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The book under review [5] is a landmark piece of work that establishes a fun-
damental bridge between complex geometry and symplectic geometry. It is both
a research monograph of the deepest kind and a panoramic companion to the two
fields. The main characters are, respectively, Stein manifolds on the complex side
and Weinstein manifolds on the symplectic side. The connection between the two
is established by studying the corresponding geometric structures up to homotopy,
or deformation, a context in which the h-principle plays a fundamental role.

Stein manifolds are fundamental objects in complex analysis of several variables
and in complex geometry. There are several equivalent definitions, but the most
intuitive one is the following: they are the complex manifolds that admit a proper
holomorphic embedding in some C™ (they are in particular noncompact). Stein
manifolds can be thought of as being a far-reaching generalization of domains of
holomorphy in C™. Other important classes of examples are noncompact Riemann
surfaces and complements of hyperplane sections of smooth algebraic manifolds.
The latter are actually examples of affine (algebraic) manifolds, meaning that they
are described by polynomial equations in C™. While affine manifolds are open
analogues of smooth algebraic varieties, Stein manifolds form a much larger class
within the analytic category. They are sometimes thought of as being natural
domains for holomorphic maps with values in arbitrary complex manifolds [27].

In the wake of Cartan’s foundational theorems A and B and Serre’s fundamen-
tal GAGA principle [3,[38], much of the literature on Stein manifolds dealt with
their analytic properties and used coherent sheaves as a primary tool. This well-
established and rich subject is taken up in several classical monographs, for exam-
ple [I7,24]. One upshot is that the biholomorphism type of a Stein manifold is very
rigid: for example, there are uncountably many nonbiholomorphic Stein manifolds
that are C*°-small perturbations of the open ball in C™ [26].

Here we come upon the first shift in point of view operated by the book under
review: Stein manifolds are not studied up to biholomorphism, but rather up to
deformation, or homotopy, of the Stein structure.

Such a shift in point of view may seem entirely unnatural from the perspective
of complex analysis, but it is natural from the topological perspective of the Oka
principle for Stein manifolds, which we now describe. As early as 1939 Oka [34]
had discovered that the second Cousin problem on the existence of globally defin-
ing functions for positive analytic divisors inside domains of holomorphy of C”
admits a holomorphic solution if and only if it admits a continuous solution (see
also [35], pp. 24-35]). This discovery gradually evolved into one of the most powerful
tools for the study of Stein spaces, called the Oka principle, formulated as follows:
“On a reduced Stein space X, problems which can be cohomologically formulated
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have only topological obstructions. In other words, such problems are holomorphi-
cally solvable if and only if they are continuously solvable” [T} p. 145], see also [37].

The Oka principle appears nowadays to have been a precursor for an entirely
new strand of mathematics known under the name of homotopy principle, or h-
principle. The h-principle was formulated as a broad unifying concept by Gromov
in his 1970 ICM address [2I]. As we understand it now, it refers to a class of
theorems whose content is the following: the existence of a “formal” solution of
a PDE (of geometric origin and usually heavily underdetermined) implies the ex-
istence of a “genuine” solution (see below for a discussion of formal solutions vs.
genuine solutions). Formal solutions are always objects of a topological nature,
while genuine solutions are always objects of an analytic nature. It is often the
case that the correspondence between formal solutions and genuine solutions holds
for arbitrary finite-dimensional families, in which case we speak of the parametric
h-principle. The parametric h-principle can be succinctly formulated as saying that
the inclusion of the space of genuine solutions into the space of formal solutions is
a (weak) homotopy equivalence. (The adjective “weak” here refers to the property
that the inclusion induces isomorphisms on all homotopy groups, and the parenthe-
ses signify that the stronger statement about homotopy equivalence always holds,
though weak homotopy equivalence is the only thing that is used in practice; see the
discussion in [13] §6.2].) In the case of one-dimensional families, the h-principle be-
comes a statement about homotopies: the existence of a formal homotopy between
two genuine solutions implies the existence of a genuine homotopy. The classical
reference for the h-principle in its various incarnations is the book by Gromov [19].
A recent and friendly treatment is given by Eliashberg and Mishachev in [I3].

