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RECENT PROGRESS ON THE TATE CONJECTURE

BURT TOTARO

Abstract. We survey the history of the Tate conjecture on algebraic cycles.
The conjecture is closely related with other big problems in arithmetic and
algebraic geometry, including the Hodge and Birch–Swinnerton-Dyer conjec-
tures. We conclude by discussing the recent proof of the Tate conjecture for
K3 surfaces over finite fields.
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The Tate conjecture is a central problem in arithmetic geometry. Roughly speak-
ing, the conjecture predicts a description of all subvarieties of a given algebraic
variety over a field k in terms of the representation of the Galois group of k on étale
cohomology. (For k a finite field, computing this Galois representation is essentially
elementary, amounting to counting points of the variety over a few finite extensions
of k.) So the Tate conjecture would make much of algebraic geometry and number
theory accessible to computation.

More broadly, the Tate conjecture is closely intertwined with several of the other
central conjectures of number theory and algebraic geometry, including the Hodge
conjecture and the Birch–Swinnerton-Dyer conjecture. Even if the Tate conjecture
eventually turns out to be false (which I do not expect), it has more than justified
itself by the results and connections it has inspired.

Metaphorically, one can think of this family of conjectures as aiming to describe
all the solutions to a polynomial equation, or equivalently describing all the rational
points of an algebraic variety over a given field. The conjectures connect this
problem to computable problems in topology. In some special cases, such as a
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surface mapping to a curve with generic fiber an elliptic curve, the Tate conjecture
would literally describe all the rational points of the generic fiber.

This paper recalls the history of the conjecture, including the influences on Tate
and his proof of the conjecture in some important cases. We discuss progress
over several decades by Artin, Swinnerton-Dyer, Nygaard, Ogus, Tankeev, André,
Moonen, and others. We conclude with a striking recent advance, the proof of the
Tate conjecture for K3 surfaces over finite fields, by Charles, Kim, Madapusi Pera,
and Maulik. These proofs extend the long-standing connections between the Tate
conjecture and finiteness problems in arithmetic geometry. The methods raise the
hope of progress for other varieties, some of which has already begun.

The account of recent work given here is far from complete, and many related
results could not be included. Some surveys with additional material are Tate’s
own “Conjectures on algebraic cycles in I-adic cohomology” [45], Milne’s “The
Tate conjecture over finite fields” [31], and Benoist’s Séminaire Bourbaki talk on
the Tate conjecture for K3 surfaces [4].

1. Origins of the Tate conjecture, 1962–1965

Here we state the Tate conjecture and discuss its early history, including several
related conjectures which were proposed around the same time.

The Tate conjecture (published in 1965 [42]) was inconceivable until the defini-
tion of étale cohomology by Grothendieck and his collaborators in the early 1960s.
Étale cohomology integrated algebraic geometry and topology in a new way. In
the 1950s, Serre had introduced cohomological methods into algebraic geometry
over any field, but the resulting invariants did not behave like cohomology groups
in topology. By contrast, étale cohomology gives l-adic cohomology groups for an
algebraic variety X over any field k with many of the same properties as the singu-
lar cohomology of a complex algebraic variety. As a bonus, l-adic cohomology has
extra structure: it is a representation of the absolute Galois group Gal(ks/k) (the
automorphism group of the separable closure ks over k).

The specific version of l-adic cohomology used in this paper, Hi(X,Zl), means
geometric étale cohomology Hi

et(Xks
,Zl). Here l denotes a prime number invertible

in k, and Zl is the ring of l-adic integers, the inverse limit of the rings Z/lr as r
goes to infinity.

To give an example where this Galois representation has a simple interpretation,
let X be an abelian variety of dimension g over a field k. Then the étale homology
H1(X,Zl) is the Tate module of X: the inverse limit of the l-power torsion sub-
groups of the abelian group X(ks). It is known that H1(X,Zl) is isomorphic to
(Zl)

2g, but the Galois action on this group is highly nontrivial, corresponding to
the Galois action on torsion points of X(ks). That is, the nontriviality of the Galois
action reflects the fact that the torsion points of X over ks need not be defined over
k. The étale cohomology H1(X,Zl) is the dual group, HomZl

(H1(X,Zl),Zl).
A closed subvariety Y of codimension a in a smooth variety X determines an

element of H2a(X,Zl(a)). Here Zl(a) denotes the Tate twist. That is, Zl(1) denotes
the inverse limit of the roots of unity μlr(ks) as r goes to infinity; so it is isomorphic
to Zl, but with a nontrivial action of the Galois group of k. For any integer a, Zl(a)
denotes the ath tensor power of Zl(1). (For negative integers, Zl(−a) means the
dual of Zl(a).)
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More precisely, the class of a subvariety Y of X lies in the subgroup of
H2a(X,Zl(a)) fixed by the Galois group of k, because we are considering sub-
varieties defined over k. The Tate conjecture asserts a converse:

Conjecture 1.1. Let k be a finitely generated field over the prime field (that is,
over Q or a finite field). Let X be a smooth projective variety over k. Then the
Ql-linear subspace of H2a(X,Ql(a)) fixed by the Galois group of k is spanned by
the classes of codimension-a subvarieties of X.

