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Looking back at the history of mathematics, among major developments one
can identify two trends and one big idea that are related to the subject of the book
under review. On the one hand, mathematicians have been generalizing the notion
of space to an ever more increasing complexity. At the same time the concept of
number or algebraic system saw constant generalization. An important idea here is
that these two trends go almost always hand in hand. Geometric intuition is helped
by algebraic formalism and vice versa. Moreover, mathematicians believe, almost
as dogma, that a statement in any kind of algebra should have a corresponding
statement in geometry and vice versa. This derives from the fact that the informa-
tion about a space can be encoded in terms of algebras of functions, or more exotic
algebraic objects, on that space.

Thus, starting from Euclid’s one-, two-, and three-dimensional spaces and simple
geometric figures like lines, triangles, circles, and spheres in them, we have learned
how to think and work with higher-dimensional Euclidean spaces, and with curves
and surfaces and the higher-dimensional analogues living in them. This has led to
the birth of projective and algebraic geometry, which dominated nineteenth-century
mathematics and onward. Next came the ground-breaking and liberating work of
Riemann, where one encounters a new notion of space, which he calls a mannig-
faltigkeit, which exists on its own without regard to an ambient Euclidean space. It
should be stressed that Riemann’s notion of mannigfaltigkeit is more general than
what in modern mathematics is called a manifold. He clearly considers discrete sets,
whose only distinctive property is their cardinality, as well as infinite-dimensional
function spaces to be on the same footing and as examples of his mannigfaltigkeits.
Riemann in fact came very close to the notion of a set.1 By the work of Cantor,
Hausdorff, and others, set theory was understood as the ultimate building ground
upon which all kinds of spaces can be erected. Thanks to set theory and start-
ing with the notion of topological space, new notions, such as manifolds, varieties,
schemes, stacks, etc., could be rigorously introduced and studied. Noncommutative

2010 Mathematics Subject Classification. Primary 19-XX, 46-XX, 58B34.
1It is interesting to note that that Cantor in his first papers on set theory uses the term

mannigfaltigkeit for a set. Only later he coined the term menge as the German word for set.
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spaces, exotic as they seem to be, are the next step in this saga of expansion of our
geometric intuition.

Parallel to extensions of the notion of space, mathematics has witnessed the
creation of more and more complex algebraic systems that we simply refer to here
as algebra. Thus starting with natural numbers, integers and rational numbers were
created, culminating in the first rigorous definitions of real numbers by Dedekind
and Cantor in the 19th century. The creation of quaternions by Hamilton marks
the beginning of a new era in algebra. For the first time quantities were considered
as members of an algebraic system where multiplication was not commutative: ab
is not the same as ba. This has eventually led to the creation of hypercomplex
numbers, or associative algebras in more modern terminology. In particular, matrix
algebras and their infinite-dimensional analogues, C∗ and von Neumann algebras
of operators on Hilbert space, were defined and intensive studies of them began in
the twentieth century.

The marriage or unification of (commutative) algebra and (classical) geometry
has been going on almost from the beginning of mathematical thought. Descartes
took a decisive step in this regard by introducing coordinates in the plane and in
space and thus turning questions of geometry into problems of algebra and vice
versa. Now we can think of an expression like x2 + y2 = 1 as the equation of a
circle. A modern and much more precise formulation of Descartes’s idea is Hilbert’s
Nullstellensatz that can be formulated as an equivalence between the category of
affine schemes over an algebraically closed field and the opposite of the category of
reduced commutative and finitely generated algebras over that field. In functional
analysis, the celebrated theorem of Gelfand and Naimark gives a similar equivalence
between the category of compact Hausdorff spaces and the opposite of the cate-
gory of unital commutative C∗-algebras. Noncommutative geometry builds on, and
vastly extends, this fundamental duality between classical geometry and commuta-
tive algebras. Thus one can think of the category of not necessarily commutative
C∗-algebras as the dual of an otherwise undefined category of noncommutative lo-
cally compact spaces. What makes this a successful proposal is a rich supply of
examples and also the possibility of extending many of the topological and geomet-
ric invariants and tools of geometric analysis to this new class of “spaces”.

Noncommutative geometry, in the sense that is studied in this book, is the brain
child of the mathematician Alain Connes, who has been its main architect and
visionary in the past 35 years. It builds primarily on the idea that regarding par-
ticular classes of noncommutative algebras as algebras of coordinates on a fictitious
noncommutative space can be very useful.

Why can noncommutative spaces be a useful idea? The inadequacy of classical
spaces is clear when we we deal with highly singular so-called bad quotients. Spaces,
such as the quotient of a manifold by the ergodic action of a group or the space
of leaves of a foliation, are typically ill behaved. Another example of being an ill-
behaved space is, for instance, that they may fail to be even Hausdorff or to have
enough open sets, let alone being a reasonably smooth space. The unitary dual of
a discrete group, except when the group is abelian or almost abelian, is another
example of an ill-behaved space.