To grasp the meaning of genuine solutions vs. formal solutions, it is instructive
to examine the case of smooth immersions. This was historically the first instance
of the h-principle other than Oka’s work, and it is known as the Smale—Hirsch the-
orem [25,[40]. Though slightly weaker, the original statement proved by Smale and
Hirsch is essentially equivalent to the following: the parametric h-principle holds for
smooth immersions of a k-dimensional manifold M* into an n-dimensional manifold
N™ for n > k. In other words, the inclusion Imm(M*, N") < FImm(M* N") of
the space of immersions into the space of formal immersions, consisting of injective
bundle maps from TM — M to pullbacks f*T'N — M by arbitrary smooth maps
f: M — N, is a homotopy equivalence. The inclusion associates to a smooth
immersion f : M* — N™ the formal immersion df : TM — f*T'N. The particular
case M = S', N = R? was established much earlier by Whitney and Graustein [43].
Smale proved his famous sphere eversion theorem [39] by showing that the space
of formal immersions S? — R3 is connected, a statement that reduces to the van-
ishing of the second homotopy group of RP3. This is symptomatic of the fact that
formal solutions to a problem governed by the h-principle are classified by algebraic
invariants.

The h-principle also holds in certain holomorphic setups, most notably for holo-
morphic immersions of Stein manifolds into C™ (Gromov and Eliashberg [22,23]).
Using the same kind of methods, Gromov and Eliashberg proved that any Stein
manifold of dimension n embeds holomorphically into CL%J‘H, an optimal re-
sult [T2]. Underlying these developments is the classical Oka principle stated above,
and we refer to the recent monograph [I4] for a self-contained treatment of this cir-
cle of ideas. It is worth emphasizing that, in this context, although the methods
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are very much of a topological flavor, the point of view is reminiscent of the classi-
cal one in that the complex structure is fixed. By contrast, deformations of Stein
structures as considered in the book under review allow the complex structure to
change.

Let us now discuss the notion of Stein structure and that of deformation of a
Stein structure. These use the following alternative definition of Stein manifolds
due to Grauert [16]: A complex manifold (W, J) is Stein if and only if it admits an
exhausting, i.e., proper and bounded from below, J-convexr function ¢ : W — R.
The condition of J-convexity means that the 2-form w,, := —dd°p, with d°p := dpo
J, satisfies w, (v, Jv) > 0 for all tangent vectors v # 0. A Stein structure on an even-
dimensional smooth manifold W is a pair (J, @) consisting of a complex structure J
and of a J-convex exhausting smooth function ¢ : W — R. Note that the condition
of J-convexity is open in the C2-topology, so that the function ¢ can and often will
be assumed to be Morse, meaning that its critical points are nondegenerate. If the
function ¢ can be chosen to have only finitely many (nondegenerate) critical points,
we speak of a Stein manifold of finite type. A deformation, or homotopy, of Stein
structures is a continuous one-parameter family (Ji, p¢), t € [0,1], of generalized
Morse functions subject to the additional requirement that critical points “do not
escape to infinity” during the homotopy. Here by generalized Morse function we
mean a function whose critical points are either nondegenerate or of birth-death
type (these functions form the codimension 1 stratum in the space of all functions,
the open stratum being that of Morse functions). The condition of no escape to
infinity is subtle, and without imposing it the theory would be void: any two Stein
structures on C™ would be homotopic! This is carefully explained in the book
[5l, §11.6]; see in particular Remark 11.24. In formal terms, it means that on any
small time subinterval of [0, 1] the manifold W can be written as a countable union
W = Upsy W{ over families W} which are smooth in the time parameter ¢ and
consist of regular sublevel sets for ¢;. In the case of Stein manifolds of finite type,
the relevant notion of deformation requires that the union over ¢ € [0,1] of the
critical sets of the functions p; be compact.

The fact that the J-convexity condition is open in the C?-topology, so that the
J-convex function can be assumed to be (generalized) Morse, has the following
fundamental topological consequence: a Stein manifold of complex dimension n—
hence of real dimension 2n—retracts onto a CW-complex of dimension < n, and if
the manifold is of finite type, it retracts onto a CW-complex which is finite and,
in particular, compact (this last fact echoes the above assumption on homotopies
of Stein structures of finite type). Indeed, a direct computation essentially due to
Milnor [32] §7] shows that all critical points of a Morse function which is J-convex
have index < n. The resulting obvious homological conditions H;(W;Z) = 0, ¢ > n,
are actually so strong in the case of affine manifolds that they imply the Lefschetz
hyperplane theorem. We will see below that there is a symplectic reason why the
index is < n, namely that an isotropic submanifold of a symplectic manifold of
dimension 2n has dimension < n.

Indeed, the second shift in point of view operated by the book under review is
the one from complex geometry to symplectic geometry.

