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NUMBER THEORY IN THE 20TH CENTURY: PART 1

JOHN TATE

By “number theory” I mean algebraic number theory, and by Part 1, roughly
the years 1900-1940. The treatment is very sketchy; I hope at some later date to
cover the rest of the century and to fill in some of the gaps and correct any errors
in this hasty account.

At the end of the 19th century, Kurt Hensel introduced the idea of the completion
k, of a field k with respect to a discrete valuation v and proved his famous lemma;:
If 0, is the ring of integers in k, and f(t) is a monic polynomial with coefficients in
0,, a factorization of f(t) into relatively prime factors modulo the maximal ideal
of 0, can be lifted to a factorization of f(t).

At that time also, Hilbert, in his “Zahlbericht”, reinterpreted the quadratic
reciprocity law as a product formula for his norm residue symbol. This product
formula has been generalized to the higher K groups by Dustin Clausen.

Let k£ be a number field, i.e., a field of finite degree over Q. Let m be an ideal in
the ring of integers oy, of k, let I, be the group of fractional ideals prime to m, and
let P, be the group of principal ideals («) of elements a which are congruent to
1 mod m and positive at every real place. In the late 1800s Heinrich Weber had the
idea that there should exist an abelian extension K of k such that the prime ideals
of k which split completely in K are those in Py, and the Galois group Gal(K/k)
is isomorphic to Iy, /Py. He called such an extension K or any subextension of it a
class field over k. In 1907 Furtwéngler showed the existence of such an extension
in case m = 1, the so-called “Hilbert class field”. Near the end of the First World
War, great progress was made by Teiji Takagi. He showed the existence of a class
field for every m and that every abelian extension is a class field.

A character of k defined mod m is a nonzero multiplicative map x : I, — C*
which is trivial on Py. To such a x, Richard Dedekind associated an “L-series”

L(s,x) == > _ x(a)Na~* = JJ(1 = x(p))Np~) ",
a p

the sum being over all integral ideals a prime to m and the product over the prime
ideals not dividing m, the equality of the two resulting from the unique factorization
of ideals into primes. The sum and product converge in the right half-plane Re(s) >
1. In case x = 1 and m = o is the full ring of integers in £, this function is called
the zeta function of k and is written ((s) := L(s,1). Earlier, in the case k = Q,
Dirichlet had used the L-functions to prove his theorem on primes in arithmetic
progressions, and Riemann had guessed that ((s) has no zero in the half-plane
Re(s) > 1/2, the famous “Riemann hypothesis”. One expects the same should
hold for all L-functions L(s, x).
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In 1917 Erich Hecke showed that for all k& and all x the function L(s, x) has an
analytic continuation to the whole complex s-plane with a simple pole at s = 1 its
only singularity, and it satisfies a simple functional equation relating its value at s
to that at 1 — s. He did this not only for L-series L(s, x) made with Dedekind’s ¥,
but also those made with a more general kind of multiplicative function x of ideals
which Hecke called a “Grossencharakter” because it varied continuously and was
in general of infinite order.

Today we view the group of characters x of Dedekind and Hecke as the character
group of the group C}, of idele classes of our number field k, Dedekind’s x being those
of finite order and Hecke’s those which are nontrivial on the connected component
of Ck

In 1922 Louis Mordell, an American mathematician who had gone to Cambridge,
England, for his PhD and settled in that country, proved that an idea which had
earlier occurred to Henri Poincaré was true, namely, that the group E(Q) of ra-
tional points on an elliptic curve F defined over Q is finitely generated. He also
conjectured that the set of rational points on a curve of genus > 1 is finite. This
was proved 60 years later by Gerd Faltings.

Emil Artin got his PhD in Leipzig under Gustav Herglotz in 1921. After a
postdoc year in Gottingen, he accepted an offer from Hamburg university, where he
spent the next 15 years. In 1923 he introduced a new kind of L-series, associated
to a character the Galois group G = Gal(K/k) of a finite Galois extension K/k
of number fields. To explain this, we must recall the key notion of Frobenius
automorphism Frobg ,(p) associated to a prime ideal p of k which is unramified
in K. It is an element in Gal(K/k) which leaves a prime B above p fixed and
acts as raising to the Np power on the residue field Ok /B of B, where Np is the
number of elements in the residue class field Oy /p. Such an element exists, and its
conjugacy class depends only on p. Thus it makes sense to define, for a complex
linear representation p : G — GL,(C),

L(s, p, K/k) = ] ] det(L,, — p(Erobc/p)Np~*),
p

the product being over all prime ideals p of k which are unramified in K. Artin
was led to this definition by his investigation of the interrelationships among the
Dedekind zeta functions and L-functions of the intermediate fields in a Galois ex-
tension. In many cases in which k contains an nth root of unity and K = k(a'/™) for
some « € k, a classical nth-power reciprocity law showed that Artin’s L-function
made with a character of the cyclic Galois group coincided with a Dedekind L-
function made with a character of the corresponding ideal class group. Artin con-
jectured that this would be true in general. This meant simply that in the notation
above, the isomorphism of I,/ Py, with the Galois group of the corresponding class
field, which Takagi had proved by showing that they were each products of cyclic
groups of the same order, was canonical, associating to each prime ideal p not di-
viding m its Frobenius automorphism Frobg i (p). Thus for each (a) € P, we
should have [, Frob(p)°*d»(®) = 1. Artin conjectured this in 1923 and called it
the general reciprocity law, noting that, in contrast to all previous such laws, its
statement involved no roots of unity He was convinced of its truth, but had no
proof.

