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The geometric ideas developed in the 19th century still exert a fundamental
influence on modern mathematics. This is especially true in theoretical and mathe-
matical physics, including the areas of special and general relativity, tensor analysis
in mechanics and hydrodynamics, and discrete and continuum groups in solid state
and quantum theories.

In the more analytic branches of mathematics, the process of “geometrization”
has been much slower. For instance, in the famous paper by A. N. Kolmogrov [4],
“On analytic methods in probability theory”, the generator for a diffusion process
in R

d was written in the form

(1) L =
d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi
,

where A(x) = [aij(x)] is called the diffusion matrix and (bi(x)) the drift vector.
This terminology is still used today in the overwhelming majority of textbooks on
the theory of Markov processes, stochastic differential equations, etc. However,
a diffusion process exists independently of the selection of a coordinate system.
Thus, its description should be covariant. Physicists understood this fact earlier
than mathematicians, and they presented the generator in the so-called Fokker–
Planck form,

(2) L =
d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

d∑
i=1

b̃i(x)
∂

∂xi
.

Here A(x) = [aij(x)] is a tensor, and B(x) = [b̃i(x)] is a vector. Note that A(x)
can be nonsmooth and even discontinuous, which is important for applications to
composite matrices. The theory of parabolic equations ∂u

∂t = Lu with L presented
in “divergent” form in (2) was developed only in the second half of the 20th century;
see J. Nash [3], J. Moser [6], D. Aronson [2]. In many senses, this theory is better
than the old theory (using L in the form (1)). That theory requires regularity on
the coefficients (they must be at least of the Hölder class) together, of course, with
the symmetry and nondegeneracy of the matrix A(x).

The matrix A(x) = [aij(x)], under mild regularity conditions, guarantees that
we can define the Riemannian metric ds2 = αijdxidxj in R

d, and (in the absence

of drift b̃ in (2)) the operator L = ∂
∂xi

(aij(x))
∂

∂xj
is the Laplace–Beltrami operator

on the Riemannian mannifold with metric form ds2.
It is interesting that A. N. Kolmogorov (after an exchange of information with

E. Schrödinger; see [7]) published the important paper [5], completely based on the
differential geometry approach and generators of the form (2).

Geometric ideas in statistics appeared much later and were related mainly to
information theory. In fact the first monographs in the field of geometric modeling
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appeared (in English) only around 2000 (Amari and Nagaoka [1]; Kass and Vos
[8]). In the theory of statistical estimators, the starting point was the Cramer–
Rao inequality (mid-1940s). In the simplest case of an unbiased estimator for an
unknown scalar parameter ξ, it has the following form. Let X1, . . . , Xn be the
sample of i.i.d. random variables with density p(x, ξ), and let T (X1, . . . , Xn) be
the estimator of θ, such that EξT = ξ. Then, under some regularity conditions,
E[T − ξ]2 � 1

nI(ξ), where I(·) is the Fisher information given by

(3) I(ξ) = Eξ

(
∂ ln(p(X1, ξ)

∂ξ

)2

.

The estimator T (X1, . . . , Xn) is called efficient if E[T − ξ]2 = 1
nI(ξ) and asymptot-

ically efficient if E[T − ξ]2 → 1
nI(ξ) as n → ∞. (Of course, one must assume that

I(ξ) < ∞.)

In the case of vector-valued parameter �ξ = (ξ1, . . . , ξn) and the smooth para-
metric family p�ξ(x), one can introduce the similar object: the Fisher information
matrix

gij(ξ) = Eξ

[(
∂ξi ln pξ(x, ξ)

) (
∂ξj ln p(x, ξ)

)]
.(4)

In typical situations (smoothness, nondegeneracy, etc.) the matrix [gij(ξ)] defines
in R

n a Riemannian metric form with covariant positively definite tensor gij(ξ)

(5) ds2 = gij(ξ)dξ
idξj .

As a result, we embed our statistical model into a Riemannian manifold, and we
can now define an information distance d(P,Q) for two distributions on our family
and define standard geometric quantities including curvature tensor, Levi-Civita
connection, etc.

A typical example is given by the normal (Gaussian) distribution N(μ, σ2) with
the density

(6) p(x, μ, σ) =
1√
2πσ2

exp

(
− (x− μ)2

2σ2

)
.

Here �ξ = (μ, σ) belongs to the upper half-plane with the Riemannian (Introduction)
metric:

(7) ds2 =
dμ2 + dσ2

σ2
,

i.e., it is the Poincaré model of the hyperbolic plane.
Another source of geometric ideas in statistics is the testing of hypothesis. As-

sume that we have two probability distributions P (dw), Q(dw) on the same mea-
surable space (Ω,F). Due to Neyman–Pearson theory, all useful information on
the goodness of fit of these two laws is contained in the logarithm of the likelihood
ratio ln dP

dQ (w). The expectation of this ratio is given by

(8) DKL(p‖q) =
∫
Ω

l(w)P (dw) =

∫
Ω

P (dw)

Q(dw)
ln

(
P (dw

Q(dw)

)
Q(dw),

and it is known as the Küllback–Leibler relative entropy. In contrast to the notation,
this expression is not a metric (due to asymmetry of H0 and H1 in the testing of
statistical hypotheses).

The book under review is divided into two sections. The first, entitled “The ge-
ometry of statistical models”, contains six chapters. Together with an introduction



BOOK REVIEWS 111

to the general topics (including probability spaces, entropy, and information), it
contains many examples of the Riemannian metrics associated to classical discrete
and continuous parametric models (Gamma and Beta distributions, Geometric and
Poisson laws, etc). It also contains detailed derivations of the Fisher information
matrices, Küllback–Leibler relative entropy, and related quantities.

The second section, entitled “Statistical manifolds” is purely geometrical. Chap-
ters 7–10 describe standard geometric objects, including Riemannian manifolds and
divergence of vector fields. The three remaining chapters, 11–13, contain the the-
ory of so-called “contrast functions”, which are distance-like nonnegative functions
D(Q‖P ) of two distributions P and Q, which are not necessarily symmetric and do
not necessarily satisfy the triangle inequality, but vanish if and only if P = Q. This
is the generalization of Kullback–Leibler relative entropy. Each smooth contrast
functional generates an associated Levi-Civita connection and Riemannian metric.
This section of the book is illustrated with many examples of statistical manifolds
and submanifolds from the first section. Further, each chapter in both sections is
followed by numerous exercises, which are interesting not only from a probabilistic
but also from a purely analytic point of view.

It is necessary to mention that, while useful, this book is not a comprehensive
treatise. For instance, the fundamental Cramer–Rao inequality, which is one of the
strongest motivations for the development of this theory, is only briefly mentioned.
The authors describe this area as “informational geometry”.

In diffusion processes theory, Riemann’s geometrical ideas have been highly fruit-
ful. In statistics right now, it looks like a new language to describe parametric
models. One hopes that it will find important applications as well.

The author would like to thank Dr. Michael Grabchak for his help in the prepa-
ration of this review.
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