A symplectic manifold is a pair (M?" w) consisting of a smooth manifold of
even real dimension 2n and of a closed and nondegenerate 2-form w € Q*(M). An
immersion f : N¥ — M?" is called isotropic if f*w = 0. We then necessarily
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have k£ < n, and if kK = n we speak of a Lagrangian immersion. The existence
of symplectic forms in a fixed cohomology class on open manifolds is governed
by the h-principle (see [20] and [13, §10.2]). Lagrangian immersions into a given
symplectic manifold are also governed by the h-principle (see [21L28], [I3] §16.3], and
in the book under review [5, §7.2]). Similarly, the h-principle governs phenomena
in contact geometry, the odd-dimensional counterpart of symplectic geometry (see
[13. 5§12, 16], [15).

A first connection between symplectic geometry and complex geometry is the fol-
lowing: given a symplectic manifold (W, w), there always exists an almost complex
structure J that is compatible with the symplectic form w in the sense that w(-, J-)
is a Riemannian metric. Here by “almost complex structure” we mean a smooth
endomorphism of the tangent bundle J € End(T'M) such that J? = —Id. Sym-
plectic manifolds are thus naturally almost Kdahler manifolds. It turns out that the
space of such almost complex structures is contractible, so that the “moduli space
up to deformation” of the resulting almost Kéhler manifold with fixed symplectic
structure is reduced to a point.

At a much deeper conceptual level, the geometry of Stein manifolds connects
to symplectic geometry via the h-principle, which governs essential phenomena in
both worlds. The book under review turns this philosophy into a solid theorem.
Indeed, the authors establish a precise

correspondence between Stein manifolds and Weinstein manifolds.

Weinstein manifolds are open symplectic objects. It appears that the ultimate
reason why the h-principle holds for Stein immersions is because Stein manifolds
are open symplectic objects, and open symplectic objects tend to be flexible.

Weinstein manifolds were first introduced by Weinstein in [42], and their name
was coined by Eliashberg and Gromov in [II]. A Weinstein manifold is a tuple
(W, w, X, ) where (W,w) is a symplectic manifold, X is a complete vector field
which is Liouville for w, meaning that Lxw = w, or d(txw) = w, and ¢ : W — R
is an exhausting smooth generalized Morse function which is Lyapunov for X.
That ¢ is a Lyapunov function for X means that X - ¢ > ¢(|X|? + |dp|?) for
some Riemannian metric on W and for some constant ¢ > 0 (we also say that
X is a pseudo-gradient for ). The key class of examples—coming from classical
mechanics, the historical ancestor of symplectic geometry—consists of phase spaces
T*M of smooth manifolds M, endowed with the canonical symplectic form given
locally by dp A dq in coordinates q on the base and in dual coordinates p in the
fiber. In this case one can take ¢ to be a g-dependent Morse perturbation of the
function (q, p) = |p|?, the norm being considered with respect to some Riemannian
metric on the base, and X to be a suitable Hamiltonian perturbation of the radial
vector field p% (see [5, §11.4]).

Stein manifolds are Weinstein manifolds. Indeed, given a Stein structure (J, )
on a manifold W such that ¢ is a generalized Morse function, we define a Weinstein
structure (wy, Xy, @) as follows. The 2-form w, := —dd®p, with d°p := dp o J,
is symplectic by the assumption of J-convexity for ¢. It then turns out that J
is compatible with w,, and the gradient X, := V9 ¢ of ¢ with respect to the
Riemannian metric g, := wy(-, J-) is a Liouville vector field for w,. Obviously ¢ is
a Lyapunov function for X.

This is the key correspondence of the book. Given a manifold W of even di-
mension, the authors denote Gtein the space of Stein structures (J, @) on W such
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that ¢ is generalized Morse, and by 2einstein the space of Weinstein structures
(w, X, ) on W (such that ¢ is generalized Morse), with a canonical map

Gtein — Weinstein, (J,0) — (wy, VI? 0, ).
We obtain in particular a canonical diagram

(1) Gtein Weinstein

Motse

where the vertical arrows are the canonical projections (J,¢) — , respectively
(w, X, ) — ¢, over the space Morse of generalized Morse functions on W. Theo-
rem 1.2 in the Introduction of the book under review encompasses most of its main
results and states the following.

Theorem. [5, Theorem 1.2 in §1, see also §13] The fibers of the two vertical arrows
at a generalized Morse function ¢ are (weakly) homotopy equivalent.

The authors make the explicit conjecture [5 Conjecture 1.4] that the map
Gtein — Weinstein

is a (weak) homotopy equivalence.

The above theorem is phrased in the spirit of the h-principle, though its content
is not that of an h-principle. Rather, its message is that the classification of Stein
manifolds up to homotopy of the Stein structure is not a problem of a complex ana-
lytic nature, but of a symplectic nature. That the symplectic geometry of Weinstein
manifolds is much more flexible than the complex geometry of Stein manifolds is
illustrated by the fact that homotopic Weinstein structures are symplectomorphic
(see [B, §11.2]). There is no such statement in the Stein category.

