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MR0044509 (13,427c) 09.0X

Artin, Emil; Tate, John T.

A note on finite ring extensions.

J. Math. Soc. Japan 3 (1951), 74–77.

Let R and S be two commutative rings, R ⊆ S. Then S is called a module-
finite extension of R, if it is an R-module with a finite set of generators, that is, if
there exists a finite number of elements of S such that every element of S can be
represented as a linear combination of them with coefficients in R. On the other
hand, S is said to be a ring-finite extension of R, if it can be written in the form
S = R[ξ1, ξ2, · · · , ξn]. The following theorem is proved. Let R be a Noetherian ring
with unit element, let S be a ring-finite extension, and let T be an intermediate ring,
R ⊆ T ⊆ S, such that S is a module-finite extension of T . Then T is a ring-finite
extension of R. As an application, the following theorem of Zariski [Bull. Amer.
Math. Soc. 53, 362–368 (1947); MR0020075] is obtained. If a ring-finite extension
of a field is a field, then it is algebraic and hence module-finite. As shown by Zariski,
the Nullstellensatz is an immediate consequence of this result. It is further shown
that a Noetherian integral domain R with a unit element has ring-finite extensions
which are fields if and only if the quotient field F of R is a ring-finite extension of
R. The ring-finite extension fields of R are then exactly the module-finite extension
fields of F . The condition that F is a ring-finite extension of R is equivalent to
each of the following conditions. I. There exists an element a �= 0 of R which is
contained in all proper prime ideals of R. II. There exists only a finite number of
minimal prime ideals of R. III. There exists only a finite number of prime ideals of
R, and every one of them is maximal.

R. Brauer

From MathSciNet, June 2017

MR0049950 (14,252b) 10.0X

Tate, John

The higher dimensional cohomology groups of class field theory.

Ann. of Math. (2) 56 (1952), 294–297.

It is shown that the Galois cohomology group Hr(G,A) in the idèle-class group
A of an algebraic number field (or the multiplicative group of a p-adic number field)
is canonically isomorphic to Hr−2(G,Z) where Z is the additive group of rational
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integers (r > 2). Let first G be a finite group and A any abelian G-group. Let
α be a 2-cohomology class of G in A, and A be the Artin splitting group for α.
It is proved that the following two axioms are equivalent: (1) H1(U,A) = 0, and
H2(U,A) is cyclic of the same order as U , generated by the restriction of α to U ,
for all subgroups U of G; (2) H1(U,A) = H2(U,A) = 0 for all subgroups U of
G. The proof depends on two exact sequences A/A � I, R/I � Z, where R is
the group ring of G over Z, considered as a G-module, and I is its ideal generated
by the elements σ − 1 (σ ∈ G). These exact sequences entail exact sequences for
0-, 1-, 2-cohomology groups in I, A,A and in Z, I,R, respectively. They together
lead to the theorem. Combined with the fact that (2) implies the vanishing of
higher cohomology groups, due to Serre, Lyndon, Hochschild and the reviewer [cf.
Hochschild and Nakayama, Ann. of Math. (2) 55, 348–366 (1952); MR0047699], it
leads to the fact that Hr(G,A) is isomorphic with Hr−2(G,Z); the isomorphism
is given by cup product with α. As the fundamental (or canonical) Galois 2-
cohomology class α in the idèle-class group satisfies (1) [Hochschild and Nakayama,
loc. cit.], the statement at the opening of the review follows. The vanishing of
H3(G,A) in this class field theory case, proved independently by Hochschild, is a
particular instance. The author promises a subsequent paper in which negative-
dimensional cohomology groups will be introduced and the reciprocity law will be
regarded as another special case of the result.

T. Nakayama

From MathSciNet, June 2017

MR0086072 (19,119b) 18.0X

Tate, John

Homology of Noetherian rings and local rings.

Illinois J. Math. 1 (1957), 14–27.

In this paper the author makes systematic use of skew-commutative differential
graded algebras over a commutative noetherian ring R to study the structure of

TorR (R/M,R/N).

(Such an algebra is called an R-algebra.) He does this by first showing that there
always exists a free resolutionX of the residue class ringR/M which is anR-algebra.

The algebra structure of TorR(R/M,R/N) can then be determined directly from
these R-algebra resolutions of R/M and R/N .

