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A (C0) semigroup is a one-parameter strongly continuous semigroup of bounded
linear operators on a Banach space X. More precisely,

T = {T (t) : t ∈ R
+ = [0,∞)} ⊂ L(X),

T (t+ s) = T (t)T (s), T (0) = 1, T (·)f ∈ C(R+, X) for all t, s ∈ R
+, f ∈ X.

To an algebraic or topological “semigroupie”, T is merely a special kind of represen-
tation of the half-line (R+,+). Thus, in a sense, T is trivial. But (C0) semigroups
have many subtle properties that make them ubiquitous and surprisingly useful in
many areas of analysis and applied mathematics.

The (infinitesimal) generator A of T is

Af = lim
h→0

T (h)f − f

h
,

and the domain D(A) consists of all f for which this limit exists in the norm
topology of X. Formally, A = T ′(0) and T (t) = etA, but unless T is continuous
in uniform operator topology, A is unbounded, so one should be a little careful in
using the notation etA.

The associated initial value problem is

(1)
du

dt
= Au, u(0) = f,

for a function u : R+ → X. This problem is well posed if D(A) is dense in X and
for each f ∈ D(A) there exists a unique solution u which depends continuously on
f. The minimal basic theory of (C0) semigroup theory consists of two results.

Theorem 1 (Well-posedness). Well-posedness holds for (1) in X iff A is the gen-
erator of a (C0) semigroup T in L(X). Moreover, A is the generator of a (C0)
semigroup T in L(X) iff (1) has a unique continuously differentiable solution given
by u(t) = T (t)f . In this case, T “governs” (1).

Theorem 2 gives a necessary and sufficient condition for A to generate a (C0)
semigroup T. An easy argument using the uniform boundedness principle shows
that

M = sup
0≤t≤1

‖T (t)‖ < ∞

and then

(2) ‖T (t)‖ ≤ Meωt

holds for some M ≥ 1 and some real ω, for instance, ω = log(M) above. Then

|f | = sup
t≥0

e−ωt ‖T (t)f‖
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defines a norm equivalent to ‖·‖ , and on (X, |·|), S(t) = e−ωtT (t) defines a (C0)
contraction semigroup with generator A− ωI. The Laplace transform

R(λ)f =

∫ ∞

0

e−λtT (t)fdt

for λ > 0, f ∈ X is the resolvent of A, R(λ) = (λI −A)−1. This can be guessed by
writing T (t) = etA, regarding A as a number, and evaluating the integral explicitly.

Theorem 2 (Hille–Yosida generation theorem). An operator A is the generator of
a (C0) contraction semigroup T on X iff A is closed, D(A) is dense in X, and A
is m-dissipative, that is,

∥∥(λI −A)−1
∥∥ ≤ 1

λ
for all λ > 0 (dissipative),

Range(λI −A)) = X for all λ > 0 (hypermaximal, or “m”).

Moreover,

T (t)f = lim
n→∞

(
I − t

n
A

)−n

f = lim
n→∞

[
t

n

(n

t
I −A

)]−n

f.

So T is recovered from A by inverting the Laplace transform of A. Some histori-
cal and other comments are in order. (C0) semigroups became part of mainstream
mathematics with the appearance of (Carl) Einar Hille’s 1948 book [10] (an Ameri-
can Mathematical Society Colloquium Publication). When this book was accepted
for publication, neither Theorem 1 nor Theorem 2 was known. Theorem 2 was
proved simultaneously and independently in 1948 (with different proofs) by Hille at
Yale (while correcting galley proofs of his book) and by Kosaku Yosida at Tokyo.
Theorem 1 was published in the early 1950s by Ralph Phillips and by Hille (inde-
pendently, using different but equivalent definitions of well-posedness). Theorem
2 was extended, independently, to the case of general (C0) semigroups by Willy
Feller, Phillips and Isao Miyadera in 1951–53. Feller proved it as a consequence of
the Hille–Yosida theorem using an equivalent norm trick.

Hille invited Phillips to add his research to Hille’s book. Phillips did, resulting
in the 1957 Hille–Phillips book [11], which contained subtractions as well as ad-
ditions. (Interestingly, Hille and Phillips never coauthored a paper, and Phillips
privately admitted he did not read all of Hille’s book.) The Hille book and then
the Hille–Phillips book became the main textbook for graduate-level modern anal-
ysis, developing measure and integration theory for Banach space valued functions,
deeper properties and applications of Laplace transforms, and developing tools of
functional analysis for applications involving harmonic analysis, probability theory,
differential equations, and other fields. So the Hille and then Hille–Phillips book
became a sort of “bible”. Its successor was the book by Nelson Dunford and Jack
Schwartz, Part 1 [3].