Define an algebraic cycle on X to be a finite linear combination of subvarieties
of X. Then the Tate conjecture can be rephrased as saying that every element of
l-adic cohomology fixed by the Galois group is the class of some algebraic cycle
with Ql coefficients. A cohomology class fixed by the Galois group is sometimes
called a Tate class. Thus the conjecture says that every Tate class is algebraic.

The Tate conjecture depends on the fact that the base field k, a finitely generated
field over the prime field, is small in some sense. The analogous statement fails
when k is algebraically closed (in which case the Galois representation is trivial),
and also for some other fields such as p-adic fields. (An exception is the case of
p-adic cohomology of varieties with totally degenerate reduction over a p-adic field,
where Raskind conjectured the analog of the Tate conjecture [37].) The hope is
that the Galois representation on l-adic cohomology carries maximal information
for finitely generated fields, the fields of most arithmetic interest.

The Tate conjecture grew out of Tate’s conjecture that the Tate–Shafarevich
groupX of an abelian variety over a global field should be finite; the precise relation
between these conjectures is discussed below. (A global field means a number field
or the function field of a curve over a finite field.) In fact, Tate’s 1962 ICM paper
stated the Tate conjecture for divisors (codimension-1 cycles) on a surface, as well
as the conjecture that X is finite.

Tate explained in 1994: “If X, or at least its l-primary part, were not finite,
then the Galois cohomology of the abelian variety would be a mess, and the de-
termination of the group of rational points by ‘descent’ would be ineffective” [45].
A related conjecture around the same time was the Birch–Swinnerton-Dyer conjec-
ture, predicting that the rank of the Mordell–Weil group of an elliptic curve over a
number field is equal to the order of vanishing of the L-function at s = 1 [5]. More
precisely, the leading coefficient of the L-function should be given by an explicit
formula in terms of the order of X.

The hope for the finiteness of X led Tate fairly naturally to the Tate conjecture
for divisors. The Tate conjecture for higher-codimension cycles did not have such a
clear motivation; beyond the elegance of the statement, Tate had only “some very
meager evidence” from the case of Fermat hypersurfaces [45]. Tate wrote several
letters to Serre in 1963 and 1964 about his path to the conjecture [9].

There is a rough analogy between the Tate conjecture and the Hodge conjec-
ture. The Hodge conjecture would describe the classes of algebraic cycles in the
rational cohomology of a smooth complex projective variety X in terms of the
Hodge structure on cohomology. Namely, there is a direct-sum decomposition of
the cohomology of X with complex coefficients:

Hr(X,C) =
⊕
a

Ha(X,Ωr−a),
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where Ωj denotes the sheaf of regular j-forms on X. The dimensions hr−a,a of
the complex vector spaces Ha(X,Ωr−a) are traditionally summarized in the Hodge
diamond, which for X of dimension 2 looks like

h2,2

h1,2 h2,1

h0,2 h1,1 h2,0

h0,1 h1,0

h0,0.

The class of an algebraic cycle of codimension a in X lies in H2a(X,Q) and also
in the middle piece Ha(X,Ωa) of the Hodge decomposition (the central column of
the Hodge diamond). The Hodge conjecture predicts the converse: any element of
H2a(X,Q) whose image in H2a(X,C) is in the middle piece of the Hodge decompo-
sition must be the class of some algebraic cycle with Q coefficients [15, Definition
3.3.20]. In other words, every Hodge class should be algebraic. Or again: the
group of algebraic classes should be determined by the Hodge structure of X, the
combination of the rational structure H2a(X,Q) inside H2a(X,C) with the Hodge
decomposition.

One big difference between the two conjectures is that the Hodge conjecture for
divisors is known (the Lefschetz (1, 1)-theorem [15, Proposition 3.3.2]), whereas the
Tate conjecture for divisors is a major open problem.

Although there are no obvious implications between the Tate and Hodge conjec-
tures, there have been implications for particular classes of varieties. For example,
some cases of the Tate conjecture for divisors have been proved by showing that a
Tate class lifts to a Hodge class, on a suitable lift of the given variety to character-
istic 0.

The case of divisors shows that the Tate conjecture is harder than the Hodge
conjecture. Why should that be? Naively, one might feel that Galois representations
are more “algebraic”, and therefore easier to relate to algebraic cycles, than Hodge
structures. Perhaps the point is that the Tate conjecture is related to finiteness
problems in number theory, as discussed below. If we had a better qualitative
understanding of number theory, then the Tate conjecture would be more accessible.
Another point is that the Hodge conjecture predicts the Q-linear combinations of
classes of subvarieties, whereas the Tate conjecture only predicts the Ql-span. So
one could argue that the Tate conjecture is more complicated, because there is no
way to start with a Galois-invariant class and come up with a single subvariety.

