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A priori, one would expect geometry in high-dimensional spaces to be rather
complicated. Our experience in two and three dimensions seems to indicate that
as the number of dimensions increases, the number of possible configurations grows
rapidly, and we enter the realm of enormous, unimaginable diversity. For instance,
the classification of closed two-dimensional surfaces has been known for a long
time, and around a dozen years ago Perelman completed the proof of Thurston’s
geometrization conjecture regarding the structure of closed three-dimensional man-
ifolds. However, it is known that the space of all closed manifolds in dimension
n ≥ 4 is quite complex, with little or no hope for structural theorems of the type
available in lower dimensions. The immediate conclusion appears to be the “curse
of dimensionality”, that a general, interesting theory is unlikely to exist in high-
dimensional geometry.

The book under review promotes the contrary opinion: that dimensionality,
when correctly viewed, may become a blessing. One of the earliest examples of
simplicity and universality in high dimensions is the classical central limit theorem:
The normalized sum of independent random variables is approximately Gaussian,
under quite general assumptions, when the number of variables approaches infinity.
In other words, for large n,
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on the real line of mean zero and variance one, satisfying certain mild regularity
conditions. Thus, the specific form of the Gaussian density emerges in the limit
n → ∞ when integrating rather arbitrary product densities in R

n on hyperplanes.
Another example for harmony and order in high dimensions is Dvoretzky’s theorem,
which asserts that any high-dimensional convex body has nearly Euclidean sections
of a large dimension. Note that the symmetries of the Euclidean ball appear, even
though we made only minimal assumptions: just convexity and the high dimension.
The central limit theorem and Dvoretzky’s theorem are high-dimensional effects
that lack clear analogs in low dimensions. A third example is Ramsey’s theorem in
graph theory, which demonstrates that any coloring of a large complete graph by
a fixed number of colors contains a sizable, monochromatic, induced subgraph.

As it turns out, there are motifs in high-dimensional geometry which seem to
compensate for the difficulties that arise from high dimensionality. One of these
motifs is the concentration of measure phenomenon. Quite unexpectedly, a scalar
Lipschitz function on a high-dimensional space behaves in many cases as if it
were a constant function. For example, if we sample five random points from the
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n-dimensional unit sphere, for large n, and substitute them into a 1-Lipschitz func-
tion, then we will almost certainly obtain five numbers that are very close to one
another. This phenomenon is reminiscent of the well-known geometric property
that in the high-dimensional Euclidean sphere, “most of the mass is close to the
equator, for any equator”. This geometric property, which follows from the isoperi-
metric inequality, is unthinkable in, say, three dimensions. Since Milman’s proof
of Dvoretkzy’s theorem in the 1970s, the concentration of measure has become a
major tool in high-dimensional analysis.

The book by Brazitikos, Giannopoulos, Valettas, and Vritsiou is dedicated to the
study of volume distribution in high dimensions. Its central idea, as I understand
it, is that the spatial arrangement of volume due to the geometry of Rn, for large n,
imposes rigidity on convex sets and convexity-related measures. Convexity is one
of the ways in which one may harness the concentration of measure phenomenon
in order to formulate clean, nontrivial theorems. The Brunn–Minkowski inequality
from the end of the 19th century states that for any nonempty Borel sets A,B ⊆ R

n,

(1) |A+B|1/n ≥ |A|1/n + |B|1/n,
where A + B = {x + y ;x ∈ A, y ∈ B} and |A| is the volume of the set A. The
Brunn–Minkowski inequality is a close relative of the isoperimetric inequality, and
equality holds in (1) essentially only when A and B are congruent convex bodies.
Among the many consequences of the Brunn–Minkowski theory, let us mention
the reverse Hölder inequalities, proven by Berwald in the 1940s and Borell in the
1970s, stating that for any convex body K ⊆ R

n, a linear functional f : Rn → R

and p, q > 0,
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where C = Cp,q > 0 depends solely on p, q and neither on K nor on the dimension
n. This amusing property of convex domains goes beyond linear functionals, as
it remains valid when f is merely a positive, concave function, and also when f
is an arbitrary polynomial of degree d in n real variables. In the latter case, the
constant C depends only on p, q and d, as shown by Bourgain in the early 1990s.
These results serve as evidence for the general hypothesis, that in many respects the
uniform measure on a high-dimensional convex body resembles a Gaussian measure.
Recall that Gaussian random variables are completely determined by their mean
and variance. The barycenter and the covariance matrix of a convex body K ⊆ R

n

are defined by

b(K) =

∫
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|K| , Cov(K) =
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where x ⊗ x = xxt = (xixj)i,j=1,...,n for x ∈ R
n. A convex body is said to be

isotropic if its barycenter is at the origin and its covariance matrix is scalar. Any
convex body has an affine image which is isotropic. If our goal is to test the
aforementioned hypothesis, then it suffices to restrict our attention to isotropic
convex bodies, as already indicated by the title of the book. Let us provide another
regularity result from the book, published by Hensley in 1980: When K ⊆ R