The notations (Cj) semigroups and (Aj) semigroups were part of a 1948
Hille classification concerning the convergence properties of T (t) as t → 0 and
λ(λI −A)−1 as λ → ∞; the “C” (resp. “A”) refers to Cesaro (resp., Abel). Hille’s
structural classification stopped being used; its only living remnant is the term (C0)
semigroup.
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Well-posedness depends on the norm. For instance, consider the wave equation
in Rn, n ≥ 2,

∂2v

∂t2
= Δv, v(·, 0) = f, vt(·, 0) = g for x ∈ R

n, t ∈ R.

Rewrite this as a system

u =

(
v

vt

)
,
∂u

∂t
=

(
0 Δ
I 0

)
u = Au, u(0) = F =

(
f

g

)
.

Then A generates a (C0) semigroup (and even a (C0) group) T on X = W 1,p (Rn)×
Lp (Rn) iff p = 2. In fact, for p 	= 2 and t 	= 0, T (t) is an unbounded operator on X
(which can be shown using Fourier transforms).

Suppose you are given a linear initial-boundary value problem for an autonomous
partial differential equation. If you can, write the problem in the form of (1).
Choose an appropriate Banach space X, and define the domain of A in a way
that incorporates the boundary condition. Show that A is densely defined and
quasi-dissipative in X. That is,∥∥∥(λI − (A− ωI))

−1
∥∥∥ ≤ 1

λ

holds for all λ > 0 and some ω ∈ R. Showing this depends on the choice of the
norm. Show also that the range of λI − (A − ωI) is dense in X for some λ > 0.
Then (this is a lemma) this density result holds for all λ > 0 and A, the closure
of A, generates a quasi-contractive (C0) semigroup T (satisfying ‖T (t)‖ ≤ eωt for
t ≥ 0) on X, which governs (1), and T is given by the exponential formula

T (t)f = lim
n→∞

(
I − t

n
A

)−n

f.

If A is not quasi-dissipative, one must check the more complicated conditions∥∥∥(λI − (A− ωI))
−k

∥∥∥ ≤ M

λk

for all λ > 0, k ∈ N. In practice, this is often too difficult to verify directly. If A
is an elliptic operator or a matrix involving an elliptic operator, then showing the
density of the range is sometimes independent of the space X; the choice of X is
important mainly for accomplishing the quasi-dissipativity calculation.

For the heat equation, the physically “natural norms” are the L∞ norm (corre-
sponding to maximum temperature for positive solutions) and the L1 norm (corre-
sponding to total heat content). But, depending on the boundary conditions, the
calculations typically also work in Lp, 1 ≤ p ≤ ∞, with p = ∞ corresponding to
some space of continuous functions, not to L∞ itself.

To indicate applications to nonlinear problems, consider the Navier–Stokes sys-
tem of fluid dynamics,

ut = μΔu+ u · ∇u+∇p+ f0 in Ω× R
+,

div(u) = 0 in Ω× R
+,

u(x, 0) = f(x) in Ω,(3)

u(x, t) = 0 on ∂Ω× R
+,

where Ω is a bounded domain in R3, the fluid velocity is u = u(x, t) : Ω×R+ → R3,
μ > 0 is the kinematic viscosity, and the pressure p : Ω×R+ → R. (One could also
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consider n ≥ 2 and/or Ω being unbounded.) The Helmholtz projection P is the
orthogonal projection of H = [L2(Ω)]3 onto the solenoidal vectors Hσ, given by

H = Hσ ⊕H∇,

where1

Hσ = cl{u ∈ C1
(
Ω

)3

: u = 0 on ∂Ω, ∇u = 0 in Ω}
and

H∇ = cl{∇ϕ : ϕ ∈ C1
(
Ω

)
, ϕ = 0 on ∂Ω}.

