6. Generalization. Christodoulou’s work [25] was generalized by Klainerman
and Rodnianski in [44] and [45]. Further extensions were given also in [42] by
Klainerman, Luk, and Rodnianski.

Klainerman and Rodnianski in [44] and [45] relax the initial assumptions and
therefore the short pulse hierarchy for closed trapped surfaces to form in the evo-
lution of that data. Their proof mainly follows the lines of [25] by Christodoulou,
but it introduces new solutions to new problems due to the more general situation.

The proof by Klainerman and Rodnianski on the one hand induces more chal-
lenges whereas on the other hand it simplifies certain aspects. A major simpli-
fication comes from the fact that the proof is established at one lower order of
differentiability. However, as less is assumed from the beginning, less control is
gained on the solutions than in the pioneering result.

Klainerman, Luk, and Rodnianski, using the original existence theorem, have
derived a result [42] which considerably extends the original trapped surface for-
mation theorem, as it does not require a lower bound on the incoming energy in
all directions. In particular, they show the following: Consider the outer bound-
ary Cδ of the existence domain M−1. Look at some neighborhood in S2 of some
direction, and assume that the incoming energy in the directions corresponding to
this neighborhood is sufficiently large depending on the angular size of this very
neighborhood. Then Cδ contains a trapped surface. It is interesting to note that
even though none of the sections Sδ,u may be trapped, it is shown that there is
another section of Cδ that is trapped. Namely, this is a surface represented as a
graph u = G(θ) over S2. In fact, this surface attains large negative values of u in
the directions corresponding to the neighborhood of large incoming energy, how-
ever, in the antipodal directions it comes near Sδ,−1+δ, the future boundary of Cδ

in M−1.
Recently, P. Le [50] greatly simplified and clarified the latter work by looking

at the intersection of a hyperplane with a lightcone in Minkowski spacetime. In
view of the extrinsic geometry of the intersection, Le shows that in the case of a
null hyperplane intersecting the cone, we have a noncompact marginally trapped
surface. For this situation, he gives a geometric interpretation of Green’s function
of the Laplacian on the standard sphere.

See also the proof by Reiterer and Trubowitz [62]. Further, see Yu [77], and Li
and Yu [53]. Miao and Yu [56] applied the short pulse method successfully to study
shock formation in quasilinear wave equations. Christodoulou’s work [25] and his
short pulse method have sparked a wealth of activity in GR and related fields. For
a more complete discussion of these, see the latter references.

4.7. Incompleteness theorem revisited. As concluding remarks about black
hole formation, we address again the incompleteness theorem in connection with
the formation of closed trapped surfaces. Consider therefore the incompleteness
theorems, Theorem 1, respectively 2.
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From this it can be shown in a straightforward manner that indeed the spacetime,
which is the maximal development of “appropriate” initial data, contains a black
hole region.

Christodoulou constructed explicit initial data in [25, Chapter 17, page 579].
For an appropriate choice of initial data, which is also asymptotically flat (which
is made precise in terms of decay of the data), there exists a solution spacetime for
at least a finite value of u such that future null infinity I+ can be defined. Indeed,
one can then prove the following corollary.

Corollary 1. Consider complete initial data on C0 as in Theorem 8. Let (M, g)
be the maximal development of this data. Then

Sδ,−1−δ ∩ J−(I+) = ∅.
In particular, the spacetime M contains a black hole region B.

This corollary is obtained via the following road: Consider Christodoulou’s initial
data mentioned above together with his Theorem 8 and Penrose’s incompleteness
theorem, Theorem 1 (respectively 2). From this, the next statement follows directly.

Corollary 2. Consider complete initial data on C0 as in Theorem 8. Let (M, g) be
the maximal development of this data. Then (M, g) is future causally geodesically
incomplete.

We can summarize simply that the presence of a closed trapped surface in a
spacetime (M, g), which solves the Einstein vacuum equations, implies the existence
of a black hole. By a simple contradiction argument, we can prove that if such an
(M, g) contains a closed trapped surface S, then S ∩ J−(I+) = ∅, which is the
content of Corollary 1. In particular, it says that S cannot lie in the domain of
outer communications J−(I+), but M must have a black hole region that must
contain S.

See the following references on these topics: [40], [75], [26], as well as [27], [43].

5. Stability of black holes

If we think of the simplest black hole solutions of the EV equations (1), namely
Schwarzschild or Kerr spacetimes, then we may ask, What happens if we perturb
such a specific solution? Do we expect it to settle down to (another) solution of
that type? Is the answer yes, if we start with initial data that is sufficiently close
to Schwarzschild or Kerr? It turns out that this is an open problem of very active
research in mathematical GR with goal of proving the nonlinear stability of the
Kerr family. In fact, one would like to prove a conjecture of the following form:
(Mass is denoted by M and angular momentum by a.)