In 1925, Chebotarev proved his famous density theorem: Let K/k be a Galois
extension of number fields, let G = Gal(K/k), and let C be a conjugacy class in
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G. Then the density of the set of primes p in Oy such that Frobg ,(p) lies in C
is proportional to the size of C'; in particular the set of p which split completely in
Ok is 1/n, where n = [K : k] is the degree of K over k. Chebotarev’s theorem is a
vast generalization of Dirichlet’s theorem on primes in arithmetic progressions.

In 1927, Artin was able finally to prove his reciprocity law by using Chebotarev’s
method of crossing a given abelian extension with a suitable cyclotomic exten-
sion. A key feature of Artin’s “non abelian” L-functions is that for a subextension
k C E C K and a representation x of Gal(E/K), the L-function of the induced
representation Ind(x) of Gal(K/k) is the same as the L-function of x. By showing
that every character of a finite group is a rational linear combination of characters
induced from one-dimensional characters, Artin proved that some power of any
one of his non-abelian L-functions is meromorphic, being a quotient of products of
Dirichlet L-functions. Later, in 1947, Richard Brauer proved that the “rational”
in the previous sentence could be replaced by “integral”, hence the L-functions
themselves are meromorphic. Artin conjectured that for a character not involving
the trivial character they are holomorphic. I believe this is still unproven.

In the early 1930s, Richard Brauer, Helmut Hasse, and Emmy Noether showed
that a central simple algebra A over a number field & was determined up to iso-
morphism by its localizations A, at the various places v of k, and they were able to
determine the structure of the Brauer groups Br(k) and Br(k,) of classes of central
simple algebras over a global field k£ and and its localizations k,. The “Hasse in-
variant” map inv, : Br(k,) — Q/Z is injective for every place v of k, surjective for
non-archimedean v, with image of order 2 for real v and 0 for almost all v and for
complex v. They proved that the sequence 0 — Br(k) — >, Br(k,) = Q/Z — 0,
where the third arrow is given by the sum of the Hasse invariants, is exact.

Let F, be a finite field with ¢ elements. In his PhD thesis, Artin considered
quadratic extensions of the field of rational functions F,(¢) and proved for them
the analogue of the standard theory of quadratic extensions of the field of rational
numbers. For such a function field the zeta function is a computable rational
function of t = ¢~°. Hence the analogue of the Riemann hypothesis, that its zeros
are all on the line Re(s) = 1/2 (i.e., [t| = ¢~ /?) is possible to check. Artin did the
check in about 40 special cases with ¢ = 3, 5, and 7, and naturally conjectured
that it would be true in general.

In the mid-1930s Hasse proved this conjecture in case the quadratic extension is
of genus 1, that is, is of the form F,(¢)(1/P(t)), where P(¢) is a polynomial of degree
3 or 4, using the endomorphisms of the elliptic curve y?> = P(t). In 1940, André
WEeil proved the analogue of the Riemann hypothesis for all function fields in one
variable over a finite field, by using the positivity of the trace in the correspondence
ring of the curve with that function field.

In the early 1930s, Claude Chevalley developed local class field theory indepen-
dently of the global theory which had been used by Hasse for that purpose. Later
he defined the idele group J = Ji, of k as the restricted product of the multiplicative
groups kj; of the completions k, of k over all places of k, relative to the groups of
units o). One makes J into a locally compact topological group in which, for every
finite set S of places v of k containing the ones where K, is isomorphic to R or C,
the subgroup Js := [],cg ki X HU¢S 0,* is open, with the product topology. By
“restricted product” above, we mean simply that J is the union over all finite sets
S as above of the subgroups Jg. Thus an element of J (i.e., an “idele”) is simply
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an infinite vector a = (..., ay,...) with one component a, € k7 for each place v of
k, such that a, is a unit in (o), for almost all v. One identifies &* with a discrete
subgroup of J in the obvious way, putting & = (..., @, ...), where «,, is the image
of a under the canonical imbedding of k in its completion k,. The quotient group
C = C, == J/k* is the group of idele classes of k. The map a — (a):= [, porde (@)
is a homomorphism of J onto the group I of ideals. For a given integral ideal m,
we get, in the notation near the beginning of this opus, a surjection C' — I, /Py, as
follows. For an idele a, we choose an element « € k* such that a/« is positive at the
real places and congruent to 1 mod m. Then we map the class of an idele a to the
element of Iy, /Py represented by the quotient of their ideals (a)/(«). In this way
we can interpret Hecke’s Grossencharakters simply as the characters of the group
C of idele classes, and Artin’s reciprocity law homomorphisms as an isomorphism
of C' mod its connected component with the Galois group of the maximal abelian
extension of k.
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