To prove that R/M always has a free R-algebra resolution, the author introduces
the device of killing cycles in an arbitrary R-algebra. Specifically, he shows that
if X is an R-algebra, and t is a (ρ − 1)-dimensional cycle (ρ > 0), then there is a
canonical way of constructing an R-algebra Y containing X such that Yλ = Xλ for
λ < ρ and

Bρ−1(Y ) = Bρ−1(X) +Rt

(where Bρ−1(X) means the boundaries of the R-algebra X of dimension ρ − 1).
The procedure depends on the parity of ρ. If ρ is odd, Y is essentially the exterior
algebra over X generated by an element T (of degree ρ) and dT = t. If ρ is even,
Y is the twisted polynomial ring in one generator T over X, with dT = t. The
algebra Y is denoted by the symbols X〈T 〉, dT = t.
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The map i∗ : H(X) → H(Y ) induced by i : X → Y is shown to be a surjection
(epimorphism) if the homology class τ of t is a skew non-zero divisor, i.e., if, for
ξ ∈ H(X), τξ = 0 implies ξ = 0 if ρ is odd and ξ ∈ τH(X) if ρ is even.

Using these methods, a special resolution is obtained which yields an efficient
method for computing the homology and cohomology groups of a finitely generated
abelian group.

Generalizations of results of Eilenberg (unpublished) and of Serre [see the paper
reviewed above] are obtained. In particular, if R is a local ring and K is the residue
field of R, denote by Bq(R) the dimension of the vector space Torq

R (K,K) over

K. Now, if R is not a regular local ring, then Br(R) ≥
(
n
r

)
+

(
n

r − 2

)
+ · · · and

hence ≥ 2n−1 for r ≥ n, where n is the minimum number of elements required to
generate the maximal ideal of R. Therefore, one obtains a new proof of the fact that
regular local rings are precisely those of finite global dimension (Serre). Moreover,

if Br(R) =

(
n
r

)
for one single dimension r ≥ 2, then R is regular. This generalizes

the result of Eilenberg, which was proved only for r = 2 or 3.
D. Buchsbaum

From MathSciNet, June 2017

MR0206004 (34 #5829) 14.51; 14.40

Tate, John

Endomorphisms of abelian varieties over finite fields.

Invent. Math. 2 (1966), 134–144.

Suppose that A/k is an abelian variety of dimension g which is defined over the
field k with algebraic closure k. Let A(k) be the abelian variety obtained from A
by extending k of k. Furthermore, let l be a prime distinct from the characteristic
of k. Then the groups Aln of points an ∈ Aln satisfying lnan = 0 determine,
by the homomorphisms an+1 → lan+1 ∈ Aln , a projective limit which is a free
Z-module of rank 2g, Tl(A), on which the Galois group G of k|k operates in the
obvious manner. The author proves, as a first most noteworthy result, that the
canonical (injective) map (∗) Zl ⊗Hk(A

′, A′′) → HomG(Tl(A
′), Tl(A

′′)) is bijective
for abelian varieties A′/k and A′′/k if k is a finite field. He first reduces this
statement (no restriction on k being needed) to the equivalent proposition that
the map (∗∗) Ql ⊗ Endk(A) → EndG(Ql ⊗Zl

Tl(A)) be bijective for every abelian
variety A/k (Lemma 3). Next, implications of a hypothesis Hyp(k,A, d, l) which
was suggested by Lichtenbaum are discussed. This hypothesis is as follows: there
exist (up to k-isomorphism) only a finite number of abelian varieties B defined
over k such that (a) there is a polarization ψ of B of degree d2 defined over k,
(b) there is a k-isogeny B → A of l-power degree. Using a polarization of A to
its dual (see, in this connection, D. Mumford [Geometric invariant theory, Ergeb.
Math. Grenzgeb. (N.F.), Band 34, Academic Press, New York, 1965]) and the
associated bilinear form on Ql ⊗Zl

Tl(A) (special care must be taken so that the
various polarizations match, pp. 136–137, proof of Proposition 1), it is shown that
Hyp(k,A, d, l), together with the assumption that the algebra which is generated
in End(Ql ⊗Zl