So how flexible is the symplectic world of Weinstein manifolds? It turns out that
this is one of the core questions of symplectic geometry.

Following again the h-principle philosophy, let us call a symplectic phenomenon
“flexible” if it only depends on differential geometric properties of the underlying
manifold, and “rigid” otherwise. We have already mentioned the example of La-
grangian immersions, which obey the h-principle: a manifold of dimension n admits
a Lagrangian immersion into an exact symplectic manifold of dimension 2n if and
only if it admits a formal Lagrangian immersion therein, meaning an immersion
covered by an isotropic injective homomorphism from its tangent bundle to the
tangent bundle of the target. Two Lagrangian immersions are homotopic through
Lagrangian immersions if and only if they are homotopic through formal Lagrangian
immersions. The existence of Lagrangian immersions is thus a problem of a flexible
nature. In contrast, each of the previous assertions fails if we replace “immersions”
by “embeddings”. Lagrangian embeddings do not obey an h-principle; there are
obstructions that go beyond smooth ones (e.g., S™, n > 2 has no Lagrangian em-
bedding into standard symplectic space R?" [I8]). The existence and classification
of Lagrangian embeddings is thus a problem of a rigid nature.

Drawing the line between flexibility and rigidity is at the heart of the subject
called symplectic topology. The category of Weinstein manifolds features both flex-
ibility and rigidity properties, and we now discuss an example of each.

One of the corollaries of the techniques developed in the book is the following
theorem, originally due to Cieliebak [4]. We explain below that, given a Weinstein
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manifold (W,w, X, ¢) of dimension 2n, all the critical points of the Morse function
© have index < n. Call a Weinstein manifold of dimension 2n subcritical if it
admits a Weinstein structure (w, X, ¢) with ¢ a Morse function without critical
points of index n. Obvious examples are products V' x C, where V is a Weinstein
manifold. Any subcritical Weinstein manifold is diffeomorphic, by Morse theory, to
such a product. Cieliebak’s theorem states that any subcritical Weinstein manifold
is also deformation equivalent, and hence is symplectomorphic to such a product
(see [B, §14.4]). This is an instance of flexibility: a phenomenon that is present at
the smooth level is replicated at the symplectic level.

On the other hand, many rigidity results concerning Weinstein manifolds have
been proved recently, starting with a groundbreaking paper by McLean [31] who,
in the wake of Seidel and Smith [36], constructed infinitely many distinct Wein-
stein structures on R??, n > 4. This was extended to n = 3 by Abouzaid and
Seidel [I]. Other constructions of “exotic” Weinstein manifolds have been given by
Maydanskiy [29], Maydanskiy and Seidel [30], and Bourgeois, Ekholm, and Eliash-
berg [2]. All these results rely in some form or another on handle presentations
of Stein manifolds, either directly or through the bias of Lefschetz fibrations. In
order to distinguish the various Weinstein manifolds constructed in this way, most
of the literature uses an invariant called symplectic homology. This is a variant
of Hamiltonian Floer homology adapted to open J-convex manifolds, first defined
by Viterbo [4I] (see also [§] for a related earlier construction). The final outcome
is the following (Abouzaid and Seidel [1 Corollary 1.2] for the affine case, and in
the book under review [5l Theorem 17.2] for the general case): for any Weinstein
manifold of finite type, there are infinitely many mutually nonsymplectomorphic,
hence nondeformation equivalent, Weinstein manifolds diffeomorphic to it.

The above two examples of flexibility and rigidity illustrate the constant tension
between these two aspects of symplectic topology.

Let us recall the example of nonbiholomorphic Stein structures on small C'*°
perturbations of the ball in C™ mentioned at the beginning of this review. Such Stein
structures are all deformation equivalent and subcritical. As such, they become
doubly indistinguishable in the homotopic setup of the book and in the symplectic
category. However, some form of “discrete” rigidity does persist in the world of
Weinstein manifolds, since the moduli space of Weinstein structures carried by a
given diffeomorphism type has at least countably many components, as seen above.

Modern Symplectic Geometry was born in a long battle for estab-
lishing the borderline between the areas where the h-principle holds
and where it fails. Since the beginning of the eighties the Symplectic
Rigidity army scored a lot of victories which brought to life the whole
new area of Symplectic Topology. However, there were also sev-
eral amazing unexpected breakthroughs on the Flexibility side [...].
In fact, it is still possible that in spite of great recent successes of
Symplectic Topology, the world of Symplectic Rigidity is just a small
island floating in the Flexible Symplectic Ocean.