To spell out the relations between the Tate conjecture and finiteness problems,
let X be a smooth projective surface over a finite field k, and let f be a morphism
with connected fibers from X onto a smooth projective curve C. Assume that the
generic fiber F of f , which is a curve over the function field k(C), is smooth over
k(C). Let J be the Jacobian of F ; thus J is an abelian variety over the global field
k(C). Then the following are equivalent [47, Proposition 5.1.2 and Theorem 6.3.1]:

• the Tate conjecture holds for divisors on X;
• the Brauer group of X is finite;
• the Tate–Shafarevich group of J is finite;
• the Birch–Swinnerton-Dyer conjecture holds for J .



RECENT PROGRESS ON THE TATE CONJECTURE 579

(This equivalence summarizes a lot of work by Tate, Artin, Milne, Kato, Trihan,
and others.) These equivalent conjectures are very much open, despite a lot of
progress.

A rough summary of the relations among these conjectures is as follows. Some
of these conjectures will be discussed in section 2. Be aware that the different
conjectures apply to varieties over different fields, and the implications have to be
understood accordingly.

Tate-Beilinson conjecture

��
Tate conjecture

�������
��������

��������
�

��������
��������

������

��

������������ Hodge conjecture

��
Tate conjecture for divisors��

��

Grothendieck’s standard conjectures

Finiteness of Brauer group over finite fields��

��
Finiteness of Tate–Shafarevich group over function fields��

��
Birch–Swinnerton-Dyer conjecture over function fields

One direction not covered in this article is the proof of the Tate conjecture for
many Shimura varieties. (Shimura varieties are locally symmetric varieties, with
the model examples being the moduli spaces of abelian varieties.) One might spec-
ulate that Shimura varieties are the most important case to consider for the Tate
conjecture. Indeed, the Langlands conjectures predict that the cohomology of any
algebraic variety over a number field corresponds to an automorphic representation,
with the simplest case being the cohomology of Shimura varieties. Some known
cases are that the Tate conjecture for divisors holds for Hilbert modular surfaces
and Picard modular surfaces [6, 14, 21, 33]. A few cases of the Tate conjecture for
higher-codimension cycles on Shimura varieties (such as Hilbert modular varieties)
have also been proved [13, 36].

Typically, proofs of the Tate conjecture for Shimura varieties involve a particular
class of subvarieties, Shimura subvarieties, but often they are not enough. Some-
times one can use the Lefschetz (1, 1)-theorem to produce the missing divisors.
Fundamentally, such approaches use that the theory of automorphic representa-
tions gives a particularly strong hold on the cohomology of Shimura varieties, both
in terms of Hodge theory and in terms of Galois representations.

2. The broader context:

Variants of the Tate conjecture

Several attempts to strengthen the Tate conjecture aim for a more complete
understanding of algebraic cycles. Some are false (but may be interesting in special
cases), while others are still plausible. The variants we consider are the strong
Tate conjecture; the Tate conjecture for singular or noncompact varieties; the Tate
conjecture over the separable closure of a finitely generated field; the integral Tate
conjecture; and the Tate–Beilinson conjecture. We also mention the consequences
of the Tate conjecture for Grothendieck’s “standard conjectures”.
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The strong Tate conjecture is the combination of the Tate conjecture with the
conjecture that, for a smooth projective variety over a finitely generated field k,
the Galois-invariant subspace of H2a(X,Ql(a)) is a summand, as a Galois repre-
sentation. In several cases where the Tate conjecture has been proved (such as
for divisors on abelian varieties), the arguments actually imply the strong Tate
conjecture.

The strong Tate conjecture would imply most of Grothendieck’s standard conjec-
tures (except for the Hodge standard conjecture in positive characteristic) [2, section
7.3]. For example, one of the standard conjectures says that an algebraic cycle with
nonzero image in Ql-cohomology must have nonzero intersection number with some
algebraic cycle of complementary dimension; that is, “numerical and homological
equivalence of algebraic cycles coincide.”

Jannsen observed that the Tate conjecture can be generalized to any algebraic
variety X (not necessarily smooth or compact) over a finitely generated field, using
l-adic Borel–Moore homology in place of l-adic cohomology. Namely, every Galois-
invariant element of H2a(X,Ql(a)) should be the class of an algebraic cycle with
Ql coefficients. In fact, this more general conjecture essentially follows from the
usual Tate conjecture (the case where X is smooth and projective). The deduction
works whenever X has a resolution of singularities with a smooth compactification
[17, Theorem 7.10].

In another direction, the Tate conjecture for a smooth projective variety X over
a finitely generated field k follows easily from the conjecture for the base change
XE, for any finite Galois extension field E. Indeed, assume the conjecture for XE ,
and let u be an element of H2a(X,Ql(a)) fixed by Gal(ks/k). Then u is fixed by
the open subgroup Gal(ks/E), and so it is the class of some algebraic cycle α on
XE. Since π : XE → X is a finite morphism of schemes, the pushforward π∗(α) is
an algebraic cycle on X. Using that u is fixed by the whole group Gal(ks/k), one
checks that the cohomology class of π∗(α) is equal to [E : k] times u, and so u is
algebraic.

