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Algebra— &lally _adl, the “tearing-apart and reassembling”—is often merely

seen as the art of stripping meaning away from mathematical facts, so as to arrive
at more essential properties that apply more widely. In this manner, one establishes
links between seemingly unrelated domains.

As a simple example, one easily shows following Lagrange that, in any finite
group, the order of every element divides the order of the group. Applied to the
non-zero residue classes modulo a prime p, one deduces that a?~! =1 (mod p) for
every a coprime to p.

This is the syntactic approach to algebra. Another important trend, the “re-
assembling”, uses mathematical objects from diverse origins to solve problems in a
specific area.

Returning to the previous example, every group acts by right-multiplication
on itself. This action is regular, so every element acts as a product of cycles all
of the same length, and Lagrange’s statement follows. The semantic approach
encouraged us to look at meaningful realisations of our group, in this case as a
group of permutations.

The book under review by Mark Sapir is an enticing collection of statements
highlighting the interplay between the syntactic and semantic aspects of algebra.
Its parts are (almost) titled “words”, “semigroups”, “rings”, “groups”; one feels
that the author suffered very much in being forced to write the text linearly, so rich
are the interconnections between these topics.

There is another opposition, which somewhat follows the syntax/semantics di-
chotomy: mathematical objects may be explored via their quotients and via their
subobjects. Given an object X, to check that Y is a quotient of X, it is usu-
ally preferable to have a syntactic description of X; for groups or algebras, one
would want a presentation of X by generators and relations, the archetypal syn-
tactic description of X. To check that Y is a subobject of X, one would rather
want a concrete description of X; for groups or algebras, via their action on some
well-understood object.

Thus free groups are best viewed syntactically as sets F4 of reduced words over
AU A~ with concatenation and reduction as operation and semantically as free
actions on trees.

1. THE COMBINATORIAL ACTORS

Rather than presenting the main algebraic actors—semigroups, algebras, groups
as in the book under review—I will present them together, so as to better point
out their connections.

Mathematical objects are constructed out of elementary parts. Words and graphs
stand out among these. Fix a finite set A called the alphabet; one may then consider
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the set A* of finite sequences of elements of A, called words, and subsets of A*, called
languages. There are then AN, A™N AZ the spaces of right-infinite, left-infinite, and
bi-infinite words. These infinite sequences determine a language of subwords.

The latter space AZ is particularly interesting because it is a compact set
equipped with the dynamics of an invertible transformation 7" acting by shift. The
closed T-invariant subspaces of A%, and in particular the minimal ones, received
particular attention and are called subshifts. A subshift X C A% may be studied
via its associated language of forbidden words: these are the words w € A* that do
not occur as a subword of any element of X. Conversely, every language L C A*
determines a subshift: the set of bi-infinite words none of whose subwords belongs
to L. Without loss of generality, the language L is an ideal, L = A*LyA* for a gen-
erating set of minimal words Ly C L. For example, the Fibonacci shift ® C {0, 1}#
consists of all bi-infinite words without two consecutive 1’s; its forbidden language
is generated by {11}.

A single bi-infinite word may also be used to produce a subshift, as the closure
of its set of T-translates. Thus for example iterating the substitution 0 — 01,
1+ 0 infinitely many times on 0.1 (the “.” marks the position of the origin) yields
an infinite word in {0,1}%, and the closure of its T-orbit is a subshift ®q of the
Fibonacci shift ®, with more forbidden words (11,000, ..., and also all cubes).

A directed graph is specified by a vertex set V, an edge set F, and two maps
E — V called head and tail. A path in a graph is a sequence of edges whose heads
and tails match. The set of bi-infinite walks in a graph naturally defines a subshift
X C EZ, called its edge subshift. If the graph is finite, the forbidden language of X
is finite and X is called a subshift of finite type.

More generally, a graph’s edges may be labeled by a finite set A, and it is then
called an automaton. The set of labels read along bi-infinite paths in an automaton
defines a subshift of A%; it is also defined by the forbidden language of all illegal
transitions in the automaton. If an initial vertex is fixed in the automaton, the set
of words read along paths starting at the initial vertex defines a regular language,
the language accepted by the automaton. One gains flexibility, but no generality,
by restricting to paths with given initial and given final vertices. For example, the
Fibonacci shift @ is encoded by the following automaton.

2. THE ALGEBRAIC ACTORS

First and foremost, the set of words A* is naturally a semigroup, under concate-
nation.

From a set of forbidden words, one may construct a semigroup with 0: the
quotient of the free semigroup-with-zero A* U {0} by the relation “w = 0” for
every forbidden word. Conversely, given S a semigroup with generating set A, one
constructs the Cayley graph of S as the oriented graph with vertex set S and edge
set S x A, where the edge (s,a) goes from s to sa. Every element of S may be
written as a word in A*, and an expression of minimal length is called a geodesic.
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Bi-infinite geodesics are maps AZ — S all of whose subwords are geodesic and
naturally define a subshift.

