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REVIEW OF THE COLLECTED WORKS OF JOHN TATE

J. S. MILNE

ABSTRACT. This is a review of Collected Works of John Tate. Parts I, II,
edited by Barry Mazur and Jean-Pierre Serre. American Mathematical Society,
Providence, Rhode Island, 2016.

For several decades it has been clear to the friends and colleagues of John Tate
that a “Collected Works” was merited. The award of the Abel Prize to Tate in
2010 added impetus, and finally, in Tate’s ninety-second year we have these two
magnificent volumes, edited by Barry Mazur and Jean-Pierre Serre. Beyond Tate’s
published articles, they include five unpublished articles and a selection of his let-
ters, most accompanied by Tate’s comments, and a collection of photographs of
Tate. For an overview of Tate’s work, the editors refer the reader to [4]. Before
discussing the volumes, I describe some of Tate’s work.

1. HECKE L-SERIES AND TATE’S THESIS

Like many budding number theorists, Tate’s favorite theorem when young was
Gauss’s law of quadratic reciprocity. When he arrived at Princeton as a graduate
student in 1946, he was fortunate to find there the person, Emil Artin, who had
discovered the most general reciprocity law, so solving Hilbert’s ninth problem.
By 1920, the German school of algebraic number theorists (Hilbert, Weber, ...)
together with its brilliant student Takagi had succeeded in classifying the abelian
extensions of a number field K: to each group I of ideal classes in K, there is
attached an extension L of K (the class field of I); the group I determines the
arithmetic of the extension L/K, and the Galois group of L/K is isomorphic to
I. Artin’s contribution was to prove (in 1927) that there is a natural isomorphism
from I to the Galois group of L/K. When the base field contains an appropriate
root of 1, Artin’s isomorphism gives a reciprocity law, and all possible reciprocity
laws arise this way.

In the 1930s, Chevalley reworked abelian class field theory. In particular, he
replaced “ideals” with his “ideles” which greatly clarified the relation between the
local and global aspects of the theory. For his thesis, Artin suggested that Tate do
the same for Hecke L-series. When Hecke proved that the abelian L-functions of
number fields (generalizations of Dirichlet’s L-functions) have an analytic contin-
uation throughout the plane with a functional equation of the expected type, he
saw that his methods applied even to a new kind of L-function, now named after
him. Once Tate had developed his harmonic analysis of local fields and of the idele
group, he was able prove analytic continuation and functional equations for all the
relevant L-series without Hecke’s complicated theta-formulas.
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As Kudla writes:

Tate provides an elegant and unified treatment of the analytic
continuation and functional equation of Hecke L-functions. The
power of the methods of abelian harmonic analysis in the setting of
Chevalley’s adeles/ideles provided a remarkable advance over the
classical techniques used by Hecke. ... In hindsight, Tate’s work
may be viewed as giving the theory of automorphic representa-
tions and L-functions of the simplest connected reductive group
G = GL(1), and so it remains a fundamental reference and starting
point for anyone interested in the modern theory of automorphic
representations.

Tate’s thesis completed the re-expression of the classical class field theory in terms
of ideles. In this way, it marked the end of one era and the start of a new.

2. GALOIS COHOMOLOGY AND THE TATE-NAKAYAMA ISOMORPHISM

Tate was awarded the Cole Prize by the AMS in 1956 for his paper determin-
ing the higher dimensional cohomology groups of class field theory. For this, Tate
observed that it is possible to regard the homology groups of a finite group as co-
homology groups with negative coefficients and so obtain a sequence of cohomology
groups indexed by Z. He then constructed a canonical sequence of isomorphisms

HY(G,7) — H™(G,C), i€,

whenever G is a finite group and C' is a G-module satisfying certain hypotheses. If
G is the Galois group of a finite extension L/K of number fields, then the idele class
group C of L satisfies the hypotheses, and so Tate’s theorem describes the groups
H(G,C) in terms of the known groups H'(G,Z). Tate’s isomorphism becomes
Artin’s reciprocity isomorphism when G is abelian and ¢ = —1.

Tate’s isomorphism was generalized by Nakayama, and then again by Tate [g],
and it is now called the Tate-Nakayama isomorphism. It has become a basic tool
in algebraic number theory.

Tate continued his study of the applications of the cohomology of finite groups
to arithmetic, and he introduced the cohomology of profinite groups (which he
initially called groups of Galois type). He proved duality theorems and results on
Euler characteristics, and he introduced and studied the notion of the cohomological
dimension of fields. He announced some of his results in his 1962 ICM talk, but
the material grew faster than his ability to write it up. Fortunately, others (Serre,
Lang, ...) accomplished this task for him. Tate’s article [I1] is a brief introduction
to this material.

