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The notion of noise sensitivity was introduced by Benjamini, Kalai, and Schramm
in 1998 [3], in the context of percolation theory. Since then noise sensitivity has
found applications in many fields, including concentration of measure, social choice
theory, and theoretical computer science.

Say we have n people voting for one of two candidates, D or R. One can write
their choices as ω = (ω(1), . . . , ω(n)) ∈ {D ,R}n, and the election is decided by
some voting rule f(ω) ∈ {D ,R}. Errors occur during the ballot counting process,
and the election is actually decided according to slightly perturbed data ωε. The
subject of noise sensitivity studies how susceptible the voting rule is to the noise
as a function of the number of voters n and the level of noise ε. Intuitively, f(·)
is noise sensitive if even for a small level of noise, given enough voters, f(ωε) gives
us very little information on the true outcome of the election f(ω). On the other
hand, f(·) is noise stable if for a small enough level of noise the election is decided
by the unperturbed data ω, regardless of the number of voters.

A Boolean function is a function from the hypercube Ωn = {−1, 1}n into {−1, 1}
(or {0, 1}). We call the elements of Ωn configurations. Consider the hypercube Ωn

endowed with the uniform measure Pn = ( 12δ−1 +
1
2δ1)

⊗n. Let ω ∈ Ωn be a con-
figuration sampled according to Pn, and let ω′ be an independent configuration.
For every ε > 0, denote by ωε the “noisy” configuration obtained from ω by re-
sampling each bit independently with probability ε, i.e., independently for every
x ∈ [n] := {1, 2, . . . , n},

ωε(x) =

{
ω(x) with probability 1− ε,
ω′(x) with probability ε.

We denote by P the joint distribution of ω and ωε, and by E the expectation with
respect to P.

Next we introduce two main concepts regarding sensitivity to noise.

Definition 1. Let mn be an increasing sequence of integers, and let {fn} be a
sequence of functions fn : Ωmn

→ {−1, 1}. The sequence {fn} is called noise
sensitive if for every ε > 0,

lim
n→∞

(
E[fn(ω)fn(ωε)]−E[fn(ω)]

2
)
= 0.

Note that since fn are Boolean, zero covariance implies independence. Next we
present a trivial but important example of a noise sensitive sequence of functions.

Example 2. Define the parity function, PARn(ω(1), . . . , ω(n)) =
∏n

i=1 ω(i). Note
that for every i, with probability 1 − ε, ω(i) = ωε(i), and thus their product is 1.
With probability ε, ω(i) and ωε(i) are independent and thus their product has zero
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expectation. A direct calculation shows

E[PARn(ω)PARn(ωε)] =
n∏

i=1

E[ω(i)ωε(i)] = ((1− ε) · 1 + ε · 0)n −→
n→∞

0.

This, together with the fact that E[PARn(ω)] = 0, yields that {PARn} is a noise
sensitive sequence.

The other extreme case to noise sensitivity is noise stability.

Definition 3. The sequence of functions {fn} is noise stable if

lim
ε→0

sup
n

P[fn(ω) �= fn(ωε)] = 0.

The next example shows an important noise stable sequence of Boolean functions.

Example 4. Define the dictator function, DICTn(ω(1), . . . , ω(n)) := ω(1). It is
immediate that

P[DICTn(ω) �= DICTn(ωε)] = εP[ω(1) �= ω′(1)] = ε/2,

which tends to zero uniformly on n as ε → 0. Thus, the dictator function is noise
stable.

Note that there are examples of sequences that are neither noise sensitive nor
noise stable, and a sequence can be both if and only if limn→∞ Var[fn] = 0.