One may directly start with S a semigroup with 0 and a generating set A of S,
and define an associated subshift X C AZ as the set of all bi-infinite words over A
all of whose subwords multiply to a non-trivial element of S. For example, starting
with S = (a,b | b* = 0),, one obtains again the Fibonacci subshift ®.

From a graph G = (V, E)), one constructs a semigroup-with-zero A(G) = VU{0}
by declaring v - w = v if there is an edge from v to w, and v - w = 0 otherwise.

Automata may also be studied algebraically. An automaton is deterministic if at
every vertex the collection of labels on its outgoing edges is in bijection with A. The
set of self-maps of V' defined by the maps “follow label a” for all a € A generates
a semigroup called the syntactic semigroup of the automaton. A deterministic
automaton with a second label in A called the output is called a Mealy transducer;
endowed with an initial vertex, it produces a transformation of A* by the rule
“given a word w € A*, follow the path labeled w in the automaton, and map w to
the output word read along the same path.” Quite complicated semigroups may
be produced by very small automata, such as the following automaton.

0—1

(1) o—>1©e 11

1—-0

Here the transformation ¢ exchanges 0 and 1 in every word, and the transformation s
sends, e.g., 001100 to 111011. The semigroup generated by {s,t} has “intermediate
word growth”; see below.

Let k be a field. From a semigroup S one constructs the semigroup algebra
kS, the set of k-linear combinations of elements of S, with natural addition and
multiplication. Conversely, multiplicatively closed subsets of associative algebras
give semigroups. The semigroup algebra kA* is the algebra of non-commutative
polynomials in the variables A often written k(A). Tts completion k({A)) = k4™ is
the algebra of non-commutative power series with variables in A.

3. GOALS

Some fundamental questions have dominated the field of algebra, and have served
as useful lighthouses in directing research towards fertile grounds.

One of them is the study of laws and identities in algebraic objects. The proper
setting is that of universal algebra, in which objects, called algebras, are endowed
with a fixed collection of operations of various arities.

One probes an algebra X by considering all equalities of the form ¢ = ¢ with ¢, ¢’
in the free algebra (free semigroup A*, free associative algebra k(A), free group Fj)
that hold in X, namely that become equalities in X under arbitrary substitutions
of elements of X for variables in A. For example, X is commutative if zy = yz
holds universally in X. Conversely, one may start with a collection ¥ of identities,
and study the variety of algebras that satisfy X.
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Garrett Birkhoff’s fundamental result defines varieties without reference to iden-
tities: a class of algebras is a variety if and only if it is closed under taking subalge-
bras, homomorphic images, and arbitrary Cartesian products. Thus a variety may
be generated by a collection of algebras and defined by a collection of identities.

A variety is finitely based if it may be defined by a finite set of identities. The
variety generated by a finite group, or a finite associative ring, is finitely based. A
fundamental question is, Which varieties are finitely based?

One of the most fruitful questions asked about varieties is, When are they locally
finite? (In other words, When is every finitely generated algebra in the variety
finite?) Burnside’s question asks, for fixed n, whether every finitely generated
group in which every element has order dividing n is itself finite; or, in other words,
whether the variety defined by ™ = 1 is locally finite. This has been answered in
the negative for n large enough, and in the positive for n = 4 and n = 6, but is still
open for n = 5.

A locally finite variety is inherently non-finitely based if for every finite subset of
its identities there is an infinite finitely generated algebra satisfying these identities.
A result by Baker, McNulty, and Werner characterizes those inherently non-finitely
based varieties generated by a semigroup of the form A(G) in terms of four induced
subgraphs that G may contain. The proof is a beautiful study of the closed orbits
of the dynamical system BZ for a finite algebra B.

Moving beyond varieties, one may call an algebra algebraic if every cyclic (singly
generated) subalgebra is finite. A group is usually called torsion in that case, and
the generalized Burnside question asks whether there are infinite, finitely generated
torsion groups. This has been answered positively, even among residually finite
groups (namely, groups admitting enough finite quotients to distinguish any two
elements). Remarkably, there are both syntactic and semantic proofs of this result;
see below. In universal algebra with 0 (associative algebras, semigroups-with-zero)
one calls an algebra A nil if every element x € A satisfies 2" = 0 for some n.

Golod gave a syntactic proof of the existence of finitely generated, infinite-
dimensional nil associative algebras: he constructed them as quotients of the free
associative algebra F,((A)) by relations of the form w™™) = 0 for all w € A*,
with n(w) € N large enough so that the quotient is infinite dimensional. The sub-
semigroup generated by {1+ a : a € A} is a finitely generated, infinite torsion
group.