3. LOCAL CLASS FIELD THEORY AND LUBIN-TATE SPACES

By the mid 1950s, abelian class field theory could be considered a mature field.
However, some problems remained. One was that of explicitly generating all the
fields shown to exist by the theory. For number fields, this is Hilbert’s twelfth
problem, for which there is still only a partial solution. For local fields, the problem
was spectacularly solved by Lubin and Tate.
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Tate’s student Lubin had completed his thesis on one-parameter formal Lie
groups in 1963. In early 1964, Tate wrote:

[From Lubin’s results] we get a homomorphism Gx — Ux = units
in K. Restricting this to the inertia group Gx,, we get a homo-
morphism Gk, — Uk, which is probably canonical by the unicity
remarks above, and which it is impossible to doubt is in fact the
reciprocity law isomorphism (or its negative!) ... The miracle seems
to be that once one abandons algebraic groups, and goes to formal
groups, the theory of complex multiplication applies universally
(locally). (Letter to Serre, January 10, 1964; CW, L8.)

Local class field theory provides, for each prime element 7 of a local field K,
a totally ramified abelian extension K, of K such that every abelian extension of
K is contained in the composite of K, with an unramified extension. For each ,
Lubin and Tate give a remarkably simple construction of a tower of extensions of
K whose union is K.

Lubin and Tate went on to study the moduli spaces of one-parameter formal
Lie groups. These turned out to be more important than the authors imagined at
the time. The towers obtained by adding level structures were studied by Drinfeld.
The “Lubin—Tate spaces” obtained in this way form a local analogue of Shimura
varieties, and played a role, for example, in the proof by Harris and Taylor of non-
abelian local class field theory for GL,, (the local Langlands conjecture for GLy,).

4. ABELIAN VARIETIES AND THE ARTIN-TATE CONJECTURE

For a complex analyst, an abelian variety is a complex torus A = C9/{lattice} ad-
mitting an embedding into projective space by theta functions. In giving substance
to his proofs of the function field analogues of the Riemann and Artin conjectures
(announced in 1940), Weil developed the theory of abelian varieties over arbitrary
fields (1948). In the subsequent years, much of the theory of elliptic curves was ex-
tended to abelian varieties of arbitrary dimension. For example, every embedding
of an abelian variety into projective space defines a theory of heights on the abelian
variety, but an abelian variety has many such embeddings. Néron conjectured that
there is a canonical height satisfying a certain quadraticity condition, and Tate
found a remarkably simple proof of Néron’s conjecture.

In an important series of papers (1959-65), Cassels reworked the arithmetic
theory of elliptic curves over number fields. In particular, he proved some duality
theorems, including one showing that the mysterious Tate—Shafarevich group of the
curve has order a square if finite. Tate extended the results of Cassels to abelian
varieties over number fields.

As a result of some of the first computer experiments, Birch and Swinnerton-
Dyer were led to conjecture that the rank of the group of Q-points of an elliptic
curve over Q is equal to the order of the zero of its L-function at s = 1 (BSD1).
Later they found a conjectural formula for the first Taylor coefficient of the L-
function in terms other arithmetic invariants of the curve, including the order of
the Tate-Shafarevich group and the discriminant of the height pairing (BSD2).
Tate recognized that the natural setting for the conjectures is an abelian variety
over a global field, and his proof of Néron’s conjecture allowed him to state them
in this generality.
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For a surface X fibered in elliptic curves over a curve over a finite field, Tate
recognized that the function field version of (BSD1) for the generic fiber implied that
the rank of the Picard group of X equals the order of the pole of its zeta function
at s = 1. This is one of the observations that led him to the Tate conjecture (see
the next section). With Michael Artin, he examined the significance of (BSD2) for
the surface. This led them to state the Artin—Tate conjecture which relates the
behavior near s = 1 of the zeta function of a surface over a finite field to other
arithmetic invariants of the surface, including the order of its Brauer group.

5. THE TATE CONJECTURE

The Tate conjecture occupies the same central place in arithmetic algebraic ge-
ometry that the Hodge conjecture occupies in complex algebraic geometry. For an
algebraic variety over C, the Hodge conjecture characterizes the Q-subspace of the
usual cohomology groups conjecturally spanned by the classes of algebraic cycles.
For an algebraic variety over a general algebraically closed field k, the Tate con-
jecture characterizes the Qg-subspace of the f-adic étale cohomology conjecturally
spanned by the algebraic classes.