In Chapter 1, some of the most fundamental algebra-geometry correspondences,
or duality theorems, that form the backbone of the subject are treated with much
detail. The Gelfand–Naimark theorem, Hilbert’s Nullstellensatz, Riemann surfaces
and their function fields, affine schemes, the Serre–Swan theorem, Hopf algebras,
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Table 1

commutative noncommutative
measure space von Neumann algebra
locally compact space C∗-algebra
vector bundle finite projective module
complex variable operator on a Hilbert space
real variable self-adjoint operator
infinitesimal compact operator
range of a function spectrum of an operator
K-theory K-theory
vector field derivation
integral trace
closed de Rham current cyclic cocycle
de Rham complex Hochschild homology
de Rham cohomology cyclic homology
Chern character Connes–Chern character
Chern–Weil theory noncommutative Chern–Weil thoery
elliptic operator K-cycle
spinc Riemannian manifold spectral triple
index theorem local index formula
group, Lie algebra Hopf algebra, quantum group
symmetry action of Hopf algebra

and quantum groups are among the topics that are covered in this chapter. They
lead to ideas of noncommutative locally compact spaces, noncommutative affine
varieties, and noncommutative vector bundles. Several examples of noncommuta-
tive spaces, most notably noncommutative tori, group C∗-algebras, and quantum
groups are treated with many details. The last section of this first chapter is a
self-contained introduction to Hopf algebras and quantum groups and the idea of
symmetry in noncommutative geometry. There is an open and growing dictionary
on the subject that builds on these correspondences and gives the noncommutative
analogues of many notions of geometry and topology. One can find one such a
dictionary already in the introduction of this book (see Table 1).

In Chapter 2 the author discusses formation of noncommutative quotients via
groupoids and groupoid algebras and gives an excellent array of examples. It is
shown how one can replace a bad classical quotient by a noncommutative alge-
bra which behaves nicely, provided one has the right tools. This is one of the
most universal and widely used methods for constructing noncommutative spaces.
Another important concept in this chapter is the idea of Morita equivalence of alge-
bras, both at purely algebraic and C∗-algebraic levels. Among other things, Morita
equivalence clarifies the relation between noncommutative quotients and classical
quotients.

Cyclic cohomology, discovered by Alain Connes in 1981, is at the heart of non-
commutative geometry. It should be seen as a noncommutative analogue of de
Rham homology of currents. In fact, Chapter 3 starts by quoting Alain Connes’s
summary of his 1981 Oberwolfach talk, where he unveiled this notion for the first
time. It is fascinating to see how the need to extend the index theorem to foliation
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algebras led Connes to an algebraic theory—one that is much appreciated by work-
ers in algebraic K-theory and homotopy theory as well. Together with K-theory,
K-homology, and KK-theory in general, (periodic) cyclic cohomology gives a ho-
motopy invariant of noncommutative algebras which is a receptacle for a Chern
character map. Cyclic (co)homology, its relation with Hochschild (co)homology
through Connes’s long sequence and spectral sequence, and its relation with de
Rham (co)homology are treated at length in this chapter. Three different defini-
tions of cyclic cohomology are given, each shedding light on a different aspect of
the theory. Continuous versions of cyclic and Hochschild cohomology for topolog-
ical algebras is developed in this section as well. This plays an important role in
applications.

Chapter 4 is the culmination of the theory developed in the book. It aims at
giving a proof of Connes’s noncommutative index theorem for finitely summable
Fredholm modules:

Ki (A) × Ki (A)
index−→ Z

⏐
⏐
�Chi

⏐
⏐
�Chi

⏐
⏐
�

HP i (A)×HPi (A)−→C

The diagram, which appears on the book cover, in fact should be seen as a way of
formulating an index theorem in a noncommutative setting in general, and it is a
prototype of such results. It should be understood as equality of an analytic index
with a topological index.

Thus the author defines Connes–Chern character maps for bothK-theory andK-
homology. For K-theory, it is the noncommutative analogue of the classical Chern
character map from K-theory to de Rham cohomology. It can also be described as
a pairing between K-theory and cyclic cohomology. Fredholm modules, as cycles
for K-homology, are introduced next and, for finitely summable Fredholm modules,
their Connes–Chern character with values in cyclic cohomology is introduced. These
pairings are then used to prove an index formula of Connes relating the analytic
Fredholm index of a finitely summable Fredholm module to its topological index.
This is an example of an index formula in noncommutative geometry. The very last
section of this chapter summarizes many ideas of the book into one commutative
diagram, which is the above-mentioned index formula. A nice application of this
index theorem is an integrality result which was used by Connes to show that there
are no nontrivial projections in the (reduced) group C∗-algebra of a free group with
two generators (the Kadison–Kaplansky conjecture). No purely analytic proof of
this fact is known. Another fascinating application of this result is the integrality
of quantum Hall conductance. The conductance can be expressed as the pairing
between a cyclic 2-cocycle and a K-theory class of a noncommutative algebra. The
integrality follows by showing that the cyclic cocycle is the Chern character of a
Fredholm module over the algebra.

There are also appendices covering basic material on C∗-algebras, compact and
Fredholm operators, projective modules, and category theory language.

Khalkhali’s book is an excellent introduction for beginners to noncommutative
geometry and some of its applications. It should be very useful for preparing the
reader for more advanced topics like Baum–Connes conjectures and the local index
formula. There are many examples and exercises given in almost every section of
the book. This makes the book ideal as a textbook or for self study. As such it
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should be valuable for students of pure mathematics and theoretical physics. In
the new edition, two new sections are added that cover more recent developments
in the subject. A study of curvature invariants and Gauss–Bonnet type theorems
using heat equation techniques for a noncommutatve 2-torus is a very interesting
new development in the subject that is briefly discussed. Also added is a succinct
introduction to Hopf cyclic cohomology and its applications.

Herman Weyl once famously said, “In these days the angel of topology and the
devil of abstract algebra fight for the soul of every individual discipline of mathe-
matics.” In noncommutative geometry, it seems we have a perfect collaboration of
angels of algebra, geometry, and physics to lift the two subjects to higher heights!
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