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Polynomials P(z1, 22, ...,24) of one or more variables z1, ...,z and the alge-
braic varieties {Py(x1,...,2q4) = -+ = Py(z1,...,24) = 0} that they cut out are
of course fundamental objects in algebra in general and in algebraic geometry in
particular. But it has gradually been realised over time that they are also funda-
mentally important in other areas of mathematics and theoretical computer science,
such as combinatorial incidence geometry, harmonic analysis, differential geometry,
and error correcting codes. One particularly striking manifestation of this phenom-
enon has been the dramatic successes in recent years of the polynomial method in
combinatorial geometry, which has been used to solve (or nearly solve) some major
open probelms in the subject that did not, on first glance, seem at all related to
polynomials.

Roughly speaking, combinatorial geometry is the study of configurations of
finitely many geometric objects (such as points, lines, planes, or circles) in some
standard geometry (e.g., the Euclidean plane R?, a higher-dimensional Euclidean
space R"™, or a vector space k™ over a more general field k). One is often interested
in extremal questions, in which one tries to maximise or minimise some combina-
torial quantity involving these configurations subject to various constraints. There
are many questions in this subject; we will just mention two of these, which are
also extensively discussed in the book under review.

(1) Finite field Kakeya problem. Suppose one is given a subset E of a finite-
dimensional vector space Fg over a finite field F, of ¢ elements. Suppose
also that E is a finite field Kakeya set, which means that it contains a
line in every direction (i.e., for every non-zero v € IFg, there exists a line
{z+tv:t € k} that is contained in E). For a given choice of k and ¢, what
is the minimum cardinality |E| of E?

(2) Erdds distinct distances problem. Suppose one is given a set P of n
points in the Euclidean plane R2. For a given choice of n, what is the
minimum number of distinct distances that are formed between the points
in P, that is to say what is the minimum cardinality of the set

{lp1 — p2| : p1,p2 € P,p1 # p2}?
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Finding exact answers to these questions is probably hopeless, except when most
of the parameters n, m, ¢ that are involved are small. Thus, attention has focused
instead on asymptotic regimes, in which one or more of these parameters is large
or goes to infinity.

We first discuss the finite field Kakeya problem. This is considered a “toy” prob-
lem for the Kakeya conjecture in geometric measure theory, which studies analogues
of finite field Kakeya sets in Euclidean space, and is in turn related to several other
important open problems in harmonic analysis, PDE, and number theory; see, e.g.,
[6] (or Chapter 15 of the book under review) for a survey. The finite field Kakeya
problem is ostensibly about lines, and for several years partial progress was made
by exploiting simple geometric facts about lines (such as the fact that two points
are incident to at most one line, or that any three lines that are incident to each
other at different points are necessarily coplanar), or by exploiting the arithmetic
structure of lines (for instance, using the fact that the average of any two points
on a line also is on the line, at least if the characteristic is odd). Both the Kakeya
conjecture and its finite field analogue were considered quite difficult; it was thus a
shock when Dvir [I] applied the polynomial method to almost completely settle the
finite field Kakeya problem by showing that the minimum cardinality of a Kakeya
set is at least cqq? for some constant c,, depending only on d (for instance one can
take ¢4 = %) The proof is so short that we will be able to sketch it later in this
review.

Dvir’s method relied quite heavily on the finite field geometry of the problem,
and it was initially believed that the polynomial method was not applicable to
combinatorial problems in Euclidean geometries. A breakthrough was achieved
by Guth [3], who obtained some progress on a variant of the Kakeya problem in
FEuclidean spaces by introducing an algebraic topology variant of the polynomial
method, which was powered by a polynomial version (first established by Stone
and Tukey [5]) of the ham sandwich theorem. By combining this method with some
additional tools from algebraic geometry, Guth and Katz [4] were able to almost
fully resolve the distinct distances problem of Erdés mentioned above. Namely,
they showed that the minimum number of distinct distances between n points was

at least 2t for some absolute constant ¢ > 0. (Erdés [2] had previously established
an upper bound of \/% for an absolute constant C'; thus the problem is resolved
up to a factor of about O(y/logn).)