Let v = Pu (= u, viewed in Hσ when u satisfies (3)). Then v(t) ∈ Hσ and

(4)
dv

dt
= μAv +N(v) + P0f, v(0) = Pf, v = 0 on ∂Ω,

where A = PΔ is the Stokes operator on Hσ and N(v) = P (v ·∇v) is the nonlinear
term. One solves (4) for v and then replaces u by v in (3). This gives ∇p, which
in turn gives p up to an additive constant. So the problem is to solve (4). The
program for (4) was laid out by Jean Leray in 1934. He recognized that (4) was
well posed locally in time (i.e., for t ∈ [0, τ ] for small τ = τ (Ω, f, f0, μ) > 0) and
well posed globally (i.e., for all t ≥ 0) for f “small enough” in some sense. The
problem of global well-posedness for large (or rather general) initial data remains
open and is one of the million dollar Clay prizes.

Here are Leray’s ideas for local well-posedness, made precise in the 1960s by
H. Fujita and T. Kato. Absorb μ into the Stokes operator A, which satisfies A =
A∗ ≤ −εI on Hσ for some ε > 0. Also A generates a (C0) contraction semigroup T
which extends to T = {etA : Re(t) ≥ 0}, which in turn is analytic in the open right
half-plane. By writing (4) as

(5)
dv

dt
= Av +M(v), v(0) = g,

where M(v) = N(v) + Pf0 and g = Pf, we can use successive approximations
which lead to the iteration scheme

dvn
dt

= Avn +M(vn−1), vn(0) = g,(6)

vn(t) = etAgn +

∫ ∞

0

e(t−s)AM(vn−1(s))ds, n ∈ N,

in which we may take v0(t) = g. Then (6) is the standard variation of parameters
formula, and a local (mild) solution of (5) is a fixed point of Q0, where

(7) Q0w(t) = etAg +

∫ ∞

0

e(t−s)AM(w(s))ds

on a suitable closed subset in some space C([0, τ ], Y ). Since the nonlinear differen-
tial operator M is usually not locally Lipschitzian on any of the usual Sobolev or
Hölder spaces, we need a factorization to get a Lipschitz function as a composition
of Lipschitz functions.

Define the abstract Sobolev space Hα = D((−A)α) of order 2α with norm
‖f‖α = ‖(−A)αf‖ , 0 ≤ α < 1. The spectral theorem of John von Neumann and
Marshall Stone says that any self-adjoint operator S on a complex Hilbert space K
is unitarily equivalent to a multiplication operator by a real measurable function on

1We use the notation “cl” for closure.
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some concrete L2 space, L2(Λ,Σ, λ). Thus there is a unitary Q : K → L2(Λ,Σ, λ)
such that S = Q−1MmQ, Mmh = mh for some m:Λ → R, and g ∈ D(Mm) iff
g,mg ∈ L2(Λ,Σ, λ). The essential range of m is the spectrum of A, and for any
Borel function b from σ(S) to C, b(S) = Q−1Mb(m)Q is a normal operator, self-
adjoint if b is real valued, and the mapping b → b(S) is an algebra homomorphism.
This functional calculus enables us to treat many infinite-dimensional problems as
if they were one dimensional. Semigroup theory on Banach spaces has generators
which are much more general than normal operators N on Hilbert space whose
spectrum is bounded above: sup{Re(a) : a ∈ σ(N)} < ∞}. It has a similar func-
tional calculus, but one that is based on just the exponential functions, not on
general Borel functions. Still, that is enough for many surprising applications. The
Navier–Stokes system is just one example.

Returning to (6), the estimate
∥∥(−A)αesA

∥∥ ≤ t−α holds by the reasoning in the
above paragraph. The function M in (7) satisfies ‖M(u)−M(v)‖ ≤ CB ‖u− v‖α
for u, v in bounded subsets B of Hα for 3

4 < α < 1 because we are in three space
dimensions; this estimate depends on Sobolev inequalities and other things. With
these tools in hand and additional tools, one can reformulate (7) in a different way
so that the Banach fixed point theorem (strict contraction mapping principle) can
be applied.

In some ways, this application is typical. Semigroup theory does not by itself
solve hard problems in nonlinear partial differential equations, but it provides a
key tool in many cases. Another instance of this involves the principle of linearized
stability. This is a maddening result, because in many cases the conclusion of the
theorem holds but the hypotheses do not.

Consider a nonlinear partial differential operator N and the associated differen-
tial equation du

dt = N(u). We would like to solve it in a Banach space, but looking
at N may not suggest a canonical space for this problem. Let h be a fixed point
for N, N(h) = h. Suppose N is differentiable at h in some sense, so that

lim
s→0

N(h+ sk)−N(h)

s
= Lk

holds for all k in a suitable dense set and L is a linear operator, in fact, a semigroup
generator. If the corresponding semigroup satisfies ‖T (t)‖ ≤ Me−εt for some ε > 0
and all t ≥ 0, then there is hope that the conclusion of the principle of linearized
stability holds: if v is small enough in some sense, then the solution of

du

dt
= N(u), u(0) = h+ v,

exists globally and limt→∞ u(t) = h. This is an easy result ifN is locally Lipschitzian
on some Banach space to itself, but this is not normally the case.