Tl(A)) by the elements of G is isomorphic to a product of copies
of Ql, implies that the map (∗∗) is bijective (this subalgebra then turns out to
be the commutator algebra of the image of Ql ⊗ Endk(A) by (∗∗); see Lemma 4
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and Proposition 2, its semi-simplicity being equivalent to the bijectivity of (∗∗)).
Hence the map (∗) is also bijective. Finally, results of Mumford [Invent. Math. 1
(1966), 287–354; MR0204427] imply that Hyp(k,A, d, l) holds for finite fields. To
this end, the author shows that the dimension of EndG(Ql ⊗Zl

Tl(A)) does not
depend on l. For the proof, an integer r(fA, fB) is associated with a pair of abelian
varieties A,B whose Frobenius automorphisms have the characteristic polynomials
fA, fB; if fA =

∏
P a(P ), fB =

∏
P b(P ) with irreducible factors in a field K/Q,

then r(fA, fB) =
∑

P a(P )b(P ) degP . This positive integer is independent of K
and is equal to the dimension of HomG(Ql ⊗Zl

Tl(A),Ql ⊗Zl
Tl(B)), and the rank

of Homk(A,B) equals r(fA, fB).
The author’s main result has decisive consequences for problems concerning

the ζ-functions of abelian varieties and Hasse’s sum formula for the invariants of
Q⊗Endk(A) [see the author, Arithmetical algebraic geometry (Proc. Conf. Purdue
Univ., 1963), pp. 93–110, Harper & Row, New York, 1965]. To mention a few:
fB|fA if and only if B is k-isogeneous to an abelian subvariety of A defined over k;
Q[π], π the Frobenius endomorphism of A/k, is the center of Q⊗ Endk(A);

2g ≤ dimQ(Q⊗ Endk(A)) = r(fA, fA) ≤ (2g)2

(compare with the classical case k = C); r(fA, fA) = 2g if and only if Q ⊗
Endk(A) = Q[π]; on the other hand r(fA, fA) = (2g)2 if and only if Q ⊗ Endk(A)
is isomorphic to the algebra of all g by g matrices with coefficients in the division
algebra which is ramified at p and ∞ (for g = 1 compare with the results of Hasse
and Deuring on the super-singular invariants). Finally, the author indicates that
(i) appealing to results of Ju. I. Manin [Uspehi Mat. Nauk 18 (1963), no. 6 (114),
3–90; MR0157972; translated as Russian Math. Surveys 18 (1963), no. 6, 1–83],
the Hasse invariant invv(Q⊗Endk(A)) is ≡ iv (modZ) for all valuations v of Q(π),
where ‖π‖v = q−iv , and the Artin-Whaples product formula

∏
v ‖π‖v = 1 then im-

plies Hasse’s sum formula
∑

v invv(Q⊗Endk(A)) ≡ 0 (Z), and that (ii) for schemes
X which are products of curves and abelian varieties with the Néron-Severi group
NSk(X), the rank of NSk(X) equals the order of the pole of the zeta function of X
at s = 1 [see the author, loc. cit., pp. 108–109].

O. F. G. Schilling

From MathSciNet, June 2017

MR0207680 (34 #7495) 12.40; 10.65

Tate, J.

The cohomology groups of tori in finite Galois extensions of number
fields.

Nagoya Math. J. 27 (1966), 709–719.

Let K/L be a galois extension of global fields, with group G. Let S be a (not
necessarily finite) G-stable set of places of K containing all archimedean places,
all ramified ones, and enough to generate the ideal class group of K. Then there
is an exact sequence of G-modules (A): 0 → E → J → C → 0, where E is the
group of S-units of K, J is the group of S-idèles of K, and C is the idèle class

group. Consider also the exact sequence (B): 0 → X → Y
b→ Z → 0, where Y is

the permutation representation afforded by G acting on S, Z is the integers with
trivial action, b(

∑
nPP ) =

∑
nP , and X = ker(b). The first main result is an

isomorphism of the associated long exact sequences of Tate cohomology groups,
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which takes the form

· · · −→ Hr(G,X) −→ Hr(G, Y ) −→ Hr(G,Z) −→ Hr + 1(G,X) −→ · · ·⏐⏐�α3∪
⏐⏐�α2∪

⏐⏐�α1∪
⏐⏐�α3∪

· · · −→ Hr+2(G,E) −→ Hr+2(G, J) −→ Hr+2(G,C) −→ Hr+3(G,E) −→ · · ·
Here α3∈H2(G,Hom(X,E)), α2∈H2(G,Hom(Y, J)), and α1∈H2(G,Hom(Z,C)).
The existence of α1 and α2, and the fact that α1∪ and α2∪ are isomorphisms, are
deduced from global and local class field theory, respectively. By some carefully
organized homological algebra, the existence and uniqueness of a compatible α3 is
then reduced to a compatibility condition between α1 and α2, which again follows
from class field theory. Finally, the 5-lemma implies that α3∪ is an isomorphism.