n is
convex and isotropic, for any two linear subspaces H1, H2 ⊆ R

n with dim(H1) =
dim(H2) = n− 1,

|K ∩H1|n−1 ≤ C|K ∩H2|n−1,
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where | · |n−1 stands for (n − 1)-dimensional volume, and C > 0 is a universal

constant which is at most
√
6 according to Ball and to Fradelizi. However, the

flow of positive results soon approaches an obstacle, since the following seemingly
innocent question is yet undecided: Given a convex set K ⊆ R

n of volume one,
does there exist a hyperplane H ⊆ R

n such that the (n − 1)-dimensional volume
of K ∩ H is at least c, for some universal constant c > 0? This question, widely
known as the slicing problem or the hyperplane conjecture, was raised by Bourgain
in the 1980s. It may be reformulated in several equivalent ways, and it lurks in the
background of many of the chapters of the book.

The study of the uniform measure on high-dimensional convex bodies has been
particularly fruitful in the past decade. This new era has begun with the Paouris
inequality from 2005, establishing a large deviation estimate for the Euclidean norm
on isotropic convex bodies, which was much stronger and more general than any
other estimate known prior to this result. Soon afterwards, weak forms of the
slicing problem were established, as well as the existence of nearly sub-Gaussian
tail estimates for the distribution of linear functionals on arbitrary convex sets.
Next in line came the central limit problem for convex sets, proposed by Anttila,
Ball, and Perissinaki and by Brehm and Voigt in the late 1990s. This problem is
now largely resolved, thanks to the following central limit theorem for convex sets
from 2006: Let X be a random vector in R

n that is distributed uniformly in an
isotropic convex body. Assume the normalization E|X|2 = n. Then there exists a
unit vector θ ∈ R

n such that

(3)
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where C,α > 0 are universal constants, and 〈·, ·〉 is the standard scalar product
in R

n. In fact, most unit vectors θ in the unit sphere Sn−1 satisfy (3), where
by “most” we refer to the uniform probability measure on Sn−1. Essentially, the
proof of the central limit theorem for convex sets reduces to the following thin-shell
bound:

(4) Var

(
|X|√
n

)
≤ C̃

nβ
,

where C̃ and β ≈ 2α are positive universal constants, | · | is the standard Euclidean
norm, and Var stands for the variance of a random variable. The bound (4) implies
that 99% of the mass of an isotropic convex body in high dimensions is located in
a thin spherical shell, whose width is much smaller than its radius. If the convex
body is not necessarily isotropic, then most of its measure is very close to a surface
of an ellipsoid. The optimal exponents α and β from (3) and (4) are still unknown.
The current world record is β ≥ 1/3, held by Guédon and E. Milman as of 2011,
succeeding Fleury who, in 2009, obtained the bound β ≥ 1/4. The thin-shell
conjecture speculates that β = 1. The thin-shell conjecture implies the hyperplane
conjecture, according to Eldan and the reviewer. Furthermore, if the thin-shell
exponent β equals one, then we would have a satisfactory rate of convergence in the
central limit theorem for convex bodies, which is comparable to the Berry–Esseen
theorem from probability theory. Therefore, the question about the best value of β
tests whether convexity assumptions are as good as independence assumptions in
the context of the central limit theorem. The question of estimating the thin-shell
exponent is also closely related to spectral gap of the Laplacian and to isoperimetric
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inequalities in convex sets. Suppose that K ⊆ R
n is a bounded, open convex set of

volume one. Its isoperimetric constant is defined as

(5) hK = inf

{
|∂A ∩K|n−1 ; |A ∩K|n =

1

2

}
,

where the infimum runs over all domains A ⊆ R
n with smooth boundary, that

capture half of the mass of K. Thus, hK is the area of the minimal interface which
is required in order to divide K into two parts of equal mass. The Kannan–Lovász–
Simonovits (KLS) conjecture from the 1990s suggests that the infimum in (5) is
equivalent, up to a universal constant, to the same infimum where A ranges only
over the collection of half-spaces in R

n. The KLS conjecture would immediately
imply the thin-shell conjecture, and in 2012 Eldan showed that these two conjectures
are intimately related and that, up to logarithmic factors, they are equivalent.

The book spans a lot more than the specific results and conjectures that were
selected to be presented above. It contains a background chapter on asymptotic
convex geometry, which will be expanded in the forthcoming book by Artstein-
Avidan, Giannopoulos, and Milman on asymptotic geometric analysis. The Paouris
theory of the Lp-centroid bodies is systematically developed, as well as the theory
of the logarithmic Laplace transform in convexity and the Bourgain–Milman in-
equality. Various reductions, partial answers, and equivalent formulations of the
above conjectures are discussed. The treatment is comprehensive, including analy-
sis of relations to information theory, random polytopes and infimum convolution
inequalities. The authors provide a thorough account of the current state of the
field, and their arguments are detailed and accessible to beginning graduate stu-
dents. Prior to the publication of this book, results in the field were scattered
in many research articles, and the book does a remarkable job in unifying and
presenting old contributions alongside the new.
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