As a result, one can always make finite extensions of the base field in trying
to prove the Tate conjecture. Another version of the Tate conjecture is that for
a variety X over a finitely generated field k, every class in H2a(X,Ql(i)) fixed by
some open subgroup of Gal(ks/k) is represented by an algebraic cycle over some
finite extension of k. This is equivalent to the usual statement of the Tate conjecture
over every finite extension field of k.

The integral Tate conjecture is the analogous statement about algebraic cycles
with Zl rather than Ql coefficients. Most versions of the integral Tate conjecture
are false in general, as discussed in [46, introduction]. On the other hand, for
varieties over a finite field k, the usual Tate conjecture for divisors would imply the
integral Tate conjecture for divisors [43, equation 5.10]. Also, for varieties over the
algebraic closure of a finite field, the usual Tate conjecture for divisors on surfaces
would imply the integral Tate conjecture for 1-cycles on varieties of any dimension,
by Schoen [39, Theorem 0.5].

An important consequence of the strong Tate conjecture over finite fields would
be a complete description of the category of Grothendieck motives over a finite field
k. The result would be that every motive over k is a Tate twist of a summand of the
motive of an abelian variety tensored with an Artin motive [30, Remark 2.7]. (That
is, roughly speaking, the cohomology of every variety over a finite field should be
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contained in the cohomology of some abelian variety, with the identification made
by some algebraic correspondence between the two varieties.) This is far from true
over other fields.

Finally, for varieties over finite fields, there is an important strengthening of the
Tate conjecture, the Tate–Beilinson conjecture. Namely, let X be a smooth projec-
tive variety over a finite field k. Write CHa(X) for the Chow group of codimension-
a algebraic cycles modulo rational equivalence. Then Beilinson conjectured in the
mid-1980s that the cycle map to l-adic cohomology,

CHa(X)⊗Q → H2a(X,Ql(a)),

is injective [19, Conjecture 50]. Combined with the Tate conjecture, this would
give an optimally close connection between algebraic cycles and cohomology, for
varieties over finite fields.

This is an extremely strong conjecture. For varieties X over other fields, Chow
groups can be big in various ways, and they do not inject into l-adic cohomology.
For example, CH1 of an elliptic curve X is the direct sum of Z with the Mordell–
Weil group X(k), where X(k) maps to zero in H2(X,Ql(i))

∼= Ql. Here X(k)
can be uncountable for k = C, and it can be infinite for k = Q. On the other
hand, X(k) is finite for a finite field k. More generally, the group of k-points on
an abelian variety over a finite field k is finite, which implies Beilinson’s conjecture
for codimension-1 cycles. Beyond that case, evidence for Beilinson’s conjecture is
limited, but it holds in some interesting cases by Soulé [40] and Kahn [18].

3. First results over finite fields:

The Tate conjecture for divisors on abelian varieties

Probably the most important known case of the Tate conjecture is for divisors
(codimension-1 cycles) on abelian varieties. In this section, we describe Tate’s proof
of this result for abelian varieties over finite fields [44]. The argument shows the
possibility of bringing geometric finiteness arguments to bear on the Tate conjec-
ture, and it has helped to inspire many of the later developments. We present a
simplification of Tate’s original proof, using Zarhin’s trick, which also plays a role
in the recent proof for K3 surfaces (section 5).

For higher-codimension cycles on an abelian variety over a finite field, the Tate
conjecture remains a tantalizing challenge. See Milne’s survey of the Tate conjecture
over finite fields for some known results [31].

Before sketching Tate’s proof of the Tate conjecture for divisors on an abelian
variety over a finite field, we introduce an equivalent formulation, very useful in
itself. Namely, let A and B be abelian varieties over a finite field k. Let l be a
prime number invertible in k. For abelian varieties over any field, there is a natural
homomorphism

Homk(A,B)⊗ Zl → HomGal(ks/k)(H1(A,Zl), H1(B,Zl)),

which is injective. Tate’s theorem is that for k finite, this homomorphism is actually
bijective. This follows from the Tate conjecture for divisors on A×B, and conversely
this statement in the case A = B implies the Tate conjecture for divisors on A.
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These relations between divisors and homomorphisms of abelian varieties can be
deduced from the isomorphism

NS(A×B) ∼= NS(A)⊕NS(B)⊕Homk(A, B̂)

for abelian varieties over any field, where NS denotes the Néron–Severi group (the

image of the group of divisors with integer coefficients in H2) and B̂ is the dual
abelian variety of B. (To see why divisors have anything to do with homomorphisms
of abelian varieties, note that a divisor D on an abelian variety X determines a

homomorphism from X to the dual abelian variety X̂ = Pic0(X), by

x �→ x∗(D)−D,

where x∗(D) denotes the translate of D by the point x in D.)
A line bundle L on a projective variety X is ample if some positive multiple of L

has enough global sections to give an embedding of X into some projective space. A

polarization of an abelian varietyX is a homomorphism f : X → X̂ that comes from
some ample line bundle L onX. (Knowing f amounts to remembering only the class
of L in the Néron–Severi group NS(X).) For L ample, f is an isogeny, meaning
that it is surjective and has finite kernel. The degree of the polarization means the
order of the kernel. Equivalently, for g = dim(X), the degree of the polarization is
the intersection number (1/g!)c1(L)

g. A principal polarization means a polarization
of degree 1.