Abbreviate α = (α3, α2, α1) ∈ H2(G,Hom((B), (A))). Then if M is any torsion-
free G-module, the sequences (A) ⊗ M and (B) ⊗ M are still exact and there is
a G-pairing Hom((B), (A)) × ((B) ⊗ M) → ((A) ⊗ M). Hence α ∪ also defines a
homomorphism from H∗(G, (B)⊗M) → H∗(G, (A)⊗M) with a dimension shift of
2. According to a theorem of T. Nakayama [Ann. of Math. (2) 65 (1957), 255–267;
MR0090620] this also is an isomorphism provided it is so, after restriction to all
subgroups G′ of G, in the special case M = Z. The latter is deduced from the fact
that the fundamental classes in global (or local) class field theory are compatible
under restriction.

Let R be the ring of elements of K which are integral outside S, and put R0 =
RG. If N is a free Z-module of finite rank on which G operates, then N can be
viewed as the character module of an algebraic torus T over R0 which is split by
the étale extension R, and T (R) = Hom(N,E) = E ⊗M , where M = Hom(N,Z).
Thus H∗(G,E ⊗M) is the galois cohomology of T for the extension R/R0.

H. Bass

From MathSciNet, June 2017

MR0236190 (38 #4488) 14.51

Serre, Jean-Pierre; Tate, John

Good reduction of abelian varieties.

Ann. of Math. (2) 88 (1968), 492–517.

Let K be a field, v a discrete valuation of K, Ov the valuation ring of v, k its
perfect residue field of characteristic p, Ks a separable closure of K, v an extension
of v to Ks, and I(v) the inertia group of v. A set on which the Galois group
Gal(Ks/K) operates is said to be unramified at v if I(v) acts trivially on it. Let A
be an abelian variety over K; A is said to have good reduction at v if A comes from
an abelian scheme over Spec(Ov), and is said to have potential good reduction at
v if A has good reduction at a prolongation of v to some finite extension of K.

The first fundamental theorem is the criterion of Néron-Ogg-Šafarevič for good
reduction: Let Am be the group of points of order dividing m in the group of Ks-
points of A, and for a prime l �= p, let Tl(A) be the inverse limit of the groups
Aln as n → ∞. Then the following are equivalent: (a) A has good reduction at
v. (b) Am is unramified at v for all m prime to p. (c) Tl(A) is unramified at v
for some prime l �= p. Some immediate corollaries of this criterion are: (1) Having
good reduction is a property of the isogeny class of A. (2) Given an exact sequence
0 → A′ → A → A′′ → 0 of abelian varieties over K, then A has good reduction
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if and only if both A′ and A′′ have. (3) If K ′ is a finite unramified extension of
K, and A has good reduction over K ′, then A already has good reduction over K
(same statement if K ′ is the completion of K at v).

The proof of this criterion is a beautiful application of Néron’s theory of min-
imum models [A. Néron, Inst. Hautes Études Sci. Publ. Math., No. 21 (1964);
MR0179172].

Another immediate consequence of the criterion is that if ρl is the l-adic repre-
sentation of Gal(Ks/K) on Tl(A), then A has potential good reduction at v if and
only if the image of I(v) under ρl is finite. If this is the case, then ρl has the same
kernel in I(v) for all l �= p and its character on I(v) has integer values independent
of l; if moreover k is finite with q elements, and σ is a lift to the decomposition
group D(v) of the Frobenius automorphism over k, then the characteristic polyno-
mial of ρl(σ) has integral coefficients independent of l, and the absolute values of
its roots are equal to q1/2.

Suppose Ov is Henselian with algebraically closed residue field. Then Ogg has
defined a measure δl of wild ramification of Al; in the case of elliptic curves, he
has proved that δl is independent of l [A. P. Ogg, Amer. J. Math. 89 (1967), 1–
21; MR0207694]. The authors generalize this result to higher dimensional abelian
varieties under the assumption of potential good reduction (an assumption which
Grothendieck has announced to be unnecessary).