Informally, the polynomial method is based on somehow combining the following

two general principles:

e An arbitrary configuration of geometric objects can be efficiently “cap-
tured” by an algebraic variety of controlled “complexity”.

e Algebraic varieties of controlled complexity interact with each other in only
a limited number of ways.

These principles manifest themselves in a particularly simple way in the case
of Dvir’s bound on the finite field Kakeya problem. We begin with a discussion
of the first principle in this context. We all know that given any two points
(21,91), (22,y2) in a plane, there is a line that passes through them; algebraically,
this can be seen because the equation ax + by + ¢ = 0 of a line involves three coeffi-
cients a, b, ¢ in a linear fashion, and so one can use linear algebra to find non-trivial
coefficients a, b, c obeying the two equations ax; +by; +c¢ = 0 and axa+bys +c = 0.
A similar argument shows that given any five points (x1,y1),..., (25,y5) in the
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plane, one can find a conic section az? + bxy + cy? + dx + ey + f = 0 that passes
through them. More generally, we have

Lemma 1. Let E be a subset of a finite field vector space Iﬁ‘g. Then there exists a
non-zero polynomial P € Fylxz1, ..., xq] in d indeterminates that has degree at most
C’d\E|1/d and that vanishes identically on E, where Cy depends only on n.

Proof. If Cq is chosen large enough, then the space of polynomials in Fg[z1,. .., z4]
of degree at most Cy|E|'/? can be computed to be a vector space (over F,) of
dimension strictly greater than |E|. On the other hand, the requirement that such
a polynomial vanishes on E imposes precisely |E| linear constraints. Thus the
space of polynomials of degree at most Cy|F |1/ 4 and vanishing on F has positive
dimension, and the claim follows. ([l

Now we discuss the second principle. The simplest manifestation of this principle
arises when considering the zeroes {x € F, : P(z) = 0} of a polynomial P € F[z]
of one variable of degree at most d. Either P is identically zero (in which case the
zero set is all of IF, or else there are at most d zeroes. In other words, the number
of zeroes can be less than or equal to d or equal to ¢, but it is prohibited from
ranging strictly between d and q. Geometrically, this is a limitation on how the
graph {(z, P(z)) : € F,} may interact with the line {(z,0) : z € F;}. In a similar
spirit, we have

Lemma 2. Let P € Fylz1,...,x,) be a polynomial of degree D for some d < g, let
Pp be the polynomial formed from the monomials in P of degree exactly D, and let
{r+tv:teF,} bealinein Fg. Then either P is not identically vanishing on this
line or else Pp(v) = 0.

Proof. If Pp(v) # 0, then the one-dimensional polynomial ¢ — P(z + tv) has
degree exactly D and thus has at most D roots. As D < ¢, we conclude that this
polynomial does not vanish identically on F,, and the claim follows. |

Now we can prove Dvir’s result. Suppose for contradiction that there existed a
finite field Kakeya set £ C Fg of cardinality less than cyq¢ for some sufficiently small
¢q¢ > 0. By Lemma [ we may then find a non-zero polynomial P € Fy[x1,...,z4]
of some degree D < ¢ that vanishes on FE; in particular, it vanishes on every line
{z+tv:t eF,;} contained in E. Using Lemma [2 and the hypothesis that F is a
finite field Kakeya set, we conclude that Pp vanishes for every v € Fg, which is not
possible since Pp is a non-zero polynomial of degree strictly less than q. The claim
follows.

Lemma [Il is available in any field, not just the finite fields F,. However, when
working with sets E of points in a Euclidean space R, this lemma is not always
useful, because the polynomial P that it provides is of too high a degree to be usable
in applications. The key insight of Guth [3] mentioned previously is that one can
also exploit the topological structure of R to find a lower degree polynomial P that
may not pass through all the points in £ any more, but instead partitions them in
a very uniform fashion. A well-known instance of such a partitioning result is the
ham sandwich theorem, which asserts for instance that if Uy, Us, Us are bounded
open subsets of R3, then there exist a plane (that is to say, the zero set of a
linear polynomial) that bisects each of the three sets Uy, Uz, Us in volume. Setting
Uy, Us, Us to be small neighbourhoods of finite sets of points P;, P>, P3 and applying
a limiting argument, we conclude that for any finite sets of points P;, Py, P C R3,
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there exists a plane which bisects each of the P; in the sense that the two open
half-spaces on either side of the plane contain an equal number of elements of P;.
By using a polynomial version of this ham sandwich theorem due to Stone and
Tukey [5], Guth observed the following variant of Lemma [I] which turns out to be
a very useful manifestation of the first principle mentioned above:

Lemma 3 ([3]). Let E be a finite subset of R, and let D be a natural number.
Then there exists a non-zero polynomial P € R[x1,...,x4] in d indeterminates of
degree at most D, such that the complement R¥\{z € R? : P(x) = 0} of the zero
set of P has at most CqD® connected components, each of which contains at most
Cy4|E|/D? elements of E, where Cy depends only on d.

One can think of Lemma [I] as corresponding to an endpoint case of Lemma [3]
when the parameter D is chosen to be a little bit larger than |E|1/ 4. however the
ability to set the parameter D to be significantly smaller than |E|'/¢ makes this
lemma significantly more flexible than Lemma [Il in applications. Lemma [3] sets up
a divide-and-conquer strategy in which an arbitrary set of points E is subdivided
into a subset E N {z € R? : P(z) = 0} that is contained in a relatively low
degree hypersurface, together with a collection of smaller sets that are contained
in cells bounded by this hypersurface. This leads to an important special case of
the polynomial method known as the polynomial partitioning method, which was
used for instance by Guth and Katz [4] in the above-mentioned work on the distinct
distances problem of Erdés.

In many applications one needs more advanced manifestations of the second
principle than what is provided by Lemma[2l Many such manifestations are supplied
by classical theorems of algebraic geometry. For instance, we have the basic theorem
of Bézout, which asserts that if one is given two irreducible algebraic curves vy, y2
in the plane of degrees di,ds, respectively, then the two curves either coincide
identically or else intersect in at most d;ds points; note that this generalises Lemma
This simple result, valid in any field, is already very useful in applications;
however one also has need of more sophisticated results of this type from algebraic
geometry. Here is one such. Given a smooth surface S in R3, we say that a point
x on S is a flecnode if there is a line {z + tv : t € R} passing through x which is
tangent to S to third order (or equivalently, there is a smooth curve ¢ — ~(¢) in S
which has a Taylor expansion «(t) = x + tv + O(t*) for t near zero). For instance,
if S'is a ruled surface (a union of straight lines), then every point of S is clearly a
flecnode. A remarkable theorem of Monge, Cayley, and Salmon asserts a converse,
at least in the context of algebraic surfaces:

Lemma 4. Let P € Rlzy,x9,x3] be an irreducible polynomial, and let S be the
surface S := {x : P(x) = 0}. Then either S is ruled or else the set of flecnodes of
S are contained in a finite union of algebraic curves.

Informally, this lemma asserts that if “enough” points in S are flecnodal, then
S must in fact be a ruled surface. There is a variant of this lemma that asserts
(roughly speaking) that if “enough” points of S are doubly flecnodal (in that they
have two flecnodal lines passing through them), then .S must be doubly ruled; this
is a particularly useful result because the doubly ruled surfaces in R? have been
completely classified (they are all quadric surfaces), and it plays a decisive role in
the work of Guth and Katz on the Erdés distinct distances problem. See Chapter



BOOK REVIEWS 107

13 of the book under review for an in-depth discussion of these results and their
proofs.

The book under review is a highly accessible and readable introduction to this
circle of ideas; the author has made particular effort to patiently introduce and ex-
plain all the key concepts and ideas in a natural, enjoyable, and almost completely
self-contained fashion, requiring little more than an undergraduate mathematics
background in most cases. As the title suggests, the core topic of the book is the
polynomial method in combinatorics; however, significant space is also devoted to
non-polynomial approaches to the same type of combinatorial problems (such as
non-polynomial approaches to the Kakeya problem), as well as polynomial methods
applied to other fields of mathematics than combinatorics, such as differential ge-
ometry or number theory. As such, a reader of this text will not just learn about a
single method applied to a single field of mathematics, but will also learn about the
context of both the method and the field. I myself found the book very enjoyable
and rewarding to read, and certainly recommend it to students who are interested
in either the polynomial method or in combinatorial incidence geometry.
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