We now sketch the proof of the Tate conjecture for divisors on an abelian variety
over a finite field. We use a simplification of the proof based on Zarhin’s trick; a
survey of this approach is [25]. Zarhin’s trick says that if A is an abelian variety

over an arbitrary field, then (A × Â)4 has a principal polarization [29, Remark
16.12]. The proof uses Lagrange’s theorem that every positive integer is a sum of

four squares. There is a large group of line bundles on (A × Â)4, and Lagrange’s
theorem makes it possible to find a polarization of degree 1.

This is important because the abelian varieties of a fixed dimension do not form
a bounded family; that is, they are not parametrized by the points of finitely many
algebraic varieties. Instead, there is a different moduli space for abelian varieties
with a polarization of each degree d ≥ 1. Nonetheless, Zarhin’s trick shows that
every abelian variety of given dimension g can be embedded (possibly as a very high-
degree abelian subvariety) in a principally polarized abelian variety of dimension
8g, and the latter varieties form a bounded family.

The endomorphism algebra of an abelian variety over any field is an algebra of
finite rank over Z, and tensoring with Q yields a semisimple algebra. Using the
structure of such algebras, one finds that a given abelian variety has only finitely
many summands, up to isomorphism [29, Theorem 18.7].

As a result, Zarhin’s trick has a strong consequence for abelian varieties over
a finite field k. By the existence of moduli spaces, we know that there are only
finitely many isomorphism classes of abelian varieties of given dimension g over k
with a polarization of given degree d ≥ 1. In particular, there are only finitely
many principally polarized abelian varieties of dimension 8g over k. By Zarhin’s
trick, it follows that every abelian variety of dimension g over the finite field k is
a summand of one of these finitely many abelian varieties. We conclude that there
are only finitely many isomorphism classes of abelian varieties over k of dimension
g. Here the degree of the polarization is not specified.
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The Tate conjecture for divisors on abelian varieties over finite fields k is deduced
as follows. Let A be an abelian variety over k. The main step is to show the
following:

(∗) For every Galois-invariant submodule W of Vl := H1(A,Ql), there is an
element u of End(A)⊗Ql such that u(Vl) = W .

This result (applied to A × A) implies the formulation of the Tate conjecture in
terms of endomorphisms: for a Galois-equivariant endomorphism f of Vl(A), the
graph of f is a Galois-invariant submodule of Vl(A×A) and (∗) can be applied to
produce an element of End(A)⊗Ql whose cohomology class is f , as we want.

To prove (∗): For each natural number n, consider the subgroup

Xn = (Tl(A) ∩W ) + lnTl(A)

of the Tate module. Since this is a Galois-invariant open subgroup, it corresponds

to a finite subgroup Sn (of order a power of l) in the dual abelian variety Â defined

over k. This subgroup therefore determines an isogeny Â → Â/Sn; dualizing gives
an isogeny fn : Bn → A, with fn(Tl(Bn)) = Xn.

Thus we have an infinite sequence of g-dimensional abelian varieties Bn over the
finite field k. By the argument above, there are only finitely many isomorphism
classes of such abelian varieties. Thus there is a natural number r such that Br

is isomorphic to Bn for infinitely many integers n. Choosing such isomorphisms,
the isogenies fn can be viewed as endomorphisms of Br. This sequence of endo-
morphisms must have a limit in the compact group End(Br) ⊗ Zl. Finally, since
Br is isogenous to the original abelian variety A, we have produced an element of
End(A)⊗Ql with the desired image. That completes the proof.

4. Main tool:

The Kuga–Satake correspondence

In this section, we discuss several results on the Tate conjecture for divisors on
varieties over a number field, including recent progress by Moonen. The key tools
in this context are Faltings’s theorem and the Kuga–Satake correspondence, which
relates H2 of certain varieties with H2 of an abelian variety.

The Tate conjecture is known for divisors on an abelian variety over a number
field, by Faltings. The background is the work on the Mordell conjecture by Parshin,
Arakelov, Zarhin, and others, leading to the 1983 proof by Faltings of the Mordell
conjecture: every curve of genus at least 2 over a number field has only finitely many
rational points [12]. As part of the proof, Faltings proved the Tate conjecture
for divisors on an abelian variety over a number field. (A great introduction to
Faltings’s proof is Mazur’s Bulletin of the AMS paper [28]. There are also book-
length expositions of the proof [10].) Using the results of Tate and Faltings, Zarhin
deduced the Tate conjecture for divisors on an abelian variety over any finitely
generated field.

Thanks to Faltings’s theorem, more is now known about the Tate conjecture over
number fields than in the apparently simpler case of finite fields, notably Theorem
4.1 below.