Historically, the most important example of noise sensitivity is the crossing event
in critical bond percolation. Denote by E(Z2) the set of edges of the planar integer

lattice. For p ∈ [0, 1], consider the product measure Pp = ((1 − p)δ0 + pδ1)
⊗E(Z2)

on Ω = {0, 1}E(Z2). One can think of a configuration ω ∈ {0, 1}E(Z2) as a subgraph
of Z2 by prescribing which edges in Z

2 are included. We call two edges neighbors if
they have a common vertex. We say that two edges e, e′ ∈ E(Z2) are connected in
a configuration ω if there is a path of edges {ei}mi=1 satisfying for all i ∈ [m], ei is
a neighbor of ei+1, ω(ei) = 1 and e1 = e, em = e′. The behavior of large clusters
in percolation exhibits a sharp phase transition. There is some critical number pc
such that for p > pc there is an infinite connected component almost surely, and if
p ≤ pc all connected components are finite almost surely. Harry Kesten proved in
[15] that pc(Z

2) = 1/2.
Given a, b ∈ N, consider bond percolation at the critical point pc(Z

2) = 1
2 , in

the increasing sequence of rectangles, Bn := [0, an]× [0, bn] ∩ Z
2.

bn

an

We say that there is a left right crossing if there is an edge in {0}× [0, bn] which is
connected to an edge in {an} × [0, bn].
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Define the sequence of events An = {there is a left right crossing}, and the
sequence of Boolean functions fn : {0, 1}E(Bn) → {0, 1},

fn(ω) = �An
(ω) =

{
1 if ω ∈ An,
0 else.

A fundamental result of Benjamini, Kalai, and Schramm [3, Theorem 1.2] states
that {fn} is noise sensitive.

In the heart of the theory of noise sensitivity lies the notion of influence. This
concept first arose in political science to measure the power of individual voters
in a voting scheme. For a configuration ω ∈ Ωn, denote by ωk the configuration
obtained from ω by flipping the kth coordinate,

ωk(x) =

{
ω(x) if x �= k,
−ω(x) if x = k.

Abbreviate the discrete partial derivatives ∀k ∈ [n], ∇kf(ω) = f(ω)− f(ωk).

Definition 5. The influence of the kth coordinate is defined as Ik(f) := ‖∇kf‖1 =
E[|∇kf |].

For Boolean functions (to {−1, 1}), ∇kf ∈ {−2, 0, 2}, and thus

Ik(f) = 2P[f(ω) �= f(ωk)].

This relates to the classical concept of pivotal edges from percolation theory. Say
that k ∈ [n] is pivotal for f in the configuration ω if f(ω) �= f(ωk). Note that the
event {f(ω) �= f(ωk)} is independent of ω(k). If we denote by

P = Pf (ω) := {i ∈ [n] : i is pivotal for f in ω},
we can write Ik(f) = 2P[k ∈ P].

Definition 6. The total influence, I(f), is defined by

I(f) :=

n∑
k=1

Ik(f) = 2E[|P|].

We are now in a position to state one of the main theorems in the theory of noise
sensitivity:

Theorem 7 ([3, Theorem 1.3]). Let {fn} be a sequence of Boolean functions. If

lim
n→∞

n∑
k=1

Ik(fn)
2 = 0,

then {fn} is noise sensitive.

The converse is not true in general, as can be seen by Example 2. However, it is
true for a sequence of monotonic functions.

Definition 8. A function f : Ωn → R is monotone if f(x) ≤ f(y) whenever
∀j ∈ [n], x(j) ≤ y(j).

Theorem 9 ([3, Theorem 1.4]). Let {fn} be a sequence of monotone Boolean
functions. If

inf
n

n∑
k=1

Ik(fn)
2 > 0,

then {fn} is not noise sensitive (but not necessarily noise stable).
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In recent years, Theorem 7 and other results such as the KKL theorem (Theo-
rem 11 below), were generalized by Keller, Mossel, and Sen [13, 14] to continuous
distributions such as the Gaussian measure.

Tools from discrete harmonic analysis

The main tool in the theory we are discussing is the Fourier–Walsh expansion.
It is useful to define the expansion for non-Boolean functions, thus we consider
the space L2(Ωn) of real valued functions. The inner product is defined relative
to the uniform measure Pn, 〈f, g〉 :=

∑
ω 2−nf(ω)g(ω) = E[fg]. As the complete

orthonormal Fourier base we take the Walsh functions: for any subset S ⊂ [n],
define

χS(ω) :=
∏
i∈S

ω(i),

with the convention that χ∅ ≡ 1. Thus any function can be decomposed according
to the Fourier–Walsh series

f =
∑
S⊂[n]

f̂(S)χS :=
∑
S⊂[n]

〈f, χS〉χS .