In the rest of the paper, the authors give applications to abelian varieties with
complex multiplication, defined over a global field. They first show that such a
variety has potential good reduction everywhere (generalizing the fact that the j-
invariant of an elliptic curve with complex multiplication is integral). They then
show that for any finite set S of places which is “ordinary” in a technical sense, the
variety can be twisted so as to have good reduction at S (a result due to Deuring
in dimension one, except that he did not point out the necessity of excluding the
special case). Finally, they show that over a number field, such a variety has good
reduction outside the support of a corresponding Grössencharakter (a result also
due to Deuring in the case of elliptic curves).

M. J. Greenberg

From MathSciNet, June 2017

MR0422212 (54 #10204) 12A60

Tate, John

Symbols in arithmetic.

Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1,
201–211, Gauthier-Villars, Paris, 1971.

Let F be a field, G an abelian group. A symbol on F with values in G is defined
to be a bimultiplicative map σ : F ′×F ′ → G with the property that σ(a, 1−a) = 0.
For global fields F , the norm residue symbol with values in μv, the group of roots
of unity in the completion Fv of F at a non-complex prime v, is an important
example of a symbol that has been studied in classical number theory. The author
notes that for all fields the group K2F has been shown to be the target group for
a universal symbol, so that Symb(F,G) � Hom(K2F,G). In the late 1960s, K2F
came under study, particularly with respect to how much of it could be accounted
for by norm residue symbols.
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If λv : K2F → μv is the homomorphism corresponding to the norm residue sym-
bol at v, one can obtain a map λ : K2F → ⊕μv, the sum taken over all non-complex
primes v of F . The author summarizes recent study of λ, giving the result of C. C.
Moore that Coker (λ) is isomorphic to μF , induced by reciprocity, and mentioning
that Ker(λ) was first shown by Bass and the author to be finitely generated, and
then by Garland to be finite in the case of number fields.

The remainder of the paper gives a preview of much of the work in this area
in the succeeding few years, relating K2 of global fields to Galois cohomology. In
particular, the author describes a symbol, and hence a homomorphism, h : K2F →
H2(F, T (2)). By studying the rank of the Zl-moduleH1(F, T (2)), in connection with
h, one obtains enormous information about K2F and Kerλ. The author enunciates
his “main conjecture” that this rank is r2(F ) and derives the following consequences
(among others) when μl ⊂ F for a prime l: (1) K2F (l) is isomorphic to the torsion
of H2(F, T (2)). (2) The map α : μl⊗F → (K2F )1 is surjective and |Kerα| = l1+r2 .

The main conjecture was known for function fields at the time the paper was
written and was proved shortly thereafter for number fields by the author [Invent.
Math. 36 (1976), 257–274]. Other questions raised in this survey paper have been
fully or partially settled. The question whether Ker(λv) is a uniquely divisible
subgroup ofK2Fv has been settled affirmatively for primes different from the residue
characteristic of Fv [J. Carroll, Algebraic K-theory, II: “Classical” algebraic K-
theory and connections with arithmetic (Proc. Conf., Seattle Res. Center, Battelle
Memorial Inst., 1972), pp. 464–473, Lecture Notes in Math., Vol. 342, Springer,
Berlin, 1973; MR0399052] and negatively for the residue characteristic by many
authors. The possible relation given between |Kerλ| and the values of ζF (−1) has
been confirmed in some cases by J. Coates and S. Lichtenbaum [Ann. of Math. (2)
98 (1973), 498–550; MR0330107]. The author’s 1976 paper [op. cit.] provides a
good list of references for work done in this area in the early 1970s.

Alan Candiotti

From MathSciNet, June 2017

MR0442061 (56 #449) 18F25; 12F05, 12A65

Bass, H.; Tate, John

The Milnor ring of a global field.

Algebraic K-theory, II: “Classical” algebraic K-theory and connections with
arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972), 349–446,
Lecture Notes in Math., 342, Springer, Berlin, 1973.