The Tate conjecture for divisors on a variety X over a number field is trivial
when the Hodge number h2,0(X) = dimH0(X,Ω2) is equal to zero, since then the
Lefschetz (1, 1)-theorem gives that all of H2(XC,Q) is spanned by divisors. The
case where h2,0 is equal to 1 should also be easier than the general case. Namely, the
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Kuga–Satake correspondence says that a polarizable Hodge structure with Hodge
numbers (1,m, 1) is a summand of H2 of some abelian variety (whereas this fails
in general when the outer Hodge number is greater than 1) [22], [16, Chapter 4].
Thus one may hope to prove the Tate conjecture on divisors for varieties X with
h2,0 = 1 by reducing to Faltings’s theorem on abelian varieties.

This is not automatic, because we do not know that the Kuga–Satake con-
struction is realized by an algebraic correspondence. Nonetheless, there is a long
tradition of combining the Kuga–Satake conjecture with arguments on monodromy
to prove the conclusions we want. In this way, Deligne proved the Weil conjectures
for K3 surfaces over finite fields. Even though he later proved the Weil conjectures
for all varieties by a different method, the proof for K3 surfaces has been influential
[11]. Tankeev also built on the Kuga–Satake construction to prove the Tate conjec-
ture for K3 surfaces over number fields [41]. Building on these ideas, André proved
the Tate conjecture for divisors on irreducible hyperkähler varieties over number
fields [1]. (For the purpose here, a hyperkähler variety is a simply connected smooth
projective variety with h2,0(X) = dimH0(X,Ω2) equal to 1 such that a nonzero
holomorphic 2-form on X is nondegenerate.) In particular, although we do not
know that the Kuga–Satake construction is given by an algebraic correspondence,
it preserves Tate classes in this situation, as well as Hodge classes.

To sketch André’s argument: given a Tate class u in H2 of a hyperkähler variety
X over a number field, the Kuga–Satake correspondence gives a Tate class in H2

of some abelian variety. By Faltings’s theorem, this is the class of a divisor with
Ql coefficients on the abelian variety, and so it is a Ql-linear combination of Hodge
classes. Finally, the Kuga–Satake correspondence in reverse says that these Hodge
classes correspond to Hodge classes on the hyperkähler variety X, and so they are
algebraic by the Lefschetz (1, 1)-theorem.

Recently, Moonen used the Kuga–Satake correspondence to prove the Tate con-
jecture for divisors on a larger class of varieties with h2,0 = 1:

Theorem 4.1. Let X be a smooth proper variety with h2,0(X) = 1 over a finitely
generated field k of characteristic 0. Assume that there is an embedding of k into
C such that XC has a deformation (over some smooth base variety) in which the
Hodge structure on H2(XC,Q) varies nontrivially. Then the Tate conjecture for
divisors holds for X.

The assumption that the Hodge structure varies nontrivially holds for most
known surfaces with h2,0 = 1, including many of general type [32, Theorem 9.4].

5. Further results over finite fields:

The Tate conjecture for K3 surfaces

We now discuss the work on the Tate conjecture for K3 surfaces over finite
fields, including the recent complete proofs. This effort overcame significant new
difficulties compared to the Tate conjecture for K3 surfaces over number fields
(discussed in section 4). (On the other hand, the whole proof for K3 surfaces
over number fields is probably still longer, in the sense that it relies on Faltings’s
theorem.)

The hard case is that of supersingular K3 surfaces, a special but fairly large
class of K3 surfaces in positive characteristic, with very different properties from
K3 surfaces in characteristic 0. In particular, for a supersingular K3 surface, the
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Tate conjecture predicts that the whole group H2 (of dimension 22) is spanned by
divisors. For K3 surfaces in characteristic 0, the Picard number (the dimension of
the subspace of H2 spanned by divisors) is always at most 20.

The proofs we consider have a strong analogy with Tate’s proof in the case
of divisors on abelian varieties (section 3). Namely, one argues that if the Tate
conjecture for some K3 surface over a finite field k were false, then one could
construct an infinite sequence of related K3 surfaces with the discriminant of the
Néron–Severi lattice tending to infinity. But one argues that these related varieties
have bounded degree, using a version of Zarhin’s trick, and hence that there are only
finitely many isomorphism classes of K3 surfaces that can arise this way over the
finite field k. This contradicts the statement about the discriminant, thus implying
the Tate conjecture for the original K3 surface.

The Tate conjecture was proved by Artin and Swinnerton-Dyer for K3 surfaces
with an elliptic fibration [3], and by Rudakov, Shafarevich, and Zink for K3 surfaces
of degree 2 [38, Theorem 4]. For non-supersingular K3 surfaces in characteristic
p > 5, the Tate conjecture was proved by Nygaard and Ogus in 1985 [34]. Finally,
the supersingular case was proved in a series of papers starting in 2012 by Charles,
Kim, Madapusi Pera, and Maulik [7, 20, 26, 27]. The case of characteristic 2 was
proved only in the last of these papers, by Kim and Madapusi Pera.

5.1. Definitions. By definition, a K3 surface X over a field is a smooth projective
surface with trivial canonical bundle KX := Ω2

X and Betti number b1(X) equal to
zero [16]. Using the Riemann–Roch theorem, it follows that X has second Betti
number equal to 22, with Hodge diamond

1
0 0

1 20 1
0 0

1.