This allows us to study concentration and noise sensitivity of functions by their
Fourier–Walsh spectrum. The catch phrase one can learn from Benjamini, Kalai,
and Schramm [3] is that functions of high frequency are noise sensitive and functions
of low frequencies are noise stable.

In the case of a monotonic function f : Ωn → {−1, 1}, we get

Ik(f) = E[|∇kf |] = E[|∇kf |�k∈P ]

= E[(f(ω)− f(ωk))ω(k)�k∈P ] = 2E[fχ{k}�k∈P ],

where the third equality is due to the monotonicity of f . For every function

E[f · ω(k)�k/∈P ] = 0,

we get for monotonic Boolean functions f̂({k}) = Ik/2. The Cauchy–Schwarz
inequality yields for monotonic functions that I(f) ≤

√
n. A calculation shows

the majority function has total influence equal to
√
n, hinting that the majority

function is maximal among all monotonic functions.

Influence, concentration of measure, and hypercontractivity

The study of influences is very important in many scientific disciplines, e.g.,
learning, information theory, and social choice theory.

For a Boolean function (to {−1, 1}), a calculation shows that

∇̂kf(S) =

{
2f̂(S) if k ∈ S,
0 otherwise.

Since ∇kf ∈ {−2, 0, 2}, ‖∇kf‖22 = E[|∇kf |2] = 4E[|∇kf |] = 4‖∇kf‖1, and to-
gether with Parseval’s formula we obtain that

(1) Ik(f) =
∑

S⊂[n]: k∈S

f̂(s)2 and I(f) =
∑
S⊂[n]

|S|f̂(S)2.

The variance of a function f can be easily represented with Parseval’s formula:

(2) Var[f ] = E[f2]−E[f ]2 = 〈f, f〉 − 〈f, χ∅〉2 =
∑
S⊂[n]

f̂(S)2 − f̂(∅)2.
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This together with (1) immediately gives us the discrete Poincaré inequality for
Boolean functions.

Theorem 10. For any Boolean function f : Ωn → {−1, 1},

Var[f ] ≤
∑
k

Ik(f).

This means that

max
i

Ii(f) ≥
Var[f ]

n
.

The celebrated KKL theorem of Kahn, Kalai, and Linial [11] gives a logarithmic
correction to the above inequality. Though it might seem that a log correction is
not significant, the fact that it diverges was enough for Kahn, Kalai, and Linial to
show that in an idealized voting system with two candidates it is enough to bribe
o(1) fraction of the voters in order to control the elections with high probability.

Theorem 11 ([11]). There is a universal constant c > 0 such that for any Boolean
function

max
i

Ii(f) ≥ cVar[f ]
log n

n
.

Remarkably, the logarithmic correction is sharp, as shown by the tribes example
of Ben-Or and Linial [2]: Partition [n] into blocks of length log2(n)− log2(log2(n)),
and connect the leftover arbitrarily. Define fn to be 1 if there is a block of all 1’s
and 0 otherwise.

An inequality of Talagrand [20], which improves upon some results of Kahn,
Kalai, and Linial [11], proved to be instrumental in the study of fluctuations in first
passage percolation. For p ∈ [0, 1], consider the measure Pn

p = ((1− p)δ−1+ pδ1)
⊗n

on Ωn.

Theorem 12 ([20, Theorem 1.5]). Let f : Ωn → R, then for any p ∈ [0, 1] there is
a K = K(p) ∈ (0,∞) such that

Varp(f) ≤ K ·
n∑

k=1

‖∇kf‖22
1 + log (‖∇kf‖2/‖∇kf‖1)

.

Talagrand’s inequality also proved useful in the study of percolation isoperimetry
[5,9,19], showing concentration of the Cheeger constant and proving a weak version
of a conjecture by Benjamini.