Conjecture 1. Let (H, ḡ, k) be a vacuum initial data set sufficiently close to two-
ended Kerr data for some subextremal parameters 0 ≤ |ai| ≤ Mi. Then the resulting
vacuum spacetime (M, g) has a complete future null infinity I+ such that the metric
restricted to J−(I+) remains close to for all time, and moreover it asymptotically
settles down to a nearby Kerr solution in a uniform way with quantitative decay
rates.

An important fact for the Einstein equations is that the problem of completeness
and asymptotic stability in the above sense are coupled. Therefore, any progress
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towards understanding those problems has to come with a quantitative description
of decay rates of the solution.

As Kerr stability is a huge field with many contributors; instead of citing the
extremely long list of partial achievements, we refer to the following survey articles
for a precise account of the history and references including the latest works by
Dafermos [28], Tataru [71], and Andersson, Bäckdahl, and Blue [2].

One can formulate the following three statements of “stability” in this con-
text: linear mode stability, linear stability and nonlinear stability (see Conjec-
ture 1). Whiting proved linear mode-stability based on work by Teukolsky. (In the
Schwarzschild case, see Regge and Wheeler, and also Zerilli.) A related problem,
which one wants to solve before attacking the main case above, is the study of the
wave equation on a fixed black hole background. For this case, versions of linear
stability on Schwarzschild were proven by Wald, Kay, Friedman.

In recent years, the main focus was on studying the wave equation on Kerr
background (see works by Andersson, Blue, Dafermos, Dyatlov, Finster, Ionescu,
Kamran, Klainerman, Rodnianski, Smoller, Sterbenz, Tataru, Tohaneanu, Yau,
and many more). We may summarize the findings as follows. Solutions to the wave
equation �gΨ = 0 on subextremal Kerr |a| < M remain bounded in the exterior,
and they decay inverse-polynomially to zero. An interesting linear instability arises
(see Aretakis, and Lucietti and Reall) in the extremal case, which is not captured
by “mode stability”.

It was recently established that solutions to the linearization of the EV equations
around a Schwarzschild metric for regular initial data remain globally bounded on
the black hole exterior, and they decay to a linearized Kerr metric. See the recent
paper by Dafermos, Holzegel and Rodnianski, and the recent paper by Finster and
Smoller.

The only global nonlinear stability result (Theorem 7) proven so far is the one
on the global nonlinear stability of Minkowski spacetime of [27] by Christodoulou
and Klainerman. See also generalizations and other related works cited above.

On the road towards proving the fully nonlinear result of the above conjecture,
there are expected to be many beautiful insights into the structures of the Einstein
equations.

6. Cosmic censorship

One of the great open problems of GR is the so-called weak cosmic censorship
conjecture, which is the following:

Conjecture 2 (Weak cosmic censorship). For generic asymptotically flat vacuum
initial data, the resulting vacuum spacetime has a complete future null infinity I+.

There is of course room to make clear what “generic” data should look like.
The Einstein equations also allow other types of singularities, namely the so-

called naked singularities, which are not surrounded by an event horizon but can
be seen from infinity. Cosmic censorship conjectures that the latter do not form
during a gravitational collapse. Christodoulou investigated this in a series of papers
in the 1980s and 1990s, where he showed for certain classes of initial data (studying
a scalar-field model) that such naked singularities may occur, but they are unstable.
See his work [25] for a summary and the references.

For a nice explanation of the above conjecture and also the strong cosmic cen-
sorship statement, see the introduction of [25].
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There is still a long way to go in order to understand trapped surface formation
for the general Einstein equations (2), when the right-hand side is not equal to zero.
A huge step happened with Christodoulou’s result [25] constituting a major break-
through establishing the picture outlined above for the Einstein vacuum equations
(1).

Beyond the topics addressed in this article, mathematical GR bears many more
exciting challenges for geometric analysis and other mathematical fields to be in-
vestigated in the future.
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Zürich, (2011).
[27] D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space,

Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993.
MR1316662

[28] M. Dafermos, The mathematical analysis of black holes in general relativity, Proceedings of
the ICM Seoul, Vol. III, (2014), 747–772.

[29] M. Dafermos and I. Rodnianski, Lectures on black holes and linear waves, Evolution equa-
tions, Clay Math. Proc., vol. 17, Amer. Math. Soc., Providence, RI, 2013, pp. 97–205.
MR3098640

[30] A. S. Eddington, A comparison of Whitehead’s and Einstein’s formulas, Nature 113 (1924),
192.

[31] A. Einstein, Zur Allgemeinen Relativitätstheorie, Sitzungsber. K. Preuss. Akad. Wiss., Berlin,
(1915), 778–786.

[32] A. Einstein,Die Feldgleichungen der Gravitation, Sitzungsber. K. Preuss. Akad. Wiss., Berlin,
(1915), 844–847.

[33] M. Favata, Nonlinear gravitational-wave memory from binary black hole mergers, Astrophys.
J. 696 (2009), L159–L162.

[34] D. Finkelstein, Past-future asymmetry of the gravitational field of a point particle, Phys. Rev.
110 (1958), 965–967.
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