Since X is projective, it has an ample line bundle L, and the degree of (X,L) means
the intersection number c1(L)

2; this is a positive even number.
In general, a smooth projective variety X over a field k of characteristic p > 0

is called supersingular if the absolute Frobenius eigenvalues on the cohomology
Hi(X) all have p-adic absolute value equal to pi/2. (In other words, the slopes of
Frobenius on crystalline cohomology Hi(X) are all equal to i/2. This is the usual
definition of a supersingular elliptic curve or abelian variety.) For a finite field k, the
definition of “supersingular” is equivalent to saying that all eigenvalues of Frobenius
on Hi(X,Ql) are equal to qi/2 times a root of unity, where q is the order of k. As a
result, the Tate conjecture would predict that all the even-dimensional cohomology
of a supersingular variety over Fp is spanned by algebraic cycles. Since every K3
surface has second Betti number 22, the problem is to show that a supersingular K3
surface has Picard number 22. This never happens for K3 surfaces in characteristic
0, where the Hodge numbers (1, 20, 1) of H2(X) imply that the Picard number of
X is at most 20.

The proof of the Tate conjecture for supersingular K3 surfaces has inspired other
striking progress on the geometry of these surfaces. In particular, in characteristic
p ≥ 5, Liedtke proved Artin’s conjecture that every supersingular K3 surface X is
unirational [24]. (That is, there is a dominant rational map P2 ��� X.) Again, this
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is something that can never happen in characteristic 0: a smooth projective variety
in characteristic 0 with nonzero regular differential forms of positive degree, such
as a K3 surface, cannot be unirational.

Supersingular K3 surfaces turn out to form a large subclass of all K3 surfaces
in characteristic p > 0. Namely, they form a 9-dimensional family inside the 19-
dimensional moduli space of all projective K3 surfaces of given degree [35, Theorem
15]. By contrast, the moduli spaces of non-supersingular K3 surfaces with Picard
number ρ have dimension 20− ρ.

5.2. Elliptic K3 surfaces (following Artin and Swinnerton-Dyer). Artin
and Swinnerton-Dyer’s proof for an elliptic K3 surfaceX → P1 uses the equivalence
between the Tate conjecture for X and the finiteness of the Tate–Shafarevich group
X for the bundle of Jacobians A ofX overP1. More precisely, if the Tate conjecture
fails, then for any prime l 
= p, there is a sequence βn, n ≥ 0, of elements of
H1(P1

k, A) with lβn+1 = βn and β0 
= 0. In geometric terms, these cohomology
classes represent a sequence of principal homogeneous spaces for A over P1, which
we compactify to a sequence of projective surfaces:

· · · → X2 → X1 → X0.

These are all K3 surfaces over k. The key step of Artin and Swinnerton-Dyer’s
proof uses the Riemann–Roch theorem to show that all these surfaces Xn have nef
and big line bundles Ln of bounded degree, independent of n. (By definition, a line
bundle on a projective variety X is nef if it has nonnegative degree on every curve.
A line bundle is big if some positive multiple of L has enough global sections to give
a birational embedding of X into some projective space.)

Using that each surface Xn is a K3 surface, it is known that 2 times the line
bundle Ln gives a birational map from Xn into projective space. Since (Xn, Ln) has
bounded degree, the image is a projective variety with degree bounded independent
of n. But everything is defined over the finite field k, and so there are only finitely
many varieties of given dimension and degree in projective space over k. So the
varieties Xn fall into only finitely many birational equivalence classes. Finally,
K3 surfaces are minimal (that is, they are smooth projective varieties with nef
canonical bundle), and two minimal surfaces that are birational are isomorphic.
Therefore, the varieties Xn fall into only finitely many isomorphism classes. In
particular, there is an infinite set I of natural numbers such that all the surfaces
Xn for n ∈ I are isomorphic.

Given that, the end of Artin and Swinnerton-Dyer’s proof is as follows. We have
infinitely many elliptic fibrations on a single K3 surface, with higher and higher
indices (the gcd of the degrees of all multisections). This is impossible, since a
fairly elementary argument shows that on a given K3 surface Y , there is an integer
N such that every pencil of elliptic curves on Y has a multisection of degree ≤ N .
(The proof uses that the class of an elliptic curve is a primitive class in the Néron–
Severi group N with self-intersection zero, and that such elements fall into only
finitely many orbits under the orthogonal group of N .)

5.3. Non-supersingular K3 surfaces (following Nygaard and Ogus). Ny-
gaard and Ogus’s proof of the Tate conjecture for non-supersingular K3 surfaces X
over finite fields uses a different approach: reduction to the Hodge conjecture for
divisors. Namely, using the well-behaved deformation theory of K3 surfaces, they
construct a lifting Y of X to C such that the action of the Frobenius map on the
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crystalline cohomology of X corresponds, via the canonical isomorphism between
crystalline and de Rham cohomology, to an endomorphism of the Hodge structure
of Y . They call this a “quasi-canonical lifting”, by analogy with the Serre–Tate
canonical lifting of an ordinary abelian variety over a finite field. That property
implies that we get as many 1-cycles as we need onX by reduction mod p of 1-cycles
on Y , using the Hodge conjecture for divisors on Y .