For instance, consider

(8) ut = Δu+ up,

t ∈ R+, x ∈ RN , p > 1. For each N ≥ 3, for each p > N
N−2 , there exists a unique

positive radial power equilibrium solution of (8) of the form u(x, t) = h(r) = Cr−a,
where a > 0, C > 0, r = |x| . The linearization L of the nonlinear operator N(u) =
Δu+ up about the fixed point h is

L = Δ+
c

|x|2
= Δ+

c

r2
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for some constant c. There is no “natural space” for studying the operator N, but
L can be viewed as a self-adjoint operator on L2(RN ), and using Hardy’s inequality

one can show that σ(L) = (−∞, 0] or R, according to whether c ≤ C∗(N) =
(
N−2
2

)2
or c > C∗(N). In the latter case, etL is an unbounded operator on L2(RN ) for
all t 	= 0, but in the former case the semigroup {etL : t ≥ 0} is a family of
norm 1 operators satisfying etLf → 0 as t → ∞ for all f ∈ L2(RN ). We do not
have exponential linearized stability, but one might wonder whether there exists a
Banach space X on which h is asymptotically stable in the nonlinear sense. The
surprising positive answer to this question was obtained by C. Gui, W.-M. Ni, and
X. Wang [8, 9]. The answer is yes, h is asymptotically stable for the nonlinear
equation, provided N ≥ 11 and

N

N − 2
< p <

(N − 2)2 − 4
(
N − 2

√
(N − 1)

)
(N − 2)2 − 8N + 16

in a certain weighted supremum norm space X ⊂ C(RN ); and for f ∈ X, ‖f‖ =
supx∈RN |f(x)w(x)| < ∞ and the weight function w is given explicitly. This is a
deep and lovely result.

A related problem is connected with Cedric Villani’s Fields Medal work [16].
Convergence to equilibrium for solutions of the Boltzmann equation can be thought
of as a case of a (yet to be formulated) principle of linearized stability. The equilibria
include functions which are Maxwellian in the velocity variables, density functions
of the normal distribution with appropriate parameters. The rate or speed of
convergence is a problem of enormous technical difficulty. The problem involves
suitable normalizations and finding the right norm or norms. The results of Villani
and his collaborators involve highly nontrivial calculations with (C0) semigroups. Is
the convergence to equilibrium exponentially fast? Sometimes it is, but sometimes
one must replace e−ta for a > 0 by t−1/ε for arbitrary ε > 0. And Landau damping
is involved—the rapid decay of an electric field in a plasma without collisions of
particles. Boltzmann’s theory was that time irreversibility was caused by collisions.
The work of Villani and his collaborators gave us a new and better understanding
of entropy, thus satisfactorily explaining a nineteenth century mystery. See [16]
and the references therein for a nice introduction to these ideas. Questions of
instabilities are also involved in Villani’s calculations.

Finally we come to the book being reviewed. The book is about (C0) semigroups,
but it is also about second-order linear elliptic operators on a bounded domain Ω
in RN . The corresponding semigroup governs a parabolic probem, and it is typi-
cally a semigroup of positivity-preserving operators, which is tied to the maximum
principle. For systems and for higher-order operators, positivity is not preserved in
general. The subject matter has an enormous literature, but the book contains a
lot of new and deep results, some of which were developed by the authors in recent
journal literature, and some of which are presented in the book for the first time.
The authors work at a high level of generality, and the book is very technical and
not so easy to read. But the results are interesting, and the necessary effort put
into studying them is worth it.

The book consists of seven chapters.
Chapter 1. Preliminary facts on semi-boundedness of forms and operators
Chapter 2. Lp-dissipativity of scalar second order operators with complex coeffi-
cients
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Chapter 3. Elasticity system
Chapter 4. Lp-dissipativity for systems of partial differential operators
Chapter 5. The angle of Lp-dissipativity
Chapter 6. Higher order differential operators on Lp

Chapter 7. Weighted positivity and other related results
Of concern are semiboundedness of sesquilinear forms and (quasi-)dissipativity

of the corresponding partial differential operator on Lp for p 	= 2. Typically, the L2

theory is relatively easy, but the Lp theory is hard. Instead of being real functions,
the coefficients are complex functions and even complex measures. This leads to
significant technical complications.