Eliashberg and Mischachev [13] §6.1, p. 61].

This is a quotation from 2002, which today sounds prophetic: ten years later, in
2012, Emmy Murphy made a fundamental discovery [33] that allowed the extension
of flexibility phenomena for Weinstein manifolds well beyond the subcritical range.
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In order to explain Murphy’s discovery in our context, we need to describe sym-
plectic handle presentations of Weinstein manifolds. Recall that, on a smooth
manifold, a Morse function together with a choice of smooth pseudo-gradient vector
field determines a handle presentation as follows: given a critical level ¢ containing
a unique critical point of index A, for € > 0 small enough the sublevel set < (¢ + €)
is diffeomorphic to the sublevel set < (¢ — €) with a handle of index A attached to
it. The core of the handle is a ball inside the unstable manifold of the critical point
with respect to the negative pseudo-gradient vector field, and the attaching sphere
is the intersection of this unstable manifold with the level set ¢ — €. Note that the
critical points of the Morse function coincide by assumption with the zeroes of the
pseudo-gradient vector field.

In the symplectic setup of a Weinstein manifold (W?2",w, X, ¢), the handle de-
composition determined by ¢ and X has the following special features:

(i) the unstable manifolds of the negative pseudo-gradient vector field —X are
isotropic, meaning that w restricts to the zero form [5 §11.3];

(i) the primitive 6 := txw of w restricts to a contact form on any regular level
set of o, meaning that 6 A (df)"~! # 0; thus, every regular level set is a
contact manifold,

(iii) each attaching sphere is a Legendrian submanifold inside the corresponding
regular level set, meaning that 6 restricts to the zero form.

A handle attachment featuring these properties is called a Weinstein handle at-
tachment. Note in particular that the isotropic nature of the unstable manifolds
implies that all the critical points of a Morse function ¢ defining a Weinstein struc-
ture have index < n, a property that has been mentioned previously. This provides
a symplectic perspective on the fact that Stein manifolds have the homotopy type
of CW-complexes of dimension < n.

Any finite type Weinstein manifold can be built in a finite number of steps by
such a sequence of handle attachments. The necessary piece of data for a Weinstein
handle attachment is an isotropic sphere inside the contact boundary of a sublevel
set (together with a framing of its normal bundle). In the spirit of our previous
flexibility example of subcritical Weinstein manifolds, it turns out that one can
first attach all the subcritical handles and then simultaneously attach the critical
handles along a Legendrian link.

Now comes into play Murphy’s discovery in [33]: inside any contact manifold of
dimension > 5, there is an explicit class of embedded Legendrian spheres (called
Legendrian knots) and, more generally, of embedded Legendrian links, which obey
the h-principle. Murphy calls them loose Legendrian knots, respectively, loose Leg-
endrian links (see §7.7 in the book). Building on this, Cieliebak and Eliashberg
define in §11.8 a finite type Weinstein manifold of dimension > 6 to be flezible if it
can be realized by handle attachment along a loose Legendrian link. Since any Leg-
endrian knot/link can be C°-approximated by a loose Legendrian knot/link (lying
actually in the same formal Legendrian isotopy class), it follows in particular that
any diffeomorphism type of Weinstein manifold of dimension > 6 carries a flexible
Weinstein structure! Chapter 14 of the book is dedicated to proving that flexi-
ble Weinstein structures are indeed flexible, meaning that they satisfy appropriate
versions of the h-principle.

The description of Weinstein manifolds via handle attachments plays a central
role throughout the book. The authors develop in particular in Chapter 10 a theory
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of cancellation of critical points in the J-convex setting, similar to the cancellation
theory one encounters in the proof of the smooth h-cobordism theorem. This is in
turn a direct offspring of a groundbreaking theorem of Eliashberg [9], which states
that there exists a Stein structure on any almost complex manifold of dimension
2n, n > 2, which admits a Morse function without critical points of index > n.
The original proof of this theorem uses in a crucial way handle-attachments and
appropriate versions of the h-principle, an old friend.

As the authors mention in the introduction to the book, their “original goal was
a complete and detailed exposition of the existence theorem for Stein structures
in [@)”. The outcome is a fascinating exploration and recasting of half a century
of mathematics, embedded into a landmark research monograph. We can only be
grateful to the authors, and perhaps the best way to express this gratitude is to
read the book. Here is a tip borrowed from Chris Wendl’s thorough review on
MathSciNet: the two expository articles by the authors [6L[7] can serve as points
of entry. Finally, we refer to the very recent survey paper by Eliashberg [10] for a
much broader perspective on the topic of symplectic flexibility.
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