For an arbitrary field F , J. W. Milnor defined a graded ring (now called the

Milnor ring) K∗F =
∐

n≥0 KnF , generated by l(a) (a ∈ Ḟ ) with relations l(ab) =

l(a)+ l(b), l(a)l(1−a) = 0. For i ≤ 2, KiF agrees with the corresponding K-groups

in algebraic K-theory, namely, K0F ∼= Z, K1F = {l(a) : a ∈ Ḟ} ∼= Ḟ , and K2F is
the recipient group of a universal Steinberg symbol. In the paper under review, the
Milnor ring K∗F is investigated in great detail, and applications are made to the
computation of K∗F for global fields. For these fields, the authors have succeeded
in determining KiF completely, except for i = 2.

The paper is divided into two long chapters, the first of which, entitled “Some
general remarks on the Milnor ring”, is addressed to completely arbitrary fields.
Part of the chapter is a review and retreatment of the Milnor theory; for instance,



670 SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS

the nil radical of K∗F is determined, and the orderings of the field F are related to
the ring structure ofK∗F . If F is equipped with a (rank 1) discrete valuation v with
residue class field k(v), one gets two maps ∂π

0, ∂v : K∗F → K∗k(v), of degrees 0 and
−1, respectively. The second depends only on v, but the first depends on the choice
of a uniformizer π. In case F is a rational function field k(x), the residue maps

∂ = (∂v) lead to the Milnor exact sequence 0 → K∗k → K∗F
∂→

∐
K∗k(v) → 0,

where v ranges over the (discrete) k-valuations on F , except the “infinity” ((1/x)-
adic) valuation. To take this valuation into account as well, one is led to an exact

sequence with one more term: 0 → K∗k → K∗F →
∐

all v K∗k(v)
(Nv)→ K∗k → 0,

which essentially “defines” the transfer maps Nv (with N∞ = Id). The authors give
an inductive formula for Nv, and explain the behavior of Nv under a change of the
constant field. However, it seems to be unknown whether the transfer map of K-
groups under a simple extension is independent of the choice of a primitive element.
Consequently, a transitivity formula for the transfer map remains lacking. The only
known case is in dimension 1, whereK1k(v) → K1k is shown to be identical with the
field norm, so everything is well behaved. For general dimensions, it is only known
that, if α and β generate the same (algebraic) extension, then Nα/k and Nβ/k agree
modulo torsion in Kik. As an application of the transfer maps, various divisibility
properties of the K-groups are derived. It is also shown that, if 1 ≤ n ≤ δ(F ), then
rankKnF = CardF . Here, δ(F ) denotes the transcendence degree of F over its
prime field if charF > 0, and denotes 1 + tr deg F/Q otherwise.

In the second chapter, entitled “The Milnor ring of a global field”, the authors

consider the map K∗F
(∂v)→

∐
v �∈S K∗k(v), where F is a global field and S is a

finite set of places on F containing all the Archimedean places. This map van-
ishes on K∗

SF , the subring of K∗F generated by l(a), where a ranges over the
units in the ring of S-integers. If one lists the finite places v1, v2, · · · so that
Card k(vi) are non-decreasing, the following result is obtained. Finiteness theo-
rem: Let Sm = {arch. places} ∪ {v1, · · · , vm}; then, for all sufficiently large m,
K∗F/K∗

SmF →
∐

v �∈Sm
K∗k(v) is an isomorphism. It follows from this and the

Dirichlet unit theorem that, for n > 0, the kernel Hn of KnF →
∐

i Kn−1k(vi)
is a finitely generated abelian group. This leads to a complete determination of
KnF for n ≥ 3, viz., KnF ∼= (Z/2Z)r, where r is the number of real places of
F (if any). This determination is achieved via the consideration of the quotients
KnF/pKnF (p = prime), and via the use of the transfer homomorphisms. For
n = 2, the results on H2 = ker(K2F →

∐
i K1k(vi)) have been announced on nu-

merous occasions by the authors under the title of “K2 of global fields” [cf. the
first author, Seminar on Modern Methods in Number Theory (Inst. Statist. Math.,
Tokyo, 1971), Paper No. 1, Inst. Statist. Math., Tokyo, 1971; MR0429838]. If
charF = p > 0, H2 is a finite group of order prime to p, and was completely deter-
mined by Tate. If, on the other hand, charF = 0 (i.e., F is a number field), it is also
known that H2 is finite, by results of Dennis and Garland. The order and the exact
structure of H2 are, however, unknown except in special cases. Some conjectures in
this direction have been formulated by Birch and Tate; further conjectures on the
arithmetic of the higher Quillen K-groups for global fields have been formulated by
Lichtenbaum.