Chapter 1 contains many standard results in semigroup theory, but it is presented
from the authors’ perspective. We point out one such result now. The duality set
of f ∈ X, X being a complex Banach space, is

i(f) = {ϕ ∈ X∗ : 〈f, ϕ〉 = ‖f‖2 ‖ϕ‖2}.
The Lumer–Phillips theorem says that the linear operator A : D(A) ⊂ X → X is
dissipative (meaning

∥∥(λI −A)−1
∥∥ ≤ 1

λ for all λ > 0) iff for all f ∈ D(A) there is
a ϕ ∈ i(f) such that Re 〈Af, ϕ〉 ≤ 0. Let D,D′ be dense subspaces of X,X∗, and
let

L (·, ·) : D ×D′ → C

be a sesquilinear form (L(u, v) is linear in u and conjugate linear in v). L is called
semibounded above or quasi-dissipative if there is a real c such that for all u ∈ D
with i(u) ∩D′ 	= φ, there exists ϕ ∈ i(u) ∩D′ such that

ReL (u, ϕ) ≤ c ‖u‖2 .
Call L dissipative if c = 0, and −L is called accretive in this case. The authors are
concerned with when sesquilinear forms and operators are dissipative on Lp and
when the operator is a semigroup generator. Since the word dissipative is used in
two different contexts, some clarification is necessary for resolving exactly what is
meant. In some but not all cases they are equivalent.

There are operators of the form Au = Δu+ c
|x|2 , defined on on RN , that generate

(C0) semigroups on Lp(RN ) but are not quasi-dissipative on Lp(RN ). In cases such
as this, that A generates a (C0) semigroup on Lp(RN ) follows from the fact that A
generates an analytic semigroup; a direct proof that A generates a (C0) semigroup
on Lp(RN ) is a very hard problem for these choices of p,N. The authors want to
know which concrete elliptic operators E generate a (C0) semigroup on Lp(RN ). It
is prudent and sensible to forget the maximal generality and restrict one’s attention
and show E is quasi-dissipative on Lp(RN ) or simply dissipative by subtracting a
term of the form cI in the operator where c is a real constant. This is a main theme
of the book starting in Chapter 2.

Consider an operator A of the form

Au = div(M∇u) + b · ∇u+ div(cu) + au

with complex coefficients such that M is an n × n matrix of complex measures,
b, c are n-vectors of complex measures, a is a complex measure, and Im(M) is
symmetric. The homogeneous Dirichlet boundary condition is always assumed.
Associated with A is the sesquilinear form L defined by

L(u, v) = −
∫
Ω

(〈M∇u,∇v〉+ 〈b∇u, v〉+ 〈u, c∇v〉 − a〈u, v〉) dx
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defined on
[
C1

0 (Ω)
]2

; the subscript 0 refers to compact support. Using self-adjoint
operator theory as well as dissipative operator theory on Hilbert space, the question
of whether or not A is quasi-dissipative on L2(Ω) is pretty well understood. The
question is much more difficult when L2 is replaced by Lp. Define L to be Lp-
dissipative if

ReL(u, |u|p−2
u) ≤ 0 for p ≥ 2,

ReL(|u|p
′−2 u, u) ≤ 0 for 1 < p < 2.

Let the matrix Im(M) be symmetric: ImM t = ImM. A nice clean result is the
following theorem.

The form L(u, v) = −
∫
Ω
〈M∇u,∇v〉dx is Lp-dissipative on Lp(Ω), 1 < p < ∞,

iff

|p− 2| |〈ImMξ, ξ〉|TV ≤ 2 |p− 1| 〈ReMξ, ξ〉
for all ξ ∈ R

n, where TV refers to the total variation norm.
The cases 1 < p < 2 and p ≥ 2 are different because u ∈ C1

0 (Ω) implies |u|p−2
u ∈

C1
0 (Ω) for p ≥ 2 but not for p < 2. Characterizations for Lp-dissipativity of the

operator A are also given. Suppose c = 0, Ω is bounded and the coefficients satisfy

ajk, bk ∈ C1(Ω), a ∈ C0(Ω). Then D(A) = W 2,p(Ω) ∩ W 1,p
0 (Ω) when a modest

regularity assumption is imposed on ∂Ω. Then, in this case, the form L is Lp-
dissipative iff the corresponding operator A is Lp-dissipative.