This argument does not have a direct analog for supersingular K3 surfaces X.
Indeed, the goal is to show that X has Picard number 22, but any lifting of X to
characteristic 0 has Picard number at most 20. So X cannot have a quasi-canonical
lifting in the same sense.

To prove the Tate conjecture for supersingular K3 surfaces, Maulik, Charles,
and Madapusi Pera all (in various levels of generality) extended the Kuga–Satake
construction to mixed characteristic. They also proved versions of the Torelli the-
orem for K3 surfaces in mixed characteristic. These arguments used the steady
advances in p-adic Hodge theory over several decades, including work of Bloch,
Kato, Fontaine, Kisin, and others [4, section 1.6].

5.4. Charles’s proof. To discuss the proof of the Tate conjecture for K3 surfaces
in more detail, we will describe a second-generation proof by Charles [8]. This proof
still uses the Kuga–Satake correspondence, but to a lesser extent than in the earlier
proofs. The new proof has the appeal that its main focus is an analog of Zarhin’s
trick for K3 surfaces (rather than abelian varieties).

Charles’s version of Zarhin’s trick for K3 surfaces X uses a moduli space of

sheaves on X in place of the abelian variety (A × Â)4. Such moduli spaces are
hyperkähler varieties, and we need to state a basic property of such varieties
Y . Namely, there is a natural quadratic form q on the cohomology H2(Y ), the
Beauville–Bogomolov quadratic form. This form is characterized by the property
that there is a positive constant a such that the intersection number u2n is equal
aq(u)n for all u in H2(Y ), where 2n is the dimension of Y . More precisely, this de-
termines the quadratic form q on H2 up to a scalar, which one can fix by requiring
that q makes the Néron–Severi group NS(Y ) into a primitive integral lattice.

As with abelian varieties, the difficulty is that projective K3 surfaces do not form
a bounded family. Rather, there is a (19-dimensional) moduli space of K3 surfaces
of degree d for each even integer d ≥ 2. However, Charles shows that for any field
k, there is a positive integer r and there are infinitely many positive integers m
(given by a congruence condition) such that for every K3 surface of degree 2m over
k, there is a smooth, 4-dimensional, projective moduli space M of stable sheaves
on X and a line bundle L on M such that q(L) = r and L is big [8, Theorem 1.1].

Thus the moduli space (M,L) has bounded degree, even though it arises from a
K3 surface which may have arbitrarily large degree. One would like to conclude
that every such moduli space M is at least birational to a subvariety of bounded
degree in a fixed projective space.

Such a statement may eventually be provable by geometric methods, as can be
done now in characteristic 0. For now, in positive characteristic, Charles is forced
to prove a result in this direction using the Kuga–Satake construction, reducing to
the case of abelian varieties. The result is that, by the boundedness of q(L), there
are only finitely many possibilities for the Néron–Severi lattice of M [8, Proposition
2.6].
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Applying this result over a finite field k, Charles deduces that there are only
finitely many isomorphism classes of K3 surfaces over k, with some restrictions on
the degree (but a priori allowing arbitrarily high degrees) [8, Proposition 3.17].

The final step of the proof uses moduli spaces of twisted sheaves on a K3 surface,
following the approach advocated by Lieblich, Maulik, and Snowden [23]. (Their
argument generalizes the tower of elliptic surfaces in Artin and Swinnerton-Dyer’s
proof.) Namely, Lieblich, Maulik, and Snowden showed, for a finite field k of char-
acteristic p > 5, that the Tate conjecture holds for K3 surfaces over the algebraic
closure of k if and only if there are only finitely many isomorphism classes of K3
surfaces over each finite extension of k. At this point in the proof, Charles has
proved a weaker version of the second statement (with some restrictions on the
degree), but this is enough to yield the Tate conjecture for K3 surfaces [8, section
4].

6. Conclusion

Where can we expect further advances on the Tate conjecture? One big step,
extending the proof for K3 surfaces over finite fields, would be to prove the Tate
conjecture for divisors on more or less arbitrary varieties X over finite fields such
that the Hodge number h2,0(X) is equal to 1. This would be analogous to Moonen’s
result over number fields (Theorem 4.1). The point is that the assumption on h2,0

might allow a version of the Kuga–Satake correspondence to reduce the problem to
the known case of divisors on abelian varieties.

For varieties with h2,0 > 1, it seems that very different methods will be needed.
For the corresponding complex varieties X, the Hodge structure on H2(X) usually
cannot be imbedded into H2 of an abelian variety. Perhaps Zarhin’s trick can be
extended to new cases. Also, it seems likely that the known relations between the
Hodge conjecture and the Tate conjecture can be pushed further. Since the Hodge
conjecture for divisors is known, such relations would be important for the Tate
conjecture.

Finally, it is possible that progress will come through advances on the Birch–
Swinnerton-Dyer conjecture. Yun and Zhang’s extension of the Gross–Zagier for-
mula to higher derivatives of L-functions (in the function field case) is a very promis-
ing step [48].
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