Consider an algebraic variety X (smooth and projective) over an algebraically
closed field k. An algebraic cycle is defined by finitely many polynomials having
only finitely many coefficients, and so it and its cohomology class are defined over a
subfield of k finitely generated over the prime field. The Tate conjecture says that
this condition can be used to characterize the Qy-space spanned by the algebraic
classes. There are many variants and special cases of the conjecture. One is the
relation between the Picard number of a surface over a finite field and its zeta
function noted above. Another (the isogeny conjecture) is that for abelian varieties
A and B over a field k finitely generated over the prime field, the map

Hom(A, B) ® Zy — Hom(T, A, T, B)“*

is an isomorphism; here Ty A is the first £-adic homology group of A (its Tate group)
and G is the absolute Galois group of k. A third, particularly favored by Tate, is
the following statement:

If X is a regular scheme of finite type over Z, then the order of
¢(X,s) at the point s = dim X — 1 is equal to rank H°(X, 0%) —
rankH' (X, O%).

Tate accumulated evidence for his conjectures during 1963, spoke about them at
conferences in late 1963 and mid-1964, and published them in the proceedings of
the first conference [7]. When asked about the origin of the Tate conjecture, Tate
responded:

Early on I somehow had the idea that the special case about endo-
morphisms of abelian varieties over finite fields might be true. A bit
later I realized that a generalization fit perfectly with the function
field version of the Birch and Swinnerton-Dyer conjecture. Also it
was true in various particular examples which I looked at and gave
a heuristic reason for the Sato—Tate distribution. So it seemed a
reasonable conjecture.
In perhaps his most beautiful paper, Tate proved the isogeny conjecture over
finite fields in 1966, and Artin and Swinnerton-Dyer proved Tate’s conjecture for
elliptic K3 surfaces over finite fields in 1973. Since then there has been little
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progress—it took another forty years and the efforts of several mathematicians
to complete the proof of the Tate conjecture for K3 surfaces over finite fields.
The Hodge conjecture is known in degree 2, and there is strong evidence for the
Tate conjecture in the same degree, but beyond that both statements are generally
considered to be open questions. However, the conjectures guide later research. For
example, the form of the conjecture of Langlands and Rapoport, which is basic to
an understanding of the zeta function of a general Shimura variety, is shaped by
the two conjectures.

6. RIGID ANALYTIC SPACES AND THE TATE CURVE

The topology on the field K = Q, of p-adic numbers is very different from the
real topology. For example, every disk in K can be written as a disjoint union of
arbitrarily many open-closed smaller disks, and so any local definition of “analytic
function” leads to too many functions. Moreover, it is not possible to represent an
elliptic curve as a quotient of K by a discrete lattice because K has no discrete
subgroups.

However, there is an alternative representation of an elliptic curve E over C,
namely, E(C) = C*/q” for some ¢ € C. When Tate took ¢ to be an element of
a p-adic field K with |g| < 1, he was “amazed and thrilled” to find that, suitably
normalized, the classical power series converge and give an elliptic curve E over K
whose points satisfy F(K) = K*/¢*. Curves arising in this way are called Tate
curves. Higher dimensional analogues of Tate’s construction have been found, and
are essential to an understanding of the compactification of the moduli schemes of
abelian varieties.

Although this only realized F(K) as a quotient of abstract groups, Tate under-
stood from the start that the quotient should live in some category of “analytic
spaces”:

Finally, and most important, this last theorem and probably many
other things that are hard to prove at present, would become obvi-
ous if one really had a theory of analytic and meromorphic functions
in complete non-archimedean fields ... How does one get around
the total disconnectedness to get some kind of global theory? One
really must try to make sense out of Krasner’s stuff. I have not yet
had the courage, however. But everything points to the existence
of p-adic analytic continuation (letter to Serre, August 4, 1959).

When consulted by Tate, Grothendieck was initially negative:

Nor do I have the impression of having understood this theorem at
all; it does nothing more than exhibit, via brute formulas, a certain
isomorphism of analytic groups (letter to Serre, October 19, 1961).

Only when Tate began constructing an underlying theory of analytic spaces did
Grothendieck become more positive and helpful.

So how did Tate resolve the problem noted above? He first defined a local
theory in which the objects are ringed spaces (X, Ox) whose underlying set X has
a p-adic topology. He then defined a collection of “admissible” open subsets and
“admissible” open coverings. Although the admissible open sets and coverings do
not form a topology in the usual sense, they satisfy the conditions necessary to
support a sheaf theory (they form a Grothendieck topology). In this way, Tate
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was able define global objects and a “locally” defined notion of analytic function:
a function is analytic if it becomes analytic on the open subsets of some admissible
covering. An acyclicity theorem of Tate shows that this gives a good theory.