Here are some further results. For Au = ∇t(M∇u) + μu, with μ a nonnegative
finite measure and Re〈Mξ, ξ)〉 ≥ 0 for all ξ ∈ Rn, A is Lp-dissipative if

∫
Ω

|u|2 dμ ≤ 4

pp′

∫
Ω

〈M∇u,∇u〉dx

for all u ∈ C∞
0 (Ω). Now let

λ = sup
S

〈ReM(x)ξ, ξ〉
|〈ImM(x)ξ, ξ〉|

where

S = {(x, ξ) ∈ Ω× R
n : 〈ImM(x)ξ, ξ〉 	= 0}.

If 〈ImM(x)ξ, ξ〉=0 for some x∈Ω, thenA is Lp-dissipative for all p. If 〈ImM(x)ξ, ξ〉
never vanishes, then A is Lp-dissipative iff p satisfies

2 + 2λ(λ−
√
λ2 + 1) ≤ p ≤ 2 + 2λ(λ+

√
λ2 + 1).

For this A, if also ImM = ImM t, then A is m-dissipative on Lp iff

|p− 2| |〈ImM(x)ξ, ξ〉| ≤ 2
√
p− 1〈ReM(x)ξ, 〉

for all x, ξ. The proofs of these recent and new results are quite technical and
intricate. It is nice to see them presented in a unified fashion.

Chapter 3 is concerned with the Lamé operator

Eu = Δu+

(
1

1− 2μ

)
∇(div u)

on [Lp(Ω)]n, where the constant μ satisfies μ > 1 or μ < 1/2. For dimension n = 2,
the authors prove that E is Lp-dissipative iff∣∣∣∣12 − 1

p

∣∣∣∣ ≤ 2(μ− 1)(2μ− 1)

(3− 4μ)2
.
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While this nontrivial result is clean and elegant, it gives new information about
the parabolic problem ut = Eu. But it does not give information about the elastic
wave equation which, like the acoustic wave equation, is ill posed when n > 1 unless
p = 2.

Chapter 5 deals with the angle of dissipativity. When A (or L) is Lp-dissipative,
it typically generates a semigroup which is analytic in a sector

Σ(θ) = {z ∈ C : Re(z) > 0, |arg(z)| < θ}

for some θ ∈ (0, π/2]. The angle of dissipativity of A is the supremum of these
values of θ. It is also

sup{α > 0 : eiαA is Lp-dissipative}.

Using complicated calculations, the authors compute the exact angle of dissipativity
in certain cases. This is an extremely tough problem in general. For some related
complementary results, see [6].

Chapter 6 deals with partial differential operators of order higher than two.
Consider the order k (> 2) partial differential operator A =

∑
|α|≤k aα∂

α, where

each aα is an n× n matrix with entries in L1
loc(Ω) for some n ∈ N. Let 1 ≤ p < ∞

with p 	= 2, and let Ω be a domain in Rn. If [C∞
0 (Ω)]n ⊂ D(A), then A cannot

generate a (C0) contraction semigroup on [Lp(Ω)]n. The idea behind this theorem
was known to Feller in the 1950s, but this form of the theorem is both general and
elegant.

In Chapter 7, the sesquilinear form L satisfying Re
∫
Ω
〈Lu, u〉dx ≤ 0 is instead

required to satisfy Re
∫
Ω
〈Lu, u〉Ψ(x)dx ≤ 0 for u ∈ C∞

0 (Ω) for some weight function
Ψ. Single operators and systems are treated, again in considerable generality.

This book is valuable; it contains a lot of new information and deep, complicated
proofs. It has some minor flaws; for instance, there are typos, and while there is an
author index, there is no subject index. The book does not emphasize heuristics
and motivation. It is a research monograph aimed at active scholars; I think it
would be difficult for many graduate students to master. But it is a very good
book, and every serious research university library should get it. I expect it to
inspire new research.

There are many good books devoted to operator semigroup theory and its appli-
cations. Nine of these [1, 2, 4–7, 10, 11, 14] are cited as a representative example of
the books on the subject. All nine have the property that each covers some aspect
of the theory or applications better than any of the others. In addition four other
books by outstanding authors [3, 12, 14, 17] are cited. They cover analysis broadly,
and each presents semigroup theory from a special perspective.

The reviewer gratefully acknowledges the many helpful comments of Peter Kuch-
ment.
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