Talagrand’s approach for concentration estimates, such as Theorem 12, is based
on hypercontractivity. In [7], Sourav Chatterjee presents a modern general approach
to hypercontractivity. A semigroup Pt is called hypercontractive if for any p > 1
and t > 0 there exists a q(t, p) > p such that

‖Ptf‖Lq ≤ ‖f‖Lp .

This approach began with Nelson’s [18] proof of the hypercontractivity of the
Ornstein–Uhlenbeck semigroup and Gross’s proof [10] that a semigroup is hypercon-
tractive if the associated Dirichlet form satisfies a logarithmic Sobolev inequality.

First passage percolation (FPP) is a model for a random metric on a graph; see
[1] for a thorough review of FPP. Consider the edge set E of Zd. For every edge
e ∈ E we associate a weight ω(e) distributed according to some measure μ, such
that {ω(e)}e are i.i.d. For any two vertices x, y ∈ Z

d and any path connecting
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them γ : x �→ y, γ = (e1, . . . , el), we associate a length λ(γ) =
∑l

i=1 ω(ei). This
defines in general a semimetric dω(x, y) = infγ:x	→y λ(γ). By Kingman’s subadditive
ergodic theorem [16, 17], under weak assumptions on μ, one obtains that balls in
the metric converge in the Hausdorff sense to a ball D, of a deterministic norm on
R

d,

lim
n→∞

Dn := lim
n→∞

1

n
{x ∈ Z

d : dω(0, x) < n)} = D.

This can be thought of as a geometric version of the law of large numbers. Many
open questions remain about the asymptotic shape D; e.g., if μ is a continuous dis-
tribution, is D strictly convex? What are the conditions for μ under which corners
appear in D? The question relevant to our discussion is that of the fluctuations
around the limit shape.

Benjamini, Kalai, and Schramm [4] studied the simple case in which μ = pδa +
(1− p)δb, where 0 < a < b. This allows us to study the metric dω in the framework
of Boolean functions. They prove that the variance of the FPP metric is sublinear
and thus is also little o of the expectation.

Theorem 13 ([4, Theorem 1]). There is a constant C = C(d, a, b) such that for
any v ∈ Z

d, ‖v‖1 > 2,

Varp[dω(0, v)] ≤ C
‖v‖1

log ‖v‖1
.

This theorem was generalized by Damron, Hanson, and Sosoe [8] under weak
assumptions on μ. This is a good point to demonstrate a simple but powerful
idea developed by Benjamini, Kalai, and Schramm. Since we took as our weight
distribution a measure supported on two points {a, b}, any path γ connecting 0 and
v for which λ(γ) = dω(0, v) must satisfy

a|γ| ≤ dω(0, v) ≤ b‖v‖1.

Thus we get |γ| ≤ b
a‖v‖1. This means that we need to only look at a finite box

around the origin in order to find dω(0, v). Moreover, only edges contained in all
minimizing paths (not necessarily unique) can have nonzero influence. Changing
the weight of a path from a to b or from b to a can change dω by no more than
|b− a|. This leads to

∑
e

‖∇edω(0, v)‖22 ≤ |P|(b− a)2 ≤ b

a
(b− a)2‖v‖1,

providing justification to the nominator in Threorem 13. This simple idea of con-
trolling the sum of influences by some geometric a priori knowledge has proved
useful in many applications, e.g., concentration of maximal cardinality matchings
for general graphs [6].

Note that if we choose μ to be the exponential distribution, D is the limiting
shape of the Eden model, which is the aggregation process one gets by adding edges
according to the uniform distribution on the boundary of the aggregate. Kardar,
Parisi, and Zhang [12] explain with their KPZ equation that Dn should have n1/3

fluctuations around the limiting shape D, which is very far from the known bound
given by Benjamini, Kalai, and Schramm.
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About the book

The book under review is a refined version of lecture notes that have been circu-
lating for a few years. Considerable effort was made to make the book as thorough
and concise as possible but still readable and friendly. There are many interesting
and important subjects covered in the book that we did not discuss in this review.
We believe this book is worthy for any departmental or scholarly library. It is clear
that it will turn out to be the “go to” source for studying the subject of noise
sensitivity of Boolean functions.
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