Tate reported on his work in a series of letters to Serre, who had them typed and
distributed by I.LH.E.S. They soon attracted the attention of the German school of
complex analytic geometers, and already by 1984 a comprehensive account of the
theory required a book of over 400 pages. Tate’s notes were eventually published as
[9]. There have been a number of extensions of Tate’s theory (Raynaud, Berkovich,
...), and p-adic analytic spaces are now as much a part of the landscape of arith-
metic geometry as real analytic spaces.

7. MANY OTHER ASPECTS OF TATE’S WORK

The above describes a part of Tate’s work during the 1950s and 1960s. Tate also
worked on many different aspects of elliptic curves throughout his career, the K-
theory of number fields, the Stark conjectures, commutative and noncommutative

algebra, and other topics.
I now discuss the Collected Works (CW).

8. CW: THE UNPUBLISHED PAPERS

Tate’s unpubished papers include the following. Paper 13 is a three-page proof of
the Riemann hypothesis for function fields (Weil’s theorem) using ideas of Mattuck,
Tate, and Grothendieck. Paper 22 presents the notes of a seminar held as part of
the 1964 Woods Hole conference in which Lubin, Serre, and Tate discuss some of
their results on formal groups and abelian varieties, including Tate’s proof of the
Serre—Tate lifting theorem (see also letter L8 and comments). Paper 38 is a note in
which Tate computes a certain subgroup (the tame kernel) of the K5 of a number
field. Paper 51 is a seven-page proof of the p-adic case of the Harish-Chandra
transform for GL,.. Paper 53 is a manuscript in which Tate states and partially
proves a conjecture extending the theorems of Shimura and Taniyama on abelian
varieties with complex multiplication to all automorphisms over Q.

9. CW: THE LETTERS

Two of these letters are to Dwork. In the first, Tate describes a parameterization
of the p-adic points of an elliptic curve, and he states a relation between a constant
occurring in the parameterization and the zeta function of the curve. This was the
spark that led to Dwork’s remarkable p-adic proof of the rationality of the zeta
function of a variety over a finite field. This is well explained in Tate’s comments
on the letter and in [2].

A letter to Springer explains Tate’s proof, using Ext’s, of the arithmetic duality
theorems for finite modules announced in his 1962 ICM talk [6]. Another to Birch
discusses what is now called the Birch—Tate conjecture, and a letter to Atkin de-
scribes the construction by Tate and his students of the first example of an Artin
L-series known to be holomorphic even though no power of it is a product of an
abelian L-series.

The remaining letters are a selection from the remarkable trove [I]. To comment
on these would require an essay in itself.
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10. CW: TATE’S COMMENTS ON THE PAPERS

Some of Tate’s comments are corrections. All but three of these can be considered
misprints. Of the three, one is a muddled proof of a (correct) lemma (CW I, p. 116),
one is a slightly misstated corollary (CW I, p. 424), and only one can be considered
serious. In his 1962 ICM talk [6], Tate overstated what his methods give concerning
the strict cohomological dimension of the various Galois groups attached to number
fields (CW I, p. 180).

Some discuss the origins of papers, for example ([10]),

This is my first of several papers on K5 of fields. I was introduced to
the subject by Hyman Bass in the Fall of 1968, when we were both
in Paris. He explained K of fields to me via Steinberg symbols
and the results of Calvin Moore described in §2 of this paper, then
asked if T could see what K»(Q) was. I was able to answer his
question. . .

While most of us are inclined to inflate our contributions, Tate’s inclination
seems to be the reverse. For example, he writes concerning [5]:

This paper was written by Serre. He probably put my name on it
because we had discussed some of the contents. But the discussion
was very one-sided. He did most of the talking and I the listening.

Tate’s letter to Serre, June 14, 1967, suggests a somewhat greater engagement. Tate
had received “état 0” of the paper written by Serre and writes “I am now about
ready to tackle the état 1 of our paper”. What follows is a series of comments and
criticisms (“concerning your idiotic Lemma 1), including the suggestion to replace
“almost good reduction” with “potentially good reduction” (accepted).

Readers may be surprised to learn that Tate’s contribution to a 2006 paper
with Barry Mazur and William Stein [3] was “in doing the computer experiments
discussed in section 6”. However, Tate’s letters to Serre (CW I, L18, L19, L20)
reveal that as early as 1979, he was programming on a “hand-held Hewlett-Packard
calculator on which one could write and run programs of 50 or fewer steps.”

Concerning his great paper [7], Tate writes:

This paper contains many optimistic thoughts, which have become
known as the “Tate conjectures”.

This is far from the exuberant way in which Tate announced the conjectures in a
letter to Serre more than five decades earlier:

At any rate, I am by now utterly convinced of the truth of THE
CONJECTURE.
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