In an appendix to the paper, Tate computes the group H2 for the first six imagi-
nary quadratic fields F , i.e., those with discriminants d = −3,−4,−7,−8,−11, and
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−15. For these d’s, the result of Tate’s computation is thatH2 = 0 for d �≡ 1(mod 8),
and that H2

∼= Z/2Z, generated by l(−1)2, for d ≡ 1(mod 8).
T. Y. Lam
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MR0899413 (88k:11039) 11G40; 11G05, 14G25, 14K15

Mazur, B; Tate, J.

Refined conjectures of the “Birch and Swinnerton-Dyer type”.

Duke Math. J. 54 (1987), no. 2, 711–750.

From the introduction: “The idea behind the present article is that, in certain
instances, arithmetic conjectures concerning the special values of derivatives of p-
adic L-functions can be ‘refined’ to obtain formulations of stronger conjectures.
These stronger conjectures avoid any mention of p-adic L-functions and therefore
obviate the necessity of constructing the p-adic L-functions for the statement of
the conjectures. Moreover, they avoid any reference to a prime number p, and
require no p-adic limiting process; they should ultimately be phrased, perhaps,
in adelic language. In this paper, however, we state our conjectures ‘at a finite
layer M ’, where M is a possibly composite number (somewhat restricted). Even
when M = p, however, our conjecture ‘at layer p’ is not implied by the analogous
conjecture for the p-adic L-function. Indeed, our conjecture predicts congruence
formulas modulo divisors of p − 1, in this case. When M is a product of distinct
primes, our conjectured congruence formulas involve what seems to us to be a
thoroughgoing mixture of phenomena related to those prime divisors.

“Let A/Q be an elliptic curve admitting a modular parametrization. We define,
for any integer M ≥ 1, the modular element θA,M ∈ Q[(Z/MZ)∗/(±1)] {whose
coefficients are given by modular symbols}. We view θA,M as our analogue ‘at
layer M ’ of the L-function of A. Let R be a subring of Q containing the coefficients
of θA,M . Let I ⊂ R[(Z/MZ)∗/(±1)] be the augmentation ideal. The analogue of
saying that the ‘L-function vanishes to order ≥ r at s = 1’ is simply to say that
θA,M is contained in the rth power of the augmentation ideal I.

“If θA,M lies in Ir (i.e., ‘vanishes to order ≥ r at s = 1’), the analogue of the
‘rth coefficient of the Taylor expansion of the L-function at s = 1’ is simply the
image θ̃A,M ∈ Ir/Ir+1 of θA,M .

“Our ‘refined Birch and Swinnerton-Dyer conjectures’ at layer M will then be
statements about (a) the ‘order of vanishing’ of the element θA,M and (b) the image
of its ‘leading coefficient’ in Ir/Ir+1, if the order of the torsion subgroup of A(Q)
is invertible in R.

“As for ‘order of vanishing’, let s denote the number of primes of split multi-
plicative reduction for A which divide M . Let r = rankA(Q) + s. We conjecture
that θA,M lies in Ir.

“To produce a conjectural formula for the ‘rth Taylor coefficient’ of θA,M is
significantly more difficult. In this paper we do this only under the hypothesis that
if p is not split multiplicative for A then p2 does not divide M .

“We define a ‘regulator term’ by a circuitous process using ‘tame height pairings’.
The conjectural formula is obtained by multiplying this by a scalar term (which
involves, among other things, the order of the Shafarevich group X).
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“At the end of Chapter 3 we provide a certain amount of numerical evidence in
support of these conjectures.”

Karl Rubin
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MR1086882 (92e:14002) 14A22; 14H52, 16E10, 16W50

Artin, M.; Tate, J.; Van den Bergh, M.

Some algebras associated to automorphisms of elliptic curves.

The Grothendieck Festschrift, Vol. 1, 33–85, Progr. Math., 86, Birkhäuser Boston,
Boston, MA, 1990.