There is no semantic construction of finitely generated, infinite-dimensional nil
algebras, but there is such a construction of finitely generated, infinite torsion
groups, due to Aleshin and simplified by Grigorchuk. Grigorchuk’s example is a
group of permutations of A* generated by the following remarkably small Mealy
transducer:

1—>1

0—0
(2) wﬁ
1—1

0—-1,1—-0
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For a finitely generated algebra (group, semigroup, associative algebra, ...),
one may consider its growth, namely the function counting the number of (ad lib.
linearly independent) elements that can be produced as products of at most n
generators. It is natural to consider this growth function up to rescaling on its
argument, so as to remove the dependency on the choice of generating set; thus all
exponential functions are treated as equivalent, and polynomially growing functions
are equivalent to their leading monomial. Fundamental questions are then, Which
kinds of growth functions may occur? and Are there gaps in the spectrum of
growth functions? For example, there is no associative algebra with growth strictly
between constant and linear, nor between linear and quadratic; and there is no
group with growth strictly between polynomial and n(°8 ")l/mo; conjecturally, the
gap extends to exp(y/n). On the other hand, there is a group (a small variant of
Grigorchuk’s example from (2))) with growth exp(n®77)  and every sufficiently
smooth function between exp(n®767 ) and exp(n) is asymptotic to the growth
function of a group.

There is an even wider spectrum of growth of semigroups; many superquadratic
functions, and every sufficiently smooth function between n'°#™ and exp(n) is as-
ymptotic to the growth function of a semigroup. For example, one may (syntac-
tically) consider the monoid with presentation (y,z | 2PTiyPTls = 2PFHlyP for all
p > 0), and note that its elements may be written uniquely in the normal form
Yy z% ...y for a partition (ai,...,a,); the Hardy-Ramanujan estimates on the
growth of partitions directly give estimates on the growth of the monoid, of the
form exp(y/n). Semantically, one may realize this monoid as a set of transforma-
tions of A* generated by a small Mealy transducer very close to (), or as a set of
matrices with integer coeflicients.

More generally, subsets of algebras may also be assigned a growth function called
their relative growth; to compute the growth of a semigroup S with generating set
A, it may be good to find a geodesic normal form for S: for every s € S a choice of
a minimal-length expression in A* representing it; the set L of such normal forms
is a language L C A*, whose growth is that of S. In turn, this normal form may be
obtained, in favourable cases, by applying rewriting rules, namely substitutions of
the form v — v on subwords of A* for some u,v € A* that define the same element
of S. Some semigroups (and more generally algebras) admit a finite set of rewriting
rules whose iterated application eventually leads to a normal form.

Subshifts are naturally measured by their complezity, which is simply the relative
growth of the language of subwords of its elements. This is also the growth of the
semigroup naturally associated with the subshift. For example, the complexity of
the Fibonacci subshift ® is the Fibonacci sequence; while that of its subshift & is
linear (it is a “Sturmian subshift”).

Yet another kind of growth function associated with an algebra measures the
growth of its relations: for a semigroup S generated by A, consider the natural
map m: A* — S and the relative growth of the language {(u,v) € (4 x A)* |
m(u) = w(v)} of its relations; for a group G = (A), consider the relative growth
of 771(1) with 7: Fa — G; for an associative algebra R generated by a subset A,
consider the relative growth of 771(0) with 7: k(A) - R. An important property,
amenability of groups, may be defined combinatorially as the condition that 7=1(1)
has exponentially small growth relative to F'4, or equivalently relative to A*.
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4. HIGHLIGHTS OF THE BOOK

It is time to turn to more specifics about what the reader may find in the book
under review. A large number of important results are stated and, more impor-
tantly, proven. Not only are the proof techniques interesting in themselves, they
help very much in bridging the various topics under consideration.

The book starts by word avoidance problems, such as the classical Thue—-Morse
cube-free sequence, and introduces Zimin words and their use in characterizing
repetition-free languages. These Zimin words reappear throughout the text as a
leitmotiv.

The road colouring problem asks whether every aperiodic graph with constant
out-degree may be labeled so as to give a reset automaton—an automaton that
admits a word leading to a given vertex, regardless of the starting vertex, or equiv-
alently whose syntactic monoid admits a right 0. This was proven recently by
Trahtman, and his (combinatorial) proof is included with the original motivation
towards algorithmically deciding isomorphism of subshifts of finite type.

An important, but still hard, result in group theory is the construction, by
Adian, of infinite finitely generated groups of finite exponent (“Burnside groups”).
A complete proof would go beyond the scope of the book, but a useful roadmap is
given, highlighting the main features of the argument.

Within the topic of associative algebras, the author gives a readable account of
Shirshov’s height theorem, and as its consequence Kaplansky’s result that algebraic
algebras with identity are finite dimensional.

By necessity, the author had to select which results to include. One gets a feeling
of his favourites, including “diagram groups”, which are groups whose elements are
reduced diagrams expressing equalities derived from a semigroup presentation. This
class contains classical examples such as free, and free abelian groups as well as more
exotic ones such as Thompson’s group F: the group of piecewise-linear bijections
of the interval [0, 1] with slopes a power of 2 and dyadic breakpoints. Amenability
of F is a well-known open question.

Many of the proofs given throughout the text are quite concentrated and “to the
point”; verifications are left to the reader, with copious use of “(prove it!)” and
“(check!)” interjections. The large number of typographical mistakes provide a
pleasant extra exercise set to the reader.
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