The present paper follows a paper by Artin and W. F. Schelter [Adv. Math. 66
(1987), no. 2, 171–216; MR0917738] which attempts to classify the “3-dimensional
regular algebras”. They showed that a 3-dimensional regular algebra must be de-
fined by generators and relations of a very special form. Although they showed
that a generic algebra with relations of the prescribed form was regular, they were
unable to show that particular algebras were regular. The present paper overcomes
this problem, thus giving a complete classification of the 3-dimensional regular al-
gebras. A 3-dimensional regular algebra is, by definition, a connected N-graded
k-algebra A, which is generated in degree 1, has polynomial growth, is Gorenstein,
and has global dimension 3. By Artin and Schelter such an algebra is defined either
by two generators and two cubic relations, or three generators and three quadratic
relations. We discuss the latter case, although analogous statements apply to the
former case.

This paper shows that such algebras determine and are determined by a cubic
divisor E in P2, an invertible sheaf L giving the embedding in P2, and an automor-
phism σ of E. The divisor E arises as the parameter space of the point modules
for A; a graded A-module M is a point module if it is cyclic, generated in degree
0, and dim(Mn) = 1 for all n ≥ 0. The relations of A are given by a 3-dimensional
subspace of A1 ⊗A1 and the zero locus in P2 ×P2 of this subspace is the graph of
σ. It does not seem possible to directly analyse the algebra A. However, it is shown
that A has a quotient algebra B (by an element g of degree 3, which is often cen-
tral, and always normal), which is more amenable. The algebra B can be explicitly
described as a “twisted” homogeneous coordinate ring of the divisor E [Artin and
Van den Bergh, J. Algebra 133 (1990), no. 2, 249–271; MR1067406]. All the point
modules for A are actually supported by B, and B is the largest such quotient
of A. One of the key steps in showing that A has good homological properties
and has the same Hilbert series as the polynomial ring in 3 indeterminates is to
show that the Koszul complex for A is acyclic. An ingenious argument involving B
shows this and simultaneously proves that g is regular. It is also proved that A is a
Noetherian domain. The most interesting of the 3-dimensional regular algebras are
those where E is an elliptic curve. These belong to a larger class of algebras defined
by A. V. Odesskĭı and B. L. Fĕıgin [Funktsional. Anal. i Prilozhen. 23 (1989), no.
3, 45–54; MR1026987], which also includes some 4-dimensional algebras which had
previously been defined by E. K. Sklyanin [Functional Anal. Appl. 16 (1982), no.
4, 263–270; MR0684124] in connection with the Yang-Baxter equation. This paper
bubbles over with new methods and ideas which will no doubt be very influential.

S. Paul Smith

From MathSciNet, June 2017



SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS 673

MR1265523 (95a:14010) 14C25; 14F20, 14F30, 14G20, 14K05

Tate, John

Conjectures on algebraic cycles in l-adic cohomology.

Motives (Seattle, WA, 1991), 71–83, Proc. Sympos. Pure Math., 55, Part 1, Amer.
Math. Soc., Providence, RI, 1994.

The author discusses his famous conjecture that, for a smooth projective variety
over a finitely generated field k, the image of the algebraic cycles in l-adic cohomol-
ogy spans the Ql-subspace of H2j(X,Ql)(j) fixed by the Galois group Gal(k/k)
[in Arithmetical algebraic geometry (West Lafayette, IN, 1963), 93–110, Harper &
Row, New York, 1965; MR0225778]. In Sections 1 and 4, he describes the in-
triguing arithmetic route by which he was led to the conjecture: It is a geometric
analogue of the conjectured finiteness of the Tate-Shafarevich group of an abelian
variety, which is a necessity if we want the group of rational points to be easily
computable. In Sections 2 and 3 he explains the implications his conjecture would
have for Grothendieck’s standard conjectures: The Tate conjecture implies that
the Künneth components of the diagonal are algebraic, and the Tate conjecture
together with semisimplicity of the Galois action on l-adic cohomology would im-
ply that numerical and homological equivalence for algebraic cycles are the same.
The last section summarizes the special cases of the conjecture which have been
proved: divisors on abelian varieties (Tate, Zarkhin in characteristic p; Faltings in
characteristic 0, as part of his proof of the Mordell conjecture), divisors on K3 sur-
faces (with some restrictions in characteristic p), and divisors on various modular
surfaces and threefolds. In higher codimension, the conjecture has been proved for
many Fermat hypersurfaces (Tate, Shioda) and many classes of abelian varieties
(Tate, Tankeev, Murty, Shioda).

Burt Totaro
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